Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2015 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "load_store_elimination.h" |
Aart Bik | 96fd51d | 2016-11-28 11:22:35 -0800 | [diff] [blame] | 18 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 19 | #include "base/arena_allocator.h" |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 20 | #include "base/arena_bit_vector.h" |
Vladimir Marko | 009d166 | 2017-10-10 13:21:15 +0100 | [diff] [blame] | 21 | #include "base/array_ref.h" |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 22 | #include "base/bit_vector-inl.h" |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 23 | #include "base/bit_vector.h" |
Vladimir Marko | 009d166 | 2017-10-10 13:21:15 +0100 | [diff] [blame] | 24 | #include "base/scoped_arena_allocator.h" |
| 25 | #include "base/scoped_arena_containers.h" |
Aart Bik | 96fd51d | 2016-11-28 11:22:35 -0800 | [diff] [blame] | 26 | #include "escape.h" |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 27 | #include "execution_subgraph.h" |
Andreas Gampe | 8cf9cb3 | 2017-07-19 09:28:38 -0700 | [diff] [blame] | 28 | #include "load_store_analysis.h" |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 29 | #include "nodes.h" |
| 30 | #include "optimizing_compiler_stats.h" |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 31 | #include "reference_type_propagation.h" |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 32 | #include "side_effects_analysis.h" |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 33 | |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 34 | /** |
| 35 | * The general algorithm of load-store elimination (LSE). |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 36 | * |
| 37 | * We use load-store analysis to collect a list of heap locations and perform |
| 38 | * alias analysis of those heap locations. LSE then keeps track of a list of |
| 39 | * heap values corresponding to the heap locations and stores that put those |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 40 | * values in these locations. |
| 41 | * - In phase 1, we visit basic blocks in reverse post order and for each basic |
| 42 | * block, visit instructions sequentially, recording heap values and looking |
| 43 | * for loads and stores to eliminate without relying on loop Phis. |
| 44 | * - In phase 2, we look for loads that can be replaced by creating loop Phis |
| 45 | * or using a loop-invariant value. |
| 46 | * - In phase 3, we determine which stores are dead and can be eliminated and |
| 47 | * based on that information we re-evaluate whether some kept stores are |
| 48 | * storing the same value as the value in the heap location; such stores are |
| 49 | * also marked for elimination. |
| 50 | * - In phase 4, we commit the changes, replacing loads marked for elimination |
| 51 | * in previous processing and removing stores not marked for keeping. We also |
| 52 | * remove allocations that are no longer needed. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 53 | * |
| 54 | * 1. Walk over blocks and their instructions. |
| 55 | * |
| 56 | * The initial set of heap values for a basic block is |
| 57 | * - For a loop header of an irreducible loop, all heap values are unknown. |
| 58 | * - For a loop header of a normal loop, all values unknown at the end of the |
| 59 | * preheader are initialized to unknown, other heap values are set to Phi |
| 60 | * placeholders as we cannot determine yet whether these values are known on |
| 61 | * all back-edges. We use Phi placeholders also for array heap locations with |
| 62 | * index defined inside the loop but this helps only when the value remains |
| 63 | * zero from the array allocation throughout the loop. |
| 64 | * - For other basic blocks, we merge incoming values from the end of all |
| 65 | * predecessors. If any incoming value is unknown, the start value for this |
| 66 | * block is also unknown. Otherwise, if all the incoming values are the same |
| 67 | * (including the case of a single predecessor), the incoming value is used. |
| 68 | * Otherwise, we use a Phi placeholder to indicate different incoming values. |
| 69 | * We record whether such Phi placeholder depends on a loop Phi placeholder. |
| 70 | * |
| 71 | * For each instruction in the block |
| 72 | * - If the instruction is a load from a heap location with a known value not |
| 73 | * dependent on a loop Phi placeholder, the load can be eliminated, either by |
| 74 | * using an existing instruction or by creating new Phi(s) instead. In order |
| 75 | * to maintain the validity of all heap locations during the optimization |
| 76 | * phase, we only record substitutes at this phase and the real elimination |
| 77 | * is delayed till the end of LSE. Loads that require a loop Phi placeholder |
| 78 | * replacement are recorded for processing later. |
| 79 | * - If the instruction is a store, it updates the heap value for the heap |
| 80 | * location with the stored value and records the store itself so that we can |
| 81 | * mark it for keeping if the value becomes observable. Heap values are |
| 82 | * invalidated for heap locations that may alias with the store instruction's |
| 83 | * heap location and their recorded stores are marked for keeping as they are |
| 84 | * now potentially observable. The store instruction can be eliminated unless |
| 85 | * the value stored is later needed e.g. by a load from the same/aliased heap |
| 86 | * location or the heap location persists at method return/deoptimization. |
| 87 | * - A store that stores the same value as the heap value is eliminated. |
| 88 | * - For newly instantiated instances, their heap values are initialized to |
| 89 | * language defined default values. |
| 90 | * - Finalizable objects are considered as persisting at method |
| 91 | * return/deoptimization. |
| 92 | * - Some instructions such as invokes are treated as loading and invalidating |
| 93 | * all the heap values, depending on the instruction's side effects. |
| 94 | * - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any |
| 95 | * partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as |
| 96 | * alias and no load/store is eliminated in such case. |
| 97 | * - Currently this LSE algorithm doesn't handle graph with try-catch, due to |
| 98 | * the special block merging structure. |
| 99 | * |
| 100 | * The time complexity of the initial phase has several components. The total |
| 101 | * time for the initialization of heap values for all blocks is |
| 102 | * O(heap_locations * edges) |
| 103 | * and the time complexity for simple instruction processing is |
| 104 | * O(instructions). |
| 105 | * See the description of phase 3 for additional complexity due to matching of |
| 106 | * existing Phis for replacing loads. |
| 107 | * |
| 108 | * 2. Process loads that depend on loop Phi placeholders. |
| 109 | * |
| 110 | * We go over these loads to determine whether they can be eliminated. We look |
| 111 | * for the set of all Phi placeholders that feed the load and depend on a loop |
| 112 | * Phi placeholder and, if we find no unknown value, we construct the necessary |
| 113 | * Phi(s) or, if all other inputs are identical, i.e. the location does not |
| 114 | * change in the loop, just use that input. If we do find an unknown input, this |
| 115 | * must be from a loop back-edge and we replace the loop Phi placeholder with |
| 116 | * unknown value and re-process loads and stores that previously depended on |
| 117 | * loop Phi placeholders. This shall find at least one load of an unknown value |
| 118 | * which is now known to be unreplaceable or a new unknown value on a back-edge |
| 119 | * and we repeat this process until each load is either marked for replacement |
| 120 | * or found to be unreplaceable. As we mark at least one additional loop Phi |
| 121 | * placeholder as unreplacable in each iteration, this process shall terminate. |
| 122 | * |
| 123 | * The depth-first search for Phi placeholders in FindLoopPhisToMaterialize() |
| 124 | * is limited by the number of Phi placeholders and their dependencies we need |
| 125 | * to search with worst-case time complexity |
| 126 | * O(phi_placeholder_dependencies) . |
| 127 | * The dependencies are usually just the Phi placeholders' potential inputs, |
| 128 | * but if we use TryReplacingLoopPhiPlaceholderWithDefault() for default value |
| 129 | * replacement search, there are additional dependencies to consider, see below. |
| 130 | * |
Vladimir Marko | 0571d47 | 2020-09-22 10:14:39 +0100 | [diff] [blame] | 131 | * In the successful case (no unknown inputs found) we use the Floyd-Warshall |
Vladimir Marko | ed29dce | 2020-08-21 17:25:16 +0100 | [diff] [blame] | 132 | * algorithm to determine transitive closures for each found Phi placeholder, |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 133 | * and then match or materialize Phis from the smallest transitive closure, |
| 134 | * so that we can determine if such subset has a single other input. This has |
| 135 | * time complexity |
| 136 | * O(phi_placeholders_found^3) . |
| 137 | * Note that successful TryReplacingLoopPhiPlaceholderWithDefault() does not |
| 138 | * contribute to this as such Phi placeholders are replaced immediately. |
| 139 | * The total time of all such successful cases has time complexity |
| 140 | * O(phi_placeholders^3) |
| 141 | * because the found sets are disjoint and `Sum(n_i^3) <= Sum(n_i)^3`. Similar |
| 142 | * argument applies to the searches used to find all successful cases, so their |
| 143 | * total contribution is also just an insignificant |
| 144 | * O(phi_placeholder_dependencies) . |
| 145 | * The materialization of Phis has an insignificant total time complexity |
| 146 | * O(phi_placeholders * edges) . |
| 147 | * |
| 148 | * If we find an unknown input, we re-process heap values and loads with a time |
| 149 | * complexity that's the same as the phase 1 in the worst case. Adding this to |
| 150 | * the depth-first search time complexity yields |
| 151 | * O(phi_placeholder_dependencies + heap_locations * edges + instructions) |
| 152 | * for a single iteration. We can ignore the middle term as it's proprotional |
| 153 | * to the number of Phi placeholder inputs included in the first term. Using |
| 154 | * the upper limit of number of such iterations, the total time complexity is |
| 155 | * O((phi_placeholder_dependencies + instructions) * phi_placeholders) . |
| 156 | * |
| 157 | * The upper bound of Phi placeholder inputs is |
| 158 | * heap_locations * edges |
| 159 | * but if we use TryReplacingLoopPhiPlaceholderWithDefault(), the dependencies |
| 160 | * include other heap locations in predecessor blocks with the upper bound of |
| 161 | * heap_locations^2 * edges . |
| 162 | * Using the estimate |
| 163 | * edges <= blocks^2 |
| 164 | * and |
| 165 | * phi_placeholders <= heap_locations * blocks , |
| 166 | * the worst-case time complexity of the |
| 167 | * O(phi_placeholder_dependencies * phi_placeholders) |
| 168 | * term from unknown input cases is actually |
| 169 | * O(heap_locations^3 * blocks^3) , |
Vladimir Marko | 0571d47 | 2020-09-22 10:14:39 +0100 | [diff] [blame] | 170 | * exactly as the estimate for the Floyd-Warshall parts of successful cases. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 171 | * Adding the other term from the unknown input cases (to account for the case |
| 172 | * with significantly more instructions than blocks and heap locations), the |
| 173 | * phase 2 time complexity is |
| 174 | * O(heap_locations^3 * blocks^3 + heap_locations * blocks * instructions) . |
| 175 | * |
| 176 | * See the description of phase 3 for additional complexity due to matching of |
| 177 | * existing Phis for replacing loads. |
| 178 | * |
| 179 | * 3. Determine which stores to keep and which to eliminate. |
| 180 | * |
Vladimir Marko | ed29dce | 2020-08-21 17:25:16 +0100 | [diff] [blame] | 181 | * During instruction processing in phase 1 and re-processing in phase 2, we are |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 182 | * keeping a record of the stores and Phi placeholders that become observable |
| 183 | * and now propagate the observable Phi placeholders to all actual stores that |
| 184 | * feed them. Having determined observable stores, we look for stores that just |
| 185 | * overwrite the old value with the same. Since ignoring non-observable stores |
| 186 | * actually changes the old values in heap locations, we need to recalculate |
| 187 | * Phi placeholder replacements but we proceed similarly to the previous phase. |
| 188 | * We look for the set of all Phis that feed the old value replaced by the store |
| 189 | * (but ignoring whether they depend on a loop Phi) and, if we find no unknown |
| 190 | * value, we try to match existing Phis (we do not create new Phis anymore) or, |
| 191 | * if all other inputs are identical, i.e. the location does not change in the |
| 192 | * loop, just use that input. If this succeeds and the old value is identical to |
| 193 | * the value we're storing, such store shall be eliminated. |
| 194 | * |
Vladimir Marko | ed29dce | 2020-08-21 17:25:16 +0100 | [diff] [blame] | 195 | * The work is similar to the phase 2, except that we're not re-processing loads |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 196 | * and stores anymore, so the time complexity of phase 3 is |
| 197 | * O(heap_locations^3 * blocks^3) . |
| 198 | * |
| 199 | * There is additional complexity in matching existing Phis shared between the |
| 200 | * phases 1, 2 and 3. We are never trying to match two or more Phis at the same |
| 201 | * time (this could be difficult and slow), so each matching attempt is just |
| 202 | * looking at Phis in the block (both old Phis and newly created Phis) and their |
| 203 | * inputs. As we create at most `heap_locations` Phis in each block, the upper |
| 204 | * bound on the number of Phis we look at is |
| 205 | * heap_locations * (old_phis + heap_locations) |
| 206 | * and the worst-case time complexity is |
| 207 | * O(heap_locations^2 * edges + heap_locations * old_phis * edges) . |
| 208 | * The first term is lower than one term in phase 2, so the relevant part is |
| 209 | * O(heap_locations * old_phis * edges) . |
| 210 | * |
| 211 | * 4. Replace loads and remove unnecessary stores and singleton allocations. |
| 212 | * |
| 213 | * A special type of objects called singletons are instantiated in the method |
| 214 | * and have a single name, i.e. no aliases. Singletons have exclusive heap |
| 215 | * locations since they have no aliases. Singletons are helpful in narrowing |
| 216 | * down the life span of a heap location such that they do not always need to |
| 217 | * participate in merging heap values. Allocation of a singleton can be |
| 218 | * eliminated if that singleton is not used and does not persist at method |
| 219 | * return/deoptimization. |
| 220 | * |
| 221 | * The time complexity of this phase is |
| 222 | * O(instructions + instruction_uses) . |
| 223 | * |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 224 | * FIXME: The time complexity described above assumes that the |
| 225 | * HeapLocationCollector finds a heap location for an instruction in O(1) |
| 226 | * time but it is currently O(heap_locations); this can be fixed by adding |
| 227 | * a hash map to the HeapLocationCollector. |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 228 | */ |
| 229 | |
Vladimir Marko | 0a51605 | 2019-10-14 13:00:44 +0000 | [diff] [blame] | 230 | namespace art { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 231 | |
Mingyao Yang | c62b7ec | 2017-10-25 16:42:15 -0700 | [diff] [blame] | 232 | // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke(). |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 233 | class LSEVisitor final : private HGraphDelegateVisitor { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 234 | public: |
| 235 | LSEVisitor(HGraph* graph, |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 236 | const HeapLocationCollector& heap_location_collector, |
| 237 | OptimizingCompilerStats* stats); |
| 238 | |
| 239 | void Run(); |
| 240 | |
| 241 | private: |
| 242 | class PhiPlaceholder { |
| 243 | public: |
| 244 | PhiPlaceholder(uint32_t block_id, uint32_t heap_location) |
| 245 | : block_id_(block_id), |
| 246 | heap_location_(dchecked_integral_cast<uint32_t>(heap_location)) {} |
| 247 | |
| 248 | uint32_t GetBlockId() const { |
| 249 | return block_id_; |
| 250 | } |
| 251 | |
| 252 | size_t GetHeapLocation() const { |
| 253 | return heap_location_; |
| 254 | } |
| 255 | |
| 256 | private: |
| 257 | uint32_t block_id_; |
| 258 | uint32_t heap_location_; |
| 259 | }; |
| 260 | |
| 261 | class Value { |
| 262 | public: |
| 263 | enum class Type { |
| 264 | kInvalid, |
| 265 | kUnknown, |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 266 | kMergedUnknown, |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 267 | kDefault, |
| 268 | kInstruction, |
| 269 | kNeedsNonLoopPhi, |
| 270 | kNeedsLoopPhi, |
| 271 | }; |
| 272 | |
| 273 | static Value Invalid() { |
| 274 | Value value; |
| 275 | value.type_ = Type::kInvalid; |
| 276 | value.instruction_ = nullptr; |
| 277 | return value; |
| 278 | } |
| 279 | |
| 280 | // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. |
| 281 | // A heap location can be set to an unknown heap value when: |
| 282 | // - it is coming from outside the method, |
| 283 | // - it is killed due to aliasing, or side effects, or merging with an unknown value. |
| 284 | static Value Unknown() { |
| 285 | Value value; |
| 286 | value.type_ = Type::kUnknown; |
| 287 | value.instruction_ = nullptr; |
| 288 | return value; |
| 289 | } |
| 290 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 291 | static Value MergedUnknown(const PhiPlaceholder* phi_placeholder) { |
| 292 | Value value; |
| 293 | value.type_ = Type::kMergedUnknown; |
| 294 | value.phi_placeholder_ = phi_placeholder; |
| 295 | return value; |
| 296 | } |
| 297 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 298 | // Default heap value after an allocation. |
| 299 | // A heap location can be set to that value right after an allocation. |
| 300 | static Value Default() { |
| 301 | Value value; |
| 302 | value.type_ = Type::kDefault; |
| 303 | value.instruction_ = nullptr; |
| 304 | return value; |
| 305 | } |
| 306 | |
| 307 | static Value ForInstruction(HInstruction* instruction) { |
| 308 | Value value; |
| 309 | value.type_ = Type::kInstruction; |
| 310 | value.instruction_ = instruction; |
| 311 | return value; |
| 312 | } |
| 313 | |
| 314 | static Value ForNonLoopPhiPlaceholder(const PhiPlaceholder* phi_placeholder) { |
| 315 | Value value; |
| 316 | value.type_ = Type::kNeedsNonLoopPhi; |
| 317 | value.phi_placeholder_ = phi_placeholder; |
| 318 | return value; |
| 319 | } |
| 320 | |
| 321 | static Value ForLoopPhiPlaceholder(const PhiPlaceholder* phi_placeholder) { |
| 322 | Value value; |
| 323 | value.type_ = Type::kNeedsLoopPhi; |
| 324 | value.phi_placeholder_ = phi_placeholder; |
| 325 | return value; |
| 326 | } |
| 327 | |
| 328 | static Value ForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, bool needs_loop_phi) { |
| 329 | return needs_loop_phi ? ForLoopPhiPlaceholder(phi_placeholder) |
| 330 | : ForNonLoopPhiPlaceholder(phi_placeholder); |
| 331 | } |
| 332 | |
| 333 | bool IsValid() const { |
| 334 | return !IsInvalid(); |
| 335 | } |
| 336 | |
| 337 | bool IsInvalid() const { |
| 338 | return type_ == Type::kInvalid; |
| 339 | } |
| 340 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 341 | bool IsMergedUnknown() const { |
| 342 | return type_ == Type::kMergedUnknown; |
| 343 | } |
| 344 | |
| 345 | bool IsPureUnknown() const { |
Alex Light | 2316b3a | 2020-11-14 01:28:22 +0000 | [diff] [blame] | 346 | return type_ == Type::kUnknown; |
Alex Light | b6837f0 | 2020-11-12 17:05:28 +0000 | [diff] [blame] | 347 | } |
| 348 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 349 | bool IsUnknown() const { |
| 350 | return type_ == Type::kUnknown || type_ == Type::kMergedUnknown; |
| 351 | } |
| 352 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 353 | bool IsDefault() const { |
| 354 | return type_ == Type::kDefault; |
| 355 | } |
| 356 | |
| 357 | bool IsInstruction() const { |
| 358 | return type_ == Type::kInstruction; |
| 359 | } |
| 360 | |
| 361 | bool NeedsNonLoopPhi() const { |
| 362 | return type_ == Type::kNeedsNonLoopPhi; |
| 363 | } |
| 364 | |
| 365 | bool NeedsLoopPhi() const { |
| 366 | return type_ == Type::kNeedsLoopPhi; |
| 367 | } |
| 368 | |
| 369 | bool NeedsPhi() const { |
| 370 | return NeedsNonLoopPhi() || NeedsLoopPhi(); |
| 371 | } |
| 372 | |
| 373 | HInstruction* GetInstruction() const { |
| 374 | DCHECK(IsInstruction()); |
| 375 | return instruction_; |
| 376 | } |
| 377 | |
| 378 | const PhiPlaceholder* GetPhiPlaceholder() const { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 379 | DCHECK(NeedsPhi() || IsMergedUnknown()); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 380 | return phi_placeholder_; |
| 381 | } |
| 382 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 383 | uint32_t GetMergeBlockId() const { |
| 384 | DCHECK(IsMergedUnknown()) << this; |
| 385 | return phi_placeholder_->GetBlockId(); |
| 386 | } |
| 387 | |
| 388 | HBasicBlock* GetMergeBlock(const HGraph* graph) const { |
| 389 | DCHECK(IsMergedUnknown()) << this; |
| 390 | return graph->GetBlocks()[GetMergeBlockId()]; |
| 391 | } |
| 392 | |
| 393 | size_t GetHeapLocation() const { |
| 394 | DCHECK(IsMergedUnknown() || NeedsPhi()) << this; |
| 395 | return phi_placeholder_->GetHeapLocation(); |
| 396 | } |
| 397 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 398 | bool Equals(Value other) const { |
| 399 | // Only valid values can be compared. |
| 400 | DCHECK(IsValid()); |
| 401 | DCHECK(other.IsValid()); |
| 402 | if (type_ != other.type_) { |
| 403 | // Default values are equal to zero bit pattern instructions. |
| 404 | return (IsDefault() && other.IsInstruction() && IsZeroBitPattern(other.GetInstruction())) || |
| 405 | (other.IsDefault() && IsInstruction() && IsZeroBitPattern(GetInstruction())); |
| 406 | } else { |
| 407 | // Note: Two unknown values are considered different. |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 408 | return IsDefault() || (IsInstruction() && GetInstruction() == other.GetInstruction()) || |
| 409 | (NeedsPhi() && GetPhiPlaceholder() == other.GetPhiPlaceholder()) || |
| 410 | (IsMergedUnknown() && GetPhiPlaceholder() == other.GetPhiPlaceholder()); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 411 | } |
| 412 | } |
| 413 | |
| 414 | bool Equals(HInstruction* instruction) const { |
| 415 | return Equals(ForInstruction(instruction)); |
| 416 | } |
| 417 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 418 | std::ostream& Dump(std::ostream& os) const; |
| 419 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 420 | private: |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 421 | friend std::ostream& operator<<(std::ostream& os, const Value& v); |
| 422 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 423 | Type type_; |
| 424 | union { |
| 425 | HInstruction* instruction_; |
| 426 | const PhiPlaceholder* phi_placeholder_; |
| 427 | }; |
| 428 | }; |
| 429 | |
| 430 | // Get Phi placeholder index for access to `phi_placeholder_replacements_` |
| 431 | // and "visited" bit vectors during depth-first searches. |
| 432 | size_t PhiPlaceholderIndex(const PhiPlaceholder* phi_placeholder) const { |
| 433 | return static_cast<size_t>(phi_placeholder - phi_placeholders_.data()); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 434 | } |
| 435 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 436 | size_t PhiPlaceholderIndex(Value phi_placeholder) const { |
| 437 | return PhiPlaceholderIndex(phi_placeholder.GetPhiPlaceholder()); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 438 | } |
| 439 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 440 | bool IsPartialNoEscape(HBasicBlock* blk, size_t idx) { |
| 441 | auto* ri = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| 442 | auto* sg = ri->GetNoEscapeSubgraph(); |
| 443 | return ri->IsPartialSingleton() && |
| 444 | std::none_of(sg->GetExcludedCohorts().cbegin(), |
| 445 | sg->GetExcludedCohorts().cend(), |
| 446 | [&](const ExecutionSubgraph::ExcludedCohort& ex) -> bool { |
| 447 | // Make sure we haven't yet and never will escape. |
| 448 | return ex.PrecedesBlock(blk) || |
| 449 | ex.ContainsBlock(blk) || |
| 450 | ex.SucceedsBlock(blk); |
| 451 | }); |
| 452 | } |
| 453 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 454 | const PhiPlaceholder* GetPhiPlaceholder(uint32_t block_id, size_t idx) const { |
| 455 | size_t phi_placeholders_begin = phi_placeholders_begin_for_block_[block_id]; |
| 456 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholders_begin + idx]; |
| 457 | DCHECK_EQ(phi_placeholder->GetBlockId(), block_id); |
| 458 | DCHECK_EQ(phi_placeholder->GetHeapLocation(), idx); |
| 459 | return phi_placeholder; |
| 460 | } |
| 461 | |
| 462 | Value Replacement(Value value) const { |
| 463 | DCHECK(value.NeedsPhi()); |
| 464 | Value replacement = phi_placeholder_replacements_[PhiPlaceholderIndex(value)]; |
| 465 | DCHECK(replacement.IsUnknown() || replacement.IsInstruction()); |
| 466 | DCHECK(replacement.IsUnknown() || |
| 467 | FindSubstitute(replacement.GetInstruction()) == replacement.GetInstruction()); |
| 468 | return replacement; |
| 469 | } |
| 470 | |
| 471 | Value ReplacementOrValue(Value value) const { |
| 472 | if (value.NeedsPhi() && phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) { |
| 473 | return Replacement(value); |
| 474 | } else { |
| 475 | DCHECK(!value.IsInstruction() || |
| 476 | FindSubstitute(value.GetInstruction()) == value.GetInstruction()); |
| 477 | return value; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | static ScopedArenaVector<PhiPlaceholder> CreatePhiPlaceholders( |
| 482 | HGraph* graph, |
| 483 | const HeapLocationCollector& heap_location_collector, |
| 484 | ScopedArenaAllocator* allocator); |
| 485 | static ScopedArenaVector<size_t> CreatePhiPlaceholdersBeginForBlock( |
| 486 | HGraph* graph, |
| 487 | const HeapLocationCollector& heap_location_collector, |
| 488 | ScopedArenaAllocator* allocator); |
| 489 | |
| 490 | // The record of a heap value and instruction(s) that feed that value. |
| 491 | struct ValueRecord { |
| 492 | Value value; |
| 493 | Value stored_by; |
| 494 | }; |
| 495 | |
Vladimir Marko | 4307cd7 | 2020-07-17 14:35:56 +0100 | [diff] [blame] | 496 | HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction, |
| 497 | HInstruction* value, |
| 498 | DataType::Type expected_type) { |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 499 | // Should never add type conversion into boolean value. |
Vladimir Marko | 4307cd7 | 2020-07-17 14:35:56 +0100 | [diff] [blame] | 500 | if (expected_type == DataType::Type::kBool || |
| 501 | DataType::IsTypeConversionImplicit(value->GetType(), expected_type) || |
| 502 | // TODO: This prevents type conversion of default values but we can still insert |
| 503 | // type conversion of other constants and there is no constant folding pass after LSE. |
| 504 | IsZeroBitPattern(value)) { |
| 505 | return nullptr; |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 506 | } |
Vladimir Marko | 4307cd7 | 2020-07-17 14:35:56 +0100 | [diff] [blame] | 507 | |
| 508 | // Check if there is already a suitable TypeConversion we can reuse. |
| 509 | for (const HUseListNode<HInstruction*>& use : value->GetUses()) { |
| 510 | if (use.GetUser()->IsTypeConversion() && |
| 511 | use.GetUser()->GetType() == expected_type && |
| 512 | // TODO: We could move the TypeConversion to a common dominator |
| 513 | // if it does not cross irreducible loop header. |
| 514 | use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) && |
| 515 | // Don't share across irreducible loop headers. |
| 516 | // TODO: can be more fine-grained than this by testing each dominator. |
| 517 | (use.GetUser()->GetBlock() == instruction->GetBlock() || |
| 518 | !GetGraph()->HasIrreducibleLoops())) { |
| 519 | if (use.GetUser()->GetBlock() == instruction->GetBlock() && |
| 520 | use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) { |
| 521 | // Move the TypeConversion before the instruction. |
| 522 | use.GetUser()->MoveBefore(instruction); |
| 523 | } |
| 524 | DCHECK(use.GetUser()->StrictlyDominates(instruction)); |
| 525 | return use.GetUser()->AsTypeConversion(); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | // We must create a new TypeConversion instruction. |
| 530 | HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion( |
| 531 | expected_type, value, instruction->GetDexPc()); |
| 532 | instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction); |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 533 | return type_conversion; |
| 534 | } |
| 535 | |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 536 | // Find an instruction's substitute if it's a removed load. |
Mingyao Yang | 206070c | 2017-11-29 23:01:58 -0800 | [diff] [blame] | 537 | // Return the same instruction if it should not be removed. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 538 | HInstruction* FindSubstitute(HInstruction* instruction) const { |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 539 | size_t id = static_cast<size_t>(instruction->GetId()); |
| 540 | if (id >= substitute_instructions_for_loads_.size()) { |
| 541 | DCHECK(!IsLoad(instruction)); // New Phi (may not be in the graph yet) or default value. |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 542 | return instruction; |
| 543 | } |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 544 | HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| 545 | DCHECK(substitute == nullptr || IsLoad(instruction)); |
| 546 | return (substitute != nullptr) ? substitute : instruction; |
Mingyao Yang | 206070c | 2017-11-29 23:01:58 -0800 | [diff] [blame] | 547 | } |
| 548 | |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 549 | void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) { |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 550 | DCHECK(IsLoad(load)); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 551 | DCHECK_EQ(FindSubstitute(load), load); |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 552 | DCHECK_EQ(FindSubstitute(heap_value), heap_value) << |
| 553 | "Unexpected heap_value that has a substitute " << heap_value->DebugName(); |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 554 | |
Vladimir Marko | 4307cd7 | 2020-07-17 14:35:56 +0100 | [diff] [blame] | 555 | // The load expects to load the heap value as type load->GetType(). |
| 556 | // However the tracked heap value may not be of that type. An explicit |
| 557 | // type conversion may be needed. |
| 558 | // There are actually three types involved here: |
| 559 | // (1) tracked heap value's type (type A) |
| 560 | // (2) heap location (field or element)'s type (type B) |
| 561 | // (3) load's type (type C) |
| 562 | // We guarantee that type A stored as type B and then fetched out as |
| 563 | // type C is the same as casting from type A to type C directly, since |
| 564 | // type B and type C will have the same size which is guaranteed in |
| 565 | // HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType(). |
| 566 | // So we only need one type conversion from type A to type C. |
| 567 | HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary( |
| 568 | load, heap_value, load->GetType()); |
| 569 | |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 570 | substitute_instructions_for_loads_[load->GetId()] = |
| 571 | type_conversion != nullptr ? type_conversion : heap_value; |
Vladimir Marko | 94539fd | 2017-11-15 17:52:46 +0000 | [diff] [blame] | 572 | } |
| 573 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 574 | static bool IsLoad(HInstruction* instruction) { |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 575 | // Unresolved load is not treated as a load. |
| 576 | return instruction->IsInstanceFieldGet() || |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 577 | instruction->IsStaticFieldGet() || |
| 578 | instruction->IsVecLoad() || |
| 579 | instruction->IsArrayGet(); |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 580 | } |
| 581 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 582 | static bool IsStore(HInstruction* instruction) { |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 583 | // Unresolved store is not treated as a store. |
| 584 | return instruction->IsInstanceFieldSet() || |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 585 | instruction->IsArraySet() || |
| 586 | instruction->IsVecStore() || |
| 587 | instruction->IsStaticFieldSet(); |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 588 | } |
| 589 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 590 | // Check if it is allowed to use default values or Phis for the specified load. |
| 591 | static bool IsDefaultOrPhiAllowedForLoad(HInstruction* instruction) { |
| 592 | DCHECK(IsLoad(instruction)); |
xueliang.zhong | d71f1dc | 2018-01-24 17:24:16 +0000 | [diff] [blame] | 593 | // Using defaults for VecLoads requires to create additional vector operations. |
| 594 | // As there are some issues with scheduling vector operations it is better to avoid creating |
| 595 | // them. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 596 | return !instruction->IsVecOperation(); |
xueliang.zhong | d71f1dc | 2018-01-24 17:24:16 +0000 | [diff] [blame] | 597 | } |
| 598 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 599 | // Keep the store referenced by the instruction, or all stores that feed a Phi placeholder. |
| 600 | // This is necessary if the stored heap value can be observed. |
| 601 | void KeepStores(Value value) { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 602 | if (value.IsPureUnknown()) { |
| 603 | return; |
| 604 | } |
| 605 | if (value.IsMergedUnknown()) { |
| 606 | kept_merged_unknowns_.SetBit(PhiPlaceholderIndex(value)); |
| 607 | phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value)); |
Mingyao Yang | fb8464a | 2015-11-02 10:56:59 -0800 | [diff] [blame] | 608 | return; |
| 609 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 610 | if (value.NeedsPhi()) { |
| 611 | phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value)); |
| 612 | } else { |
| 613 | HInstruction* instruction = value.GetInstruction(); |
| 614 | DCHECK(IsStore(instruction)); |
| 615 | kept_stores_.SetBit(instruction->GetId()); |
Mingyao Yang | fb8464a | 2015-11-02 10:56:59 -0800 | [diff] [blame] | 616 | } |
| 617 | } |
| 618 | |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 619 | // If a heap location X may alias with heap location at `loc_index` |
| 620 | // and heap_values of that heap location X holds a store, keep that store. |
| 621 | // It's needed for a dependent load that's not eliminated since any store |
| 622 | // that may put value into the load's heap location needs to be kept. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 623 | void KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord>& heap_values, |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 624 | size_t loc_index) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 625 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| 626 | if (i == loc_index) { |
| 627 | // We use this function when reading a location with unknown value and |
| 628 | // therefore we cannot know what exact store wrote that unknown value. |
| 629 | // But we can have a phi placeholder here marking multiple stores to keep. |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 630 | DCHECK( |
| 631 | !heap_values[i].stored_by.IsInstruction() || |
| 632 | heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->IsPartialSingleton()); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 633 | KeepStores(heap_values[i].stored_by); |
| 634 | heap_values[i].stored_by = Value::Unknown(); |
| 635 | } else if (heap_location_collector_.MayAlias(i, loc_index)) { |
| 636 | KeepStores(heap_values[i].stored_by); |
| 637 | heap_values[i].stored_by = Value::Unknown(); |
Mingyao Yang | 58d9bfc | 2016-11-01 13:31:58 -0700 | [diff] [blame] | 638 | } |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 639 | } |
| 640 | } |
| 641 | |
| 642 | // `instruction` is being removed. Try to see if the null check on it |
| 643 | // can be removed. This can happen if the same value is set in two branches |
| 644 | // but not in dominators. Such as: |
| 645 | // int[] a = foo(); |
| 646 | // if () { |
| 647 | // a[0] = 2; |
| 648 | // } else { |
| 649 | // a[0] = 2; |
| 650 | // } |
| 651 | // // a[0] can now be replaced with constant 2, and the null check on it can be removed. |
| 652 | void TryRemovingNullCheck(HInstruction* instruction) { |
| 653 | HInstruction* prev = instruction->GetPrevious(); |
| 654 | if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { |
| 655 | // Previous instruction is a null check for this instruction. Remove the null check. |
| 656 | prev->ReplaceWith(prev->InputAt(0)); |
| 657 | prev->GetBlock()->RemoveInstruction(prev); |
| 658 | } |
| 659 | } |
| 660 | |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 661 | HInstruction* GetDefaultValue(DataType::Type type) { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 662 | switch (type) { |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 663 | case DataType::Type::kReference: |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 664 | return GetGraph()->GetNullConstant(); |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 665 | case DataType::Type::kBool: |
Vladimir Marko | d5d2f2c | 2017-09-26 12:37:26 +0100 | [diff] [blame] | 666 | case DataType::Type::kUint8: |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 667 | case DataType::Type::kInt8: |
| 668 | case DataType::Type::kUint16: |
| 669 | case DataType::Type::kInt16: |
| 670 | case DataType::Type::kInt32: |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 671 | return GetGraph()->GetIntConstant(0); |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 672 | case DataType::Type::kInt64: |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 673 | return GetGraph()->GetLongConstant(0); |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 674 | case DataType::Type::kFloat32: |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 675 | return GetGraph()->GetFloatConstant(0); |
Vladimir Marko | 0ebe0d8 | 2017-09-21 22:50:39 +0100 | [diff] [blame] | 676 | case DataType::Type::kFloat64: |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 677 | return GetGraph()->GetDoubleConstant(0); |
| 678 | default: |
| 679 | UNREACHABLE(); |
| 680 | } |
| 681 | } |
| 682 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 683 | bool CanValueBeKeptIfSameAsNew(Value value, |
xueliang.zhong | d71f1dc | 2018-01-24 17:24:16 +0000 | [diff] [blame] | 684 | HInstruction* new_value, |
| 685 | HInstruction* new_value_set_instr) { |
| 686 | // For field/array set location operations, if the value is the same as the new_value |
| 687 | // it can be kept even if aliasing happens. All aliased operations will access the same memory |
| 688 | // range. |
| 689 | // For vector values, this is not true. For example: |
| 690 | // packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane. |
| 691 | // VecStore array[i ,i+1,i+2,i+3] = packed_data; |
| 692 | // VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap). |
| 693 | // VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value |
| 694 | // here is not packed_data anymore. |
| 695 | // |
| 696 | // TODO: to allow such 'same value' optimization on vector data, |
| 697 | // LSA needs to report more fine-grain MAY alias information: |
| 698 | // (1) May alias due to two vector data partial overlap. |
| 699 | // e.g. a[i..i+3] and a[i+1,..,i+4]. |
| 700 | // (2) May alias due to two vector data may complete overlap each other. |
| 701 | // e.g. a[i..i+3] and b[i..i+3]. |
| 702 | // (3) May alias but the exact relationship between two locations is unknown. |
| 703 | // e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown. |
| 704 | // This 'same value' optimization can apply only on case (2). |
| 705 | if (new_value_set_instr->IsVecOperation()) { |
| 706 | return false; |
| 707 | } |
| 708 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 709 | return value.Equals(new_value); |
xueliang.zhong | d71f1dc | 2018-01-24 17:24:16 +0000 | [diff] [blame] | 710 | } |
| 711 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 712 | Value PrepareLoopValue(HBasicBlock* block, size_t idx); |
| 713 | Value PrepareLoopStoredBy(HBasicBlock* block, size_t idx); |
| 714 | void PrepareLoopRecords(HBasicBlock* block); |
| 715 | Value MergePredecessorValues(HBasicBlock* block, size_t idx); |
| 716 | void MergePredecessorRecords(HBasicBlock* block); |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 717 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 718 | void MaterializeNonLoopPhis(const PhiPlaceholder* phi_placeholder, DataType::Type type); |
Mingyao Yang | e9d6e60 | 2015-10-23 17:08:42 -0700 | [diff] [blame] | 719 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 720 | void VisitGetLocation(HInstruction* instruction, size_t idx); |
| 721 | void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value); |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 722 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 723 | void VisitBasicBlock(HBasicBlock* block) override; |
| 724 | |
| 725 | enum class Phase { |
| 726 | kLoadElimination, |
| 727 | kStoreElimination |
| 728 | }; |
| 729 | |
| 730 | bool TryReplacingLoopPhiPlaceholderWithDefault( |
| 731 | const PhiPlaceholder* phi_placeholder, |
| 732 | DataType::Type type, |
| 733 | /*inout*/ArenaBitVector* phi_placeholders_to_materialize); |
| 734 | bool TryReplacingLoopPhiPlaceholderWithSingleInput( |
| 735 | const PhiPlaceholder* phi_placeholder, |
| 736 | /*inout*/ArenaBitVector* phi_placeholders_to_materialize); |
| 737 | const PhiPlaceholder* FindLoopPhisToMaterialize( |
| 738 | const PhiPlaceholder* phi_placeholder, |
| 739 | /*out*/ArenaBitVector* phi_placeholders_to_materialize, |
| 740 | DataType::Type type, |
| 741 | bool can_use_default_or_phi); |
| 742 | bool MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| 743 | DataType::Type type, |
| 744 | Phase phase); |
| 745 | bool MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| 746 | DataType::Type type, |
| 747 | Phase phase); |
| 748 | const PhiPlaceholder* TryToMaterializeLoopPhis(const PhiPlaceholder* phi_placeholder, |
| 749 | HInstruction* load); |
| 750 | void ProcessLoopPhiWithUnknownInput(const PhiPlaceholder* loop_phi_with_unknown_input); |
| 751 | void ProcessLoadsRequiringLoopPhis(); |
| 752 | |
| 753 | void SearchPhiPlaceholdersForKeptStores(); |
| 754 | void UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record); |
| 755 | void FindOldValueForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, DataType::Type type); |
| 756 | void FindStoresWritingOldValues(); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 757 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 758 | void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 759 | HInstruction* object = instruction->InputAt(0); |
| 760 | const FieldInfo& field = instruction->GetFieldInfo(); |
| 761 | VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field)); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 762 | } |
| 763 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 764 | void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 765 | HInstruction* object = instruction->InputAt(0); |
| 766 | const FieldInfo& field = instruction->GetFieldInfo(); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 767 | HInstruction* value = instruction->InputAt(1); |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 768 | size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field); |
| 769 | VisitSetLocation(instruction, idx, value); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 770 | } |
| 771 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 772 | void VisitStaticFieldGet(HStaticFieldGet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 773 | HInstruction* cls = instruction->InputAt(0); |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 774 | const FieldInfo& field = instruction->GetFieldInfo(); |
| 775 | VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field)); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 776 | } |
| 777 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 778 | void VisitStaticFieldSet(HStaticFieldSet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 779 | HInstruction* cls = instruction->InputAt(0); |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 780 | const FieldInfo& field = instruction->GetFieldInfo(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 781 | HInstruction* value = instruction->InputAt(1); |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 782 | size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 783 | VisitSetLocation(instruction, idx, value); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 784 | } |
| 785 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 786 | void VisitArrayGet(HArrayGet* instruction) override { |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 787 | VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 788 | } |
| 789 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 790 | void VisitArraySet(HArraySet* instruction) override { |
Aart Bik | b765a3f | 2018-05-10 14:47:48 -0700 | [diff] [blame] | 791 | size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
xueliang.zhong | d71f1dc | 2018-01-24 17:24:16 +0000 | [diff] [blame] | 792 | VisitSetLocation(instruction, idx, instruction->GetValue()); |
| 793 | } |
| 794 | |
| 795 | void VisitVecLoad(HVecLoad* instruction) override { |
| 796 | VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction)); |
| 797 | } |
| 798 | |
| 799 | void VisitVecStore(HVecStore* instruction) override { |
| 800 | size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction); |
| 801 | VisitSetLocation(instruction, idx, instruction->GetValue()); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 802 | } |
| 803 | |
Andreas Gampe | fa6a1b0 | 2018-09-07 08:11:55 -0700 | [diff] [blame] | 804 | void VisitDeoptimize(HDeoptimize* instruction) override { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 805 | ScopedArenaVector<ValueRecord>& heap_values = |
Mingyao Yang | eb2d2d346e | 2017-03-02 13:26:17 -0800 | [diff] [blame] | 806 | heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 807 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| 808 | Value* stored_by = &heap_values[i].stored_by; |
| 809 | if (stored_by->IsUnknown()) { |
| 810 | continue; |
| 811 | } |
| 812 | // Stores are generally observeable after deoptimization, except |
| 813 | // for singletons that don't escape in the deoptimization environment. |
| 814 | bool observable = true; |
| 815 | ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| 816 | if (info->IsSingleton()) { |
| 817 | HInstruction* reference = info->GetReference(); |
| 818 | // Finalizable objects always escape. |
| 819 | if (!reference->IsNewInstance() || !reference->AsNewInstance()->IsFinalizable()) { |
Mingyao Yang | a354053 | 2018-01-25 12:17:28 -0800 | [diff] [blame] | 820 | // Check whether the reference for a store is used by an environment local of |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 821 | // the HDeoptimize. If not, the singleton is not observed after deoptimization. |
| 822 | const HUseList<HEnvironment*>& env_uses = reference->GetEnvUses(); |
| 823 | observable = std::any_of( |
| 824 | env_uses.begin(), |
| 825 | env_uses.end(), |
| 826 | [instruction](const HUseListNode<HEnvironment*>& use) { |
| 827 | return use.GetUser()->GetHolder() == instruction; |
| 828 | }); |
Mingyao Yang | eb2d2d346e | 2017-03-02 13:26:17 -0800 | [diff] [blame] | 829 | } |
| 830 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 831 | if (observable) { |
| 832 | KeepStores(*stored_by); |
| 833 | *stored_by = Value::Unknown(); |
| 834 | } |
Mingyao Yang | eb2d2d346e | 2017-03-02 13:26:17 -0800 | [diff] [blame] | 835 | } |
| 836 | } |
| 837 | |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 838 | // Keep necessary stores before exiting a method via return/throw. |
| 839 | void HandleExit(HBasicBlock* block) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 840 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| 841 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 842 | ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 843 | if (!ref_info->IsSingletonAndRemovable() && |
| 844 | !(ref_info->IsPartialSingleton() && IsPartialNoEscape(block, i))) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 845 | KeepStores(heap_values[i].stored_by); |
| 846 | heap_values[i].stored_by = Value::Unknown(); |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 847 | } |
| 848 | } |
| 849 | } |
| 850 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 851 | void VisitReturn(HReturn* instruction) override { |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 852 | HandleExit(instruction->GetBlock()); |
| 853 | } |
| 854 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 855 | void VisitReturnVoid(HReturnVoid* return_void) override { |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 856 | HandleExit(return_void->GetBlock()); |
| 857 | } |
| 858 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 859 | void VisitThrow(HThrow* throw_instruction) override { |
Mingyao Yang | 46721ef | 2017-10-05 14:45:17 -0700 | [diff] [blame] | 860 | HandleExit(throw_instruction->GetBlock()); |
| 861 | } |
| 862 | |
Mingyao Yang | 293f1c0 | 2017-11-08 15:22:17 -0800 | [diff] [blame] | 863 | void HandleInvoke(HInstruction* instruction) { |
| 864 | SideEffects side_effects = instruction->GetSideEffects(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 865 | ScopedArenaVector<ValueRecord>& heap_values = |
Mingyao Yang | 293f1c0 | 2017-11-08 15:22:17 -0800 | [diff] [blame] | 866 | heap_values_for_[instruction->GetBlock()->GetBlockId()]; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 867 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 868 | ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 869 | ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts = |
| 870 | ref_info->GetNoEscapeSubgraph()->GetExcludedCohorts(); |
| 871 | HBasicBlock* blk = instruction->GetBlock(); |
| 872 | // We don't need to do anything if the reference has not escaped at this point. |
| 873 | // This is true if either we (1) never escape or (2) sometimes escape but |
| 874 | // there is no possible execution where we have done so at this time. NB |
| 875 | // We count being in the excluded cohort as escaping. Technically, this is |
| 876 | // a bit over-conservative (since we can have multiple non-escaping calls |
| 877 | // before a single escaping one) but this simplifies everything greatly. |
| 878 | if (ref_info->IsSingleton() || |
| 879 | // partial and we aren't currently escaping and we haven't escaped yet. |
| 880 | (ref_info->IsPartialSingleton() && ref_info->GetNoEscapeSubgraph()->ContainsBlock(blk) && |
| 881 | std::none_of(cohorts.begin(), |
| 882 | cohorts.end(), |
| 883 | [&](const ExecutionSubgraph::ExcludedCohort& cohort) { |
| 884 | return cohort.PrecedesBlock(blk); |
| 885 | }))) { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 886 | // Singleton references cannot be seen by the callee. |
| 887 | } else { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 888 | if (side_effects.DoesAnyRead() || side_effects.DoesAnyWrite()) { |
| 889 | // Previous stores may become visible (read) and/or impossible for LSE to track (write). |
| 890 | KeepStores(heap_values[i].stored_by); |
| 891 | heap_values[i].stored_by = Value::Unknown(); |
Mingyao Yang | 293f1c0 | 2017-11-08 15:22:17 -0800 | [diff] [blame] | 892 | } |
| 893 | if (side_effects.DoesAnyWrite()) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 894 | // The value may be clobbered. |
| 895 | heap_values[i].value = Value::Unknown(); |
Mingyao Yang | 293f1c0 | 2017-11-08 15:22:17 -0800 | [diff] [blame] | 896 | } |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 897 | } |
| 898 | } |
| 899 | } |
| 900 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 901 | void VisitInvoke(HInvoke* invoke) override { |
Orion Hodson | ac14139 | 2017-01-13 11:53:47 +0000 | [diff] [blame] | 902 | HandleInvoke(invoke); |
| 903 | } |
| 904 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 905 | void VisitClinitCheck(HClinitCheck* clinit) override { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 906 | // Class initialization check can result in class initializer calling arbitrary methods. |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 907 | HandleInvoke(clinit); |
| 908 | } |
| 909 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 910 | void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 911 | // Conservatively treat it as an invocation. |
| 912 | HandleInvoke(instruction); |
| 913 | } |
| 914 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 915 | void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 916 | // Conservatively treat it as an invocation. |
| 917 | HandleInvoke(instruction); |
| 918 | } |
| 919 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 920 | void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 921 | // Conservatively treat it as an invocation. |
| 922 | HandleInvoke(instruction); |
| 923 | } |
| 924 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 925 | void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 926 | // Conservatively treat it as an invocation. |
| 927 | HandleInvoke(instruction); |
| 928 | } |
| 929 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 930 | void VisitNewInstance(HNewInstance* new_instance) override { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 931 | ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); |
| 932 | if (ref_info == nullptr) { |
| 933 | // new_instance isn't used for field accesses. No need to process it. |
| 934 | return; |
| 935 | } |
Mingyao Yang | 025c1a6 | 2017-10-30 11:19:57 -0700 | [diff] [blame] | 936 | if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) { |
| 937 | DCHECK(!new_instance->IsFinalizable()); |
Mingyao Yang | 7cf9af2 | 2018-02-06 15:02:42 -0800 | [diff] [blame] | 938 | // new_instance can potentially be eliminated. |
Mingyao Yang | 062157f | 2016-03-02 10:15:36 -0800 | [diff] [blame] | 939 | singleton_new_instances_.push_back(new_instance); |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 940 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 941 | ScopedArenaVector<ValueRecord>& heap_values = |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 942 | heap_values_for_[new_instance->GetBlock()->GetBlockId()]; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 943 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 944 | HInstruction* ref = |
| 945 | heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); |
| 946 | size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); |
Alex Light | 2610dfe | 2020-12-07 16:26:43 -0800 | [diff] [blame^] | 947 | if (ref == new_instance) { |
| 948 | if (offset >= mirror::kObjectHeaderSize) { |
| 949 | // Instance fields except the header fields are set to default heap values. |
| 950 | heap_values[i].value = Value::Default(); |
| 951 | heap_values[i].stored_by = Value::Unknown(); |
| 952 | } else if (MemberOffset(offset) == mirror::Object::ClassOffset()) { |
| 953 | // The shadow$_klass_ field is special and has an actual value however. |
| 954 | heap_values[i].value = Value::ForInstruction(new_instance->GetLoadClass()); |
| 955 | heap_values[i].stored_by = Value::Unknown(); |
| 956 | } |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 957 | } |
| 958 | } |
| 959 | } |
| 960 | |
Roland Levillain | bbc6e7e | 2018-08-24 16:58:47 +0100 | [diff] [blame] | 961 | void VisitNewArray(HNewArray* new_array) override { |
Mingyao Yang | 8697490 | 2017-03-01 14:03:51 -0800 | [diff] [blame] | 962 | ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); |
| 963 | if (ref_info == nullptr) { |
| 964 | // new_array isn't used for array accesses. No need to process it. |
| 965 | return; |
| 966 | } |
| 967 | if (ref_info->IsSingletonAndRemovable()) { |
Mingyao Yang | 7cf9af2 | 2018-02-06 15:02:42 -0800 | [diff] [blame] | 968 | if (new_array->GetLength()->IsIntConstant() && |
| 969 | new_array->GetLength()->AsIntConstant()->GetValue() >= 0) { |
| 970 | // new_array can potentially be eliminated. |
| 971 | singleton_new_instances_.push_back(new_array); |
| 972 | } else { |
| 973 | // new_array may throw NegativeArraySizeException. Keep it. |
| 974 | } |
Mingyao Yang | 8697490 | 2017-03-01 14:03:51 -0800 | [diff] [blame] | 975 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 976 | ScopedArenaVector<ValueRecord>& heap_values = |
Mingyao Yang | 8697490 | 2017-03-01 14:03:51 -0800 | [diff] [blame] | 977 | heap_values_for_[new_array->GetBlock()->GetBlockId()]; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 978 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
Mingyao Yang | 8697490 | 2017-03-01 14:03:51 -0800 | [diff] [blame] | 979 | HeapLocation* location = heap_location_collector_.GetHeapLocation(i); |
| 980 | HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
| 981 | if (ref == new_array && location->GetIndex() != nullptr) { |
| 982 | // Array elements are set to default heap values. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 983 | heap_values[i].value = Value::Default(); |
| 984 | heap_values[i].stored_by = Value::Unknown(); |
Mingyao Yang | 8697490 | 2017-03-01 14:03:51 -0800 | [diff] [blame] | 985 | } |
| 986 | } |
| 987 | } |
| 988 | |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 989 | const HeapLocationCollector& heap_location_collector_; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 990 | |
Vladimir Marko | 009d166 | 2017-10-10 13:21:15 +0100 | [diff] [blame] | 991 | // Use local allocator for allocating memory. |
| 992 | ScopedArenaAllocator allocator_; |
| 993 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 994 | // Phi placeholders used for keeping track of values and stores for multiple predecessors. |
| 995 | ScopedArenaVector<PhiPlaceholder> phi_placeholders_; |
| 996 | |
| 997 | // The start of the Phi placeholders in the `phi_placeholders_` |
| 998 | // for each block with multiple predecessors. |
| 999 | ScopedArenaVector<size_t> phi_placeholders_begin_for_block_; |
| 1000 | |
| 1001 | // One array of heap value records for each block. |
| 1002 | ScopedArenaVector<ScopedArenaVector<ValueRecord>> heap_values_for_; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 1003 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1004 | // We record loads and stores for re-processing when we find a loop Phi placeholder |
| 1005 | // with unknown value from a predecessor, and also for removing stores that are |
| 1006 | // found to be dead, i.e. not marked in `kept_stores_` at the end. |
| 1007 | struct LoadStoreRecord { |
| 1008 | HInstruction* load_or_store; |
| 1009 | size_t heap_location_index; |
| 1010 | }; |
| 1011 | ScopedArenaVector<LoadStoreRecord> loads_and_stores_; |
| 1012 | |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 1013 | // We record the substitute instructions for loads that should be |
| 1014 | // eliminated but may be used by heap locations. They'll be removed |
| 1015 | // in the end. These are indexed by the load's id. |
| 1016 | ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_; |
| 1017 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1018 | // Record stores to keep in a bit vector indexed by instruction ID. |
| 1019 | ArenaBitVector kept_stores_; |
| 1020 | // When we need to keep all stores that feed a Phi placeholder, we just record the |
| 1021 | // index of that placeholder for processing after graph traversal. |
| 1022 | ArenaBitVector phi_placeholders_to_search_for_kept_stores_; |
| 1023 | |
| 1024 | // Loads that would require a loop Phi to replace are recorded for processing |
| 1025 | // later as we do not have enough information from back-edges to determine if |
| 1026 | // a suitable Phi can be found or created when we visit these loads. |
| 1027 | ScopedArenaHashMap<HInstruction*, ValueRecord> loads_requiring_loop_phi_; |
| 1028 | |
| 1029 | // For stores, record the old value records that were replaced and the stored values. |
| 1030 | struct StoreRecord { |
| 1031 | ValueRecord old_value_record; |
| 1032 | HInstruction* stored_value; |
| 1033 | }; |
| 1034 | ScopedArenaHashMap<HInstruction*, StoreRecord> store_records_; |
| 1035 | |
| 1036 | // Replacements for Phi placeholders. |
| 1037 | // The unknown heap value is used to mark Phi placeholders that cannot be replaced. |
| 1038 | ScopedArenaVector<Value> phi_placeholder_replacements_; |
Mingyao Yang | fb8464a | 2015-11-02 10:56:59 -0800 | [diff] [blame] | 1039 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1040 | // Merged-unknowns that must have their predecessor values kept to ensure |
| 1041 | // partially escaped values are written |
| 1042 | ArenaBitVector kept_merged_unknowns_; |
| 1043 | |
Vladimir Marko | 009d166 | 2017-10-10 13:21:15 +0100 | [diff] [blame] | 1044 | ScopedArenaVector<HInstruction*> singleton_new_instances_; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 1045 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1046 | friend std::ostream& operator<<(std::ostream& os, const Value& v); |
| 1047 | |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 1048 | DISALLOW_COPY_AND_ASSIGN(LSEVisitor); |
| 1049 | }; |
| 1050 | |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1051 | std::ostream& LSEVisitor::Value::Dump(std::ostream& os) const { |
| 1052 | switch (type_) { |
| 1053 | case Type::kDefault: |
| 1054 | return os << "Default"; |
| 1055 | case Type::kInstruction: |
| 1056 | return os << "Instruction[id: " << instruction_->GetId() |
| 1057 | << ", block: " << instruction_->GetBlock()->GetBlockId() << "]"; |
| 1058 | case Type::kUnknown: |
| 1059 | return os << "Unknown"; |
| 1060 | case Type::kInvalid: |
| 1061 | return os << "Invalid"; |
| 1062 | case Type::kMergedUnknown: |
| 1063 | return os << "MergedUnknown[block: " << phi_placeholder_->GetBlockId() |
| 1064 | << ", heap_loc: " << phi_placeholder_->GetHeapLocation() << "]"; |
| 1065 | case Type::kNeedsLoopPhi: |
| 1066 | return os << "NeedsLoopPhi[block: " << phi_placeholder_->GetBlockId() |
| 1067 | << ", heap_loc: " << phi_placeholder_->GetHeapLocation() << "]"; |
| 1068 | case Type::kNeedsNonLoopPhi: |
| 1069 | return os << "NeedsNonLoopPhi[block: " << phi_placeholder_->GetBlockId() |
| 1070 | << ", heap_loc: " << phi_placeholder_->GetHeapLocation() << "]"; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | std::ostream& operator<<(std::ostream& os, const LSEVisitor::Value& v) { |
| 1075 | return v.Dump(os); |
| 1076 | } |
| 1077 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1078 | ScopedArenaVector<LSEVisitor::PhiPlaceholder> LSEVisitor::CreatePhiPlaceholders( |
| 1079 | HGraph* graph, |
| 1080 | const HeapLocationCollector& heap_location_collector, |
| 1081 | ScopedArenaAllocator* allocator) { |
| 1082 | size_t num_phi_placeholders = 0u; |
| 1083 | size_t num_heap_locations = heap_location_collector.GetNumberOfHeapLocations(); |
| 1084 | for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| 1085 | if (block->GetPredecessors().size() >= 2u) { |
| 1086 | num_phi_placeholders += num_heap_locations; |
| 1087 | } |
| 1088 | } |
| 1089 | ScopedArenaVector<PhiPlaceholder> phi_placeholders(allocator->Adapter(kArenaAllocLSE)); |
| 1090 | phi_placeholders.reserve(num_phi_placeholders); |
| 1091 | for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| 1092 | if (block->GetPredecessors().size() >= 2u) { |
| 1093 | // Create Phi placeholders referencing the block by the block ID. |
| 1094 | DCHECK_LE(num_heap_locations, phi_placeholders.capacity() - phi_placeholders.size()); |
| 1095 | uint32_t block_id = block->GetBlockId(); |
| 1096 | for (size_t idx = 0; idx != num_heap_locations; ++idx) { |
| 1097 | phi_placeholders.push_back(PhiPlaceholder(block_id, idx)); |
| 1098 | } |
| 1099 | } |
| 1100 | } |
| 1101 | return phi_placeholders; |
| 1102 | } |
| 1103 | |
| 1104 | ScopedArenaVector<size_t> LSEVisitor::CreatePhiPlaceholdersBeginForBlock( |
| 1105 | HGraph* graph, |
| 1106 | const HeapLocationCollector& heap_location_collector, |
| 1107 | ScopedArenaAllocator* allocator) { |
| 1108 | size_t num_phi_placeholders = 0u; |
| 1109 | size_t num_heap_locations = heap_location_collector.GetNumberOfHeapLocations(); |
| 1110 | ScopedArenaVector<size_t> phi_placeholders_begin_for_block(graph->GetBlocks().size(), |
| 1111 | allocator->Adapter(kArenaAllocLSE)); |
| 1112 | for (HBasicBlock* block : graph->GetReversePostOrder()) { |
| 1113 | if (block->GetPredecessors().size() >= 2u) { |
| 1114 | phi_placeholders_begin_for_block[block->GetBlockId()] = num_phi_placeholders; |
| 1115 | num_phi_placeholders += num_heap_locations; |
| 1116 | } |
| 1117 | } |
| 1118 | return phi_placeholders_begin_for_block; |
| 1119 | } |
| 1120 | |
| 1121 | LSEVisitor::LSEVisitor(HGraph* graph, |
| 1122 | const HeapLocationCollector& heap_location_collector, |
| 1123 | OptimizingCompilerStats* stats) |
| 1124 | : HGraphDelegateVisitor(graph, stats), |
| 1125 | heap_location_collector_(heap_location_collector), |
| 1126 | allocator_(graph->GetArenaStack()), |
| 1127 | phi_placeholders_(CreatePhiPlaceholders(graph, heap_location_collector, &allocator_)), |
| 1128 | phi_placeholders_begin_for_block_( |
| 1129 | CreatePhiPlaceholdersBeginForBlock(graph, heap_location_collector, &allocator_)), |
| 1130 | heap_values_for_(graph->GetBlocks().size(), |
| 1131 | ScopedArenaVector<ValueRecord>(allocator_.Adapter(kArenaAllocLSE)), |
| 1132 | allocator_.Adapter(kArenaAllocLSE)), |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1133 | loads_and_stores_(allocator_.Adapter(kArenaAllocLSE)), |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 1134 | // We may add new instructions (default values, Phis) but we're not adding loads |
| 1135 | // or stores, so we shall not need to resize following vector and BitVector. |
| 1136 | substitute_instructions_for_loads_(graph->GetCurrentInstructionId(), |
| 1137 | nullptr, |
| 1138 | allocator_.Adapter(kArenaAllocLSE)), |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1139 | kept_stores_(&allocator_, |
| 1140 | /*start_bits=*/ graph->GetCurrentInstructionId(), |
| 1141 | /*expandable=*/ false, |
| 1142 | kArenaAllocLSE), |
| 1143 | phi_placeholders_to_search_for_kept_stores_(&allocator_, |
| 1144 | phi_placeholders_.size(), |
| 1145 | /*expandable=*/ false, |
| 1146 | kArenaAllocLSE), |
| 1147 | loads_requiring_loop_phi_(allocator_.Adapter(kArenaAllocLSE)), |
| 1148 | store_records_(allocator_.Adapter(kArenaAllocLSE)), |
| 1149 | phi_placeholder_replacements_(phi_placeholders_.size(), |
| 1150 | Value::Invalid(), |
| 1151 | allocator_.Adapter(kArenaAllocLSE)), |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1152 | kept_merged_unknowns_(&allocator_, |
| 1153 | /*start_bits=*/ phi_placeholders_.size(), |
| 1154 | /*expandable=*/ false, |
| 1155 | kArenaAllocLSE), |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1156 | singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)) { |
| 1157 | // Clear bit vectors. |
| 1158 | phi_placeholders_to_search_for_kept_stores_.ClearAllBits(); |
| 1159 | kept_stores_.ClearAllBits(); |
| 1160 | } |
| 1161 | |
| 1162 | LSEVisitor::Value LSEVisitor::PrepareLoopValue(HBasicBlock* block, size_t idx) { |
| 1163 | // If the pre-header value is known (which implies that the reference dominates this |
| 1164 | // block), use a Phi placeholder for the value in the loop header. If all predecessors |
| 1165 | // are later found to have a known value, we can replace loads from this location, |
| 1166 | // either with the pre-header value or with a new Phi. For array locations, the index |
| 1167 | // may be defined inside the loop but the only known value in that case should be the |
| 1168 | // default value or a Phi placeholder that can be replaced only with the default value. |
| 1169 | HLoopInformation* loop_info = block->GetLoopInformation(); |
| 1170 | uint32_t pre_header_block_id = loop_info->GetPreHeader()->GetBlockId(); |
| 1171 | Value pre_header_value = ReplacementOrValue(heap_values_for_[pre_header_block_id][idx].value); |
| 1172 | if (pre_header_value.IsUnknown()) { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1173 | return pre_header_value; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1174 | } |
| 1175 | if (kIsDebugBuild) { |
| 1176 | // Check that the reference indeed dominates this loop. |
| 1177 | HeapLocation* location = heap_location_collector_.GetHeapLocation(idx); |
| 1178 | HInstruction* ref = location->GetReferenceInfo()->GetReference(); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1179 | CHECK(ref->GetBlock() != block && ref->GetBlock()->Dominates(block)) |
| 1180 | << GetGraph()->PrettyMethod(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1181 | // Check that the index, if defined inside the loop, tracks a default value |
| 1182 | // or a Phi placeholder requiring a loop Phi. |
| 1183 | HInstruction* index = location->GetIndex(); |
| 1184 | if (index != nullptr && loop_info->Contains(*index->GetBlock())) { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1185 | CHECK(pre_header_value.NeedsLoopPhi() || pre_header_value.Equals(Value::Default())) |
| 1186 | << GetGraph()->PrettyMethod() << " blk: " << block->GetBlockId() << " " |
| 1187 | << pre_header_value; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1188 | } |
| 1189 | } |
| 1190 | const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 1191 | return ReplacementOrValue(Value::ForLoopPhiPlaceholder(phi_placeholder)); |
| 1192 | } |
| 1193 | |
| 1194 | LSEVisitor::Value LSEVisitor::PrepareLoopStoredBy(HBasicBlock* block, size_t idx) { |
| 1195 | // Use the Phi placeholder for `stored_by` to make sure all incoming stores are kept |
| 1196 | // if the value in the location escapes. This is not applicable to singletons that are |
| 1197 | // defined inside the loop as they shall be dead in the loop header. |
| 1198 | ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo(); |
| 1199 | if (ref_info->IsSingleton() && |
| 1200 | block->GetLoopInformation()->Contains(*ref_info->GetReference()->GetBlock())) { |
| 1201 | return Value::Unknown(); |
| 1202 | } |
| 1203 | const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 1204 | return Value::ForLoopPhiPlaceholder(phi_placeholder); |
| 1205 | } |
| 1206 | |
| 1207 | void LSEVisitor::PrepareLoopRecords(HBasicBlock* block) { |
| 1208 | DCHECK(block->IsLoopHeader()); |
| 1209 | int block_id = block->GetBlockId(); |
| 1210 | HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); |
| 1211 | ScopedArenaVector<ValueRecord>& pre_header_heap_values = |
| 1212 | heap_values_for_[pre_header->GetBlockId()]; |
| 1213 | size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| 1214 | DCHECK_EQ(num_heap_locations, pre_header_heap_values.size()); |
| 1215 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| 1216 | DCHECK(heap_values.empty()); |
| 1217 | |
| 1218 | // Don't eliminate loads in irreducible loops. |
| 1219 | if (block->GetLoopInformation()->IsIrreducible()) { |
| 1220 | heap_values.resize(num_heap_locations, |
| 1221 | { /*value=*/ Value::Unknown(), /*stored_by=*/ Value::Unknown() }); |
| 1222 | // Also keep the stores before the loop header, including in blocks that were not visited yet. |
| 1223 | for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| 1224 | KeepStores(Value::ForLoopPhiPlaceholder(GetPhiPlaceholder(block->GetBlockId(), idx))); |
| 1225 | } |
| 1226 | return; |
| 1227 | } |
| 1228 | |
| 1229 | // Fill `heap_values` based on values from pre-header. |
| 1230 | heap_values.reserve(num_heap_locations); |
| 1231 | for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| 1232 | heap_values.push_back({ PrepareLoopValue(block, idx), PrepareLoopStoredBy(block, idx) }); |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | LSEVisitor::Value LSEVisitor::MergePredecessorValues(HBasicBlock* block, size_t idx) { |
| 1237 | ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| 1238 | DCHECK(!predecessors.empty()); |
| 1239 | Value merged_value = |
| 1240 | ReplacementOrValue(heap_values_for_[predecessors[0]->GetBlockId()][idx].value); |
| 1241 | for (size_t i = 1u, size = predecessors.size(); i != size; ++i) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1242 | Value pred_value = |
| 1243 | ReplacementOrValue(heap_values_for_[predecessors[i]->GetBlockId()][idx].value); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1244 | if (pred_value.Equals(merged_value)) { |
| 1245 | // Value is the same. No need to update our merged value. |
| 1246 | continue; |
| 1247 | } else if (pred_value.IsUnknown() || merged_value.IsUnknown()) { |
| 1248 | // If one is unknown and the other is a different type of unknown |
| 1249 | const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 1250 | merged_value = Value::MergedUnknown(phi_placeholder); |
| 1251 | // We know that at least one of the merge points is unknown (and both are |
| 1252 | // not pure-unknowns since that's captured above). This means that the |
| 1253 | // overall value needs to be a MergedUnknown. Just return that. |
| 1254 | break; |
| 1255 | } else { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1256 | // There are conflicting known values. We may still be able to replace loads with a Phi. |
| 1257 | const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 1258 | // Propagate the need for a new loop Phi from all predecessors. |
| 1259 | bool needs_loop_phi = merged_value.NeedsLoopPhi() || pred_value.NeedsLoopPhi(); |
| 1260 | merged_value = ReplacementOrValue(Value::ForPhiPlaceholder(phi_placeholder, needs_loop_phi)); |
| 1261 | } |
| 1262 | } |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1263 | DCHECK(!merged_value.IsPureUnknown() || block->GetPredecessors().size() <= 1) |
| 1264 | << merged_value << " in " << GetGraph()->PrettyMethod(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1265 | return merged_value; |
| 1266 | } |
| 1267 | |
| 1268 | void LSEVisitor::MergePredecessorRecords(HBasicBlock* block) { |
| 1269 | if (block->IsExitBlock()) { |
| 1270 | // Exit block doesn't really merge values since the control flow ends in |
| 1271 | // its predecessors. Each predecessor needs to make sure stores are kept |
| 1272 | // if necessary. |
| 1273 | return; |
| 1274 | } |
| 1275 | |
| 1276 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| 1277 | DCHECK(heap_values.empty()); |
| 1278 | size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| 1279 | if (block->GetPredecessors().empty()) { |
| 1280 | DCHECK(block->IsEntryBlock()); |
| 1281 | heap_values.resize(num_heap_locations, |
| 1282 | { /*value=*/ Value::Unknown(), /*stored_by=*/ Value::Unknown() }); |
| 1283 | return; |
| 1284 | } |
| 1285 | |
| 1286 | heap_values.reserve(num_heap_locations); |
| 1287 | for (size_t idx = 0u; idx != num_heap_locations; ++idx) { |
| 1288 | Value merged_value = MergePredecessorValues(block, idx); |
| 1289 | if (kIsDebugBuild) { |
| 1290 | if (merged_value.NeedsPhi()) { |
| 1291 | uint32_t block_id = merged_value.GetPhiPlaceholder()->GetBlockId(); |
| 1292 | CHECK(GetGraph()->GetBlocks()[block_id]->Dominates(block)); |
| 1293 | } else if (merged_value.IsInstruction()) { |
| 1294 | CHECK(merged_value.GetInstruction()->GetBlock()->Dominates(block)); |
| 1295 | } |
| 1296 | } |
| 1297 | ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| 1298 | Value merged_stored_by = heap_values_for_[predecessors[0]->GetBlockId()][idx].stored_by; |
Vladimir Marko | cbeedc8 | 2020-08-25 14:31:10 +0100 | [diff] [blame] | 1299 | for (size_t predecessor_idx = 1u; predecessor_idx != predecessors.size(); ++predecessor_idx) { |
| 1300 | uint32_t predecessor_block_id = predecessors[predecessor_idx]->GetBlockId(); |
| 1301 | Value stored_by = heap_values_for_[predecessor_block_id][idx].stored_by; |
| 1302 | if ((!stored_by.IsUnknown() || !merged_stored_by.IsUnknown()) && |
| 1303 | !merged_stored_by.Equals(stored_by)) { |
| 1304 | // Use the Phi placeholder to track that we need to keep stores from all predecessors. |
| 1305 | const PhiPlaceholder* phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 1306 | merged_stored_by = Value::ForNonLoopPhiPlaceholder(phi_placeholder); |
| 1307 | break; |
| 1308 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1309 | } |
| 1310 | heap_values.push_back({ merged_value, merged_stored_by }); |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | static HInstruction* FindOrConstructNonLoopPhi( |
| 1315 | HBasicBlock* block, |
| 1316 | const ScopedArenaVector<HInstruction*>& phi_inputs, |
| 1317 | DataType::Type type) { |
| 1318 | for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| 1319 | HInstruction* phi = phi_it.Current(); |
| 1320 | DCHECK_EQ(phi->InputCount(), phi_inputs.size()); |
| 1321 | auto cmp = [](HInstruction* lhs, const HUserRecord<HInstruction*>& rhs) { |
| 1322 | return lhs == rhs.GetInstruction(); |
| 1323 | }; |
| 1324 | if (std::equal(phi_inputs.begin(), phi_inputs.end(), phi->GetInputRecords().begin(), cmp)) { |
| 1325 | return phi; |
| 1326 | } |
| 1327 | } |
| 1328 | ArenaAllocator* allocator = block->GetGraph()->GetAllocator(); |
| 1329 | HPhi* phi = new (allocator) HPhi(allocator, kNoRegNumber, phi_inputs.size(), type); |
| 1330 | for (size_t i = 0, size = phi_inputs.size(); i != size; ++i) { |
| 1331 | DCHECK_NE(phi_inputs[i]->GetType(), DataType::Type::kVoid) << phi_inputs[i]->DebugName(); |
| 1332 | phi->SetRawInputAt(i, phi_inputs[i]); |
| 1333 | } |
| 1334 | block->AddPhi(phi); |
| 1335 | if (type == DataType::Type::kReference) { |
| 1336 | // Update reference type information. Pass invalid handles, these are not used for Phis. |
| 1337 | ReferenceTypePropagation rtp_fixup(block->GetGraph(), |
| 1338 | Handle<mirror::ClassLoader>(), |
| 1339 | Handle<mirror::DexCache>(), |
| 1340 | /* is_first_run= */ false); |
| 1341 | rtp_fixup.Visit(phi); |
| 1342 | } |
| 1343 | return phi; |
| 1344 | } |
| 1345 | |
| 1346 | void LSEVisitor::MaterializeNonLoopPhis(const PhiPlaceholder* phi_placeholder, |
| 1347 | DataType::Type type) { |
| 1348 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| 1349 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1350 | size_t idx = phi_placeholder->GetHeapLocation(); |
| 1351 | |
| 1352 | // Use local allocator to reduce peak memory usage. |
| 1353 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1354 | // Reuse the same vector for collecting phi inputs. |
| 1355 | ScopedArenaVector<HInstruction*> phi_inputs(allocator.Adapter(kArenaAllocLSE)); |
| 1356 | |
| 1357 | ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| 1358 | work_queue.push_back(phi_placeholder); |
| 1359 | while (!work_queue.empty()) { |
| 1360 | const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| 1361 | if (phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].IsValid()) { |
| 1362 | // This Phi placeholder was pushed to the `work_queue` followed by another Phi placeholder |
| 1363 | // that directly or indirectly depends on it, so it was already processed as part of the |
| 1364 | // other Phi placeholder's dependencies before this one got back to the top of the stack. |
| 1365 | work_queue.pop_back(); |
| 1366 | continue; |
| 1367 | } |
| 1368 | uint32_t current_block_id = current_phi_placeholder->GetBlockId(); |
| 1369 | HBasicBlock* current_block = blocks[current_block_id]; |
| 1370 | DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| 1371 | |
| 1372 | // Non-loop Phis cannot depend on a loop Phi, so we should not see any loop header here. |
| 1373 | // And the only way for such merged value to reach a different heap location is through |
| 1374 | // a load at which point we materialize the Phi. Therefore all non-loop Phi placeholders |
| 1375 | // seen here are tied to one heap location. |
| 1376 | DCHECK(!current_block->IsLoopHeader()); |
| 1377 | DCHECK_EQ(current_phi_placeholder->GetHeapLocation(), idx); |
| 1378 | |
| 1379 | phi_inputs.clear(); |
| 1380 | for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| 1381 | Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1382 | DCHECK(!pred_value.IsUnknown()) |
| 1383 | << "block " << current_block->GetBlockId() << " pred: " << predecessor->GetBlockId(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1384 | if (pred_value.NeedsNonLoopPhi()) { |
| 1385 | // We need to process the Phi placeholder first. |
| 1386 | work_queue.push_back(pred_value.GetPhiPlaceholder()); |
| 1387 | } else if (pred_value.IsDefault()) { |
| 1388 | phi_inputs.push_back(GetDefaultValue(type)); |
| 1389 | } else { |
| 1390 | phi_inputs.push_back(pred_value.GetInstruction()); |
| 1391 | } |
| 1392 | } |
| 1393 | if (phi_inputs.size() == current_block->GetPredecessors().size()) { |
| 1394 | // All inputs are available. Find or construct the Phi replacement. |
| 1395 | phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)] = |
| 1396 | Value::ForInstruction(FindOrConstructNonLoopPhi(current_block, phi_inputs, type)); |
| 1397 | // Remove the block from the queue. |
| 1398 | DCHECK_EQ(current_phi_placeholder, work_queue.back()); |
| 1399 | work_queue.pop_back(); |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | void LSEVisitor::VisitGetLocation(HInstruction* instruction, size_t idx) { |
| 1405 | DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| 1406 | uint32_t block_id = instruction->GetBlock()->GetBlockId(); |
| 1407 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id]; |
| 1408 | ValueRecord& record = heap_values[idx]; |
| 1409 | DCHECK(record.value.IsUnknown() || record.value.Equals(ReplacementOrValue(record.value))); |
| 1410 | loads_and_stores_.push_back({ instruction, idx }); |
| 1411 | if ((record.value.IsDefault() || record.value.NeedsNonLoopPhi()) && |
| 1412 | !IsDefaultOrPhiAllowedForLoad(instruction)) { |
| 1413 | record.value = Value::Unknown(); |
| 1414 | } |
| 1415 | if (record.value.IsDefault()) { |
Vladimir Marko | cbeedc8 | 2020-08-25 14:31:10 +0100 | [diff] [blame] | 1416 | KeepStores(record.stored_by); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1417 | HInstruction* constant = GetDefaultValue(instruction->GetType()); |
| 1418 | AddRemovedLoad(instruction, constant); |
| 1419 | record.value = Value::ForInstruction(constant); |
| 1420 | } else if (record.value.IsUnknown()) { |
| 1421 | // Load isn't eliminated. Put the load as the value into the HeapLocation. |
| 1422 | // This acts like GVN but with better aliasing analysis. |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1423 | Value old_value = record.value; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1424 | record.value = Value::ForInstruction(instruction); |
| 1425 | KeepStoresIfAliasedToLocation(heap_values, idx); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 1426 | KeepStores(old_value); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1427 | } else if (record.value.NeedsLoopPhi()) { |
| 1428 | // We do not know yet if the value is known for all back edges. Record for future processing. |
| 1429 | loads_requiring_loop_phi_.insert(std::make_pair(instruction, record)); |
| 1430 | } else { |
| 1431 | // This load can be eliminated but we may need to construct non-loop Phis. |
| 1432 | if (record.value.NeedsNonLoopPhi()) { |
| 1433 | MaterializeNonLoopPhis(record.value.GetPhiPlaceholder(), instruction->GetType()); |
| 1434 | record.value = Replacement(record.value); |
| 1435 | } |
| 1436 | HInstruction* heap_value = FindSubstitute(record.value.GetInstruction()); |
| 1437 | AddRemovedLoad(instruction, heap_value); |
| 1438 | TryRemovingNullCheck(instruction); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | void LSEVisitor::VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) { |
| 1443 | DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); |
| 1444 | DCHECK(!IsStore(value)) << value->DebugName(); |
| 1445 | // value may already have a substitute. |
| 1446 | value = FindSubstitute(value); |
| 1447 | HBasicBlock* block = instruction->GetBlock(); |
| 1448 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| 1449 | ValueRecord& record = heap_values[idx]; |
| 1450 | DCHECK(!record.value.IsInstruction() || |
| 1451 | FindSubstitute(record.value.GetInstruction()) == record.value.GetInstruction()); |
| 1452 | |
| 1453 | if (record.value.Equals(value)) { |
| 1454 | // Store into the heap location with the same value. |
| 1455 | // This store can be eliminated right away. |
| 1456 | block->RemoveInstruction(instruction); |
| 1457 | return; |
| 1458 | } |
| 1459 | |
| 1460 | store_records_.insert(std::make_pair(instruction, StoreRecord{record, value})); |
| 1461 | loads_and_stores_.push_back({ instruction, idx }); |
| 1462 | |
| 1463 | // If the `record.stored_by` specified a store from this block, it shall be removed |
| 1464 | // at the end, except for throwing ArraySet; it cannot be marked for keeping in |
| 1465 | // `kept_stores_` anymore after we update the `record.stored_by` below. |
| 1466 | DCHECK(!record.stored_by.IsInstruction() || |
| 1467 | record.stored_by.GetInstruction()->GetBlock() != block || |
| 1468 | record.stored_by.GetInstruction()->CanThrow() || |
| 1469 | !kept_stores_.IsBitSet(record.stored_by.GetInstruction()->GetId())); |
| 1470 | |
| 1471 | if (instruction->CanThrow()) { |
| 1472 | // Previous stores can become visible. |
| 1473 | HandleExit(instruction->GetBlock()); |
| 1474 | // We cannot remove a possibly throwing store. |
| 1475 | // After marking it as kept, it does not matter if we track it in `stored_by` or not. |
| 1476 | kept_stores_.SetBit(instruction->GetId()); |
| 1477 | } |
| 1478 | |
| 1479 | // Update the record. |
| 1480 | auto it = loads_requiring_loop_phi_.find(value); |
| 1481 | if (it != loads_requiring_loop_phi_.end()) { |
| 1482 | // Propapate the Phi placeholder to the record. |
| 1483 | record.value = it->second.value; |
| 1484 | DCHECK(record.value.NeedsLoopPhi()); |
| 1485 | } else { |
| 1486 | record.value = Value::ForInstruction(value); |
| 1487 | } |
| 1488 | // Track the store in the value record. If the value is loaded or needed after |
| 1489 | // return/deoptimization later, this store isn't really redundant. |
| 1490 | record.stored_by = Value::ForInstruction(instruction); |
| 1491 | |
| 1492 | // This store may kill values in other heap locations due to aliasing. |
| 1493 | for (size_t i = 0u, size = heap_values.size(); i != size; ++i) { |
| 1494 | if (i == idx || |
| 1495 | heap_values[i].value.IsUnknown() || |
| 1496 | CanValueBeKeptIfSameAsNew(heap_values[i].value, value, instruction) || |
| 1497 | !heap_location_collector_.MayAlias(i, idx)) { |
| 1498 | continue; |
| 1499 | } |
| 1500 | // Kill heap locations that may alias and keep previous stores to these locations. |
| 1501 | KeepStores(heap_values[i].stored_by); |
| 1502 | heap_values[i].stored_by = Value::Unknown(); |
| 1503 | heap_values[i].value = Value::Unknown(); |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | void LSEVisitor::VisitBasicBlock(HBasicBlock* block) { |
| 1508 | // Populate the heap_values array for this block. |
| 1509 | // TODO: try to reuse the heap_values array from one predecessor if possible. |
| 1510 | if (block->IsLoopHeader()) { |
| 1511 | PrepareLoopRecords(block); |
| 1512 | } else { |
| 1513 | MergePredecessorRecords(block); |
| 1514 | } |
| 1515 | // Visit instructions. |
| 1516 | HGraphVisitor::VisitBasicBlock(block); |
| 1517 | } |
| 1518 | |
| 1519 | bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithDefault( |
| 1520 | const PhiPlaceholder* phi_placeholder, |
| 1521 | DataType::Type type, |
| 1522 | /*inout*/ArenaBitVector* phi_placeholders_to_materialize) { |
| 1523 | // Use local allocator to reduce peak memory usage. |
| 1524 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1525 | ArenaBitVector visited(&allocator, |
| 1526 | /*start_bits=*/ phi_placeholders_.size(), |
| 1527 | /*expandable=*/ false, |
| 1528 | kArenaAllocLSE); |
| 1529 | visited.ClearAllBits(); |
| 1530 | ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| 1531 | |
| 1532 | // Use depth first search to check if any non-Phi input is unknown. |
| 1533 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1534 | size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
| 1535 | visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| 1536 | work_queue.push_back(phi_placeholder); |
| 1537 | while (!work_queue.empty()) { |
| 1538 | const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| 1539 | work_queue.pop_back(); |
| 1540 | HBasicBlock* block = blocks[current_phi_placeholder->GetBlockId()]; |
| 1541 | DCHECK_GE(block->GetPredecessors().size(), 2u); |
| 1542 | size_t idx = current_phi_placeholder->GetHeapLocation(); |
| 1543 | for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| 1544 | Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1545 | if (value.NeedsPhi()) { |
| 1546 | // Visit the predecessor Phi placeholder if it's not visited yet. |
| 1547 | if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| 1548 | visited.SetBit(PhiPlaceholderIndex(value)); |
| 1549 | work_queue.push_back(value.GetPhiPlaceholder()); |
| 1550 | } |
| 1551 | } else if (!value.Equals(Value::Default())) { |
| 1552 | return false; // Report failure. |
| 1553 | } |
| 1554 | } |
| 1555 | if (block->IsLoopHeader()) { |
| 1556 | // For back-edges we need to check all locations that write to the same array, |
| 1557 | // even those that LSA declares non-aliasing, such as `a[i]` and `a[i + 1]` |
| 1558 | // as they may actually refer to the same locations for different iterations. |
| 1559 | for (size_t i = 0; i != num_heap_locations; ++i) { |
| 1560 | if (i == idx || |
| 1561 | heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo() != |
| 1562 | heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()) { |
| 1563 | continue; |
| 1564 | } |
| 1565 | for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| 1566 | // Check if there were any writes to this location. |
| 1567 | // Note: We could simply process the values but due to the vector operation |
| 1568 | // carve-out (see `IsDefaultOrPhiAllowedForLoad()`), a vector load can cause |
| 1569 | // the value to change and not be equal to default. To work around this and |
| 1570 | // allow replacing the non-vector load of loop-invariant default values |
| 1571 | // anyway, skip over paths that do not have any writes. |
| 1572 | ValueRecord record = heap_values_for_[predecessor->GetBlockId()][i]; |
| 1573 | while (record.stored_by.NeedsLoopPhi() && |
| 1574 | blocks[record.stored_by.GetPhiPlaceholder()->GetBlockId()]->IsLoopHeader()) { |
| 1575 | HLoopInformation* loop_info = |
| 1576 | blocks[record.stored_by.GetPhiPlaceholder()->GetBlockId()]->GetLoopInformation(); |
| 1577 | record = heap_values_for_[loop_info->GetPreHeader()->GetBlockId()][i]; |
| 1578 | } |
| 1579 | Value value = ReplacementOrValue(record.value); |
| 1580 | if (value.NeedsPhi()) { |
| 1581 | // Visit the predecessor Phi placeholder if it's not visited yet. |
| 1582 | if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| 1583 | visited.SetBit(PhiPlaceholderIndex(value)); |
| 1584 | work_queue.push_back(value.GetPhiPlaceholder()); |
| 1585 | } |
| 1586 | } else if (!value.Equals(Value::Default())) { |
| 1587 | return false; // Report failure. |
| 1588 | } |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | // Record replacement and report success. |
| 1595 | HInstruction* replacement = GetDefaultValue(type); |
| 1596 | for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| 1597 | DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| 1598 | phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| 1599 | } |
| 1600 | phi_placeholders_to_materialize->Subtract(&visited); |
| 1601 | return true; |
| 1602 | } |
| 1603 | |
| 1604 | bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithSingleInput( |
| 1605 | const PhiPlaceholder* phi_placeholder, |
| 1606 | /*inout*/ArenaBitVector* phi_placeholders_to_materialize) { |
| 1607 | // Use local allocator to reduce peak memory usage. |
| 1608 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1609 | ArenaBitVector visited(&allocator, |
| 1610 | /*start_bits=*/ phi_placeholders_.size(), |
| 1611 | /*expandable=*/ false, |
| 1612 | kArenaAllocLSE); |
| 1613 | visited.ClearAllBits(); |
| 1614 | ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| 1615 | |
| 1616 | // Use depth first search to check if any non-Phi input is unknown. |
| 1617 | HInstruction* replacement = nullptr; |
| 1618 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1619 | visited.SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| 1620 | work_queue.push_back(phi_placeholder); |
| 1621 | while (!work_queue.empty()) { |
| 1622 | const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| 1623 | work_queue.pop_back(); |
| 1624 | HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| 1625 | DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| 1626 | size_t idx = current_phi_placeholder->GetHeapLocation(); |
| 1627 | for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| 1628 | Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1629 | if (value.NeedsPhi()) { |
| 1630 | // Visit the predecessor Phi placeholder if it's not visited yet. |
| 1631 | if (!visited.IsBitSet(PhiPlaceholderIndex(value))) { |
| 1632 | visited.SetBit(PhiPlaceholderIndex(value)); |
| 1633 | work_queue.push_back(value.GetPhiPlaceholder()); |
| 1634 | } |
| 1635 | } else { |
| 1636 | if (!value.IsInstruction() || |
| 1637 | (replacement != nullptr && replacement != value.GetInstruction())) { |
| 1638 | return false; // Report failure. |
| 1639 | } |
| 1640 | replacement = value.GetInstruction(); |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | // Record replacement and report success. |
| 1646 | DCHECK(replacement != nullptr); |
| 1647 | for (uint32_t phi_placeholder_index : visited.Indexes()) { |
| 1648 | DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid()); |
| 1649 | phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| 1650 | } |
| 1651 | phi_placeholders_to_materialize->Subtract(&visited); |
| 1652 | return true; |
| 1653 | } |
| 1654 | |
| 1655 | const LSEVisitor::PhiPlaceholder* LSEVisitor::FindLoopPhisToMaterialize( |
| 1656 | const PhiPlaceholder* phi_placeholder, |
| 1657 | /*inout*/ArenaBitVector* phi_placeholders_to_materialize, |
| 1658 | DataType::Type type, |
| 1659 | bool can_use_default_or_phi) { |
| 1660 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| 1661 | |
| 1662 | // Use local allocator to reduce peak memory usage. |
| 1663 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1664 | ScopedArenaVector<const PhiPlaceholder*> work_queue(allocator.Adapter(kArenaAllocLSE)); |
| 1665 | |
| 1666 | // Use depth first search to check if any non-Phi input is unknown. |
| 1667 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1668 | phi_placeholders_to_materialize->ClearAllBits(); |
| 1669 | phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(phi_placeholder)); |
| 1670 | work_queue.push_back(phi_placeholder); |
| 1671 | while (!work_queue.empty()) { |
| 1672 | const PhiPlaceholder* current_phi_placeholder = work_queue.back(); |
| 1673 | work_queue.pop_back(); |
| 1674 | if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(current_phi_placeholder))) { |
| 1675 | // Replaced by `TryReplacingLoopPhiPlaceholderWith{Default,SingleInput}()`. |
| 1676 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].Equals( |
| 1677 | Value::Default())); |
| 1678 | continue; |
| 1679 | } |
| 1680 | HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| 1681 | DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| 1682 | size_t idx = current_phi_placeholder->GetHeapLocation(); |
| 1683 | if (current_block->IsLoopHeader()) { |
| 1684 | // If the index is defined inside the loop, it may reference different elements of the |
| 1685 | // array on each iteration. Since we do not track if all elements of an array are set |
| 1686 | // to the same value explicitly, the only known value in pre-header can be the default |
| 1687 | // value from NewArray or a Phi placeholder depending on a default value from some outer |
| 1688 | // loop pre-header. This Phi placeholder can be replaced only by the default value. |
| 1689 | HInstruction* index = heap_location_collector_.GetHeapLocation(idx)->GetIndex(); |
| 1690 | if (index != nullptr && current_block->GetLoopInformation()->Contains(*index->GetBlock())) { |
| 1691 | if (can_use_default_or_phi && |
| 1692 | TryReplacingLoopPhiPlaceholderWithDefault(current_phi_placeholder, |
| 1693 | type, |
| 1694 | phi_placeholders_to_materialize)) { |
| 1695 | continue; |
| 1696 | } else { |
| 1697 | return current_phi_placeholder; // Report the loop Phi placeholder. |
| 1698 | } |
| 1699 | } |
| 1700 | // A similar situation arises with the index defined outside the loop if we cannot use |
| 1701 | // default values or Phis, i.e. for vector loads, as we can only replace the Phi |
| 1702 | // placeholder with a single instruction defined before the loop. |
| 1703 | if (!can_use_default_or_phi) { |
| 1704 | if (TryReplacingLoopPhiPlaceholderWithSingleInput(current_phi_placeholder, |
| 1705 | phi_placeholders_to_materialize)) { |
| 1706 | continue; |
| 1707 | } else { |
| 1708 | return current_phi_placeholder; // Report the loop Phi placeholder. |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| 1713 | Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1714 | if (value.IsUnknown()) { |
| 1715 | // We cannot create a Phi for this loop Phi placeholder. |
| 1716 | return current_phi_placeholder; // Report the loop Phi placeholder. |
| 1717 | } |
| 1718 | if (value.NeedsLoopPhi()) { |
| 1719 | // Visit the predecessor Phi placeholder if it's not visited yet. |
| 1720 | if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(value))) { |
| 1721 | phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(value)); |
| 1722 | work_queue.push_back(value.GetPhiPlaceholder()); |
| 1723 | } |
| 1724 | } |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | // There are no unknown values feeding this Phi, so we can construct the Phis if needed. |
| 1729 | return nullptr; |
| 1730 | } |
| 1731 | |
| 1732 | bool LSEVisitor::MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes, |
| 1733 | DataType::Type type, |
| 1734 | Phase phase) { |
| 1735 | // Materialize all predecessors that do not need a loop Phi and determine if all inputs |
| 1736 | // other than loop Phis are the same. |
| 1737 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1738 | Value other_value = Value::Invalid(); |
| 1739 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1740 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| 1741 | HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| 1742 | DCHECK_GE(block->GetPredecessors().size(), 2u); |
| 1743 | size_t idx = phi_placeholder->GetHeapLocation(); |
| 1744 | for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| 1745 | Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1746 | if (value.NeedsNonLoopPhi()) { |
| 1747 | DCHECK(phase == Phase::kLoadElimination); |
| 1748 | MaterializeNonLoopPhis(value.GetPhiPlaceholder(), type); |
| 1749 | value = Replacement(value); |
| 1750 | } |
| 1751 | if (!value.NeedsLoopPhi()) { |
| 1752 | if (other_value.IsInvalid()) { |
| 1753 | // The first other value we found. |
| 1754 | other_value = value; |
| 1755 | } else if (!other_value.IsUnknown()) { |
| 1756 | // Check if the current `value` differs from the previous `other_value`. |
| 1757 | if (!value.Equals(other_value)) { |
| 1758 | other_value = Value::Unknown(); |
| 1759 | } |
| 1760 | } |
| 1761 | } |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | DCHECK(other_value.IsValid()); |
| 1766 | if (!other_value.IsUnknown()) { |
| 1767 | HInstruction* replacement = |
| 1768 | (other_value.IsDefault()) ? GetDefaultValue(type) : other_value.GetInstruction(); |
| 1769 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1770 | phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement); |
| 1771 | } |
| 1772 | return true; |
| 1773 | } |
| 1774 | |
| 1775 | // If we're materializing only a single Phi, try to match it with an existing Phi. |
| 1776 | // (Matching multiple Phis would need investigation. It may be prohibitively slow.) |
| 1777 | // This also covers the case when after replacing a previous set of Phi placeholders, |
| 1778 | // we continue with a Phi placeholder that does not really need a loop Phi anymore. |
| 1779 | if (phi_placeholder_indexes.size() == 1u) { |
| 1780 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_indexes[0]]; |
| 1781 | size_t idx = phi_placeholder->GetHeapLocation(); |
| 1782 | HBasicBlock* block = GetGraph()->GetBlocks()[phi_placeholder->GetBlockId()]; |
| 1783 | ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors()); |
| 1784 | for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| 1785 | HInstruction* phi = phi_it.Current(); |
| 1786 | DCHECK_EQ(phi->InputCount(), predecessors.size()); |
| 1787 | ArrayRef<HUserRecord<HInstruction*>> phi_inputs = phi->GetInputRecords(); |
| 1788 | auto cmp = [=](const HUserRecord<HInstruction*>& lhs, HBasicBlock* rhs) { |
| 1789 | Value value = ReplacementOrValue(heap_values_for_[rhs->GetBlockId()][idx].value); |
| 1790 | if (value.NeedsPhi()) { |
| 1791 | DCHECK(value.GetPhiPlaceholder() == phi_placeholder); |
| 1792 | return lhs.GetInstruction() == phi; |
| 1793 | } else { |
| 1794 | DCHECK(value.IsDefault() || value.IsInstruction()); |
| 1795 | return value.Equals(lhs.GetInstruction()); |
| 1796 | } |
| 1797 | }; |
| 1798 | if (std::equal(phi_inputs.begin(), phi_inputs.end(), predecessors.begin(), cmp)) { |
| 1799 | phi_placeholder_replacements_[phi_placeholder_indexes[0]] = Value::ForInstruction(phi); |
| 1800 | return true; |
| 1801 | } |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | if (phase == Phase::kStoreElimination) { |
Vladimir Marko | ed29dce | 2020-08-21 17:25:16 +0100 | [diff] [blame] | 1806 | // We're not creating Phis during the final store elimination phase. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1807 | return false; |
| 1808 | } |
| 1809 | |
| 1810 | // There are different inputs to the Phi chain. Create the Phis. |
| 1811 | ArenaAllocator* allocator = GetGraph()->GetAllocator(); |
| 1812 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1813 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| 1814 | HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| 1815 | phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction( |
| 1816 | new (allocator) HPhi(allocator, kNoRegNumber, block->GetPredecessors().size(), type)); |
| 1817 | } |
| 1818 | // Fill the Phi inputs. |
| 1819 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1820 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| 1821 | HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| 1822 | size_t idx = phi_placeholder->GetHeapLocation(); |
| 1823 | HInstruction* phi = phi_placeholder_replacements_[phi_placeholder_index].GetInstruction(); |
| 1824 | for (size_t i = 0, size = block->GetPredecessors().size(); i != size; ++i) { |
| 1825 | HBasicBlock* predecessor = block->GetPredecessors()[i]; |
| 1826 | Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1827 | HInstruction* input = value.IsDefault() ? GetDefaultValue(type) : value.GetInstruction(); |
| 1828 | DCHECK_NE(input->GetType(), DataType::Type::kVoid); |
| 1829 | phi->SetRawInputAt(i, input); |
| 1830 | } |
| 1831 | } |
| 1832 | // Add the Phis to their blocks. |
| 1833 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1834 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[phi_placeholder_index]; |
| 1835 | HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| 1836 | block->AddPhi(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()->AsPhi()); |
| 1837 | } |
| 1838 | if (type == DataType::Type::kReference) { |
| 1839 | ScopedArenaAllocator local_allocator(allocator_.GetArenaStack()); |
| 1840 | ScopedArenaVector<HInstruction*> phis(local_allocator.Adapter(kArenaAllocLSE)); |
| 1841 | for (size_t phi_placeholder_index : phi_placeholder_indexes) { |
| 1842 | phis.push_back(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()); |
| 1843 | } |
| 1844 | // Update reference type information. Pass invalid handles, these are not used for Phis. |
| 1845 | ReferenceTypePropagation rtp_fixup(GetGraph(), |
| 1846 | Handle<mirror::ClassLoader>(), |
| 1847 | Handle<mirror::DexCache>(), |
| 1848 | /* is_first_run= */ false); |
| 1849 | rtp_fixup.Visit(ArrayRef<HInstruction* const>(phis)); |
| 1850 | } |
| 1851 | |
| 1852 | return true; |
| 1853 | } |
| 1854 | |
| 1855 | bool LSEVisitor::MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize, |
| 1856 | DataType::Type type, |
| 1857 | Phase phase) { |
| 1858 | // Use local allocator to reduce peak memory usage. |
| 1859 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1860 | |
Vladimir Marko | ed29dce | 2020-08-21 17:25:16 +0100 | [diff] [blame] | 1861 | // We want to recognize when a subset of these loop Phis that do not need other |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 1862 | // loop Phis, i.e. a transitive closure, has only one other instruction as an input, |
| 1863 | // i.e. that instruction can be used instead of each Phi in the set. See for example |
| 1864 | // Main.testLoop{5,6,7,8}() in the test 530-checker-lse. To do that, we shall |
| 1865 | // materialize these loop Phis from the smallest transitive closure. |
| 1866 | |
| 1867 | // Construct a matrix of loop phi placeholder dependencies. To reduce the memory usage, |
| 1868 | // assign new indexes to the Phi placeholders, making the matrix dense. |
| 1869 | ScopedArenaVector<size_t> matrix_indexes(phi_placeholders_.size(), |
| 1870 | static_cast<size_t>(-1), // Invalid. |
| 1871 | allocator.Adapter(kArenaAllocLSE)); |
| 1872 | ScopedArenaVector<size_t> phi_placeholder_indexes(allocator.Adapter(kArenaAllocLSE)); |
| 1873 | size_t num_phi_placeholders = phi_placeholders_to_materialize.NumSetBits(); |
| 1874 | phi_placeholder_indexes.reserve(num_phi_placeholders); |
| 1875 | for (uint32_t marker_index : phi_placeholders_to_materialize.Indexes()) { |
| 1876 | matrix_indexes[marker_index] = phi_placeholder_indexes.size(); |
| 1877 | phi_placeholder_indexes.push_back(marker_index); |
| 1878 | } |
| 1879 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
| 1880 | ScopedArenaVector<ArenaBitVector*> dependencies(allocator.Adapter(kArenaAllocLSE)); |
| 1881 | dependencies.reserve(num_phi_placeholders); |
| 1882 | for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| 1883 | static constexpr bool kExpandable = false; |
| 1884 | dependencies.push_back( |
| 1885 | ArenaBitVector::Create(&allocator, num_phi_placeholders, kExpandable, kArenaAllocLSE)); |
| 1886 | ArenaBitVector* current_dependencies = dependencies.back(); |
| 1887 | current_dependencies->ClearAllBits(); |
| 1888 | current_dependencies->SetBit(matrix_index); // Count the Phi placeholder as its own dependency. |
| 1889 | const PhiPlaceholder* current_phi_placeholder = |
| 1890 | &phi_placeholders_[phi_placeholder_indexes[matrix_index]]; |
| 1891 | HBasicBlock* current_block = blocks[current_phi_placeholder->GetBlockId()]; |
| 1892 | DCHECK_GE(current_block->GetPredecessors().size(), 2u); |
| 1893 | size_t idx = current_phi_placeholder->GetHeapLocation(); |
| 1894 | for (HBasicBlock* predecessor : current_block->GetPredecessors()) { |
| 1895 | Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value); |
| 1896 | if (pred_value.NeedsLoopPhi()) { |
| 1897 | size_t pred_value_index = PhiPlaceholderIndex(pred_value); |
| 1898 | DCHECK(phi_placeholder_replacements_[pred_value_index].IsInvalid()); |
| 1899 | DCHECK_NE(matrix_indexes[pred_value_index], static_cast<size_t>(-1)); |
| 1900 | current_dependencies->SetBit(matrix_indexes[PhiPlaceholderIndex(pred_value)]); |
| 1901 | } |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | // Use the Floyd-Warshall algorithm to determine all transitive dependencies. |
| 1906 | for (size_t k = 0; k != num_phi_placeholders; ++k) { |
| 1907 | for (size_t i = 0; i != num_phi_placeholders; ++i) { |
| 1908 | for (size_t j = 0; j != num_phi_placeholders; ++j) { |
| 1909 | if (dependencies[i]->IsBitSet(k) && dependencies[k]->IsBitSet(j)) { |
| 1910 | dependencies[i]->SetBit(j); |
| 1911 | } |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | // Count the number of transitive dependencies for each replaceable Phi placeholder. |
| 1917 | ScopedArenaVector<size_t> num_dependencies(allocator.Adapter(kArenaAllocLSE)); |
| 1918 | num_dependencies.reserve(num_phi_placeholders); |
| 1919 | for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| 1920 | num_dependencies.push_back(dependencies[matrix_index]->NumSetBits()); |
| 1921 | } |
| 1922 | |
| 1923 | // Pick a Phi placeholder with the smallest number of transitive dependencies and |
| 1924 | // materialize it and its dependencies. Repeat until we have materialized all. |
| 1925 | ScopedArenaVector<size_t> current_subset(allocator.Adapter(kArenaAllocLSE)); |
| 1926 | current_subset.reserve(num_phi_placeholders); |
| 1927 | size_t remaining_phi_placeholders = num_phi_placeholders; |
| 1928 | while (remaining_phi_placeholders != 0u) { |
| 1929 | auto it = std::min_element(num_dependencies.begin(), num_dependencies.end()); |
| 1930 | DCHECK_LE(*it, remaining_phi_placeholders); |
| 1931 | size_t current_matrix_index = std::distance(num_dependencies.begin(), it); |
| 1932 | ArenaBitVector* current_dependencies = dependencies[current_matrix_index]; |
| 1933 | size_t current_num_dependencies = num_dependencies[current_matrix_index]; |
| 1934 | current_subset.clear(); |
| 1935 | for (uint32_t matrix_index : current_dependencies->Indexes()) { |
| 1936 | current_subset.push_back(phi_placeholder_indexes[matrix_index]); |
| 1937 | } |
| 1938 | if (!MaterializeLoopPhis(current_subset, type, phase)) { |
| 1939 | DCHECK(phase == Phase::kStoreElimination); |
| 1940 | // This is the final store elimination phase and we shall not be able to eliminate any |
| 1941 | // stores that depend on the current subset, so mark these Phi placeholders unreplaceable. |
| 1942 | for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| 1943 | if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| 1944 | DCHECK(phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]].IsInvalid()); |
| 1945 | phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]] = Value::Unknown(); |
| 1946 | } |
| 1947 | } |
| 1948 | return false; |
| 1949 | } |
| 1950 | for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) { |
| 1951 | if (current_dependencies->IsBitSet(matrix_index)) { |
| 1952 | // Mark all dependencies as done by incrementing their `num_dependencies[.]`, |
| 1953 | // so that they shall never be the minimum again. |
| 1954 | num_dependencies[matrix_index] = num_phi_placeholders; |
| 1955 | } else if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) { |
| 1956 | // Remove dependencies from other Phi placeholders. |
| 1957 | dependencies[matrix_index]->Subtract(current_dependencies); |
| 1958 | num_dependencies[matrix_index] -= current_num_dependencies; |
| 1959 | } |
| 1960 | } |
| 1961 | remaining_phi_placeholders -= current_num_dependencies; |
| 1962 | } |
| 1963 | return true; |
| 1964 | } |
| 1965 | |
| 1966 | const LSEVisitor::PhiPlaceholder* LSEVisitor::TryToMaterializeLoopPhis( |
| 1967 | const PhiPlaceholder* phi_placeholder, |
| 1968 | HInstruction* load) { |
| 1969 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| 1970 | |
| 1971 | // Use local allocator to reduce peak memory usage. |
| 1972 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 1973 | |
| 1974 | // Find Phi placeholders to materialize. |
| 1975 | ArenaBitVector phi_placeholders_to_materialize( |
| 1976 | &allocator, phi_placeholders_.size(), /*expandable=*/ false, kArenaAllocLSE); |
| 1977 | phi_placeholders_to_materialize.ClearAllBits(); |
| 1978 | DataType::Type type = load->GetType(); |
| 1979 | bool can_use_default_or_phi = IsDefaultOrPhiAllowedForLoad(load); |
| 1980 | const PhiPlaceholder* loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| 1981 | phi_placeholder, &phi_placeholders_to_materialize, type, can_use_default_or_phi); |
| 1982 | if (loop_phi_with_unknown_input != nullptr) { |
| 1983 | return loop_phi_with_unknown_input; // Return failure. |
| 1984 | } |
| 1985 | |
| 1986 | bool success = |
| 1987 | MaterializeLoopPhis(phi_placeholders_to_materialize, type, Phase::kLoadElimination); |
| 1988 | DCHECK(success); |
| 1989 | |
| 1990 | // Report success. |
| 1991 | return nullptr; |
| 1992 | } |
| 1993 | |
| 1994 | // Re-process loads and stores in successors from the `loop_phi_with_unknown_input`. This may |
| 1995 | // find one or more loads from `loads_requiring_loop_phi_` which cannot be replaced by Phis and |
| 1996 | // propagate the load(s) as the new value(s) to successors; this may uncover new elimination |
| 1997 | // opportunities. If we find no such load, we shall at least propagate an unknown value to some |
| 1998 | // heap location that is needed by another loop Phi placeholder. |
| 1999 | void LSEVisitor::ProcessLoopPhiWithUnknownInput(const PhiPlaceholder* loop_phi_with_unknown_input) { |
| 2000 | size_t loop_phi_with_unknown_input_index = PhiPlaceholderIndex(loop_phi_with_unknown_input); |
| 2001 | DCHECK(phi_placeholder_replacements_[loop_phi_with_unknown_input_index].IsInvalid()); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2002 | phi_placeholder_replacements_[loop_phi_with_unknown_input_index] = |
| 2003 | Value::MergedUnknown(loop_phi_with_unknown_input); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2004 | |
| 2005 | uint32_t block_id = loop_phi_with_unknown_input->GetBlockId(); |
| 2006 | const ArenaVector<HBasicBlock*> reverse_post_order = GetGraph()->GetReversePostOrder(); |
| 2007 | size_t reverse_post_order_index = 0; |
| 2008 | size_t reverse_post_order_size = reverse_post_order.size(); |
| 2009 | size_t loads_and_stores_index = 0u; |
| 2010 | size_t loads_and_stores_size = loads_and_stores_.size(); |
| 2011 | |
| 2012 | // Skip blocks and instructions before the block containing the loop phi with unknown input. |
| 2013 | DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| 2014 | while (reverse_post_order[reverse_post_order_index]->GetBlockId() != block_id) { |
| 2015 | HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| 2016 | while (loads_and_stores_index != loads_and_stores_size && |
| 2017 | loads_and_stores_[loads_and_stores_index].load_or_store->GetBlock() == block) { |
| 2018 | ++loads_and_stores_index; |
| 2019 | } |
| 2020 | ++reverse_post_order_index; |
| 2021 | DCHECK_NE(reverse_post_order_index, reverse_post_order_size); |
| 2022 | } |
| 2023 | |
| 2024 | // Use local allocator to reduce peak memory usage. |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 2025 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2026 | // Reuse one temporary vector for all remaining blocks. |
| 2027 | size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations(); |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 2028 | ScopedArenaVector<Value> local_heap_values(allocator.Adapter(kArenaAllocLSE)); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2029 | |
| 2030 | auto get_initial_value = [this](HBasicBlock* block, size_t idx) { |
| 2031 | Value value; |
| 2032 | if (block->IsLoopHeader()) { |
| 2033 | if (block->GetLoopInformation()->IsIrreducible()) { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2034 | const PhiPlaceholder* placeholder = GetPhiPlaceholder(block->GetBlockId(), idx); |
| 2035 | value = Value::MergedUnknown(placeholder); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2036 | } else { |
| 2037 | value = PrepareLoopValue(block, idx); |
| 2038 | } |
| 2039 | } else { |
| 2040 | value = MergePredecessorValues(block, idx); |
| 2041 | } |
| 2042 | DCHECK(value.IsUnknown() || ReplacementOrValue(value).Equals(value)); |
| 2043 | return value; |
| 2044 | }; |
| 2045 | |
| 2046 | // Process remaining blocks and instructions. |
| 2047 | bool found_unreplaceable_load = false; |
| 2048 | bool replaced_heap_value_with_unknown = false; |
| 2049 | for (; reverse_post_order_index != reverse_post_order_size; ++reverse_post_order_index) { |
| 2050 | HBasicBlock* block = reverse_post_order[reverse_post_order_index]; |
| 2051 | if (block->IsExitBlock()) { |
| 2052 | continue; |
| 2053 | } |
| 2054 | |
| 2055 | // We shall reconstruct only the heap values that we need for processing loads and stores. |
| 2056 | local_heap_values.clear(); |
| 2057 | local_heap_values.resize(num_heap_locations, Value::Invalid()); |
| 2058 | |
| 2059 | for (; loads_and_stores_index != loads_and_stores_size; ++loads_and_stores_index) { |
| 2060 | HInstruction* load_or_store = loads_and_stores_[loads_and_stores_index].load_or_store; |
| 2061 | size_t idx = loads_and_stores_[loads_and_stores_index].heap_location_index; |
| 2062 | if (load_or_store->GetBlock() != block) { |
| 2063 | break; // End of instructions from the current block. |
| 2064 | } |
| 2065 | bool is_store = load_or_store->GetSideEffects().DoesAnyWrite(); |
| 2066 | DCHECK_EQ(is_store, IsStore(load_or_store)); |
| 2067 | HInstruction* stored_value = nullptr; |
| 2068 | if (is_store) { |
| 2069 | auto it = store_records_.find(load_or_store); |
| 2070 | DCHECK(it != store_records_.end()); |
| 2071 | stored_value = it->second.stored_value; |
| 2072 | } |
| 2073 | auto it = loads_requiring_loop_phi_.find( |
| 2074 | stored_value != nullptr ? stored_value : load_or_store); |
| 2075 | if (it == loads_requiring_loop_phi_.end()) { |
| 2076 | continue; // This load or store never needed a loop Phi. |
| 2077 | } |
| 2078 | ValueRecord& record = it->second; |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 2079 | if (is_store) { |
| 2080 | // Process the store by updating `local_heap_values[idx]`. The last update shall |
| 2081 | // be propagated to the `heap_values[idx].value` if it previously needed a loop Phi |
| 2082 | // at the end of the block. |
| 2083 | Value replacement = ReplacementOrValue(record.value); |
| 2084 | if (replacement.NeedsLoopPhi()) { |
| 2085 | // No replacement yet, use the Phi placeholder from the load. |
| 2086 | DCHECK(record.value.NeedsLoopPhi()); |
| 2087 | local_heap_values[idx] = record.value; |
| 2088 | } else { |
| 2089 | // If the load fetched a known value, use it, otherwise use the load. |
| 2090 | local_heap_values[idx] = Value::ForInstruction( |
| 2091 | replacement.IsUnknown() ? stored_value : replacement.GetInstruction()); |
| 2092 | } |
| 2093 | } else { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2094 | // Process the load unless it has previously been marked unreplaceable. |
| 2095 | if (record.value.NeedsLoopPhi()) { |
| 2096 | if (local_heap_values[idx].IsInvalid()) { |
| 2097 | local_heap_values[idx] = get_initial_value(block, idx); |
| 2098 | } |
| 2099 | if (local_heap_values[idx].IsUnknown()) { |
| 2100 | // This load cannot be replaced. Keep stores that feed the Phi placeholder |
| 2101 | // (no aliasing since then, otherwise the Phi placeholder would not have been |
| 2102 | // propagated as a value to this load) and store the load as the new heap value. |
| 2103 | found_unreplaceable_load = true; |
| 2104 | KeepStores(record.value); |
| 2105 | record.value = Value::Unknown(); |
| 2106 | local_heap_values[idx] = Value::ForInstruction(load_or_store); |
| 2107 | } else if (local_heap_values[idx].NeedsLoopPhi()) { |
| 2108 | // The load may still be replaced with a Phi later. |
| 2109 | DCHECK(local_heap_values[idx].Equals(record.value)); |
| 2110 | } else { |
| 2111 | // This load can be eliminated but we may need to construct non-loop Phis. |
| 2112 | if (local_heap_values[idx].NeedsNonLoopPhi()) { |
| 2113 | MaterializeNonLoopPhis(local_heap_values[idx].GetPhiPlaceholder(), |
| 2114 | load_or_store->GetType()); |
| 2115 | local_heap_values[idx] = Replacement(local_heap_values[idx]); |
| 2116 | } |
| 2117 | record.value = local_heap_values[idx]; |
| 2118 | HInstruction* heap_value = local_heap_values[idx].GetInstruction(); |
| 2119 | AddRemovedLoad(load_or_store, heap_value); |
| 2120 | TryRemovingNullCheck(load_or_store); |
| 2121 | } |
| 2122 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2123 | } |
| 2124 | } |
| 2125 | |
| 2126 | // All heap values that previously needed a loop Phi at the end of the block |
| 2127 | // need to be updated for processing successors. |
| 2128 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()]; |
| 2129 | for (size_t idx = 0; idx != num_heap_locations; ++idx) { |
| 2130 | if (heap_values[idx].value.NeedsLoopPhi()) { |
| 2131 | if (local_heap_values[idx].IsValid()) { |
| 2132 | heap_values[idx].value = local_heap_values[idx]; |
| 2133 | } else { |
| 2134 | heap_values[idx].value = get_initial_value(block, idx); |
| 2135 | } |
| 2136 | if (heap_values[idx].value.IsUnknown()) { |
| 2137 | replaced_heap_value_with_unknown = true; |
| 2138 | } |
| 2139 | } |
| 2140 | } |
| 2141 | } |
| 2142 | DCHECK(found_unreplaceable_load || replaced_heap_value_with_unknown); |
| 2143 | } |
| 2144 | |
| 2145 | void LSEVisitor::ProcessLoadsRequiringLoopPhis() { |
| 2146 | // Note: The vector operations carve-out (see `IsDefaultOrPhiAllowedForLoad()`) can possibly |
| 2147 | // make the result of the processing depend on the order in which we process these loads. |
| 2148 | // To make sure the result is deterministic, iterate over `loads_and_stores_` instead of the |
| 2149 | // `loads_requiring_loop_phi_` indexed by non-deterministic pointers. |
| 2150 | for (const LoadStoreRecord& load_store_record : loads_and_stores_) { |
| 2151 | auto it = loads_requiring_loop_phi_.find(load_store_record.load_or_store); |
| 2152 | if (it == loads_requiring_loop_phi_.end()) { |
| 2153 | continue; |
| 2154 | } |
| 2155 | HInstruction* load = it->first; |
| 2156 | ValueRecord& record = it->second; |
| 2157 | while (record.value.NeedsLoopPhi() && |
| 2158 | phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()) { |
| 2159 | const PhiPlaceholder* loop_phi_with_unknown_input = |
| 2160 | TryToMaterializeLoopPhis(record.value.GetPhiPlaceholder(), load); |
| 2161 | DCHECK_EQ(loop_phi_with_unknown_input != nullptr, |
| 2162 | phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()); |
| 2163 | if (loop_phi_with_unknown_input != nullptr) { |
| 2164 | ProcessLoopPhiWithUnknownInput(loop_phi_with_unknown_input); |
| 2165 | } |
| 2166 | } |
| 2167 | // The load could have been marked as unreplaceable (and stores marked for keeping) |
| 2168 | // or marked for replacement with an instruction in ProcessLoopPhiWithUnknownInput(). |
| 2169 | DCHECK(record.value.IsUnknown() || record.value.IsInstruction() || record.value.NeedsLoopPhi()); |
| 2170 | if (record.value.NeedsLoopPhi()) { |
| 2171 | record.value = Replacement(record.value); |
| 2172 | HInstruction* heap_value = record.value.GetInstruction(); |
| 2173 | AddRemovedLoad(load, heap_value); |
| 2174 | TryRemovingNullCheck(load); |
| 2175 | } |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | void LSEVisitor::SearchPhiPlaceholdersForKeptStores() { |
| 2180 | ScopedArenaVector<uint32_t> work_queue(allocator_.Adapter(kArenaAllocLSE)); |
| 2181 | size_t start_size = phi_placeholders_to_search_for_kept_stores_.NumSetBits(); |
| 2182 | work_queue.reserve(((start_size * 3u) + 1u) / 2u); // Reserve 1.5x start size, rounded up. |
| 2183 | for (uint32_t index : phi_placeholders_to_search_for_kept_stores_.Indexes()) { |
| 2184 | work_queue.push_back(index); |
| 2185 | } |
| 2186 | const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2187 | std::optional<ArenaBitVector> not_kept_stores; |
| 2188 | if (stats_) { |
| 2189 | not_kept_stores.emplace(GetGraph()->GetAllocator(), |
| 2190 | kept_stores_.GetBitSizeOf(), |
| 2191 | false, |
| 2192 | ArenaAllocKind::kArenaAllocLSE); |
| 2193 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2194 | while (!work_queue.empty()) { |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2195 | uint32_t cur_phi_idx = work_queue.back(); |
| 2196 | const PhiPlaceholder* phi_placeholder = &phi_placeholders_[cur_phi_idx]; |
| 2197 | // Only writes to partial-escapes need to be specifically kept. |
| 2198 | bool is_partial_kept_merged_unknown = |
| 2199 | kept_merged_unknowns_.IsBitSet(cur_phi_idx) && |
| 2200 | heap_location_collector_.GetHeapLocation(phi_placeholder->GetHeapLocation()) |
| 2201 | ->GetReferenceInfo() |
| 2202 | ->IsPartialSingleton(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2203 | work_queue.pop_back(); |
| 2204 | size_t idx = phi_placeholder->GetHeapLocation(); |
| 2205 | HBasicBlock* block = blocks[phi_placeholder->GetBlockId()]; |
| 2206 | for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| 2207 | ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()]; |
Vladimir Marko | 0571d47 | 2020-09-22 10:14:39 +0100 | [diff] [blame] | 2208 | // For loop back-edges we must also preserve all stores to locations that |
| 2209 | // may alias with the location `idx`. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2210 | // TODO: Review whether we need to keep stores to aliased locations from pre-header. |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2211 | // TODO: Add tests cases around this. |
| 2212 | bool is_back_edge = |
| 2213 | block->IsLoopHeader() && predecessor != block->GetLoopInformation()->GetPreHeader(); |
| 2214 | size_t start = is_back_edge ? 0u : idx; |
| 2215 | size_t end = is_back_edge ? heap_values.size() : idx + 1u; |
| 2216 | for (size_t i = start; i != end; ++i) { |
| 2217 | Value stored_by = heap_values[i].stored_by; |
Vladimir Marko | 0571d47 | 2020-09-22 10:14:39 +0100 | [diff] [blame] | 2218 | auto may_alias = [this, block, idx](size_t i) { |
| 2219 | DCHECK_NE(i, idx); |
| 2220 | DCHECK(block->IsLoopHeader()); |
| 2221 | if (heap_location_collector_.MayAlias(i, idx)) { |
| 2222 | return true; |
| 2223 | } |
| 2224 | // For array locations with index defined inside the loop, include |
| 2225 | // all other locations in the array, even those that LSA declares |
| 2226 | // non-aliasing, such as `a[i]` and `a[i + 1]`, as they may actually |
| 2227 | // refer to the same locations for different iterations. (LSA's |
| 2228 | // `ComputeMayAlias()` does not consider different loop iterations.) |
| 2229 | HeapLocation* heap_loc = heap_location_collector_.GetHeapLocation(idx); |
| 2230 | HeapLocation* other_loc = heap_location_collector_.GetHeapLocation(i); |
| 2231 | if (heap_loc->IsArray() && |
| 2232 | other_loc->IsArray() && |
| 2233 | heap_loc->GetReferenceInfo() == other_loc->GetReferenceInfo() && |
| 2234 | block->GetLoopInformation()->Contains(*heap_loc->GetIndex()->GetBlock())) { |
| 2235 | // If one location has index defined inside and the other index defined outside |
| 2236 | // of the loop, LSA considers them aliasing and we take an early return above. |
| 2237 | DCHECK(block->GetLoopInformation()->Contains(*other_loc->GetIndex()->GetBlock())); |
| 2238 | return true; |
| 2239 | } |
| 2240 | return false; |
| 2241 | }; |
| 2242 | if (!stored_by.IsUnknown() && (i == idx || may_alias(i))) { |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2243 | if (stored_by.NeedsPhi()) { |
| 2244 | size_t phi_placeholder_index = PhiPlaceholderIndex(stored_by); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2245 | if (is_partial_kept_merged_unknown) { |
| 2246 | // Propagate merged-unknown keep since otherwise this might look |
| 2247 | // like a partial escape we can remove. |
| 2248 | kept_merged_unknowns_.SetBit(phi_placeholder_index); |
| 2249 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2250 | if (!phi_placeholders_to_search_for_kept_stores_.IsBitSet(phi_placeholder_index)) { |
| 2251 | phi_placeholders_to_search_for_kept_stores_.SetBit(phi_placeholder_index); |
| 2252 | work_queue.push_back(phi_placeholder_index); |
| 2253 | } |
| 2254 | } else { |
| 2255 | DCHECK(IsStore(stored_by.GetInstruction())); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2256 | ReferenceInfo* ri = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); |
| 2257 | DCHECK(ri != nullptr) << "No heap value for " << stored_by.GetInstruction()->DebugName() |
| 2258 | << " id: " << stored_by.GetInstruction()->GetId() << " block: " |
| 2259 | << stored_by.GetInstruction()->GetBlock()->GetBlockId(); |
| 2260 | if (!is_partial_kept_merged_unknown && IsPartialNoEscape(predecessor, idx)) { |
| 2261 | if (not_kept_stores) { |
| 2262 | not_kept_stores->SetBit(stored_by.GetInstruction()->GetId()); |
| 2263 | } |
| 2264 | } else { |
| 2265 | kept_stores_.SetBit(stored_by.GetInstruction()->GetId()); |
| 2266 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2267 | } |
| 2268 | } |
| 2269 | } |
| 2270 | } |
| 2271 | } |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2272 | if (not_kept_stores) { |
| 2273 | // a - b := (a & ~b) |
| 2274 | not_kept_stores->Subtract(&kept_stores_); |
| 2275 | auto num_removed = not_kept_stores->NumSetBits(); |
| 2276 | MaybeRecordStat(stats_, MethodCompilationStat::kPartialStoreRemoved, num_removed); |
| 2277 | } |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2278 | } |
| 2279 | |
| 2280 | void LSEVisitor::UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record) { |
| 2281 | while (value_record->stored_by.IsInstruction() && |
| 2282 | !kept_stores_.IsBitSet(value_record->stored_by.GetInstruction()->GetId())) { |
| 2283 | auto it = store_records_.find(value_record->stored_by.GetInstruction()); |
| 2284 | DCHECK(it != store_records_.end()); |
| 2285 | *value_record = it->second.old_value_record; |
| 2286 | } |
| 2287 | if (value_record->stored_by.NeedsPhi() && |
| 2288 | !phi_placeholders_to_search_for_kept_stores_.IsBitSet( |
| 2289 | PhiPlaceholderIndex(value_record->stored_by))) { |
| 2290 | // Some stores feeding this heap location may have been eliminated. Use the `stored_by` |
| 2291 | // Phi placeholder to recalculate the actual value. |
| 2292 | value_record->value = value_record->stored_by; |
| 2293 | } |
| 2294 | value_record->value = ReplacementOrValue(value_record->value); |
| 2295 | if (value_record->value.NeedsNonLoopPhi()) { |
| 2296 | // Treat all Phi placeholders as requiring loop Phis at this point. |
| 2297 | // We do not want MaterializeLoopPhis() to call MaterializeNonLoopPhis(). |
| 2298 | value_record->value = Value::ForLoopPhiPlaceholder(value_record->value.GetPhiPlaceholder()); |
| 2299 | } |
| 2300 | } |
| 2301 | |
| 2302 | void LSEVisitor::FindOldValueForPhiPlaceholder(const PhiPlaceholder* phi_placeholder, |
| 2303 | DataType::Type type) { |
| 2304 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid()); |
| 2305 | |
| 2306 | // Use local allocator to reduce peak memory usage. |
| 2307 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 2308 | ArenaBitVector visited(&allocator, |
| 2309 | /*start_bits=*/ phi_placeholders_.size(), |
| 2310 | /*expandable=*/ false, |
| 2311 | kArenaAllocLSE); |
| 2312 | visited.ClearAllBits(); |
| 2313 | |
| 2314 | // Find Phi placeholders to try and match against existing Phis or other replacement values. |
| 2315 | ArenaBitVector phi_placeholders_to_materialize( |
| 2316 | &allocator, phi_placeholders_.size(), /*expandable=*/ false, kArenaAllocLSE); |
| 2317 | phi_placeholders_to_materialize.ClearAllBits(); |
| 2318 | const PhiPlaceholder* loop_phi_with_unknown_input = FindLoopPhisToMaterialize( |
| 2319 | phi_placeholder, &phi_placeholders_to_materialize, type, /*can_use_default_or_phi=*/ true); |
| 2320 | if (loop_phi_with_unknown_input != nullptr) { |
| 2321 | // Mark the unreplacable placeholder as well as the input Phi placeholder as unreplaceable. |
| 2322 | phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)] = Value::Unknown(); |
| 2323 | phi_placeholder_replacements_[PhiPlaceholderIndex(loop_phi_with_unknown_input)] = |
| 2324 | Value::Unknown(); |
| 2325 | return; |
| 2326 | } |
| 2327 | |
| 2328 | bool success = |
| 2329 | MaterializeLoopPhis(phi_placeholders_to_materialize, type, Phase::kStoreElimination); |
| 2330 | DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsValid()); |
| 2331 | DCHECK_EQ(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsUnknown(), |
| 2332 | !success); |
| 2333 | } |
| 2334 | |
| 2335 | void LSEVisitor::FindStoresWritingOldValues() { |
| 2336 | // The Phi placeholder replacements have so far been used for eliminating loads, |
| 2337 | // tracking values that would be stored if all stores were kept. As we want to |
| 2338 | // compare actual old values after removing unmarked stores, prune the Phi |
| 2339 | // placeholder replacements that can be fed by values we may not actually store. |
| 2340 | // Replacements marked as unknown can be kept as they are fed by some unknown |
| 2341 | // value and would end up as unknown again if we recalculated them. |
| 2342 | for (size_t i = 0, size = phi_placeholder_replacements_.size(); i != size; ++i) { |
| 2343 | if (!phi_placeholder_replacements_[i].IsUnknown() && |
| 2344 | !phi_placeholders_to_search_for_kept_stores_.IsBitSet(i)) { |
| 2345 | phi_placeholder_replacements_[i] = Value::Invalid(); |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | // Update heap values at end of blocks. |
| 2350 | for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| 2351 | for (ValueRecord& value_record : heap_values_for_[block->GetBlockId()]) { |
| 2352 | UpdateValueRecordForStoreElimination(&value_record); |
| 2353 | } |
| 2354 | } |
| 2355 | |
| 2356 | // Use local allocator to reduce peak memory usage. |
| 2357 | ScopedArenaAllocator allocator(allocator_.GetArenaStack()); |
| 2358 | // Mark the stores we want to eliminate in a separate bit vector. |
| 2359 | ArenaBitVector eliminated_stores(&allocator, |
| 2360 | /*start_bits=*/ GetGraph()->GetCurrentInstructionId(), |
| 2361 | /*expandable=*/ false, |
| 2362 | kArenaAllocLSE); |
| 2363 | eliminated_stores.ClearAllBits(); |
| 2364 | |
| 2365 | for (auto& entry : store_records_) { |
| 2366 | HInstruction* store = entry.first; |
| 2367 | StoreRecord& store_record = entry.second; |
| 2368 | if (!kept_stores_.IsBitSet(store->GetId())) { |
| 2369 | continue; // Ignore stores that are not kept. |
| 2370 | } |
| 2371 | UpdateValueRecordForStoreElimination(&store_record.old_value_record); |
| 2372 | if (store_record.old_value_record.value.NeedsPhi()) { |
| 2373 | DataType::Type type = store_record.stored_value->GetType(); |
| 2374 | FindOldValueForPhiPlaceholder(store_record.old_value_record.value.GetPhiPlaceholder(), type); |
| 2375 | store_record.old_value_record.value = ReplacementOrValue(store_record.old_value_record.value); |
| 2376 | } |
| 2377 | DCHECK(!store_record.old_value_record.value.NeedsPhi()); |
| 2378 | HInstruction* stored_value = FindSubstitute(store_record.stored_value); |
| 2379 | if (store_record.old_value_record.value.Equals(stored_value)) { |
| 2380 | eliminated_stores.SetBit(store->GetId()); |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | // Commit the stores to eliminate by removing them from `kept_stores_`. |
| 2385 | kept_stores_.Subtract(&eliminated_stores); |
| 2386 | } |
| 2387 | |
| 2388 | void LSEVisitor::Run() { |
| 2389 | // 1. Process blocks and instructions in reverse post order. |
| 2390 | for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) { |
| 2391 | VisitBasicBlock(block); |
| 2392 | } |
| 2393 | |
| 2394 | // 2. Process loads that require loop Phis, trying to find/create replacements. |
| 2395 | ProcessLoadsRequiringLoopPhis(); |
| 2396 | |
| 2397 | // 3. Determine which stores to keep and which to eliminate. |
| 2398 | |
| 2399 | // Finish marking stores for keeping. |
| 2400 | SearchPhiPlaceholdersForKeptStores(); |
| 2401 | |
| 2402 | // Find stores that write the same value as is already present in the location. |
| 2403 | FindStoresWritingOldValues(); |
| 2404 | |
| 2405 | // 4. Replace loads and remove unnecessary stores and singleton allocations. |
| 2406 | |
| 2407 | // Remove recorded load instructions that should be eliminated. |
Vladimir Marko | 9e3fe99 | 2020-08-25 16:17:51 +0100 | [diff] [blame] | 2408 | for (const LoadStoreRecord& record : loads_and_stores_) { |
| 2409 | size_t id = dchecked_integral_cast<size_t>(record.load_or_store->GetId()); |
| 2410 | HInstruction* substitute = substitute_instructions_for_loads_[id]; |
| 2411 | if (substitute == nullptr) { |
| 2412 | continue; |
| 2413 | } |
| 2414 | HInstruction* load = record.load_or_store; |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2415 | DCHECK(load != nullptr); |
| 2416 | DCHECK(IsLoad(load)); |
| 2417 | DCHECK(load->GetBlock() != nullptr) << load->DebugName() << "@" << load->GetDexPc(); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2418 | // We proactively retrieve the substitute for a removed load, so |
| 2419 | // a load that has a substitute should not be observed as a heap |
| 2420 | // location value. |
| 2421 | DCHECK_EQ(FindSubstitute(substitute), substitute); |
| 2422 | |
| 2423 | load->ReplaceWith(substitute); |
| 2424 | load->GetBlock()->RemoveInstruction(load); |
| 2425 | } |
| 2426 | |
| 2427 | // Remove all the stores we can. |
| 2428 | for (const LoadStoreRecord& record : loads_and_stores_) { |
| 2429 | bool is_store = record.load_or_store->GetSideEffects().DoesAnyWrite(); |
| 2430 | DCHECK_EQ(is_store, IsStore(record.load_or_store)); |
| 2431 | if (is_store && !kept_stores_.IsBitSet(record.load_or_store->GetId())) { |
| 2432 | record.load_or_store->GetBlock()->RemoveInstruction(record.load_or_store); |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | // Eliminate singleton-classified instructions: |
| 2437 | // * - Constructor fences (they never escape this thread). |
| 2438 | // * - Allocations (if they are unused). |
| 2439 | for (HInstruction* new_instance : singleton_new_instances_) { |
| 2440 | size_t removed = HConstructorFence::RemoveConstructorFences(new_instance); |
| 2441 | MaybeRecordStat(stats_, |
| 2442 | MethodCompilationStat::kConstructorFenceRemovedLSE, |
| 2443 | removed); |
| 2444 | |
| 2445 | if (!new_instance->HasNonEnvironmentUses()) { |
| 2446 | new_instance->RemoveEnvironmentUsers(); |
| 2447 | new_instance->GetBlock()->RemoveInstruction(new_instance); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2448 | MaybeRecordStat(stats_, MethodCompilationStat::kFullLSEAllocationRemoved); |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2449 | } |
| 2450 | } |
| 2451 | } |
| 2452 | |
Aart Bik | 2477320 | 2018-04-26 10:28:51 -0700 | [diff] [blame] | 2453 | bool LoadStoreElimination::Run() { |
David Brazdil | 8993caf | 2015-12-07 10:04:40 +0000 | [diff] [blame] | 2454 | if (graph_->IsDebuggable() || graph_->HasTryCatch()) { |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 2455 | // Debugger may set heap values or trigger deoptimization of callers. |
David Brazdil | 8993caf | 2015-12-07 10:04:40 +0000 | [diff] [blame] | 2456 | // Try/catch support not implemented yet. |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 2457 | // Skip this optimization. |
Aart Bik | 2477320 | 2018-04-26 10:28:51 -0700 | [diff] [blame] | 2458 | return false; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 2459 | } |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2460 | // We need to be able to determine reachability. Clear it just to be safe but |
| 2461 | // this should initially be empty. |
| 2462 | graph_->ClearReachabilityInformation(); |
| 2463 | // This is O(blocks^3) time complexity. It means we can query reachability in |
| 2464 | // O(1) though. |
| 2465 | graph_->ComputeReachabilityInformation(); |
Vladimir Marko | ef89842 | 2020-06-08 10:26:06 +0100 | [diff] [blame] | 2466 | ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
Alex Light | 86fe9b8 | 2020-11-16 16:54:01 +0000 | [diff] [blame] | 2467 | LoadStoreAnalysis lsa(graph_, stats_, &allocator, /*for_elimination=*/true); |
Vladimir Marko | ef89842 | 2020-06-08 10:26:06 +0100 | [diff] [blame] | 2468 | lsa.Run(); |
| 2469 | const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector(); |
xueliang.zhong | c239a2b | 2017-04-27 15:31:37 +0100 | [diff] [blame] | 2470 | if (heap_location_collector.GetNumberOfHeapLocations() == 0) { |
| 2471 | // No HeapLocation information from LSA, skip this optimization. |
Aart Bik | 2477320 | 2018-04-26 10:28:51 -0700 | [diff] [blame] | 2472 | return false; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 2473 | } |
xueliang.zhong | c239a2b | 2017-04-27 15:31:37 +0100 | [diff] [blame] | 2474 | |
Vladimir Marko | 3224f38 | 2020-06-23 14:19:53 +0100 | [diff] [blame] | 2475 | LSEVisitor lse_visitor(graph_, heap_location_collector, stats_); |
| 2476 | lse_visitor.Run(); |
Aart Bik | 2477320 | 2018-04-26 10:28:51 -0700 | [diff] [blame] | 2477 | return true; |
Mingyao Yang | 8df69d4 | 2015-10-22 15:40:58 -0700 | [diff] [blame] | 2478 | } |
| 2479 | |
| 2480 | } // namespace art |