Revert "Revert "load store elimination.""

This reverts commit 8030c4100d2586fac39ed4007c61ee91d4ea4f25.

Change-Id: I79558d85484be5f5d04e4a44bea7201fece440f0
diff --git a/compiler/optimizing/load_store_elimination.cc b/compiler/optimizing/load_store_elimination.cc
new file mode 100644
index 0000000..68d02a4
--- /dev/null
+++ b/compiler/optimizing/load_store_elimination.cc
@@ -0,0 +1,910 @@
+/*
+ * Copyright (C) 2015 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "load_store_elimination.h"
+#include "side_effects_analysis.h"
+
+#include <iostream>
+
+namespace art {
+
+class ReferenceInfo;
+
+// A cap for the number of heap locations to prevent pathological time/space consumption.
+// The number of heap locations for most of the methods stays below this threshold.
+constexpr size_t kMaxNumberOfHeapLocations = 32;
+
+// A ReferenceInfo contains additional info about a reference such as
+// whether it's a singleton, returned, etc.
+class ReferenceInfo : public ArenaObject<kArenaAllocMisc> {
+ public:
+  ReferenceInfo(HInstruction* reference, size_t pos) : reference_(reference), position_(pos) {
+    is_singleton_ = true;
+    is_singleton_and_not_returned_ = true;
+    if (!reference_->IsNewInstance() && !reference_->IsNewArray()) {
+      // For references not allocated in the method, don't assume anything.
+      is_singleton_ = false;
+      is_singleton_and_not_returned_ = false;
+      return;
+    }
+
+    // Visit all uses to determine if this reference can spread into the heap,
+    // a method call, etc.
+    for (HUseIterator<HInstruction*> use_it(reference_->GetUses());
+         !use_it.Done();
+         use_it.Advance()) {
+      HInstruction* use = use_it.Current()->GetUser();
+      DCHECK(!use->IsNullCheck()) << "NullCheck should have been eliminated";
+      if (use->IsBoundType()) {
+        // BoundType shouldn't normally be necessary for a NewInstance.
+        // Just be conservative for the uncommon cases.
+        is_singleton_ = false;
+        is_singleton_and_not_returned_ = false;
+        return;
+      }
+      if (use->IsPhi() || use->IsInvoke() ||
+          (use->IsInstanceFieldSet() && (reference_ == use->InputAt(1))) ||
+          (use->IsUnresolvedInstanceFieldSet() && (reference_ == use->InputAt(1))) ||
+          (use->IsStaticFieldSet() && (reference_ == use->InputAt(1))) ||
+          (use->IsUnresolvedStaticFieldSet() && (reference_ == use->InputAt(1))) ||
+          (use->IsArraySet() && (reference_ == use->InputAt(2)))) {
+        // reference_ is merged to a phi, passed to a callee, or stored to heap.
+        // reference_ isn't the only name that can refer to its value anymore.
+        is_singleton_ = false;
+        is_singleton_and_not_returned_ = false;
+        return;
+      }
+      if (use->IsReturn()) {
+        is_singleton_and_not_returned_ = false;
+      }
+    }
+  }
+
+  HInstruction* GetReference() const {
+    return reference_;
+  }
+
+  size_t GetPosition() const {
+    return position_;
+  }
+
+  // Returns true if reference_ is the only name that can refer to its value during
+  // the lifetime of the method. So it's guaranteed to not have any alias in
+  // the method (including its callees).
+  bool IsSingleton() const {
+    return is_singleton_;
+  }
+
+  // Returns true if reference_ is a singleton and not returned to the caller.
+  // The allocation and stores into reference_ may be eliminated for such cases.
+  bool IsSingletonAndNotReturned() const {
+    return is_singleton_and_not_returned_;
+  }
+
+ private:
+  HInstruction* const reference_;
+  const size_t position_;     // position in HeapLocationCollector's ref_info_array_.
+  bool is_singleton_;         // can only be referred to by a single name in the method.
+  bool is_singleton_and_not_returned_;  // reference_ is singleton and not returned to caller.
+
+  DISALLOW_COPY_AND_ASSIGN(ReferenceInfo);
+};
+
+// A heap location is a reference-offset/index pair that a value can be loaded from
+// or stored to.
+class HeapLocation : public ArenaObject<kArenaAllocMisc> {
+ public:
+  static constexpr size_t kInvalidFieldOffset = -1;
+
+  // TODO: more fine-grained array types.
+  static constexpr int16_t kDeclaringClassDefIndexForArrays = -1;
+
+  HeapLocation(ReferenceInfo* ref_info,
+               size_t offset,
+               HInstruction* index,
+               int16_t declaring_class_def_index)
+      : ref_info_(ref_info),
+        offset_(offset),
+        index_(index),
+        declaring_class_def_index_(declaring_class_def_index),
+        may_become_unknown_(true) {
+    DCHECK(ref_info != nullptr);
+    DCHECK((offset == kInvalidFieldOffset && index != nullptr) ||
+           (offset != kInvalidFieldOffset && index == nullptr));
+
+    if (ref_info->IsSingletonAndNotReturned()) {
+      // We try to track stores to singletons that aren't returned to eliminate the stores
+      // since values in singleton's fields cannot be killed due to aliasing. Those values
+      // can still be killed due to merging values since we don't build phi for merging heap
+      // values. SetMayBecomeUnknown(true) may be called later once such merge becomes possible.
+      may_become_unknown_ = false;
+    }
+  }
+
+  ReferenceInfo* GetReferenceInfo() const { return ref_info_; }
+  size_t GetOffset() const { return offset_; }
+  HInstruction* GetIndex() const { return index_; }
+
+  // Returns the definition of declaring class' dex index.
+  // It's kDeclaringClassDefIndexForArrays for an array element.
+  int16_t GetDeclaringClassDefIndex() const {
+    return declaring_class_def_index_;
+  }
+
+  bool IsArrayElement() const {
+    return index_ != nullptr;
+  }
+
+  // Returns true if this heap location's value may become unknown after it's
+  // set to a value, due to merge of values, or killed due to aliasing.
+  bool MayBecomeUnknown() const {
+    return may_become_unknown_;
+  }
+  void SetMayBecomeUnknown(bool val) {
+    may_become_unknown_ = val;
+  }
+
+ private:
+  ReferenceInfo* const ref_info_;      // reference for instance/static field or array access.
+  const size_t offset_;                // offset of static/instance field.
+  HInstruction* const index_;          // index of an array element.
+  const int16_t declaring_class_def_index_;  // declaring class's def's dex index.
+  bool may_become_unknown_;            // value may become kUnknownHeapValue.
+
+  DISALLOW_COPY_AND_ASSIGN(HeapLocation);
+};
+
+static HInstruction* HuntForOriginalReference(HInstruction* ref) {
+  DCHECK(ref != nullptr);
+  while (ref->IsNullCheck() || ref->IsBoundType()) {
+    ref = ref->InputAt(0);
+  }
+  return ref;
+}
+
+// A HeapLocationCollector collects all relevant heap locations and keeps
+// an aliasing matrix for all locations.
+class HeapLocationCollector : public HGraphVisitor {
+ public:
+  static constexpr size_t kHeapLocationNotFound = -1;
+  // Start with a single uint32_t word. That's enough bits for pair-wise
+  // aliasing matrix of 8 heap locations.
+  static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32;
+
+  explicit HeapLocationCollector(HGraph* graph)
+      : HGraphVisitor(graph),
+        ref_info_array_(graph->GetArena()->Adapter(kArenaAllocLSE)),
+        heap_locations_(graph->GetArena()->Adapter(kArenaAllocLSE)),
+        aliasing_matrix_(graph->GetArena(), kInitialAliasingMatrixBitVectorSize, true),
+        has_heap_stores_(false),
+        has_volatile_(false),
+        has_monitor_operations_(false),
+        may_deoptimize_(false) {}
+
+  size_t GetNumberOfHeapLocations() const {
+    return heap_locations_.size();
+  }
+
+  HeapLocation* GetHeapLocation(size_t index) const {
+    return heap_locations_[index];
+  }
+
+  ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const {
+    for (size_t i = 0; i < ref_info_array_.size(); i++) {
+      ReferenceInfo* ref_info = ref_info_array_[i];
+      if (ref_info->GetReference() == ref) {
+        DCHECK_EQ(i, ref_info->GetPosition());
+        return ref_info;
+      }
+    }
+    return nullptr;
+  }
+
+  bool HasHeapStores() const {
+    return has_heap_stores_;
+  }
+
+  bool HasVolatile() const {
+    return has_volatile_;
+  }
+
+  bool HasMonitorOps() const {
+    return has_monitor_operations_;
+  }
+
+  // Returns whether this method may be deoptimized.
+  // Currently we don't have meta data support for deoptimizing
+  // a method that eliminates allocations/stores.
+  bool MayDeoptimize() const {
+    return may_deoptimize_;
+  }
+
+  // Find and return the heap location index in heap_locations_.
+  size_t FindHeapLocationIndex(ReferenceInfo* ref_info,
+                               size_t offset,
+                               HInstruction* index,
+                               int16_t declaring_class_def_index) const {
+    for (size_t i = 0; i < heap_locations_.size(); i++) {
+      HeapLocation* loc = heap_locations_[i];
+      if (loc->GetReferenceInfo() == ref_info &&
+          loc->GetOffset() == offset &&
+          loc->GetIndex() == index &&
+          loc->GetDeclaringClassDefIndex() == declaring_class_def_index) {
+        return i;
+      }
+    }
+    return kHeapLocationNotFound;
+  }
+
+  // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias.
+  bool MayAlias(size_t index1, size_t index2) const {
+    if (index1 < index2) {
+      return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2));
+    } else if (index1 > index2) {
+      return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1));
+    } else {
+      DCHECK(false) << "index1 and index2 are expected to be different";
+      return true;
+    }
+  }
+
+  void BuildAliasingMatrix() {
+    const size_t number_of_locations = heap_locations_.size();
+    if (number_of_locations == 0) {
+      return;
+    }
+    size_t pos = 0;
+    // Compute aliasing info between every pair of different heap locations.
+    // Save the result in a matrix represented as a BitVector.
+    for (size_t i = 0; i < number_of_locations - 1; i++) {
+      for (size_t j = i + 1; j < number_of_locations; j++) {
+        if (ComputeMayAlias(i, j)) {
+          aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos));
+        }
+        pos++;
+      }
+    }
+  }
+
+ private:
+  // An allocation cannot alias with a name which already exists at the point
+  // of the allocation, such as a parameter or a load happening before the allocation.
+  bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const {
+    if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) {
+      // Any reference that can alias with the allocation must appear after it in the block/in
+      // the block's successors. In reverse post order, those instructions will be visited after
+      // the allocation.
+      return ref_info2->GetPosition() >= ref_info1->GetPosition();
+    }
+    return true;
+  }
+
+  bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const {
+    if (ref_info1 == ref_info2) {
+      return true;
+    } else if (ref_info1->IsSingleton()) {
+      return false;
+    } else if (ref_info2->IsSingleton()) {
+      return false;
+    } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) ||
+        !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) {
+      return false;
+    }
+    return true;
+  }
+
+  // `index1` and `index2` are indices in the array of collected heap locations.
+  // Returns the position in the bit vector that tracks whether the two heap
+  // locations may alias.
+  size_t AliasingMatrixPosition(size_t index1, size_t index2) const {
+    DCHECK(index2 > index1);
+    const size_t number_of_locations = heap_locations_.size();
+    // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1).
+    return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1));
+  }
+
+  // An additional position is passed in to make sure the calculated position is correct.
+  size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) {
+    size_t calculated_position = AliasingMatrixPosition(index1, index2);
+    DCHECK_EQ(calculated_position, position);
+    return calculated_position;
+  }
+
+  // Compute if two locations may alias to each other.
+  bool ComputeMayAlias(size_t index1, size_t index2) const {
+    HeapLocation* loc1 = heap_locations_[index1];
+    HeapLocation* loc2 = heap_locations_[index2];
+    if (loc1->GetOffset() != loc2->GetOffset()) {
+      // Either two different instance fields, or one is an instance
+      // field and the other is an array element.
+      return false;
+    }
+    if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) {
+      // Different types.
+      return false;
+    }
+    if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) {
+      return false;
+    }
+    if (loc1->IsArrayElement() && loc2->IsArrayElement()) {
+      HInstruction* array_index1 = loc1->GetIndex();
+      HInstruction* array_index2 = loc2->GetIndex();
+      DCHECK(array_index1 != nullptr);
+      DCHECK(array_index2 != nullptr);
+      if (array_index1->IsIntConstant() &&
+          array_index2->IsIntConstant() &&
+          array_index1->AsIntConstant()->GetValue() != array_index2->AsIntConstant()->GetValue()) {
+        // Different constant indices do not alias.
+        return false;
+      }
+    }
+    return true;
+  }
+
+  ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* ref) {
+    ReferenceInfo* ref_info = FindReferenceInfoOf(ref);
+    if (ref_info == nullptr) {
+      size_t pos = ref_info_array_.size();
+      ref_info = new (GetGraph()->GetArena()) ReferenceInfo(ref, pos);
+      ref_info_array_.push_back(ref_info);
+    }
+    return ref_info;
+  }
+
+  HeapLocation* GetOrCreateHeapLocation(HInstruction* ref,
+                                        size_t offset,
+                                        HInstruction* index,
+                                        int16_t declaring_class_def_index) {
+    HInstruction* original_ref = HuntForOriginalReference(ref);
+    ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref);
+    size_t heap_location_idx = FindHeapLocationIndex(
+        ref_info, offset, index, declaring_class_def_index);
+    if (heap_location_idx == kHeapLocationNotFound) {
+      HeapLocation* heap_loc = new (GetGraph()->GetArena())
+          HeapLocation(ref_info, offset, index, declaring_class_def_index);
+      heap_locations_.push_back(heap_loc);
+      return heap_loc;
+    }
+    return heap_locations_[heap_location_idx];
+  }
+
+  void VisitFieldAccess(HInstruction* field_access,
+                        HInstruction* ref,
+                        const FieldInfo& field_info,
+                        bool is_store) {
+    if (field_info.IsVolatile()) {
+      has_volatile_ = true;
+    }
+    const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex();
+    const size_t offset = field_info.GetFieldOffset().SizeValue();
+    HeapLocation* location = GetOrCreateHeapLocation(ref, offset, nullptr, declaring_class_def_index);
+    // A store of a value may be eliminated if all future loads for that value can be eliminated.
+    // For a value that's stored into a singleton field, the value will not be killed due
+    // to aliasing. However if the value is set in a block that doesn't post dominate the definition,
+    // the value may be killed due to merging later. Before we have post dominating info, we check
+    // if the store is in the same block as the definition just to be conservative.
+    if (is_store &&
+        location->GetReferenceInfo()->IsSingletonAndNotReturned() &&
+        field_access->GetBlock() != ref->GetBlock()) {
+      location->SetMayBecomeUnknown(true);
+    }
+  }
+
+  void VisitArrayAccess(HInstruction* array, HInstruction* index) {
+    GetOrCreateHeapLocation(array, HeapLocation::kInvalidFieldOffset,
+        index, HeapLocation::kDeclaringClassDefIndexForArrays);
+  }
+
+  void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
+    VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), false);
+  }
+
+  void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
+    VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), true);
+    has_heap_stores_ = true;
+  }
+
+  void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
+    VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), false);
+  }
+
+  void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
+    VisitFieldAccess(instruction, instruction->InputAt(0), instruction->GetFieldInfo(), true);
+    has_heap_stores_ = true;
+  }
+
+  // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses
+  // since we cannot accurately track the fields.
+
+  void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
+    VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1));
+  }
+
+  void VisitArraySet(HArraySet* instruction) OVERRIDE {
+    VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1));
+    has_heap_stores_ = true;
+  }
+
+  void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
+    // Any references appearing in the ref_info_array_ so far cannot alias with new_instance.
+    GetOrCreateReferenceInfo(new_instance);
+  }
+
+  void VisitDeoptimize(HDeoptimize* instruction ATTRIBUTE_UNUSED) OVERRIDE {
+    may_deoptimize_ = true;
+  }
+
+  void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) OVERRIDE {
+    has_monitor_operations_ = true;
+  }
+
+  ArenaVector<ReferenceInfo*> ref_info_array_;   // All references used for heap accesses.
+  ArenaVector<HeapLocation*> heap_locations_;    // All heap locations.
+  ArenaBitVector aliasing_matrix_;    // aliasing info between each pair of locations.
+  bool has_heap_stores_;    // If there is no heap stores, LSE acts as GVN with better
+                            // alias analysis and won't be as effective.
+  bool has_volatile_;       // If there are volatile field accesses.
+  bool has_monitor_operations_;    // If there are monitor operations.
+  bool may_deoptimize_;
+
+  DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector);
+};
+
+// An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
+static HInstruction* const kUnknownHeapValue =
+    reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1));
+// Default heap value after an allocation.
+static HInstruction* const kDefaultHeapValue =
+    reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2));
+
+class LSEVisitor : public HGraphVisitor {
+ public:
+  LSEVisitor(HGraph* graph,
+             const HeapLocationCollector& heap_locations_collector,
+             const SideEffectsAnalysis& side_effects)
+      : HGraphVisitor(graph),
+        heap_location_collector_(heap_locations_collector),
+        side_effects_(side_effects),
+        heap_values_for_(graph->GetBlocks().size(),
+                         ArenaVector<HInstruction*>(heap_locations_collector.
+                                                        GetNumberOfHeapLocations(),
+                                                    kUnknownHeapValue,
+                                                    graph->GetArena()->Adapter(kArenaAllocLSE)),
+                         graph->GetArena()->Adapter(kArenaAllocLSE)),
+        removed_instructions_(graph->GetArena()->Adapter(kArenaAllocLSE)),
+        substitute_instructions_(graph->GetArena()->Adapter(kArenaAllocLSE)),
+        singleton_new_instances_(graph->GetArena()->Adapter(kArenaAllocLSE)) {
+  }
+
+  void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
+    int block_id = block->GetBlockId();
+    ArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id];
+    // TODO: try to reuse the heap_values array from one predecessor if possible.
+    if (block->IsLoopHeader()) {
+      // We do a single pass in reverse post order. For loops, use the side effects as a hint
+      // to see if the heap values should be killed.
+      if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) {
+        // Leave all values as kUnknownHeapValue.
+      } else {
+        // Inherit the values from pre-header.
+        HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
+        ArenaVector<HInstruction*>& pre_header_heap_values =
+            heap_values_for_[pre_header->GetBlockId()];
+        for (size_t i = 0; i < heap_values.size(); i++) {
+          heap_values[i] = pre_header_heap_values[i];
+        }
+      }
+    } else {
+      MergePredecessorValues(block);
+    }
+    HGraphVisitor::VisitBasicBlock(block);
+  }
+
+  // Remove recorded instructions that should be eliminated.
+  void RemoveInstructions() {
+    size_t size = removed_instructions_.size();
+    DCHECK_EQ(size, substitute_instructions_.size());
+    for (size_t i = 0; i < size; i++) {
+      HInstruction* instruction = removed_instructions_[i];
+      DCHECK(instruction != nullptr);
+      HInstruction* substitute = substitute_instructions_[i];
+      if (substitute != nullptr) {
+        // Keep tracing substitute till one that's not removed.
+        HInstruction* sub_sub = FindSubstitute(substitute);
+        while (sub_sub != substitute) {
+          substitute = sub_sub;
+          sub_sub = FindSubstitute(substitute);
+        }
+        instruction->ReplaceWith(substitute);
+      }
+      instruction->GetBlock()->RemoveInstruction(instruction);
+    }
+    // TODO: remove unnecessary allocations.
+    // Eliminate instructions in singleton_new_instances_ that:
+    // - don't have uses,
+    // - don't have finalizers,
+    // - are instantiable and accessible,
+    // - have no/separate clinit check.
+  }
+
+ private:
+  void MergePredecessorValues(HBasicBlock* block) {
+    const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors();
+    if (predecessors.size() == 0) {
+      return;
+    }
+    ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
+    for (size_t i = 0; i < heap_values.size(); i++) {
+      HInstruction* value = heap_values_for_[predecessors[0]->GetBlockId()][i];
+      if (value != kUnknownHeapValue) {
+        for (size_t j = 1; j < predecessors.size(); j++) {
+          if (heap_values_for_[predecessors[j]->GetBlockId()][i] != value) {
+            value = kUnknownHeapValue;
+            break;
+          }
+        }
+      }
+      heap_values[i] = value;
+    }
+  }
+
+  // `instruction` is being removed. Try to see if the null check on it
+  // can be removed. This can happen if the same value is set in two branches
+  // but not in dominators. Such as:
+  //   int[] a = foo();
+  //   if () {
+  //     a[0] = 2;
+  //   } else {
+  //     a[0] = 2;
+  //   }
+  //   // a[0] can now be replaced with constant 2, and the null check on it can be removed.
+  void TryRemovingNullCheck(HInstruction* instruction) {
+    HInstruction* prev = instruction->GetPrevious();
+    if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) {
+      // Previous instruction is a null check for this instruction. Remove the null check.
+      prev->ReplaceWith(prev->InputAt(0));
+      prev->GetBlock()->RemoveInstruction(prev);
+    }
+  }
+
+  HInstruction* GetDefaultValue(Primitive::Type type) {
+    switch (type) {
+      case Primitive::kPrimNot:
+        return GetGraph()->GetNullConstant();
+      case Primitive::kPrimBoolean:
+      case Primitive::kPrimByte:
+      case Primitive::kPrimChar:
+      case Primitive::kPrimShort:
+      case Primitive::kPrimInt:
+        return GetGraph()->GetIntConstant(0);
+      case Primitive::kPrimLong:
+        return GetGraph()->GetLongConstant(0);
+      case Primitive::kPrimFloat:
+        return GetGraph()->GetFloatConstant(0);
+      case Primitive::kPrimDouble:
+        return GetGraph()->GetDoubleConstant(0);
+      default:
+        UNREACHABLE();
+    }
+  }
+
+  void VisitGetLocation(HInstruction* instruction,
+                        HInstruction* ref,
+                        size_t offset,
+                        HInstruction* index,
+                        int16_t declaring_class_def_index) {
+    HInstruction* original_ref = HuntForOriginalReference(ref);
+    ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
+    size_t idx = heap_location_collector_.FindHeapLocationIndex(
+        ref_info, offset, index, declaring_class_def_index);
+    DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
+    ArenaVector<HInstruction*>& heap_values =
+        heap_values_for_[instruction->GetBlock()->GetBlockId()];
+    HInstruction* heap_value = heap_values[idx];
+    if (heap_value == kDefaultHeapValue) {
+      HInstruction* constant = GetDefaultValue(instruction->GetType());
+      removed_instructions_.push_back(instruction);
+      substitute_instructions_.push_back(constant);
+      heap_values[idx] = constant;
+      return;
+    }
+    if ((heap_value != kUnknownHeapValue) &&
+        // Keep the load due to possible I/F, J/D array aliasing.
+        // See b/22538329 for details.
+        (heap_value->GetType() == instruction->GetType())) {
+      removed_instructions_.push_back(instruction);
+      substitute_instructions_.push_back(heap_value);
+      TryRemovingNullCheck(instruction);
+      return;
+    }
+
+    if (heap_value == kUnknownHeapValue) {
+      // Put the load as the value into the HeapLocation.
+      // This acts like GVN but with better aliasing analysis.
+      heap_values[idx] = instruction;
+    }
+  }
+
+  bool Equal(HInstruction* heap_value, HInstruction* value) {
+    if (heap_value == value) {
+      return true;
+    }
+    if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) {
+      return true;
+    }
+    return false;
+  }
+
+  void VisitSetLocation(HInstruction* instruction,
+                        HInstruction* ref,
+                        size_t offset,
+                        HInstruction* index,
+                        int16_t declaring_class_def_index,
+                        HInstruction* value) {
+    HInstruction* original_ref = HuntForOriginalReference(ref);
+    ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
+    size_t idx = heap_location_collector_.FindHeapLocationIndex(
+        ref_info, offset, index, declaring_class_def_index);
+    DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
+    ArenaVector<HInstruction*>& heap_values =
+        heap_values_for_[instruction->GetBlock()->GetBlockId()];
+    HInstruction* heap_value = heap_values[idx];
+    bool redundant_store = false;
+    if (Equal(heap_value, value)) {
+      // Store into the heap location with the same value.
+      redundant_store = true;
+    } else if (index != nullptr) {
+      // For array element, don't eliminate stores since it can be easily aliased
+      // with non-constant index.
+    } else if (!heap_location_collector_.MayDeoptimize() &&
+               ref_info->IsSingletonAndNotReturned() &&
+               !heap_location_collector_.GetHeapLocation(idx)->MayBecomeUnknown()) {
+      // Store into a field of a singleton that's not returned. And that value cannot be
+      // killed due to merge. It's redundant since future loads will get the value
+      // set by this instruction.
+      Primitive::Type type = Primitive::kPrimVoid;
+      if (instruction->IsInstanceFieldSet()) {
+        type = instruction->AsInstanceFieldSet()->GetFieldInfo().GetFieldType();
+      } else if (instruction->IsStaticFieldSet()) {
+        type = instruction->AsStaticFieldSet()->GetFieldInfo().GetFieldType();
+      } else {
+        DCHECK(false) << "Must be an instance/static field set instruction.";
+      }
+      if (value->GetType() != type) {
+        // I/F, J/D aliasing should not happen for fields.
+        DCHECK(Primitive::IsIntegralType(value->GetType()));
+        DCHECK(!Primitive::Is64BitType(value->GetType()));
+        DCHECK(Primitive::IsIntegralType(type));
+        DCHECK(!Primitive::Is64BitType(type));
+        // Keep the store since the corresponding load isn't eliminated due to different types.
+        // TODO: handle the different int types so that we can eliminate this store.
+        redundant_store = false;
+      } else {
+        redundant_store = true;
+      }
+    }
+    if (redundant_store) {
+      removed_instructions_.push_back(instruction);
+      substitute_instructions_.push_back(nullptr);
+      TryRemovingNullCheck(instruction);
+    }
+    heap_values[idx] = value;
+    // This store may kill values in other heap locations due to aliasing.
+    for (size_t i = 0; i < heap_values.size(); i++) {
+      if (heap_values[i] == value) {
+        // Same value should be kept even if aliasing happens.
+        continue;
+      }
+      if (heap_values[i] == kUnknownHeapValue) {
+        // Value is already unknown, no need for aliasing check.
+        continue;
+      }
+      if (heap_location_collector_.MayAlias(i, idx)) {
+        // Kill heap locations that may alias.
+        heap_values[i] = kUnknownHeapValue;
+      }
+    }
+  }
+
+  void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
+    HInstruction* obj = instruction->InputAt(0);
+    size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
+    int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
+    VisitGetLocation(instruction, obj, offset, nullptr, declaring_class_def_index);
+  }
+
+  void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
+    HInstruction* obj = instruction->InputAt(0);
+    size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
+    int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
+    HInstruction* value = instruction->InputAt(1);
+    VisitSetLocation(instruction, obj, offset, nullptr, declaring_class_def_index, value);
+  }
+
+  void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
+    HInstruction* cls = instruction->InputAt(0);
+    size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
+    int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
+    VisitGetLocation(instruction, cls, offset, nullptr, declaring_class_def_index);
+  }
+
+  void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
+    HInstruction* cls = instruction->InputAt(0);
+    size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
+    int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
+    HInstruction* value = instruction->InputAt(1);
+    VisitSetLocation(instruction, cls, offset, nullptr, declaring_class_def_index, value);
+  }
+
+  void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
+    HInstruction* array = instruction->InputAt(0);
+    HInstruction* index = instruction->InputAt(1);
+    VisitGetLocation(instruction,
+                     array,
+                     HeapLocation::kInvalidFieldOffset,
+                     index,
+                     HeapLocation::kDeclaringClassDefIndexForArrays);
+  }
+
+  void VisitArraySet(HArraySet* instruction) OVERRIDE {
+    HInstruction* array = instruction->InputAt(0);
+    HInstruction* index = instruction->InputAt(1);
+    HInstruction* value = instruction->InputAt(2);
+    VisitSetLocation(instruction,
+                     array,
+                     HeapLocation::kInvalidFieldOffset,
+                     index,
+                     HeapLocation::kDeclaringClassDefIndexForArrays,
+                     value);
+  }
+
+  void HandleInvoke(HInstruction* invoke) {
+    ArenaVector<HInstruction*>& heap_values =
+        heap_values_for_[invoke->GetBlock()->GetBlockId()];
+    for (size_t i = 0; i < heap_values.size(); i++) {
+      ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
+      if (ref_info->IsSingleton()) {
+        // Singleton references cannot be seen by the callee.
+      } else {
+        heap_values[i] = kUnknownHeapValue;
+      }
+    }
+  }
+
+  void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE {
+    HandleInvoke(invoke);
+  }
+
+  void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE {
+    HandleInvoke(invoke);
+  }
+
+  void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE {
+    HandleInvoke(invoke);
+  }
+
+  void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE {
+    HandleInvoke(invoke);
+  }
+
+  void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE {
+    HandleInvoke(clinit);
+  }
+
+  void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE {
+    // Conservatively treat it as an invocation.
+    HandleInvoke(instruction);
+  }
+
+  void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE {
+    // Conservatively treat it as an invocation.
+    HandleInvoke(instruction);
+  }
+
+  void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE {
+    // Conservatively treat it as an invocation.
+    HandleInvoke(instruction);
+  }
+
+  void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE {
+    // Conservatively treat it as an invocation.
+    HandleInvoke(instruction);
+  }
+
+  void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
+    ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
+    if (ref_info == nullptr) {
+      // new_instance isn't used for field accesses. No need to process it.
+      return;
+    }
+    if (!heap_location_collector_.MayDeoptimize() &&
+        ref_info->IsSingletonAndNotReturned()) {
+      // The allocation might be eliminated.
+      singleton_new_instances_.push_back(new_instance);
+    }
+    ArenaVector<HInstruction*>& heap_values =
+        heap_values_for_[new_instance->GetBlock()->GetBlockId()];
+    for (size_t i = 0; i < heap_values.size(); i++) {
+      HInstruction* ref =
+          heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference();
+      size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
+      if (ref == new_instance && offset >= mirror::kObjectHeaderSize) {
+        // Instance fields except the header fields are set to default heap values.
+        heap_values[i] = kDefaultHeapValue;
+      }
+    }
+  }
+
+  // Find an instruction's substitute if it should be removed.
+  // Return the same instruction if it should not be removed.
+  HInstruction* FindSubstitute(HInstruction* instruction) {
+    size_t size = removed_instructions_.size();
+    for (size_t i = 0; i < size; i++) {
+      if (removed_instructions_[i] == instruction) {
+        return substitute_instructions_[i];
+      }
+    }
+    return instruction;
+  }
+
+  const HeapLocationCollector& heap_location_collector_;
+  const SideEffectsAnalysis& side_effects_;
+
+  // One array of heap values for each block.
+  ArenaVector<ArenaVector<HInstruction*>> heap_values_for_;
+
+  // We record the instructions that should be eliminated but may be
+  // used by heap locations. They'll be removed in the end.
+  ArenaVector<HInstruction*> removed_instructions_;
+  ArenaVector<HInstruction*> substitute_instructions_;
+  ArenaVector<HInstruction*> singleton_new_instances_;
+
+  DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
+};
+
+void LoadStoreElimination::Run() {
+  if (graph_->IsDebuggable()) {
+    // Debugger may set heap values or trigger deoptimization of callers.
+    // Skip this optimization.
+    return;
+  }
+  HeapLocationCollector heap_location_collector(graph_);
+  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
+    heap_location_collector.VisitBasicBlock(it.Current());
+  }
+  if (heap_location_collector.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) {
+    // Bail out if there are too many heap locations to deal with.
+    return;
+  }
+  if (!heap_location_collector.HasHeapStores()) {
+    // Without heap stores, this pass would act mostly as GVN on heap accesses.
+    return;
+  }
+  if (heap_location_collector.HasVolatile() || heap_location_collector.HasMonitorOps()) {
+    // Don't do load/store elimination if the method has volatile field accesses or
+    // monitor operations, for now.
+    // TODO: do it right.
+    return;
+  }
+  heap_location_collector.BuildAliasingMatrix();
+  LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_);
+  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
+    lse_visitor.VisitBasicBlock(it.Current());
+  }
+  lse_visitor.RemoveInstructions();
+}
+
+}  // namespace art