blob: 0d933eaf829865bef84e2f362a8702262a6dda50 [file] [log] [blame]
Anton Kirilov5ec62182016-10-13 20:16:02 +01001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "intrinsics_arm_vixl.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
20#include "code_generator_arm_vixl.h"
21#include "common_arm.h"
22#include "lock_word.h"
23#include "mirror/array-inl.h"
24
25#include "aarch32/constants-aarch32.h"
26
27namespace art {
28namespace arm {
29
30#define __ assembler->GetVIXLAssembler()->
31
32using helpers::DRegisterFrom;
33using helpers::HighRegisterFrom;
34using helpers::InputDRegisterAt;
35using helpers::InputRegisterAt;
36using helpers::InputSRegisterAt;
37using helpers::InputVRegisterAt;
38using helpers::Int32ConstantFrom;
39using helpers::LocationFrom;
40using helpers::LowRegisterFrom;
41using helpers::LowSRegisterFrom;
xueliang.zhong53463ba2017-02-16 15:18:03 +000042using helpers::HighSRegisterFrom;
Anton Kirilov5ec62182016-10-13 20:16:02 +010043using helpers::OutputDRegister;
xueliang.zhongc032e742016-03-28 16:44:32 +010044using helpers::OutputSRegister;
Anton Kirilov5ec62182016-10-13 20:16:02 +010045using helpers::OutputRegister;
46using helpers::OutputVRegister;
47using helpers::RegisterFrom;
48using helpers::SRegisterFrom;
xueliang.zhongc032e742016-03-28 16:44:32 +010049using helpers::DRegisterFromS;
Anton Kirilov5ec62182016-10-13 20:16:02 +010050
51using namespace vixl::aarch32; // NOLINT(build/namespaces)
52
Artem Serov0fb37192016-12-06 18:13:40 +000053using vixl::ExactAssemblyScope;
54using vixl::CodeBufferCheckScope;
55
Anton Kirilov5ec62182016-10-13 20:16:02 +010056ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() {
57 return codegen_->GetAssembler();
58}
59
60ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() {
61 return codegen_->GetGraph()->GetArena();
62}
63
64// Default slow-path for fallback (calling the managed code to handle the intrinsic) in an
65// intrinsified call. This will copy the arguments into the positions for a regular call.
66//
67// Note: The actual parameters are required to be in the locations given by the invoke's location
68// summary. If an intrinsic modifies those locations before a slowpath call, they must be
69// restored!
70//
71// Note: If an invoke wasn't sharpened, we will put down an invoke-virtual here. That's potentially
72// sub-optimal (compared to a direct pointer call), but this is a slow-path.
73
74class IntrinsicSlowPathARMVIXL : public SlowPathCodeARMVIXL {
75 public:
76 explicit IntrinsicSlowPathARMVIXL(HInvoke* invoke)
77 : SlowPathCodeARMVIXL(invoke), invoke_(invoke) {}
78
79 Location MoveArguments(CodeGenerator* codegen) {
Artem Serovd4cc5b22016-11-04 11:19:09 +000080 InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
Anton Kirilov5ec62182016-10-13 20:16:02 +010081 IntrinsicVisitor::MoveArguments(invoke_, codegen, &calling_convention_visitor);
82 return calling_convention_visitor.GetMethodLocation();
83 }
84
85 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
86 ArmVIXLAssembler* assembler = down_cast<ArmVIXLAssembler*>(codegen->GetAssembler());
87 __ Bind(GetEntryLabel());
88
89 SaveLiveRegisters(codegen, invoke_->GetLocations());
90
91 Location method_loc = MoveArguments(codegen);
92
93 if (invoke_->IsInvokeStaticOrDirect()) {
94 codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), method_loc);
95 } else {
96 codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), method_loc);
97 }
98 codegen->RecordPcInfo(invoke_, invoke_->GetDexPc(), this);
99
100 // Copy the result back to the expected output.
101 Location out = invoke_->GetLocations()->Out();
102 if (out.IsValid()) {
103 DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
104 DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
105 codegen->MoveFromReturnRegister(out, invoke_->GetType());
106 }
107
108 RestoreLiveRegisters(codegen, invoke_->GetLocations());
109 __ B(GetExitLabel());
110 }
111
112 const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPath"; }
113
114 private:
115 // The instruction where this slow path is happening.
116 HInvoke* const invoke_;
117
118 DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARMVIXL);
119};
120
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000121// Compute base address for the System.arraycopy intrinsic in `base`.
122static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler,
123 Primitive::Type type,
124 const vixl32::Register& array,
125 const Location& pos,
126 const vixl32::Register& base) {
127 // This routine is only used by the SystemArrayCopy intrinsic at the
128 // moment. We can allow Primitive::kPrimNot as `type` to implement
129 // the SystemArrayCopyChar intrinsic.
130 DCHECK_EQ(type, Primitive::kPrimNot);
131 const int32_t element_size = Primitive::ComponentSize(type);
132 const uint32_t element_size_shift = Primitive::ComponentSizeShift(type);
133 const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
134
135 if (pos.IsConstant()) {
136 int32_t constant = Int32ConstantFrom(pos);
137 __ Add(base, array, element_size * constant + data_offset);
138 } else {
139 __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift));
140 __ Add(base, base, data_offset);
141 }
142}
143
144// Compute end address for the System.arraycopy intrinsic in `end`.
145static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler,
146 Primitive::Type type,
147 const Location& copy_length,
148 const vixl32::Register& base,
149 const vixl32::Register& end) {
150 // This routine is only used by the SystemArrayCopy intrinsic at the
151 // moment. We can allow Primitive::kPrimNot as `type` to implement
152 // the SystemArrayCopyChar intrinsic.
153 DCHECK_EQ(type, Primitive::kPrimNot);
154 const int32_t element_size = Primitive::ComponentSize(type);
155 const uint32_t element_size_shift = Primitive::ComponentSizeShift(type);
156
157 if (copy_length.IsConstant()) {
158 int32_t constant = Int32ConstantFrom(copy_length);
159 __ Add(end, base, element_size * constant);
160 } else {
161 __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift));
162 }
163}
164
Anton Kirilov5ec62182016-10-13 20:16:02 +0100165// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
166class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL {
167 public:
168 explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction)
169 : SlowPathCodeARMVIXL(instruction) {
170 DCHECK(kEmitCompilerReadBarrier);
171 DCHECK(kUseBakerReadBarrier);
172 }
173
174 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
175 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
176 ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
177 LocationSummary* locations = instruction_->GetLocations();
178 DCHECK(locations->CanCall());
179 DCHECK(instruction_->IsInvokeStaticOrDirect())
180 << "Unexpected instruction in read barrier arraycopy slow path: "
181 << instruction_->DebugName();
182 DCHECK(instruction_->GetLocations()->Intrinsified());
183 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
184
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000185 Primitive::Type type = Primitive::kPrimNot;
186 const int32_t element_size = Primitive::ComponentSize(type);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100187
188 vixl32::Register dest = InputRegisterAt(instruction_, 2);
189 Location dest_pos = locations->InAt(3);
190 vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0));
191 vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1));
192 vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2));
193 vixl32::Register tmp = RegisterFrom(locations->GetTemp(3));
194
195 __ Bind(GetEntryLabel());
196 // Compute the base destination address in `dst_curr_addr`.
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000197 GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100198
199 vixl32::Label loop;
200 __ Bind(&loop);
201 __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
202 assembler->MaybeUnpoisonHeapReference(tmp);
203 // TODO: Inline the mark bit check before calling the runtime?
204 // tmp = ReadBarrier::Mark(tmp);
205 // No need to save live registers; it's taken care of by the
206 // entrypoint. Also, there is no need to update the stack mask,
207 // as this runtime call will not trigger a garbage collection.
208 // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
209 // explanations.)
210 DCHECK(!tmp.IsSP());
211 DCHECK(!tmp.IsLR());
212 DCHECK(!tmp.IsPC());
213 // IP is used internally by the ReadBarrierMarkRegX entry point
214 // as a temporary (and not preserved). It thus cannot be used by
215 // any live register in this slow path.
216 DCHECK(!src_curr_addr.Is(ip));
217 DCHECK(!dst_curr_addr.Is(ip));
218 DCHECK(!src_stop_addr.Is(ip));
219 DCHECK(!tmp.Is(ip));
220 DCHECK(tmp.IsRegister()) << tmp;
Roland Levillain9cc0ea82017-03-16 11:25:59 +0000221 // TODO: Load the entrypoint once before the loop, instead of
222 // loading it at every iteration.
Anton Kirilov5ec62182016-10-13 20:16:02 +0100223 int32_t entry_point_offset =
224 CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode());
225 // This runtime call does not require a stack map.
226 arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
227 assembler->MaybePoisonHeapReference(tmp);
228 __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
229 __ Cmp(src_curr_addr, src_stop_addr);
Artem Serov517d9f62016-12-12 15:51:15 +0000230 __ B(ne, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100231 __ B(GetExitLabel());
232 }
233
234 const char* GetDescription() const OVERRIDE {
235 return "ReadBarrierSystemArrayCopySlowPathARMVIXL";
236 }
237
238 private:
239 DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL);
240};
241
242IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen)
243 : arena_(codegen->GetGraph()->GetArena()),
Nicolas Geoffray331605a2017-03-01 11:01:41 +0000244 codegen_(codegen),
Anton Kirilov5ec62182016-10-13 20:16:02 +0100245 assembler_(codegen->GetAssembler()),
246 features_(codegen->GetInstructionSetFeatures()) {}
247
248bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) {
249 Dispatch(invoke);
250 LocationSummary* res = invoke->GetLocations();
251 if (res == nullptr) {
252 return false;
253 }
254 return res->Intrinsified();
255}
256
257static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
258 LocationSummary* locations = new (arena) LocationSummary(invoke,
259 LocationSummary::kNoCall,
260 kIntrinsified);
261 locations->SetInAt(0, Location::RequiresFpuRegister());
262 locations->SetOut(Location::RequiresRegister());
263}
264
265static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
266 LocationSummary* locations = new (arena) LocationSummary(invoke,
267 LocationSummary::kNoCall,
268 kIntrinsified);
269 locations->SetInAt(0, Location::RequiresRegister());
270 locations->SetOut(Location::RequiresFpuRegister());
271}
272
273static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
274 Location input = locations->InAt(0);
275 Location output = locations->Out();
276 if (is64bit) {
277 __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input));
278 } else {
279 __ Vmov(RegisterFrom(output), SRegisterFrom(input));
280 }
281}
282
283static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
284 Location input = locations->InAt(0);
285 Location output = locations->Out();
286 if (is64bit) {
287 __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input));
288 } else {
289 __ Vmov(SRegisterFrom(output), RegisterFrom(input));
290 }
291}
292
293void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
294 CreateFPToIntLocations(arena_, invoke);
295}
296void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
297 CreateIntToFPLocations(arena_, invoke);
298}
299
300void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
301 MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
302}
303void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
304 MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
305}
306
307void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
308 CreateFPToIntLocations(arena_, invoke);
309}
310void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
311 CreateIntToFPLocations(arena_, invoke);
312}
313
314void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
315 MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
316}
317void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
318 MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
319}
320
321static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
322 LocationSummary* locations = new (arena) LocationSummary(invoke,
323 LocationSummary::kNoCall,
324 kIntrinsified);
325 locations->SetInAt(0, Location::RequiresRegister());
326 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
327}
328
329static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
330 LocationSummary* locations = new (arena) LocationSummary(invoke,
331 LocationSummary::kNoCall,
332 kIntrinsified);
333 locations->SetInAt(0, Location::RequiresFpuRegister());
334 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
335}
336
Anton Kirilov6f644202017-02-27 18:29:45 +0000337static void GenNumberOfLeadingZeros(HInvoke* invoke,
Anton Kirilov5ec62182016-10-13 20:16:02 +0100338 Primitive::Type type,
Anton Kirilov6f644202017-02-27 18:29:45 +0000339 CodeGeneratorARMVIXL* codegen) {
340 ArmVIXLAssembler* assembler = codegen->GetAssembler();
341 LocationSummary* locations = invoke->GetLocations();
Anton Kirilov5ec62182016-10-13 20:16:02 +0100342 Location in = locations->InAt(0);
343 vixl32::Register out = RegisterFrom(locations->Out());
344
345 DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
346
347 if (type == Primitive::kPrimLong) {
348 vixl32::Register in_reg_lo = LowRegisterFrom(in);
349 vixl32::Register in_reg_hi = HighRegisterFrom(in);
350 vixl32::Label end;
Anton Kirilov6f644202017-02-27 18:29:45 +0000351 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100352 __ Clz(out, in_reg_hi);
Anton Kirilov6f644202017-02-27 18:29:45 +0000353 __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100354 __ Clz(out, in_reg_lo);
355 __ Add(out, out, 32);
Anton Kirilov6f644202017-02-27 18:29:45 +0000356 if (end.IsReferenced()) {
357 __ Bind(&end);
358 }
Anton Kirilov5ec62182016-10-13 20:16:02 +0100359 } else {
360 __ Clz(out, RegisterFrom(in));
361 }
362}
363
364void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
365 CreateIntToIntLocations(arena_, invoke);
366}
367
368void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000369 GenNumberOfLeadingZeros(invoke, Primitive::kPrimInt, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100370}
371
372void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
373 LocationSummary* locations = new (arena_) LocationSummary(invoke,
374 LocationSummary::kNoCall,
375 kIntrinsified);
376 locations->SetInAt(0, Location::RequiresRegister());
377 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
378}
379
380void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000381 GenNumberOfLeadingZeros(invoke, Primitive::kPrimLong, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100382}
383
Anton Kirilov6f644202017-02-27 18:29:45 +0000384static void GenNumberOfTrailingZeros(HInvoke* invoke,
Anton Kirilov5ec62182016-10-13 20:16:02 +0100385 Primitive::Type type,
Anton Kirilov6f644202017-02-27 18:29:45 +0000386 CodeGeneratorARMVIXL* codegen) {
Anton Kirilov5ec62182016-10-13 20:16:02 +0100387 DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
388
Anton Kirilov6f644202017-02-27 18:29:45 +0000389 ArmVIXLAssembler* assembler = codegen->GetAssembler();
390 LocationSummary* locations = invoke->GetLocations();
Anton Kirilov5ec62182016-10-13 20:16:02 +0100391 vixl32::Register out = RegisterFrom(locations->Out());
392
393 if (type == Primitive::kPrimLong) {
394 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
395 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
396 vixl32::Label end;
Anton Kirilov6f644202017-02-27 18:29:45 +0000397 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100398 __ Rbit(out, in_reg_lo);
399 __ Clz(out, out);
Anton Kirilov6f644202017-02-27 18:29:45 +0000400 __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100401 __ Rbit(out, in_reg_hi);
402 __ Clz(out, out);
403 __ Add(out, out, 32);
Anton Kirilov6f644202017-02-27 18:29:45 +0000404 if (end.IsReferenced()) {
405 __ Bind(&end);
406 }
Anton Kirilov5ec62182016-10-13 20:16:02 +0100407 } else {
408 vixl32::Register in = RegisterFrom(locations->InAt(0));
409 __ Rbit(out, in);
410 __ Clz(out, out);
411 }
412}
413
414void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
415 LocationSummary* locations = new (arena_) LocationSummary(invoke,
416 LocationSummary::kNoCall,
417 kIntrinsified);
418 locations->SetInAt(0, Location::RequiresRegister());
419 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
420}
421
422void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000423 GenNumberOfTrailingZeros(invoke, Primitive::kPrimInt, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100424}
425
426void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
427 LocationSummary* locations = new (arena_) LocationSummary(invoke,
428 LocationSummary::kNoCall,
429 kIntrinsified);
430 locations->SetInAt(0, Location::RequiresRegister());
431 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
432}
433
434void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000435 GenNumberOfTrailingZeros(invoke, Primitive::kPrimLong, codegen_);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100436}
437
438static void MathAbsFP(HInvoke* invoke, ArmVIXLAssembler* assembler) {
439 __ Vabs(OutputVRegister(invoke), InputVRegisterAt(invoke, 0));
440}
441
442void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
443 CreateFPToFPLocations(arena_, invoke);
444}
445
446void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
447 MathAbsFP(invoke, GetAssembler());
448}
449
450void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
451 CreateFPToFPLocations(arena_, invoke);
452}
453
454void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
455 MathAbsFP(invoke, GetAssembler());
456}
457
458static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
459 LocationSummary* locations = new (arena) LocationSummary(invoke,
460 LocationSummary::kNoCall,
461 kIntrinsified);
462 locations->SetInAt(0, Location::RequiresRegister());
463 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
464
465 locations->AddTemp(Location::RequiresRegister());
466}
467
468static void GenAbsInteger(LocationSummary* locations,
469 bool is64bit,
470 ArmVIXLAssembler* assembler) {
471 Location in = locations->InAt(0);
472 Location output = locations->Out();
473
474 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
475
476 if (is64bit) {
477 vixl32::Register in_reg_lo = LowRegisterFrom(in);
478 vixl32::Register in_reg_hi = HighRegisterFrom(in);
479 vixl32::Register out_reg_lo = LowRegisterFrom(output);
480 vixl32::Register out_reg_hi = HighRegisterFrom(output);
481
482 DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
483
484 __ Asr(mask, in_reg_hi, 31);
485 __ Adds(out_reg_lo, in_reg_lo, mask);
486 __ Adc(out_reg_hi, in_reg_hi, mask);
487 __ Eor(out_reg_lo, mask, out_reg_lo);
488 __ Eor(out_reg_hi, mask, out_reg_hi);
489 } else {
490 vixl32::Register in_reg = RegisterFrom(in);
491 vixl32::Register out_reg = RegisterFrom(output);
492
493 __ Asr(mask, in_reg, 31);
494 __ Add(out_reg, in_reg, mask);
495 __ Eor(out_reg, mask, out_reg);
496 }
497}
498
499void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
500 CreateIntToIntPlusTemp(arena_, invoke);
501}
502
503void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
504 GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
505}
506
507
508void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
509 CreateIntToIntPlusTemp(arena_, invoke);
510}
511
512void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
513 GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
514}
515
Anton Kirilov6f644202017-02-27 18:29:45 +0000516static void GenMinMaxFloat(HInvoke* invoke, bool is_min, CodeGeneratorARMVIXL* codegen) {
517 ArmVIXLAssembler* assembler = codegen->GetAssembler();
xueliang.zhongc032e742016-03-28 16:44:32 +0100518 Location op1_loc = invoke->GetLocations()->InAt(0);
519 Location op2_loc = invoke->GetLocations()->InAt(1);
520 Location out_loc = invoke->GetLocations()->Out();
521
522 // Optimization: don't generate any code if inputs are the same.
523 if (op1_loc.Equals(op2_loc)) {
524 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
525 return;
526 }
527
528 vixl32::SRegister op1 = SRegisterFrom(op1_loc);
529 vixl32::SRegister op2 = SRegisterFrom(op2_loc);
530 vixl32::SRegister out = OutputSRegister(invoke);
531 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
532 const vixl32::Register temp1 = temps.Acquire();
533 vixl32::Register temp2 = RegisterFrom(invoke->GetLocations()->GetTemp(0));
534 vixl32::Label nan, done;
Anton Kirilov6f644202017-02-27 18:29:45 +0000535 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &done);
xueliang.zhongc032e742016-03-28 16:44:32 +0100536
537 DCHECK(op1.Is(out));
538
539 __ Vcmp(op1, op2);
540 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
541 __ B(vs, &nan, /* far_target */ false); // if un-ordered, go to NaN handling.
542
543 // op1 <> op2
544 vixl32::ConditionType cond = is_min ? gt : lt;
545 {
546 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
547 2 * kMaxInstructionSizeInBytes,
548 CodeBufferCheckScope::kMaximumSize);
549 __ it(cond);
550 __ vmov(cond, F32, out, op2);
551 }
Anton Kirilov6f644202017-02-27 18:29:45 +0000552 // for <>(not equal), we've done min/max calculation.
553 __ B(ne, final_label, /* far_target */ false);
xueliang.zhongc032e742016-03-28 16:44:32 +0100554
555 // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
556 __ Vmov(temp1, op1);
557 __ Vmov(temp2, op2);
558 if (is_min) {
559 __ Orr(temp1, temp1, temp2);
560 } else {
561 __ And(temp1, temp1, temp2);
562 }
563 __ Vmov(out, temp1);
Anton Kirilov6f644202017-02-27 18:29:45 +0000564 __ B(final_label);
xueliang.zhongc032e742016-03-28 16:44:32 +0100565
566 // handle NaN input.
567 __ Bind(&nan);
568 __ Movt(temp1, High16Bits(kNanFloat)); // 0x7FC0xxxx is a NaN.
569 __ Vmov(out, temp1);
570
Anton Kirilov6f644202017-02-27 18:29:45 +0000571 if (done.IsReferenced()) {
572 __ Bind(&done);
573 }
xueliang.zhongc032e742016-03-28 16:44:32 +0100574}
575
576static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
577 LocationSummary* locations = new (arena) LocationSummary(invoke,
578 LocationSummary::kNoCall,
579 kIntrinsified);
580 locations->SetInAt(0, Location::RequiresFpuRegister());
581 locations->SetInAt(1, Location::RequiresFpuRegister());
582 locations->SetOut(Location::SameAsFirstInput());
583}
584
585void IntrinsicLocationsBuilderARMVIXL::VisitMathMinFloatFloat(HInvoke* invoke) {
586 CreateFPFPToFPLocations(arena_, invoke);
587 invoke->GetLocations()->AddTemp(Location::RequiresRegister());
588}
589
590void IntrinsicCodeGeneratorARMVIXL::VisitMathMinFloatFloat(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000591 GenMinMaxFloat(invoke, /* is_min */ true, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100592}
593
594void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxFloatFloat(HInvoke* invoke) {
595 CreateFPFPToFPLocations(arena_, invoke);
596 invoke->GetLocations()->AddTemp(Location::RequiresRegister());
597}
598
599void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxFloatFloat(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000600 GenMinMaxFloat(invoke, /* is_min */ false, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100601}
602
Anton Kirilov6f644202017-02-27 18:29:45 +0000603static void GenMinMaxDouble(HInvoke* invoke, bool is_min, CodeGeneratorARMVIXL* codegen) {
604 ArmVIXLAssembler* assembler = codegen->GetAssembler();
xueliang.zhongc032e742016-03-28 16:44:32 +0100605 Location op1_loc = invoke->GetLocations()->InAt(0);
606 Location op2_loc = invoke->GetLocations()->InAt(1);
607 Location out_loc = invoke->GetLocations()->Out();
608
609 // Optimization: don't generate any code if inputs are the same.
610 if (op1_loc.Equals(op2_loc)) {
611 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in.
612 return;
613 }
614
615 vixl32::DRegister op1 = DRegisterFrom(op1_loc);
616 vixl32::DRegister op2 = DRegisterFrom(op2_loc);
617 vixl32::DRegister out = OutputDRegister(invoke);
618 vixl32::Label handle_nan_eq, done;
Anton Kirilov6f644202017-02-27 18:29:45 +0000619 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &done);
xueliang.zhongc032e742016-03-28 16:44:32 +0100620
621 DCHECK(op1.Is(out));
622
623 __ Vcmp(op1, op2);
624 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
625 __ B(vs, &handle_nan_eq, /* far_target */ false); // if un-ordered, go to NaN handling.
626
627 // op1 <> op2
628 vixl32::ConditionType cond = is_min ? gt : lt;
629 {
630 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
631 2 * kMaxInstructionSizeInBytes,
632 CodeBufferCheckScope::kMaximumSize);
633 __ it(cond);
634 __ vmov(cond, F64, out, op2);
635 }
Anton Kirilov6f644202017-02-27 18:29:45 +0000636 // for <>(not equal), we've done min/max calculation.
637 __ B(ne, final_label, /* far_target */ false);
xueliang.zhongc032e742016-03-28 16:44:32 +0100638
639 // handle op1 == op2, max(+0.0,-0.0).
640 if (!is_min) {
641 __ Vand(F64, out, op1, op2);
Anton Kirilov6f644202017-02-27 18:29:45 +0000642 __ B(final_label);
xueliang.zhongc032e742016-03-28 16:44:32 +0100643 }
644
645 // handle op1 == op2, min(+0.0,-0.0), NaN input.
646 __ Bind(&handle_nan_eq);
647 __ Vorr(F64, out, op1, op2); // assemble op1/-0.0/NaN.
648
Anton Kirilov6f644202017-02-27 18:29:45 +0000649 if (done.IsReferenced()) {
650 __ Bind(&done);
651 }
xueliang.zhongc032e742016-03-28 16:44:32 +0100652}
653
654void IntrinsicLocationsBuilderARMVIXL::VisitMathMinDoubleDouble(HInvoke* invoke) {
655 CreateFPFPToFPLocations(arena_, invoke);
656}
657
658void IntrinsicCodeGeneratorARMVIXL::VisitMathMinDoubleDouble(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000659 GenMinMaxDouble(invoke, /* is_min */ true , codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100660}
661
662void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxDoubleDouble(HInvoke* invoke) {
663 CreateFPFPToFPLocations(arena_, invoke);
664}
665
666void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxDoubleDouble(HInvoke* invoke) {
Anton Kirilov6f644202017-02-27 18:29:45 +0000667 GenMinMaxDouble(invoke, /* is_min */ false, codegen_);
xueliang.zhongc032e742016-03-28 16:44:32 +0100668}
669
670static void GenMinMaxLong(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
671 Location op1_loc = invoke->GetLocations()->InAt(0);
672 Location op2_loc = invoke->GetLocations()->InAt(1);
673 Location out_loc = invoke->GetLocations()->Out();
674
675 // Optimization: don't generate any code if inputs are the same.
676 if (op1_loc.Equals(op2_loc)) {
677 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
678 return;
679 }
680
681 vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
682 vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
683 vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
684 vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
685 vixl32::Register out_lo = LowRegisterFrom(out_loc);
686 vixl32::Register out_hi = HighRegisterFrom(out_loc);
687 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
688 const vixl32::Register temp = temps.Acquire();
689
690 DCHECK(op1_lo.Is(out_lo));
691 DCHECK(op1_hi.Is(out_hi));
692
693 // Compare op1 >= op2, or op1 < op2.
694 __ Cmp(out_lo, op2_lo);
695 __ Sbcs(temp, out_hi, op2_hi);
696
697 // Now GE/LT condition code is correct for the long comparison.
698 {
699 vixl32::ConditionType cond = is_min ? ge : lt;
700 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
701 3 * kMaxInstructionSizeInBytes,
702 CodeBufferCheckScope::kMaximumSize);
703 __ itt(cond);
704 __ mov(cond, out_lo, op2_lo);
705 __ mov(cond, out_hi, op2_hi);
706 }
707}
708
709static void CreateLongLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) {
710 LocationSummary* locations = new (arena) LocationSummary(invoke,
711 LocationSummary::kNoCall,
712 kIntrinsified);
713 locations->SetInAt(0, Location::RequiresRegister());
714 locations->SetInAt(1, Location::RequiresRegister());
715 locations->SetOut(Location::SameAsFirstInput());
716}
717
718void IntrinsicLocationsBuilderARMVIXL::VisitMathMinLongLong(HInvoke* invoke) {
719 CreateLongLongToLongLocations(arena_, invoke);
720}
721
722void IntrinsicCodeGeneratorARMVIXL::VisitMathMinLongLong(HInvoke* invoke) {
723 GenMinMaxLong(invoke, /* is_min */ true, GetAssembler());
724}
725
726void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxLongLong(HInvoke* invoke) {
727 CreateLongLongToLongLocations(arena_, invoke);
728}
729
730void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxLongLong(HInvoke* invoke) {
731 GenMinMaxLong(invoke, /* is_min */ false, GetAssembler());
732}
733
Anton Kirilov5ec62182016-10-13 20:16:02 +0100734static void GenMinMax(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
735 vixl32::Register op1 = InputRegisterAt(invoke, 0);
736 vixl32::Register op2 = InputRegisterAt(invoke, 1);
737 vixl32::Register out = OutputRegister(invoke);
738
739 __ Cmp(op1, op2);
740
741 {
Artem Serov0fb37192016-12-06 18:13:40 +0000742 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
743 3 * kMaxInstructionSizeInBytes,
744 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +0100745
746 __ ite(is_min ? lt : gt);
747 __ mov(is_min ? lt : gt, out, op1);
748 __ mov(is_min ? ge : le, out, op2);
749 }
750}
751
752static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
753 LocationSummary* locations = new (arena) LocationSummary(invoke,
754 LocationSummary::kNoCall,
755 kIntrinsified);
756 locations->SetInAt(0, Location::RequiresRegister());
757 locations->SetInAt(1, Location::RequiresRegister());
758 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
759}
760
761void IntrinsicLocationsBuilderARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
762 CreateIntIntToIntLocations(arena_, invoke);
763}
764
765void IntrinsicCodeGeneratorARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
766 GenMinMax(invoke, /* is_min */ true, GetAssembler());
767}
768
769void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
770 CreateIntIntToIntLocations(arena_, invoke);
771}
772
773void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
774 GenMinMax(invoke, /* is_min */ false, GetAssembler());
775}
776
777void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) {
778 CreateFPToFPLocations(arena_, invoke);
779}
780
781void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) {
782 ArmVIXLAssembler* assembler = GetAssembler();
783 __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
784}
785
xueliang.zhong6099d5e2016-04-20 18:44:56 +0100786void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) {
787 if (features_.HasARMv8AInstructions()) {
788 CreateFPToFPLocations(arena_, invoke);
789 }
790}
791
792void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) {
793 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
794 ArmVIXLAssembler* assembler = GetAssembler();
795 __ Vrintn(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
796}
797
xueliang.zhong53463ba2017-02-16 15:18:03 +0000798void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
799 if (features_.HasARMv8AInstructions()) {
800 LocationSummary* locations = new (arena_) LocationSummary(invoke,
801 LocationSummary::kNoCall,
802 kIntrinsified);
803 locations->SetInAt(0, Location::RequiresFpuRegister());
804 locations->SetOut(Location::RequiresRegister());
805 locations->AddTemp(Location::RequiresFpuRegister());
806 }
807}
808
809void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
810 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
811
812 ArmVIXLAssembler* assembler = GetAssembler();
813 vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0);
814 vixl32::Register out_reg = OutputRegister(invoke);
815 vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0));
816 vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0));
817 vixl32::Label done;
818 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
819
820 // Round to nearest integer, ties away from zero.
821 __ Vcvta(S32, F32, temp1, in_reg);
822 __ Vmov(out_reg, temp1);
823
824 // For positive, zero or NaN inputs, rounding is done.
825 __ Cmp(out_reg, 0);
826 __ B(ge, final_label, /* far_target */ false);
827
828 // Handle input < 0 cases.
829 // If input is negative but not a tie, previous result (round to nearest) is valid.
830 // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1.
831 __ Vrinta(F32, F32, temp1, in_reg);
832 __ Vmov(temp2, 0.5);
833 __ Vsub(F32, temp1, in_reg, temp1);
834 __ Vcmp(F32, temp1, temp2);
835 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
836 {
837 // Use ExactAsemblyScope here because we are using IT.
838 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
839 2 * kMaxInstructionSizeInBytes,
840 CodeBufferCheckScope::kMaximumSize);
841 __ it(eq);
842 __ add(eq, out_reg, out_reg, 1);
843 }
844
845 if (done.IsReferenced()) {
846 __ Bind(&done);
847 }
848}
849
Anton Kirilov5ec62182016-10-13 20:16:02 +0100850void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
851 CreateIntToIntLocations(arena_, invoke);
852}
853
854void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
855 ArmVIXLAssembler* assembler = GetAssembler();
856 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000857 __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100858}
859
860void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
861 CreateIntToIntLocations(arena_, invoke);
862}
863
864void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
865 ArmVIXLAssembler* assembler = GetAssembler();
866 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000867 __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100868}
869
870void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
871 CreateIntToIntLocations(arena_, invoke);
872}
873
874void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
875 ArmVIXLAssembler* assembler = GetAssembler();
876 // Ignore upper 4B of long address.
877 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
878 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
879 // exception. So we can't use ldrd as addr may be unaligned.
880 vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out());
881 vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out());
882 if (addr.Is(lo)) {
883 __ Ldr(hi, MemOperand(addr, 4));
Scott Wakelingb77051e2016-11-21 19:46:00 +0000884 __ Ldr(lo, MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100885 } else {
Scott Wakelingb77051e2016-11-21 19:46:00 +0000886 __ Ldr(lo, MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100887 __ Ldr(hi, MemOperand(addr, 4));
888 }
889}
890
891void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
892 CreateIntToIntLocations(arena_, invoke);
893}
894
895void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
896 ArmVIXLAssembler* assembler = GetAssembler();
897 // Ignore upper 4B of long address.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000898 __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100899}
900
901static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
902 LocationSummary* locations = new (arena) LocationSummary(invoke,
903 LocationSummary::kNoCall,
904 kIntrinsified);
905 locations->SetInAt(0, Location::RequiresRegister());
906 locations->SetInAt(1, Location::RequiresRegister());
907}
908
909void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
910 CreateIntIntToVoidLocations(arena_, invoke);
911}
912
913void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
914 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000915 __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100916}
917
918void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
919 CreateIntIntToVoidLocations(arena_, invoke);
920}
921
922void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
923 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000924 __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100925}
926
927void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
928 CreateIntIntToVoidLocations(arena_, invoke);
929}
930
931void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
932 ArmVIXLAssembler* assembler = GetAssembler();
933 // Ignore upper 4B of long address.
934 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
935 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
936 // exception. So we can't use ldrd as addr may be unaligned.
Scott Wakelingb77051e2016-11-21 19:46:00 +0000937 __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100938 __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4));
939}
940
941void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
942 CreateIntIntToVoidLocations(arena_, invoke);
943}
944
945void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
946 ArmVIXLAssembler* assembler = GetAssembler();
Scott Wakelingb77051e2016-11-21 19:46:00 +0000947 __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
Anton Kirilov5ec62182016-10-13 20:16:02 +0100948}
949
950void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
951 LocationSummary* locations = new (arena_) LocationSummary(invoke,
952 LocationSummary::kNoCall,
953 kIntrinsified);
954 locations->SetOut(Location::RequiresRegister());
955}
956
957void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
958 ArmVIXLAssembler* assembler = GetAssembler();
959 __ Ldr(OutputRegister(invoke),
960 MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value()));
961}
962
963static void GenUnsafeGet(HInvoke* invoke,
964 Primitive::Type type,
965 bool is_volatile,
966 CodeGeneratorARMVIXL* codegen) {
967 LocationSummary* locations = invoke->GetLocations();
968 ArmVIXLAssembler* assembler = codegen->GetAssembler();
969 Location base_loc = locations->InAt(1);
970 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
971 Location offset_loc = locations->InAt(2);
972 vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only.
973 Location trg_loc = locations->Out();
974
975 switch (type) {
976 case Primitive::kPrimInt: {
977 vixl32::Register trg = RegisterFrom(trg_loc);
978 __ Ldr(trg, MemOperand(base, offset));
979 if (is_volatile) {
980 __ Dmb(vixl32::ISH);
981 }
982 break;
983 }
984
985 case Primitive::kPrimNot: {
986 vixl32::Register trg = RegisterFrom(trg_loc);
987 if (kEmitCompilerReadBarrier) {
988 if (kUseBakerReadBarrier) {
989 Location temp = locations->GetTemp(0);
990 codegen->GenerateReferenceLoadWithBakerReadBarrier(
991 invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false);
992 if (is_volatile) {
993 __ Dmb(vixl32::ISH);
994 }
995 } else {
996 __ Ldr(trg, MemOperand(base, offset));
997 if (is_volatile) {
998 __ Dmb(vixl32::ISH);
999 }
1000 codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
1001 }
1002 } else {
1003 __ Ldr(trg, MemOperand(base, offset));
1004 if (is_volatile) {
1005 __ Dmb(vixl32::ISH);
1006 }
1007 assembler->MaybeUnpoisonHeapReference(trg);
1008 }
1009 break;
1010 }
1011
1012 case Primitive::kPrimLong: {
1013 vixl32::Register trg_lo = LowRegisterFrom(trg_loc);
1014 vixl32::Register trg_hi = HighRegisterFrom(trg_loc);
1015 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Artem Serov657022c2016-11-23 14:19:38 +00001016 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1017 const vixl32::Register temp_reg = temps.Acquire();
1018 __ Add(temp_reg, base, offset);
1019 __ Ldrexd(trg_lo, trg_hi, MemOperand(temp_reg));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001020 } else {
1021 __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset));
1022 }
1023 if (is_volatile) {
1024 __ Dmb(vixl32::ISH);
1025 }
1026 break;
1027 }
1028
1029 default:
1030 LOG(FATAL) << "Unexpected type " << type;
1031 UNREACHABLE();
1032 }
1033}
1034
1035static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
1036 HInvoke* invoke,
1037 Primitive::Type type) {
1038 bool can_call = kEmitCompilerReadBarrier &&
1039 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1040 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1041 LocationSummary* locations = new (arena) LocationSummary(invoke,
1042 (can_call
1043 ? LocationSummary::kCallOnSlowPath
1044 : LocationSummary::kNoCall),
1045 kIntrinsified);
1046 if (can_call && kUseBakerReadBarrier) {
1047 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
1048 }
1049 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1050 locations->SetInAt(1, Location::RequiresRegister());
1051 locations->SetInAt(2, Location::RequiresRegister());
1052 locations->SetOut(Location::RequiresRegister(),
1053 (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
1054 if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1055 // We need a temporary register for the read barrier marking slow
1056 // path in InstructionCodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier.
1057 locations->AddTemp(Location::RequiresRegister());
1058 }
1059}
1060
1061void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
1062 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1063}
1064void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
1065 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1066}
1067void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
1068 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
1069}
1070void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1071 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
1072}
1073void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
1074 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1075}
1076void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1077 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1078}
1079
1080void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
1081 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
1082}
1083void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
1084 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
1085}
1086void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
1087 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
1088}
1089void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1090 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
1091}
1092void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
1093 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
1094}
1095void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1096 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
1097}
1098
1099static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
1100 const ArmInstructionSetFeatures& features,
1101 Primitive::Type type,
1102 bool is_volatile,
1103 HInvoke* invoke) {
1104 LocationSummary* locations = new (arena) LocationSummary(invoke,
1105 LocationSummary::kNoCall,
1106 kIntrinsified);
1107 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1108 locations->SetInAt(1, Location::RequiresRegister());
1109 locations->SetInAt(2, Location::RequiresRegister());
1110 locations->SetInAt(3, Location::RequiresRegister());
1111
1112 if (type == Primitive::kPrimLong) {
1113 // Potentially need temps for ldrexd-strexd loop.
1114 if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
1115 locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
1116 locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
1117 }
1118 } else if (type == Primitive::kPrimNot) {
1119 // Temps for card-marking.
1120 locations->AddTemp(Location::RequiresRegister()); // Temp.
1121 locations->AddTemp(Location::RequiresRegister()); // Card.
1122 }
1123}
1124
1125void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) {
1126 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
1127}
1128void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
1129 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
1130}
1131void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
1132 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
1133}
1134void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
1135 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
1136}
1137void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1138 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
1139}
1140void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1141 CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
1142}
1143void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
1144 CreateIntIntIntIntToVoid(
1145 arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
1146}
1147void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1148 CreateIntIntIntIntToVoid(
1149 arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
1150}
1151void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
1152 CreateIntIntIntIntToVoid(
1153 arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
1154}
1155
1156static void GenUnsafePut(LocationSummary* locations,
1157 Primitive::Type type,
1158 bool is_volatile,
1159 bool is_ordered,
1160 CodeGeneratorARMVIXL* codegen) {
1161 ArmVIXLAssembler* assembler = codegen->GetAssembler();
1162
1163 vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer.
1164 vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only.
1165 vixl32::Register value;
1166
1167 if (is_volatile || is_ordered) {
1168 __ Dmb(vixl32::ISH);
1169 }
1170
1171 if (type == Primitive::kPrimLong) {
1172 vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3));
1173 vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3));
1174 value = value_lo;
1175 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
1176 vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0));
1177 vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1));
1178 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1179 const vixl32::Register temp_reg = temps.Acquire();
1180
1181 __ Add(temp_reg, base, offset);
1182 vixl32::Label loop_head;
1183 __ Bind(&loop_head);
Scott Wakelingb77051e2016-11-21 19:46:00 +00001184 __ Ldrexd(temp_lo, temp_hi, MemOperand(temp_reg));
1185 __ Strexd(temp_lo, value_lo, value_hi, MemOperand(temp_reg));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001186 __ Cmp(temp_lo, 0);
Artem Serov517d9f62016-12-12 15:51:15 +00001187 __ B(ne, &loop_head, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001188 } else {
1189 __ Strd(value_lo, value_hi, MemOperand(base, offset));
1190 }
1191 } else {
1192 value = RegisterFrom(locations->InAt(3));
1193 vixl32::Register source = value;
1194 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1195 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1196 __ Mov(temp, value);
1197 assembler->PoisonHeapReference(temp);
1198 source = temp;
1199 }
1200 __ Str(source, MemOperand(base, offset));
1201 }
1202
1203 if (is_volatile) {
1204 __ Dmb(vixl32::ISH);
1205 }
1206
1207 if (type == Primitive::kPrimNot) {
1208 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1209 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
1210 bool value_can_be_null = true; // TODO: Worth finding out this information?
1211 codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
1212 }
1213}
1214
1215void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) {
1216 GenUnsafePut(invoke->GetLocations(),
1217 Primitive::kPrimInt,
1218 /* is_volatile */ false,
1219 /* is_ordered */ false,
1220 codegen_);
1221}
1222void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
1223 GenUnsafePut(invoke->GetLocations(),
1224 Primitive::kPrimInt,
1225 /* is_volatile */ false,
1226 /* is_ordered */ true,
1227 codegen_);
1228}
1229void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
1230 GenUnsafePut(invoke->GetLocations(),
1231 Primitive::kPrimInt,
1232 /* is_volatile */ true,
1233 /* is_ordered */ false,
1234 codegen_);
1235}
1236void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
1237 GenUnsafePut(invoke->GetLocations(),
1238 Primitive::kPrimNot,
1239 /* is_volatile */ false,
1240 /* is_ordered */ false,
1241 codegen_);
1242}
1243void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1244 GenUnsafePut(invoke->GetLocations(),
1245 Primitive::kPrimNot,
1246 /* is_volatile */ false,
1247 /* is_ordered */ true,
1248 codegen_);
1249}
1250void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1251 GenUnsafePut(invoke->GetLocations(),
1252 Primitive::kPrimNot,
1253 /* is_volatile */ true,
1254 /* is_ordered */ false,
1255 codegen_);
1256}
1257void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
1258 GenUnsafePut(invoke->GetLocations(),
1259 Primitive::kPrimLong,
1260 /* is_volatile */ false,
1261 /* is_ordered */ false,
1262 codegen_);
1263}
1264void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1265 GenUnsafePut(invoke->GetLocations(),
1266 Primitive::kPrimLong,
1267 /* is_volatile */ false,
1268 /* is_ordered */ true,
1269 codegen_);
1270}
1271void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
1272 GenUnsafePut(invoke->GetLocations(),
1273 Primitive::kPrimLong,
1274 /* is_volatile */ true,
1275 /* is_ordered */ false,
1276 codegen_);
1277}
1278
1279static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
1280 HInvoke* invoke,
1281 Primitive::Type type) {
1282 bool can_call = kEmitCompilerReadBarrier &&
1283 kUseBakerReadBarrier &&
1284 (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
1285 LocationSummary* locations = new (arena) LocationSummary(invoke,
1286 (can_call
1287 ? LocationSummary::kCallOnSlowPath
1288 : LocationSummary::kNoCall),
1289 kIntrinsified);
1290 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1291 locations->SetInAt(1, Location::RequiresRegister());
1292 locations->SetInAt(2, Location::RequiresRegister());
1293 locations->SetInAt(3, Location::RequiresRegister());
1294 locations->SetInAt(4, Location::RequiresRegister());
1295
1296 // If heap poisoning is enabled, we don't want the unpoisoning
1297 // operations to potentially clobber the output. Likewise when
1298 // emitting a (Baker) read barrier, which may call.
1299 Location::OutputOverlap overlaps =
1300 ((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
1301 ? Location::kOutputOverlap
1302 : Location::kNoOutputOverlap;
1303 locations->SetOut(Location::RequiresRegister(), overlaps);
1304
1305 // Temporary registers used in CAS. In the object case
1306 // (UnsafeCASObject intrinsic), these are also used for
1307 // card-marking, and possibly for (Baker) read barrier.
1308 locations->AddTemp(Location::RequiresRegister()); // Pointer.
1309 locations->AddTemp(Location::RequiresRegister()); // Temp 1.
1310}
1311
1312static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARMVIXL* codegen) {
1313 DCHECK_NE(type, Primitive::kPrimLong);
1314
1315 ArmVIXLAssembler* assembler = codegen->GetAssembler();
1316 LocationSummary* locations = invoke->GetLocations();
1317
1318 Location out_loc = locations->Out();
1319 vixl32::Register out = OutputRegister(invoke); // Boolean result.
1320
1321 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
1322 Location offset_loc = locations->InAt(2);
1323 vixl32::Register offset = LowRegisterFrom(offset_loc); // Offset (discard high 4B).
1324 vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected.
1325 vixl32::Register value = InputRegisterAt(invoke, 4); // Value.
1326
1327 Location tmp_ptr_loc = locations->GetTemp(0);
1328 vixl32::Register tmp_ptr = RegisterFrom(tmp_ptr_loc); // Pointer to actual memory.
1329 vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Value in memory.
1330
1331 if (type == Primitive::kPrimNot) {
1332 // The only read barrier implementation supporting the
1333 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1334 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1335
1336 // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
1337 // object and scan the receiver at the next GC for nothing.
1338 bool value_can_be_null = true; // TODO: Worth finding out this information?
1339 codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
1340
1341 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1342 // Need to make sure the reference stored in the field is a to-space
1343 // one before attempting the CAS or the CAS could fail incorrectly.
1344 codegen->GenerateReferenceLoadWithBakerReadBarrier(
1345 invoke,
1346 out_loc, // Unused, used only as a "temporary" within the read barrier.
1347 base,
1348 /* offset */ 0u,
1349 /* index */ offset_loc,
1350 ScaleFactor::TIMES_1,
1351 tmp_ptr_loc,
1352 /* needs_null_check */ false,
1353 /* always_update_field */ true,
1354 &tmp);
1355 }
1356 }
1357
1358 // Prevent reordering with prior memory operations.
1359 // Emit a DMB ISH instruction instead of an DMB ISHST one, as the
1360 // latter allows a preceding load to be delayed past the STXR
1361 // instruction below.
1362 __ Dmb(vixl32::ISH);
1363
1364 __ Add(tmp_ptr, base, offset);
1365
1366 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1367 codegen->GetAssembler()->PoisonHeapReference(expected);
1368 if (value.Is(expected)) {
1369 // Do not poison `value`, as it is the same register as
1370 // `expected`, which has just been poisoned.
1371 } else {
1372 codegen->GetAssembler()->PoisonHeapReference(value);
1373 }
1374 }
1375
1376 // do {
1377 // tmp = [r_ptr] - expected;
1378 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
1379 // result = tmp != 0;
1380
1381 vixl32::Label loop_head;
1382 __ Bind(&loop_head);
1383
Scott Wakelingb77051e2016-11-21 19:46:00 +00001384 __ Ldrex(tmp, MemOperand(tmp_ptr));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001385
1386 __ Subs(tmp, tmp, expected);
1387
1388 {
Artem Serov0fb37192016-12-06 18:13:40 +00001389 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1390 3 * kMaxInstructionSizeInBytes,
1391 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001392
1393 __ itt(eq);
Scott Wakelingb77051e2016-11-21 19:46:00 +00001394 __ strex(eq, tmp, value, MemOperand(tmp_ptr));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001395 __ cmp(eq, tmp, 1);
1396 }
1397
Artem Serov517d9f62016-12-12 15:51:15 +00001398 __ B(eq, &loop_head, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001399
1400 __ Dmb(vixl32::ISH);
1401
1402 __ Rsbs(out, tmp, 1);
1403
1404 {
Artem Serov0fb37192016-12-06 18:13:40 +00001405 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1406 2 * kMaxInstructionSizeInBytes,
1407 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001408
1409 __ it(cc);
1410 __ mov(cc, out, 0);
1411 }
1412
1413 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1414 codegen->GetAssembler()->UnpoisonHeapReference(expected);
1415 if (value.Is(expected)) {
1416 // Do not unpoison `value`, as it is the same register as
1417 // `expected`, which has just been unpoisoned.
1418 } else {
1419 codegen->GetAssembler()->UnpoisonHeapReference(value);
1420 }
1421 }
1422}
1423
1424void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1425 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt);
1426}
1427void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1428 // The only read barrier implementation supporting the
1429 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1430 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
1431 return;
1432 }
1433
1434 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot);
1435}
1436void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1437 GenCas(invoke, Primitive::kPrimInt, codegen_);
1438}
1439void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1440 // The only read barrier implementation supporting the
1441 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1442 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1443
1444 GenCas(invoke, Primitive::kPrimNot, codegen_);
1445}
1446
1447void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1448 // The inputs plus one temp.
1449 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1450 invoke->InputAt(1)->CanBeNull()
1451 ? LocationSummary::kCallOnSlowPath
1452 : LocationSummary::kNoCall,
1453 kIntrinsified);
1454 locations->SetInAt(0, Location::RequiresRegister());
1455 locations->SetInAt(1, Location::RequiresRegister());
1456 locations->AddTemp(Location::RequiresRegister());
1457 locations->AddTemp(Location::RequiresRegister());
1458 locations->AddTemp(Location::RequiresRegister());
1459 // Need temporary registers for String compression's feature.
1460 if (mirror::kUseStringCompression) {
1461 locations->AddTemp(Location::RequiresRegister());
Anton Kirilov5ec62182016-10-13 20:16:02 +01001462 }
1463 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1464}
1465
1466void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1467 ArmVIXLAssembler* assembler = GetAssembler();
1468 LocationSummary* locations = invoke->GetLocations();
1469
1470 vixl32::Register str = InputRegisterAt(invoke, 0);
1471 vixl32::Register arg = InputRegisterAt(invoke, 1);
1472 vixl32::Register out = OutputRegister(invoke);
1473
1474 vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
1475 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1476 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001477 vixl32::Register temp3;
Anton Kirilov5ec62182016-10-13 20:16:02 +01001478 if (mirror::kUseStringCompression) {
1479 temp3 = RegisterFrom(locations->GetTemp(3));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001480 }
1481
1482 vixl32::Label loop;
1483 vixl32::Label find_char_diff;
1484 vixl32::Label end;
1485 vixl32::Label different_compression;
1486
1487 // Get offsets of count and value fields within a string object.
1488 const int32_t count_offset = mirror::String::CountOffset().Int32Value();
1489 const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1490
1491 // Note that the null check must have been done earlier.
1492 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1493
1494 // Take slow path and throw if input can be and is null.
1495 SlowPathCodeARMVIXL* slow_path = nullptr;
1496 const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
1497 if (can_slow_path) {
1498 slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1499 codegen_->AddSlowPath(slow_path);
xueliang.zhongf51bc622016-11-04 09:23:32 +00001500 __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01001501 }
1502
1503 // Reference equality check, return 0 if same reference.
1504 __ Subs(out, str, arg);
1505 __ B(eq, &end);
1506
Anton Kirilov5ec62182016-10-13 20:16:02 +01001507 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001508 // Load `count` fields of this and argument strings.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001509 __ Ldr(temp3, MemOperand(str, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001510 __ Ldr(temp2, MemOperand(arg, count_offset));
1511 // Extract lengths from the `count` fields.
1512 __ Lsr(temp0, temp3, 1u);
1513 __ Lsr(temp1, temp2, 1u);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001514 } else {
1515 // Load lengths of this and argument strings.
1516 __ Ldr(temp0, MemOperand(str, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001517 __ Ldr(temp1, MemOperand(arg, count_offset));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001518 }
1519 // out = length diff.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001520 __ Subs(out, temp0, temp1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001521 // temp0 = min(len(str), len(arg)).
1522
1523 {
Artem Serov0fb37192016-12-06 18:13:40 +00001524 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1525 2 * kMaxInstructionSizeInBytes,
1526 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001527
1528 __ it(gt);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001529 __ mov(gt, temp0, temp1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001530 }
1531
Anton Kirilov5ec62182016-10-13 20:16:02 +01001532 // Shorter string is empty?
xueliang.zhongf51bc622016-11-04 09:23:32 +00001533 // Note that mirror::kUseStringCompression==true introduces lots of instructions,
1534 // which makes &end label far away from this branch and makes it not 'CBZ-encodable'.
1535 __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001536
1537 if (mirror::kUseStringCompression) {
1538 // Check if both strings using same compression style to use this comparison loop.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001539 __ Eors(temp2, temp2, temp3);
1540 __ Lsrs(temp2, temp2, 1u);
1541 __ B(cs, &different_compression);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001542 // For string compression, calculate the number of bytes to compare (not chars).
1543 // This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001544 __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001545
Artem Serov0fb37192016-12-06 18:13:40 +00001546 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1547 2 * kMaxInstructionSizeInBytes,
1548 CodeBufferCheckScope::kMaximumSize);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001549
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001550 __ it(ne);
1551 __ add(ne, temp0, temp0, temp0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001552 }
1553
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001554 // Store offset of string value in preparation for comparison loop.
1555 __ Mov(temp1, value_offset);
1556
Anton Kirilov5ec62182016-10-13 20:16:02 +01001557 // Assertions that must hold in order to compare multiple characters at a time.
1558 CHECK_ALIGNED(value_offset, 8);
1559 static_assert(IsAligned<8>(kObjectAlignment),
1560 "String data must be 8-byte aligned for unrolled CompareTo loop.");
1561
Scott Wakelingb77051e2016-11-21 19:46:00 +00001562 const unsigned char_size = Primitive::ComponentSize(Primitive::kPrimChar);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001563 DCHECK_EQ(char_size, 2u);
1564
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001565 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1566
Anton Kirilov5ec62182016-10-13 20:16:02 +01001567 vixl32::Label find_char_diff_2nd_cmp;
1568 // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
1569 __ Bind(&loop);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001570 vixl32::Register temp_reg = temps.Acquire();
Anton Kirilov5ec62182016-10-13 20:16:02 +01001571 __ Ldr(temp_reg, MemOperand(str, temp1));
1572 __ Ldr(temp2, MemOperand(arg, temp1));
1573 __ Cmp(temp_reg, temp2);
Artem Serov517d9f62016-12-12 15:51:15 +00001574 __ B(ne, &find_char_diff, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001575 __ Add(temp1, temp1, char_size * 2);
1576
1577 __ Ldr(temp_reg, MemOperand(str, temp1));
1578 __ Ldr(temp2, MemOperand(arg, temp1));
1579 __ Cmp(temp_reg, temp2);
Artem Serov517d9f62016-12-12 15:51:15 +00001580 __ B(ne, &find_char_diff_2nd_cmp, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001581 __ Add(temp1, temp1, char_size * 2);
1582 // With string compression, we have compared 8 bytes, otherwise 4 chars.
1583 __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4));
Artem Serov517d9f62016-12-12 15:51:15 +00001584 __ B(hi, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001585 __ B(&end);
1586
1587 __ Bind(&find_char_diff_2nd_cmp);
1588 if (mirror::kUseStringCompression) {
1589 __ Subs(temp0, temp0, 4); // 4 bytes previously compared.
Artem Serov517d9f62016-12-12 15:51:15 +00001590 __ B(ls, &end, /* far_target */ false); // Was the second comparison fully beyond the end?
Anton Kirilov5ec62182016-10-13 20:16:02 +01001591 } else {
1592 // Without string compression, we can start treating temp0 as signed
1593 // and rely on the signed comparison below.
1594 __ Sub(temp0, temp0, 2);
1595 }
1596
1597 // Find the single character difference.
1598 __ Bind(&find_char_diff);
1599 // Get the bit position of the first character that differs.
1600 __ Eor(temp1, temp2, temp_reg);
1601 __ Rbit(temp1, temp1);
1602 __ Clz(temp1, temp1);
1603
1604 // temp0 = number of characters remaining to compare.
1605 // (Without string compression, it could be < 1 if a difference is found by the second CMP
1606 // in the comparison loop, and after the end of the shorter string data).
1607
1608 // Without string compression (temp1 >> 4) = character where difference occurs between the last
1609 // two words compared, in the interval [0,1].
1610 // (0 for low half-word different, 1 for high half-word different).
1611 // With string compression, (temp1 << 3) = byte where the difference occurs,
1612 // in the interval [0,3].
1613
1614 // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
1615 // the remaining string data, so just return length diff (out).
1616 // The comparison is unsigned for string compression, otherwise signed.
1617 __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4)));
Artem Serov517d9f62016-12-12 15:51:15 +00001618 __ B((mirror::kUseStringCompression ? ls : le), &end, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001619
Anton Kirilov5ec62182016-10-13 20:16:02 +01001620 // Extract the characters and calculate the difference.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001621 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001622 // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear
1623 // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`.
1624 // The compression flag is now in the highest bit of temp3, so let's play some tricks.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001625 __ Orr(temp3, temp3, 0xffu << 23); // uncompressed ? 0xff800000u : 0x7ff80000u
1626 __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u)
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001627 __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u.
1628 __ Lsr(temp2, temp2, temp1); // Extract second character.
1629 __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu
1630 __ Lsr(out, temp_reg, temp1); // Extract first character.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001631 __ And(temp2, temp2, temp3);
1632 __ And(out, out, temp3);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001633 } else {
Anton Kirilovb88c4842016-11-14 14:37:00 +00001634 __ Bic(temp1, temp1, 0xf);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001635 __ Lsr(temp2, temp2, temp1);
1636 __ Lsr(out, temp_reg, temp1);
Anton Kirilovb88c4842016-11-14 14:37:00 +00001637 __ Movt(temp2, 0);
1638 __ Movt(out, 0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001639 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01001640
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001641 __ Sub(out, out, temp2);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001642 temps.Release(temp_reg);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001643
1644 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001645 __ B(&end);
1646 __ Bind(&different_compression);
1647
1648 // Comparison for different compression style.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001649 const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
1650 DCHECK_EQ(c_char_size, 1u);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001651
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001652 // We want to free up the temp3, currently holding `str.count`, for comparison.
1653 // So, we move it to the bottom bit of the iteration count `temp0` which we tnen
1654 // need to treat as unsigned. Start by freeing the bit with an ADD and continue
1655 // further down by a LSRS+SBC which will flip the meaning of the flag but allow
1656 // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001657 __ Add(temp0, temp0, temp0); // Unlike LSL, this ADD is always 16-bit.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001658 // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001659 __ Mov(temp1, str);
1660 __ Mov(temp2, arg);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001661 __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag.
1662 {
Artem Serov0fb37192016-12-06 18:13:40 +00001663 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1664 3 * kMaxInstructionSizeInBytes,
1665 CodeBufferCheckScope::kMaximumSize);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001666 __ itt(cs); // Interleave with selection of temp1 and temp2.
1667 __ mov(cs, temp1, arg); // Preserves flags.
1668 __ mov(cs, temp2, str); // Preserves flags.
1669 }
Anton Kirilovb88c4842016-11-14 14:37:00 +00001670 __ Sbc(temp0, temp0, 0); // Complete the move of the compression flag.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001671
1672 // Adjust temp1 and temp2 from string pointers to data pointers.
Anton Kirilovb88c4842016-11-14 14:37:00 +00001673 __ Add(temp1, temp1, value_offset);
1674 __ Add(temp2, temp2, value_offset);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001675
1676 vixl32::Label different_compression_loop;
1677 vixl32::Label different_compression_diff;
1678
1679 // Main loop for different compression.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001680 temp_reg = temps.Acquire();
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001681 __ Bind(&different_compression_loop);
1682 __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex));
1683 __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex));
Anton Kirilovb88c4842016-11-14 14:37:00 +00001684 __ Cmp(temp_reg, temp3);
Artem Serov517d9f62016-12-12 15:51:15 +00001685 __ B(ne, &different_compression_diff, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001686 __ Subs(temp0, temp0, 2);
Artem Serov517d9f62016-12-12 15:51:15 +00001687 __ B(hi, &different_compression_loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001688 __ B(&end);
1689
1690 // Calculate the difference.
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001691 __ Bind(&different_compression_diff);
1692 __ Sub(out, temp_reg, temp3);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001693 temps.Release(temp_reg);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001694 // Flip the difference if the `arg` is compressed.
1695 // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag.
1696 __ Lsrs(temp0, temp0, 1u);
1697 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1698 "Expecting 0=compressed, 1=uncompressed");
1699
Artem Serov0fb37192016-12-06 18:13:40 +00001700 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1701 2 * kMaxInstructionSizeInBytes,
1702 CodeBufferCheckScope::kMaximumSize);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001703 __ it(cc);
1704 __ rsb(cc, out, out, 0);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001705 }
1706
1707 __ Bind(&end);
1708
1709 if (can_slow_path) {
1710 __ Bind(slow_path->GetExitLabel());
1711 }
1712}
1713
1714void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) {
1715 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1716 LocationSummary::kNoCall,
1717 kIntrinsified);
1718 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1719 locations->SetInAt(0, Location::RequiresRegister());
1720 locations->SetInAt(1, Location::RequiresRegister());
1721 // Temporary registers to store lengths of strings and for calculations.
1722 // Using instruction cbz requires a low register, so explicitly set a temp to be R0.
1723 locations->AddTemp(LocationFrom(r0));
1724 locations->AddTemp(Location::RequiresRegister());
1725 locations->AddTemp(Location::RequiresRegister());
1726
1727 locations->SetOut(Location::RequiresRegister());
1728}
1729
1730void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) {
1731 ArmVIXLAssembler* assembler = GetAssembler();
1732 LocationSummary* locations = invoke->GetLocations();
1733
1734 vixl32::Register str = InputRegisterAt(invoke, 0);
1735 vixl32::Register arg = InputRegisterAt(invoke, 1);
1736 vixl32::Register out = OutputRegister(invoke);
1737
1738 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1739 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1740 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
1741
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001742 vixl32::Label loop;
Anton Kirilov5ec62182016-10-13 20:16:02 +01001743 vixl32::Label end;
1744 vixl32::Label return_true;
1745 vixl32::Label return_false;
Anton Kirilov6f644202017-02-27 18:29:45 +00001746 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001747
1748 // Get offsets of count, value, and class fields within a string object.
1749 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1750 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1751 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1752
1753 // Note that the null check must have been done earlier.
1754 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1755
1756 StringEqualsOptimizations optimizations(invoke);
1757 if (!optimizations.GetArgumentNotNull()) {
1758 // Check if input is null, return false if it is.
xueliang.zhongf51bc622016-11-04 09:23:32 +00001759 __ CompareAndBranchIfZero(arg, &return_false, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001760 }
1761
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001762 // Reference equality check, return true if same reference.
1763 __ Cmp(str, arg);
Artem Serov517d9f62016-12-12 15:51:15 +00001764 __ B(eq, &return_true, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001765
Anton Kirilov5ec62182016-10-13 20:16:02 +01001766 if (!optimizations.GetArgumentIsString()) {
1767 // Instanceof check for the argument by comparing class fields.
1768 // All string objects must have the same type since String cannot be subclassed.
1769 // Receiver must be a string object, so its class field is equal to all strings' class fields.
1770 // If the argument is a string object, its class field must be equal to receiver's class field.
1771 __ Ldr(temp, MemOperand(str, class_offset));
1772 __ Ldr(temp1, MemOperand(arg, class_offset));
1773 __ Cmp(temp, temp1);
Artem Serov517d9f62016-12-12 15:51:15 +00001774 __ B(ne, &return_false, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001775 }
1776
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001777 // Load `count` fields of this and argument strings.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001778 __ Ldr(temp, MemOperand(str, count_offset));
1779 __ Ldr(temp1, MemOperand(arg, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001780 // Check if `count` fields are equal, return false if they're not.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001781 // Also compares the compression style, if differs return false.
1782 __ Cmp(temp, temp1);
Artem Serov517d9f62016-12-12 15:51:15 +00001783 __ B(ne, &return_false, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001784 // Return true if both strings are empty. Even with string compression `count == 0` means empty.
1785 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1786 "Expecting 0=compressed, 1=uncompressed");
xueliang.zhongf51bc622016-11-04 09:23:32 +00001787 __ CompareAndBranchIfZero(temp, &return_true, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001788
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001789 // Assertions that must hold in order to compare strings 4 bytes at a time.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001790 DCHECK_ALIGNED(value_offset, 4);
1791 static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
1792
1793 if (mirror::kUseStringCompression) {
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001794 // For string compression, calculate the number of bytes to compare (not chars).
1795 // This could in theory exceed INT32_MAX, so treat temp as unsigned.
1796 __ Lsrs(temp, temp, 1u); // Extract length and check compression flag.
Artem Serov0fb37192016-12-06 18:13:40 +00001797 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1798 2 * kMaxInstructionSizeInBytes,
1799 CodeBufferCheckScope::kMaximumSize);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001800 __ it(cs); // If uncompressed,
1801 __ add(cs, temp, temp, temp); // double the byte count.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001802 }
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001803
1804 // Store offset of string value in preparation for comparison loop.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001805 __ Mov(temp1, value_offset);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001806
1807 // Loop to compare strings 4 bytes at a time starting at the front of the string.
1808 // Ok to do this because strings are zero-padded to kObjectAlignment.
Anton Kirilov5ec62182016-10-13 20:16:02 +01001809 __ Bind(&loop);
1810 __ Ldr(out, MemOperand(str, temp1));
1811 __ Ldr(temp2, MemOperand(arg, temp1));
Scott Wakelingb77051e2016-11-21 19:46:00 +00001812 __ Add(temp1, temp1, Operand::From(sizeof(uint32_t)));
Anton Kirilov5ec62182016-10-13 20:16:02 +01001813 __ Cmp(out, temp2);
Artem Serov517d9f62016-12-12 15:51:15 +00001814 __ B(ne, &return_false, /* far_target */ false);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01001815 // With string compression, we have compared 4 bytes, otherwise 2 chars.
1816 __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2);
Artem Serov517d9f62016-12-12 15:51:15 +00001817 __ B(hi, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001818
1819 // Return true and exit the function.
1820 // If loop does not result in returning false, we return true.
1821 __ Bind(&return_true);
1822 __ Mov(out, 1);
Anton Kirilov6f644202017-02-27 18:29:45 +00001823 __ B(final_label);
Anton Kirilov5ec62182016-10-13 20:16:02 +01001824
1825 // Return false and exit the function.
1826 __ Bind(&return_false);
1827 __ Mov(out, 0);
Anton Kirilov6f644202017-02-27 18:29:45 +00001828
1829 if (end.IsReferenced()) {
1830 __ Bind(&end);
1831 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01001832}
1833
1834static void GenerateVisitStringIndexOf(HInvoke* invoke,
1835 ArmVIXLAssembler* assembler,
1836 CodeGeneratorARMVIXL* codegen,
1837 ArenaAllocator* allocator,
1838 bool start_at_zero) {
1839 LocationSummary* locations = invoke->GetLocations();
1840
1841 // Note that the null check must have been done earlier.
1842 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1843
1844 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1845 // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
1846 SlowPathCodeARMVIXL* slow_path = nullptr;
1847 HInstruction* code_point = invoke->InputAt(1);
1848 if (code_point->IsIntConstant()) {
Anton Kirilov644032c2016-12-06 17:51:43 +00001849 if (static_cast<uint32_t>(Int32ConstantFrom(code_point)) >
Anton Kirilov5ec62182016-10-13 20:16:02 +01001850 std::numeric_limits<uint16_t>::max()) {
1851 // Always needs the slow-path. We could directly dispatch to it, but this case should be
1852 // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1853 slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
1854 codegen->AddSlowPath(slow_path);
1855 __ B(slow_path->GetEntryLabel());
1856 __ Bind(slow_path->GetExitLabel());
1857 return;
1858 }
1859 } else if (code_point->GetType() != Primitive::kPrimChar) {
1860 vixl32::Register char_reg = InputRegisterAt(invoke, 1);
1861 // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
1862 __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1);
1863 slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
1864 codegen->AddSlowPath(slow_path);
1865 __ B(hs, slow_path->GetEntryLabel());
1866 }
1867
1868 if (start_at_zero) {
1869 vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0));
1870 DCHECK(tmp_reg.Is(r2));
1871 // Start-index = 0.
1872 __ Mov(tmp_reg, 0);
1873 }
1874
1875 codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
1876 CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
1877
1878 if (slow_path != nullptr) {
1879 __ Bind(slow_path->GetExitLabel());
1880 }
1881}
1882
1883void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1884 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1885 LocationSummary::kCallOnMainAndSlowPath,
1886 kIntrinsified);
1887 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1888 // best to align the inputs accordingly.
1889 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1890 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1891 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1892 locations->SetOut(LocationFrom(r0));
1893
1894 // Need to send start-index=0.
1895 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
1896}
1897
1898void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1899 GenerateVisitStringIndexOf(
1900 invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
1901}
1902
1903void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
1904 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1905 LocationSummary::kCallOnMainAndSlowPath,
1906 kIntrinsified);
1907 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1908 // best to align the inputs accordingly.
1909 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1910 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1911 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1912 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1913 locations->SetOut(LocationFrom(r0));
1914}
1915
1916void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
1917 GenerateVisitStringIndexOf(
1918 invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
1919}
1920
1921void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
1922 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1923 LocationSummary::kCallOnMainAndSlowPath,
1924 kIntrinsified);
1925 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1926 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1927 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1928 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1929 locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
1930 locations->SetOut(LocationFrom(r0));
1931}
1932
1933void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
1934 ArmVIXLAssembler* assembler = GetAssembler();
1935 vixl32::Register byte_array = InputRegisterAt(invoke, 0);
1936 __ Cmp(byte_array, 0);
1937 SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1938 codegen_->AddSlowPath(slow_path);
1939 __ B(eq, slow_path->GetEntryLabel());
1940
1941 codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
1942 CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
1943 __ Bind(slow_path->GetExitLabel());
1944}
1945
1946void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
1947 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1948 LocationSummary::kCallOnMainOnly,
1949 kIntrinsified);
1950 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1951 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1952 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1953 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1954 locations->SetOut(LocationFrom(r0));
1955}
1956
1957void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
1958 // No need to emit code checking whether `locations->InAt(2)` is a null
1959 // pointer, as callers of the native method
1960 //
1961 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
1962 //
1963 // all include a null check on `data` before calling that method.
1964 codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
1965 CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
1966}
1967
1968void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
1969 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1970 LocationSummary::kCallOnMainAndSlowPath,
1971 kIntrinsified);
1972 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1973 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1974 locations->SetOut(LocationFrom(r0));
1975}
1976
1977void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
1978 ArmVIXLAssembler* assembler = GetAssembler();
1979 vixl32::Register string_to_copy = InputRegisterAt(invoke, 0);
1980 __ Cmp(string_to_copy, 0);
1981 SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1982 codegen_->AddSlowPath(slow_path);
1983 __ B(eq, slow_path->GetEntryLabel());
1984
1985 codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
1986 CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
1987
1988 __ Bind(slow_path->GetExitLabel());
1989}
1990
1991void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
1992 // The only read barrier implementation supporting the
1993 // SystemArrayCopy intrinsic is the Baker-style read barriers.
1994 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
1995 return;
1996 }
1997
1998 CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
1999 LocationSummary* locations = invoke->GetLocations();
2000 if (locations == nullptr) {
2001 return;
2002 }
2003
2004 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
2005 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
2006 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
2007
2008 if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
2009 locations->SetInAt(1, Location::RequiresRegister());
2010 }
2011 if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
2012 locations->SetInAt(3, Location::RequiresRegister());
2013 }
2014 if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
2015 locations->SetInAt(4, Location::RequiresRegister());
2016 }
2017 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2018 // Temporary register IP cannot be used in
2019 // ReadBarrierSystemArrayCopySlowPathARM (because that register
2020 // is clobbered by ReadBarrierMarkRegX entry points). Get an extra
2021 // temporary register from the register allocator.
2022 locations->AddTemp(Location::RequiresRegister());
2023 }
2024}
2025
2026static void CheckPosition(ArmVIXLAssembler* assembler,
2027 Location pos,
2028 vixl32::Register input,
2029 Location length,
2030 SlowPathCodeARMVIXL* slow_path,
2031 vixl32::Register temp,
2032 bool length_is_input_length = false) {
2033 // Where is the length in the Array?
2034 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
2035
2036 if (pos.IsConstant()) {
2037 int32_t pos_const = Int32ConstantFrom(pos);
2038 if (pos_const == 0) {
2039 if (!length_is_input_length) {
2040 // Check that length(input) >= length.
2041 __ Ldr(temp, MemOperand(input, length_offset));
2042 if (length.IsConstant()) {
2043 __ Cmp(temp, Int32ConstantFrom(length));
2044 } else {
2045 __ Cmp(temp, RegisterFrom(length));
2046 }
2047 __ B(lt, slow_path->GetEntryLabel());
2048 }
2049 } else {
2050 // Check that length(input) >= pos.
2051 __ Ldr(temp, MemOperand(input, length_offset));
2052 __ Subs(temp, temp, pos_const);
2053 __ B(lt, slow_path->GetEntryLabel());
2054
2055 // Check that (length(input) - pos) >= length.
2056 if (length.IsConstant()) {
2057 __ Cmp(temp, Int32ConstantFrom(length));
2058 } else {
2059 __ Cmp(temp, RegisterFrom(length));
2060 }
2061 __ B(lt, slow_path->GetEntryLabel());
2062 }
2063 } else if (length_is_input_length) {
2064 // The only way the copy can succeed is if pos is zero.
2065 vixl32::Register pos_reg = RegisterFrom(pos);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002066 __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002067 } else {
2068 // Check that pos >= 0.
2069 vixl32::Register pos_reg = RegisterFrom(pos);
2070 __ Cmp(pos_reg, 0);
2071 __ B(lt, slow_path->GetEntryLabel());
2072
2073 // Check that pos <= length(input).
2074 __ Ldr(temp, MemOperand(input, length_offset));
2075 __ Subs(temp, temp, pos_reg);
2076 __ B(lt, slow_path->GetEntryLabel());
2077
2078 // Check that (length(input) - pos) >= length.
2079 if (length.IsConstant()) {
2080 __ Cmp(temp, Int32ConstantFrom(length));
2081 } else {
2082 __ Cmp(temp, RegisterFrom(length));
2083 }
2084 __ B(lt, slow_path->GetEntryLabel());
2085 }
2086}
2087
2088void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
2089 // The only read barrier implementation supporting the
2090 // SystemArrayCopy intrinsic is the Baker-style read barriers.
2091 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2092
2093 ArmVIXLAssembler* assembler = GetAssembler();
2094 LocationSummary* locations = invoke->GetLocations();
2095
2096 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2097 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2098 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2099 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
2100 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
2101
2102 vixl32::Register src = InputRegisterAt(invoke, 0);
2103 Location src_pos = locations->InAt(1);
2104 vixl32::Register dest = InputRegisterAt(invoke, 2);
2105 Location dest_pos = locations->InAt(3);
2106 Location length = locations->InAt(4);
2107 Location temp1_loc = locations->GetTemp(0);
2108 vixl32::Register temp1 = RegisterFrom(temp1_loc);
2109 Location temp2_loc = locations->GetTemp(1);
2110 vixl32::Register temp2 = RegisterFrom(temp2_loc);
2111 Location temp3_loc = locations->GetTemp(2);
2112 vixl32::Register temp3 = RegisterFrom(temp3_loc);
2113
2114 SlowPathCodeARMVIXL* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
2115 codegen_->AddSlowPath(intrinsic_slow_path);
2116
2117 vixl32::Label conditions_on_positions_validated;
2118 SystemArrayCopyOptimizations optimizations(invoke);
2119
2120 // If source and destination are the same, we go to slow path if we need to do
2121 // forward copying.
2122 if (src_pos.IsConstant()) {
2123 int32_t src_pos_constant = Int32ConstantFrom(src_pos);
2124 if (dest_pos.IsConstant()) {
2125 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
2126 if (optimizations.GetDestinationIsSource()) {
2127 // Checked when building locations.
2128 DCHECK_GE(src_pos_constant, dest_pos_constant);
2129 } else if (src_pos_constant < dest_pos_constant) {
2130 __ Cmp(src, dest);
2131 __ B(eq, intrinsic_slow_path->GetEntryLabel());
2132 }
2133
2134 // Checked when building locations.
2135 DCHECK(!optimizations.GetDestinationIsSource()
2136 || (src_pos_constant >= Int32ConstantFrom(dest_pos)));
2137 } else {
2138 if (!optimizations.GetDestinationIsSource()) {
2139 __ Cmp(src, dest);
Artem Serov517d9f62016-12-12 15:51:15 +00002140 __ B(ne, &conditions_on_positions_validated, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002141 }
2142 __ Cmp(RegisterFrom(dest_pos), src_pos_constant);
2143 __ B(gt, intrinsic_slow_path->GetEntryLabel());
2144 }
2145 } else {
2146 if (!optimizations.GetDestinationIsSource()) {
2147 __ Cmp(src, dest);
Artem Serov517d9f62016-12-12 15:51:15 +00002148 __ B(ne, &conditions_on_positions_validated, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002149 }
2150 if (dest_pos.IsConstant()) {
2151 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
2152 __ Cmp(RegisterFrom(src_pos), dest_pos_constant);
2153 } else {
2154 __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos));
2155 }
2156 __ B(lt, intrinsic_slow_path->GetEntryLabel());
2157 }
2158
2159 __ Bind(&conditions_on_positions_validated);
2160
2161 if (!optimizations.GetSourceIsNotNull()) {
2162 // Bail out if the source is null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002163 __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002164 }
2165
2166 if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
2167 // Bail out if the destination is null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002168 __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002169 }
2170
2171 // If the length is negative, bail out.
2172 // We have already checked in the LocationsBuilder for the constant case.
2173 if (!length.IsConstant() &&
2174 !optimizations.GetCountIsSourceLength() &&
2175 !optimizations.GetCountIsDestinationLength()) {
2176 __ Cmp(RegisterFrom(length), 0);
2177 __ B(lt, intrinsic_slow_path->GetEntryLabel());
2178 }
2179
2180 // Validity checks: source.
2181 CheckPosition(assembler,
2182 src_pos,
2183 src,
2184 length,
2185 intrinsic_slow_path,
2186 temp1,
2187 optimizations.GetCountIsSourceLength());
2188
2189 // Validity checks: dest.
2190 CheckPosition(assembler,
2191 dest_pos,
2192 dest,
2193 length,
2194 intrinsic_slow_path,
2195 temp1,
2196 optimizations.GetCountIsDestinationLength());
2197
2198 if (!optimizations.GetDoesNotNeedTypeCheck()) {
2199 // Check whether all elements of the source array are assignable to the component
2200 // type of the destination array. We do two checks: the classes are the same,
2201 // or the destination is Object[]. If none of these checks succeed, we go to the
2202 // slow path.
2203
2204 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2205 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2206 // /* HeapReference<Class> */ temp1 = src->klass_
2207 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2208 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
2209 // Bail out if the source is not a non primitive array.
2210 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2211 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2212 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002213 __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002214 // If heap poisoning is enabled, `temp1` has been unpoisoned
2215 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2216 // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
2217 __ Ldrh(temp1, MemOperand(temp1, primitive_offset));
2218 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002219 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002220 }
2221
2222 // /* HeapReference<Class> */ temp1 = dest->klass_
2223 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2224 invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false);
2225
2226 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
2227 // Bail out if the destination is not a non primitive array.
2228 //
2229 // Register `temp1` is not trashed by the read barrier emitted
2230 // by GenerateFieldLoadWithBakerReadBarrier below, as that
2231 // method produces a call to a ReadBarrierMarkRegX entry point,
2232 // which saves all potentially live registers, including
2233 // temporaries such a `temp1`.
2234 // /* HeapReference<Class> */ temp2 = temp1->component_type_
2235 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2236 invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002237 __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002238 // If heap poisoning is enabled, `temp2` has been unpoisoned
2239 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2240 // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
2241 __ Ldrh(temp2, MemOperand(temp2, primitive_offset));
2242 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002243 __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002244 }
2245
2246 // For the same reason given earlier, `temp1` is not trashed by the
2247 // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
2248 // /* HeapReference<Class> */ temp2 = src->klass_
2249 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2250 invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false);
2251 // Note: if heap poisoning is on, we are comparing two unpoisoned references here.
2252 __ Cmp(temp1, temp2);
2253
2254 if (optimizations.GetDestinationIsTypedObjectArray()) {
2255 vixl32::Label do_copy;
Artem Serov517d9f62016-12-12 15:51:15 +00002256 __ B(eq, &do_copy, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002257 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2258 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2259 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
2260 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2261 // We do not need to emit a read barrier for the following
2262 // heap reference load, as `temp1` is only used in a
2263 // comparison with null below, and this reference is not
2264 // kept afterwards.
2265 __ Ldr(temp1, MemOperand(temp1, super_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002266 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002267 __ Bind(&do_copy);
2268 } else {
2269 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2270 }
2271 } else {
2272 // Non read barrier code.
2273
2274 // /* HeapReference<Class> */ temp1 = dest->klass_
2275 __ Ldr(temp1, MemOperand(dest, class_offset));
2276 // /* HeapReference<Class> */ temp2 = src->klass_
2277 __ Ldr(temp2, MemOperand(src, class_offset));
2278 bool did_unpoison = false;
2279 if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
2280 !optimizations.GetSourceIsNonPrimitiveArray()) {
2281 // One or two of the references need to be unpoisoned. Unpoison them
2282 // both to make the identity check valid.
2283 assembler->MaybeUnpoisonHeapReference(temp1);
2284 assembler->MaybeUnpoisonHeapReference(temp2);
2285 did_unpoison = true;
2286 }
2287
2288 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
2289 // Bail out if the destination is not a non primitive array.
2290 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2291 __ Ldr(temp3, MemOperand(temp1, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002292 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002293 assembler->MaybeUnpoisonHeapReference(temp3);
2294 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2295 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2296 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002297 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002298 }
2299
2300 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2301 // Bail out if the source is not a non primitive array.
2302 // /* HeapReference<Class> */ temp3 = temp2->component_type_
2303 __ Ldr(temp3, MemOperand(temp2, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002304 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002305 assembler->MaybeUnpoisonHeapReference(temp3);
2306 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2307 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2308 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002309 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002310 }
2311
2312 __ Cmp(temp1, temp2);
2313
2314 if (optimizations.GetDestinationIsTypedObjectArray()) {
2315 vixl32::Label do_copy;
Artem Serov517d9f62016-12-12 15:51:15 +00002316 __ B(eq, &do_copy, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002317 if (!did_unpoison) {
2318 assembler->MaybeUnpoisonHeapReference(temp1);
2319 }
2320 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2321 __ Ldr(temp1, MemOperand(temp1, component_offset));
2322 assembler->MaybeUnpoisonHeapReference(temp1);
2323 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2324 __ Ldr(temp1, MemOperand(temp1, super_offset));
2325 // No need to unpoison the result, we're comparing against null.
xueliang.zhongf51bc622016-11-04 09:23:32 +00002326 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002327 __ Bind(&do_copy);
2328 } else {
2329 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2330 }
2331 }
2332 } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2333 DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
2334 // Bail out if the source is not a non primitive array.
2335 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2336 // /* HeapReference<Class> */ temp1 = src->klass_
2337 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2338 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
2339 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2340 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2341 invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
xueliang.zhongf51bc622016-11-04 09:23:32 +00002342 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002343 // If heap poisoning is enabled, `temp3` has been unpoisoned
2344 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2345 } else {
2346 // /* HeapReference<Class> */ temp1 = src->klass_
2347 __ Ldr(temp1, MemOperand(src, class_offset));
2348 assembler->MaybeUnpoisonHeapReference(temp1);
2349 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2350 __ Ldr(temp3, MemOperand(temp1, component_offset));
xueliang.zhongf51bc622016-11-04 09:23:32 +00002351 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002352 assembler->MaybeUnpoisonHeapReference(temp3);
2353 }
2354 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2355 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2356 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
xueliang.zhongf51bc622016-11-04 09:23:32 +00002357 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
Anton Kirilov5ec62182016-10-13 20:16:02 +01002358 }
2359
Roland Levillain1663d162017-03-17 15:15:21 +00002360 if (length.IsConstant() && Int32ConstantFrom(length) == 0) {
2361 // Null constant length: not need to emit the loop code at all.
Anton Kirilov5ec62182016-10-13 20:16:02 +01002362 } else {
Roland Levillain1663d162017-03-17 15:15:21 +00002363 vixl32::Label done;
2364 const Primitive::Type type = Primitive::kPrimNot;
2365 const int32_t element_size = Primitive::ComponentSize(type);
2366
2367 if (length.IsRegister()) {
2368 // Don't enter the copy loop if the length is null.
2369 __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002370 }
Roland Levillain1663d162017-03-17 15:15:21 +00002371
2372 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2373 // TODO: Also convert this intrinsic to the IsGcMarking strategy?
2374
2375 // SystemArrayCopy implementation for Baker read barriers (see
2376 // also CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier):
2377 //
2378 // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
2379 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
2380 // bool is_gray = (rb_state == ReadBarrier::GrayState());
2381 // if (is_gray) {
2382 // // Slow-path copy.
2383 // do {
2384 // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
2385 // } while (src_ptr != end_ptr)
2386 // } else {
2387 // // Fast-path copy.
2388 // do {
2389 // *dest_ptr++ = *src_ptr++;
2390 // } while (src_ptr != end_ptr)
2391 // }
2392
2393 // /* int32_t */ monitor = src->monitor_
2394 __ Ldr(temp2, MemOperand(src, monitor_offset));
2395 // /* LockWord */ lock_word = LockWord(monitor)
2396 static_assert(sizeof(LockWord) == sizeof(int32_t),
2397 "art::LockWord and int32_t have different sizes.");
2398
2399 // Introduce a dependency on the lock_word including the rb_state,
2400 // which shall prevent load-load reordering without using
2401 // a memory barrier (which would be more expensive).
2402 // `src` is unchanged by this operation, but its value now depends
2403 // on `temp2`.
2404 __ Add(src, src, Operand(temp2, vixl32::LSR, 32));
2405
2406 // Compute the base source address in `temp1`.
2407 // Note that `temp1` (the base source address) is computed from
2408 // `src` (and `src_pos`) here, and thus honors the artificial
2409 // dependency of `src` on `temp2`.
2410 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2411 // Compute the end source address in `temp3`.
2412 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2413 // The base destination address is computed later, as `temp2` is
2414 // used for intermediate computations.
2415
2416 // Slow path used to copy array when `src` is gray.
2417 // Note that the base destination address is computed in `temp2`
2418 // by the slow path code.
2419 SlowPathCodeARMVIXL* read_barrier_slow_path =
2420 new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke);
2421 codegen_->AddSlowPath(read_barrier_slow_path);
2422
2423 // Given the numeric representation, it's enough to check the low bit of the
2424 // rb_state. We do that by shifting the bit out of the lock word with LSRS
2425 // which can be a 16-bit instruction unlike the TST immediate.
2426 static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
2427 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
2428 __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
2429 // Carry flag is the last bit shifted out by LSRS.
2430 __ B(cs, read_barrier_slow_path->GetEntryLabel());
2431
2432 // Fast-path copy.
2433 // Compute the base destination address in `temp2`.
2434 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2435 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2436 // poison/unpoison.
2437 vixl32::Label loop;
2438 __ Bind(&loop);
2439 {
2440 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2441 const vixl32::Register temp_reg = temps.Acquire();
2442 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2443 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2444 }
2445 __ Cmp(temp1, temp3);
2446 __ B(ne, &loop, /* far_target */ false);
2447
2448 __ Bind(read_barrier_slow_path->GetExitLabel());
2449 } else {
2450 // Non read barrier code.
2451 // Compute the base source address in `temp1`.
2452 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2453 // Compute the base destination address in `temp2`.
2454 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2455 // Compute the end source address in `temp3`.
2456 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2457 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2458 // poison/unpoison.
2459 vixl32::Label loop;
2460 __ Bind(&loop);
2461 {
2462 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2463 const vixl32::Register temp_reg = temps.Acquire();
2464 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2465 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2466 }
2467 __ Cmp(temp1, temp3);
2468 __ B(ne, &loop, /* far_target */ false);
2469 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01002470 __ Bind(&done);
2471 }
2472
2473 // We only need one card marking on the destination array.
2474 codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* value_can_be_null */ false);
2475
2476 __ Bind(intrinsic_slow_path->GetExitLabel());
2477}
2478
2479static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2480 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2481 // the code generator. Furthermore, the register allocator creates fixed live intervals
2482 // for all caller-saved registers because we are doing a function call. As a result, if
2483 // the input and output locations are unallocated, the register allocator runs out of
2484 // registers and fails; however, a debuggable graph is not the common case.
2485 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2486 return;
2487 }
2488
2489 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2490 DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
2491 DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
2492
2493 LocationSummary* const locations = new (arena) LocationSummary(invoke,
2494 LocationSummary::kCallOnMainOnly,
2495 kIntrinsified);
2496 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2497
2498 locations->SetInAt(0, Location::RequiresFpuRegister());
2499 locations->SetOut(Location::RequiresFpuRegister());
2500 // Native code uses the soft float ABI.
2501 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2502 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2503}
2504
2505static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2506 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2507 // the code generator. Furthermore, the register allocator creates fixed live intervals
2508 // for all caller-saved registers because we are doing a function call. As a result, if
2509 // the input and output locations are unallocated, the register allocator runs out of
2510 // registers and fails; however, a debuggable graph is not the common case.
2511 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2512 return;
2513 }
2514
2515 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2516 DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
2517 DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble);
2518 DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
2519
2520 LocationSummary* const locations = new (arena) LocationSummary(invoke,
2521 LocationSummary::kCallOnMainOnly,
2522 kIntrinsified);
2523 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2524
2525 locations->SetInAt(0, Location::RequiresFpuRegister());
2526 locations->SetInAt(1, Location::RequiresFpuRegister());
2527 locations->SetOut(Location::RequiresFpuRegister());
2528 // Native code uses the soft float ABI.
2529 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2530 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2531 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
2532 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3)));
2533}
2534
2535static void GenFPToFPCall(HInvoke* invoke,
2536 ArmVIXLAssembler* assembler,
2537 CodeGeneratorARMVIXL* codegen,
2538 QuickEntrypointEnum entry) {
2539 LocationSummary* const locations = invoke->GetLocations();
2540
2541 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2542 DCHECK(locations->WillCall() && locations->Intrinsified());
2543
2544 // Native code uses the soft float ABI.
2545 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2546 RegisterFrom(locations->GetTemp(1)),
2547 InputDRegisterAt(invoke, 0));
2548 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2549 __ Vmov(OutputDRegister(invoke),
2550 RegisterFrom(locations->GetTemp(0)),
2551 RegisterFrom(locations->GetTemp(1)));
2552}
2553
2554static void GenFPFPToFPCall(HInvoke* invoke,
2555 ArmVIXLAssembler* assembler,
2556 CodeGeneratorARMVIXL* codegen,
2557 QuickEntrypointEnum entry) {
2558 LocationSummary* const locations = invoke->GetLocations();
2559
2560 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2561 DCHECK(locations->WillCall() && locations->Intrinsified());
2562
2563 // Native code uses the soft float ABI.
2564 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2565 RegisterFrom(locations->GetTemp(1)),
2566 InputDRegisterAt(invoke, 0));
2567 __ Vmov(RegisterFrom(locations->GetTemp(2)),
2568 RegisterFrom(locations->GetTemp(3)),
2569 InputDRegisterAt(invoke, 1));
2570 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2571 __ Vmov(OutputDRegister(invoke),
2572 RegisterFrom(locations->GetTemp(0)),
2573 RegisterFrom(locations->GetTemp(1)));
2574}
2575
2576void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) {
2577 CreateFPToFPCallLocations(arena_, invoke);
2578}
2579
2580void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) {
2581 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
2582}
2583
2584void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) {
2585 CreateFPToFPCallLocations(arena_, invoke);
2586}
2587
2588void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) {
2589 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
2590}
2591
2592void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) {
2593 CreateFPToFPCallLocations(arena_, invoke);
2594}
2595
2596void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) {
2597 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
2598}
2599
2600void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) {
2601 CreateFPToFPCallLocations(arena_, invoke);
2602}
2603
2604void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) {
2605 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
2606}
2607
2608void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) {
2609 CreateFPToFPCallLocations(arena_, invoke);
2610}
2611
2612void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) {
2613 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
2614}
2615
2616void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2617 CreateFPToFPCallLocations(arena_, invoke);
2618}
2619
2620void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2621 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
2622}
2623
2624void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) {
2625 CreateFPToFPCallLocations(arena_, invoke);
2626}
2627
2628void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) {
2629 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
2630}
2631
2632void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) {
2633 CreateFPToFPCallLocations(arena_, invoke);
2634}
2635
2636void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) {
2637 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
2638}
2639
2640void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2641 CreateFPToFPCallLocations(arena_, invoke);
2642}
2643
2644void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2645 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
2646}
2647
2648void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) {
2649 CreateFPToFPCallLocations(arena_, invoke);
2650}
2651
2652void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) {
2653 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
2654}
2655
2656void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) {
2657 CreateFPToFPCallLocations(arena_, invoke);
2658}
2659
2660void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) {
2661 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
2662}
2663
2664void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) {
2665 CreateFPToFPCallLocations(arena_, invoke);
2666}
2667
2668void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) {
2669 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
2670}
2671
2672void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) {
2673 CreateFPToFPCallLocations(arena_, invoke);
2674}
2675
2676void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) {
2677 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
2678}
2679
2680void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) {
2681 CreateFPToFPCallLocations(arena_, invoke);
2682}
2683
2684void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) {
2685 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
2686}
2687
2688void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2689 CreateFPFPToFPCallLocations(arena_, invoke);
2690}
2691
2692void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2693 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
2694}
2695
2696void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) {
2697 CreateFPFPToFPCallLocations(arena_, invoke);
2698}
2699
2700void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) {
2701 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
2702}
2703
2704void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2705 CreateFPFPToFPCallLocations(arena_, invoke);
2706}
2707
2708void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2709 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
2710}
2711
2712void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2713 CreateIntToIntLocations(arena_, invoke);
2714}
2715
2716void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2717 ArmVIXLAssembler* assembler = GetAssembler();
2718 __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2719}
2720
2721void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) {
2722 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2723 LocationSummary::kNoCall,
2724 kIntrinsified);
2725 locations->SetInAt(0, Location::RequiresRegister());
2726 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2727}
2728
2729void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) {
2730 ArmVIXLAssembler* assembler = GetAssembler();
2731 LocationSummary* locations = invoke->GetLocations();
2732
2733 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2734 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2735 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2736 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2737
2738 __ Rbit(out_reg_lo, in_reg_hi);
2739 __ Rbit(out_reg_hi, in_reg_lo);
2740}
2741
2742void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2743 CreateIntToIntLocations(arena_, invoke);
2744}
2745
2746void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2747 ArmVIXLAssembler* assembler = GetAssembler();
2748 __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2749}
2750
2751void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
2752 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2753 LocationSummary::kNoCall,
2754 kIntrinsified);
2755 locations->SetInAt(0, Location::RequiresRegister());
2756 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2757}
2758
2759void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
2760 ArmVIXLAssembler* assembler = GetAssembler();
2761 LocationSummary* locations = invoke->GetLocations();
2762
2763 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2764 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2765 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2766 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2767
2768 __ Rev(out_reg_lo, in_reg_hi);
2769 __ Rev(out_reg_hi, in_reg_lo);
2770}
2771
2772void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2773 CreateIntToIntLocations(arena_, invoke);
2774}
2775
2776void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2777 ArmVIXLAssembler* assembler = GetAssembler();
2778 __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2779}
2780
2781static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmVIXLAssembler* assembler) {
2782 DCHECK(Primitive::IsIntOrLongType(type)) << type;
2783 DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
2784 DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
2785
2786 bool is_long = type == Primitive::kPrimLong;
2787 LocationSummary* locations = instr->GetLocations();
2788 Location in = locations->InAt(0);
2789 vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in);
2790 vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0;
2791 vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0));
2792 vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0));
2793 vixl32::Register out_r = OutputRegister(instr);
2794
2795 // Move data from core register(s) to temp D-reg for bit count calculation, then move back.
2796 // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
2797 // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
2798 // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
2799 __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
2800 __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
2801 __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c|
2802 __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c|
2803 if (is_long) {
2804 __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c|
2805 }
2806 __ Vmov(out_r, tmp_s);
2807}
2808
2809void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2810 CreateIntToIntLocations(arena_, invoke);
2811 invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
2812}
2813
2814void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2815 GenBitCount(invoke, Primitive::kPrimInt, GetAssembler());
2816}
2817
2818void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2819 VisitIntegerBitCount(invoke);
2820}
2821
2822void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2823 GenBitCount(invoke, Primitive::kPrimLong, GetAssembler());
2824}
2825
2826void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2827 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2828 LocationSummary::kNoCall,
2829 kIntrinsified);
2830 locations->SetInAt(0, Location::RequiresRegister());
2831 locations->SetInAt(1, Location::RequiresRegister());
2832 locations->SetInAt(2, Location::RequiresRegister());
2833 locations->SetInAt(3, Location::RequiresRegister());
2834 locations->SetInAt(4, Location::RequiresRegister());
2835
2836 // Temporary registers to store lengths of strings and for calculations.
2837 locations->AddTemp(Location::RequiresRegister());
2838 locations->AddTemp(Location::RequiresRegister());
2839 locations->AddTemp(Location::RequiresRegister());
2840}
2841
2842void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2843 ArmVIXLAssembler* assembler = GetAssembler();
2844 LocationSummary* locations = invoke->GetLocations();
2845
2846 // Check assumption that sizeof(Char) is 2 (used in scaling below).
2847 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
2848 DCHECK_EQ(char_size, 2u);
2849
2850 // Location of data in char array buffer.
2851 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
2852
2853 // Location of char array data in string.
2854 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
2855
2856 // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
2857 // Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
2858 vixl32::Register srcObj = InputRegisterAt(invoke, 0);
2859 vixl32::Register srcBegin = InputRegisterAt(invoke, 1);
2860 vixl32::Register srcEnd = InputRegisterAt(invoke, 2);
2861 vixl32::Register dstObj = InputRegisterAt(invoke, 3);
2862 vixl32::Register dstBegin = InputRegisterAt(invoke, 4);
2863
2864 vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0));
2865 vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1));
2866 vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2));
2867
2868 vixl32::Label done, compressed_string_loop;
Anton Kirilov6f644202017-02-27 18:29:45 +00002869 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002870 // dst to be copied.
2871 __ Add(dst_ptr, dstObj, data_offset);
2872 __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1));
2873
2874 __ Subs(num_chr, srcEnd, srcBegin);
2875 // Early out for valid zero-length retrievals.
Anton Kirilov6f644202017-02-27 18:29:45 +00002876 __ B(eq, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002877
2878 // src range to copy.
2879 __ Add(src_ptr, srcObj, value_offset);
2880
2881 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2882 vixl32::Register temp;
2883 vixl32::Label compressed_string_preloop;
2884 if (mirror::kUseStringCompression) {
2885 // Location of count in string.
2886 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2887 temp = temps.Acquire();
2888 // String's length.
2889 __ Ldr(temp, MemOperand(srcObj, count_offset));
Vladimir Markofdaf0f42016-10-13 19:29:53 +01002890 __ Tst(temp, 1);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002891 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00002892 __ B(eq, &compressed_string_preloop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002893 }
2894 __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1));
2895
2896 // Do the copy.
2897 vixl32::Label loop, remainder;
2898
2899 temp = temps.Acquire();
2900 // Save repairing the value of num_chr on the < 4 character path.
2901 __ Subs(temp, num_chr, 4);
Artem Serov517d9f62016-12-12 15:51:15 +00002902 __ B(lt, &remainder, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002903
2904 // Keep the result of the earlier subs, we are going to fetch at least 4 characters.
2905 __ Mov(num_chr, temp);
2906
2907 // Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
2908 // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
2909 // to rectify these everywhere this intrinsic applies.)
2910 __ Bind(&loop);
2911 __ Ldr(temp, MemOperand(src_ptr, char_size * 2));
2912 __ Subs(num_chr, num_chr, 4);
2913 __ Str(temp, MemOperand(dst_ptr, char_size * 2));
2914 __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex));
2915 __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex));
2916 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00002917 __ B(ge, &loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002918
2919 __ Adds(num_chr, num_chr, 4);
Anton Kirilov6f644202017-02-27 18:29:45 +00002920 __ B(eq, final_label, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002921
2922 // Main loop for < 4 character case and remainder handling. Loads and stores one
2923 // 16-bit Java character at a time.
2924 __ Bind(&remainder);
2925 temp = temps.Acquire();
2926 __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex));
2927 __ Subs(num_chr, num_chr, 1);
2928 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
2929 temps.Release(temp);
Artem Serov517d9f62016-12-12 15:51:15 +00002930 __ B(gt, &remainder, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002931
2932 if (mirror::kUseStringCompression) {
Anton Kirilov6f644202017-02-27 18:29:45 +00002933 __ B(final_label);
Vladimir Markofdaf0f42016-10-13 19:29:53 +01002934
Anton Kirilov5ec62182016-10-13 20:16:02 +01002935 const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
2936 DCHECK_EQ(c_char_size, 1u);
2937 // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
2938 __ Bind(&compressed_string_preloop);
2939 __ Add(src_ptr, src_ptr, srcBegin);
2940 __ Bind(&compressed_string_loop);
2941 temp = temps.Acquire();
2942 __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex));
2943 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
2944 temps.Release(temp);
2945 __ Subs(num_chr, num_chr, 1);
Artem Serov517d9f62016-12-12 15:51:15 +00002946 __ B(gt, &compressed_string_loop, /* far_target */ false);
Anton Kirilov5ec62182016-10-13 20:16:02 +01002947 }
2948
Anton Kirilov6f644202017-02-27 18:29:45 +00002949 if (done.IsReferenced()) {
2950 __ Bind(&done);
2951 }
Anton Kirilov5ec62182016-10-13 20:16:02 +01002952}
2953
2954void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
2955 CreateFPToIntLocations(arena_, invoke);
2956}
2957
2958void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
2959 ArmVIXLAssembler* const assembler = GetAssembler();
2960 const vixl32::Register out = OutputRegister(invoke);
2961 // Shifting left by 1 bit makes the value encodable as an immediate operand;
2962 // we don't care about the sign bit anyway.
2963 constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
2964
2965 __ Vmov(out, InputSRegisterAt(invoke, 0));
2966 // We don't care about the sign bit, so shift left.
2967 __ Lsl(out, out, 1);
2968 __ Eor(out, out, infinity);
2969 // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
2970 __ Clz(out, out);
2971 // Any number less than 32 logically shifted right by 5 bits results in 0;
2972 // the same operation on 32 yields 1.
2973 __ Lsr(out, out, 5);
2974}
2975
2976void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
2977 CreateFPToIntLocations(arena_, invoke);
2978}
2979
2980void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
2981 ArmVIXLAssembler* const assembler = GetAssembler();
2982 const vixl32::Register out = OutputRegister(invoke);
2983 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2984 const vixl32::Register temp = temps.Acquire();
2985 // The highest 32 bits of double precision positive infinity separated into
2986 // two constants encodable as immediate operands.
2987 constexpr uint32_t infinity_high = 0x7f000000U;
2988 constexpr uint32_t infinity_high2 = 0x00f00000U;
2989
2990 static_assert((infinity_high | infinity_high2) ==
2991 static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
2992 "The constants do not add up to the high 32 bits of double "
2993 "precision positive infinity.");
2994 __ Vmov(temp, out, InputDRegisterAt(invoke, 0));
2995 __ Eor(out, out, infinity_high);
2996 __ Eor(out, out, infinity_high2);
2997 // We don't care about the sign bit, so shift left.
2998 __ Orr(out, temp, Operand(out, vixl32::LSL, 1));
2999 // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
3000 __ Clz(out, out);
3001 // Any number less than 32 logically shifted right by 5 bits results in 0;
3002 // the same operation on 32 yields 1.
3003 __ Lsr(out, out, 5);
3004}
3005
TatWai Chongd8c052a2016-11-02 16:12:48 +08003006void IntrinsicLocationsBuilderARMVIXL::VisitReferenceGetReferent(HInvoke* invoke) {
3007 if (kEmitCompilerReadBarrier) {
3008 // Do not intrinsify this call with the read barrier configuration.
3009 return;
3010 }
3011 LocationSummary* locations = new (arena_) LocationSummary(invoke,
3012 LocationSummary::kCallOnSlowPath,
3013 kIntrinsified);
3014 locations->SetInAt(0, Location::RequiresRegister());
3015 locations->SetOut(Location::SameAsFirstInput());
3016 locations->AddTemp(Location::RequiresRegister());
3017}
3018
3019void IntrinsicCodeGeneratorARMVIXL::VisitReferenceGetReferent(HInvoke* invoke) {
3020 DCHECK(!kEmitCompilerReadBarrier);
3021 ArmVIXLAssembler* assembler = GetAssembler();
3022 LocationSummary* locations = invoke->GetLocations();
3023
3024 vixl32::Register obj = InputRegisterAt(invoke, 0);
3025 vixl32::Register out = OutputRegister(invoke);
3026
3027 SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
3028 codegen_->AddSlowPath(slow_path);
3029
3030 // Load ArtMethod first.
3031 HInvokeStaticOrDirect* invoke_direct = invoke->AsInvokeStaticOrDirect();
3032 DCHECK(invoke_direct != nullptr);
3033 vixl32::Register temp0 = RegisterFrom(codegen_->GenerateCalleeMethodStaticOrDirectCall(
3034 invoke_direct, locations->GetTemp(0)));
3035
3036 // Now get declaring class.
3037 __ Ldr(temp0, MemOperand(temp0, ArtMethod::DeclaringClassOffset().Int32Value()));
3038
3039 uint32_t slow_path_flag_offset = codegen_->GetReferenceSlowFlagOffset();
3040 uint32_t disable_flag_offset = codegen_->GetReferenceDisableFlagOffset();
3041 DCHECK_NE(slow_path_flag_offset, 0u);
3042 DCHECK_NE(disable_flag_offset, 0u);
3043 DCHECK_NE(slow_path_flag_offset, disable_flag_offset);
3044
3045 // Check static flags that prevent using intrinsic.
3046 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3047 vixl32::Register temp1 = temps.Acquire();
3048 __ Ldr(temp1, MemOperand(temp0, disable_flag_offset));
3049 __ Ldr(temp0, MemOperand(temp0, slow_path_flag_offset));
3050 __ Orr(temp0, temp1, temp0);
3051 __ CompareAndBranchIfNonZero(temp0, slow_path->GetEntryLabel());
3052
3053 // Fast path.
3054 __ Ldr(out, MemOperand(obj, mirror::Reference::ReferentOffset().Int32Value()));
3055 codegen_->MaybeRecordImplicitNullCheck(invoke);
3056 assembler->MaybeUnpoisonHeapReference(out);
3057 __ Bind(slow_path->GetExitLabel());
3058}
3059
Artem Serov9aee2d42017-01-06 15:58:31 +00003060void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) {
3061 if (features_.HasARMv8AInstructions()) {
3062 CreateFPToFPLocations(arena_, invoke);
3063 }
3064}
3065
3066void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) {
3067 ArmVIXLAssembler* assembler = GetAssembler();
3068 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
3069 __ Vrintp(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
3070}
3071
3072void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) {
3073 if (features_.HasARMv8AInstructions()) {
3074 CreateFPToFPLocations(arena_, invoke);
3075 }
3076}
3077
3078void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) {
3079 ArmVIXLAssembler* assembler = GetAssembler();
3080 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
3081 __ Vrintm(F64, F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
3082}
3083
Nicolas Geoffray331605a2017-03-01 11:01:41 +00003084void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
3085 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3086 IntrinsicVisitor::ComputeIntegerValueOfLocations(
3087 invoke,
3088 codegen_,
3089 LocationFrom(r0),
3090 LocationFrom(calling_convention.GetRegisterAt(0)));
3091}
3092
3093void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
3094 IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
3095 LocationSummary* locations = invoke->GetLocations();
3096 ArmVIXLAssembler* const assembler = GetAssembler();
3097
3098 vixl32::Register out = RegisterFrom(locations->Out());
3099 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
3100 vixl32::Register temp = temps.Acquire();
3101 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3102 vixl32::Register argument = calling_convention.GetRegisterAt(0);
3103 if (invoke->InputAt(0)->IsConstant()) {
3104 int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
3105 if (value >= info.low && value <= info.high) {
3106 // Just embed the j.l.Integer in the code.
3107 ScopedObjectAccess soa(Thread::Current());
3108 mirror::Object* boxed = info.cache->Get(value + (-info.low));
3109 DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
3110 uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
3111 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
3112 } else {
3113 // Allocate and initialize a new j.l.Integer.
3114 // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
3115 // JIT object table.
3116 uint32_t address =
3117 dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3118 __ Ldr(argument, codegen_->DeduplicateBootImageAddressLiteral(address));
3119 codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3120 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3121 __ Mov(temp, value);
3122 assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset);
3123 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3124 // one.
3125 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3126 }
3127 } else {
3128 vixl32::Register in = RegisterFrom(locations->InAt(0));
3129 // Check bounds of our cache.
3130 __ Add(out, in, -info.low);
3131 __ Cmp(out, info.high - info.low + 1);
3132 vixl32::Label allocate, done;
3133 __ B(hs, &allocate);
3134 // If the value is within the bounds, load the j.l.Integer directly from the array.
3135 uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3136 uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
3137 __ Ldr(temp, codegen_->DeduplicateBootImageAddressLiteral(data_offset + address));
3138 codegen_->LoadFromShiftedRegOffset(Primitive::kPrimNot, locations->Out(), temp, out);
3139 assembler->MaybeUnpoisonHeapReference(out);
3140 __ B(&done);
3141 __ Bind(&allocate);
3142 // Otherwise allocate and initialize a new j.l.Integer.
3143 address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3144 __ Ldr(argument, codegen_->DeduplicateBootImageAddressLiteral(address));
3145 codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3146 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3147 assembler->StoreToOffset(kStoreWord, in, out, info.value_offset);
3148 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3149 // one.
3150 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3151 __ Bind(&done);
3152 }
3153}
3154
Anton Kirilov5ec62182016-10-13 20:16:02 +01003155UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe?
Anton Kirilov5ec62182016-10-13 20:16:02 +01003156UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure.
3157UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar)
Anton Kirilov5ec62182016-10-13 20:16:02 +01003158UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerHighestOneBit)
3159UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongHighestOneBit)
3160UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerLowestOneBit)
3161UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongLowestOneBit)
3162
Aart Bikff7d89c2016-11-07 08:49:28 -08003163UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf);
3164UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter);
Aart Bik71bf7b42016-11-16 10:17:46 -08003165UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend);
3166UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength);
3167UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString);
3168UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppend);
3169UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength);
3170UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString);
Aart Bikff7d89c2016-11-07 08:49:28 -08003171
Anton Kirilov5ec62182016-10-13 20:16:02 +01003172// 1.8.
3173UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt)
3174UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong)
3175UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt)
3176UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong)
3177UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject)
3178
3179UNREACHABLE_INTRINSICS(ARMVIXL)
3180
3181#undef __
3182
3183} // namespace arm
3184} // namespace art