ARM: VIXL32: Implement intrinsics.
Test: ART_USE_VIXL_ARM_BACKEND=true m test-art-host
Test: ART_USE_VIXL_ARM_BACKEND=true m test-art-target
Change-Id: I64397a0c4fd40fd7cd0049929fcce98b935d0372
diff --git a/compiler/optimizing/intrinsics_arm_vixl.cc b/compiler/optimizing/intrinsics_arm_vixl.cc
new file mode 100644
index 0000000..2e37a00
--- /dev/null
+++ b/compiler/optimizing/intrinsics_arm_vixl.cc
@@ -0,0 +1,2695 @@
+/*
+ * Copyright (C) 2016 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "intrinsics_arm_vixl.h"
+
+#include "arch/arm/instruction_set_features_arm.h"
+#include "code_generator_arm_vixl.h"
+#include "common_arm.h"
+#include "lock_word.h"
+#include "mirror/array-inl.h"
+
+#include "aarch32/constants-aarch32.h"
+
+namespace art {
+namespace arm {
+
+#define __ assembler->GetVIXLAssembler()->
+
+using helpers::DRegisterFrom;
+using helpers::HighRegisterFrom;
+using helpers::InputDRegisterAt;
+using helpers::InputRegisterAt;
+using helpers::InputSRegisterAt;
+using helpers::InputVRegisterAt;
+using helpers::Int32ConstantFrom;
+using helpers::LocationFrom;
+using helpers::LowRegisterFrom;
+using helpers::LowSRegisterFrom;
+using helpers::OutputDRegister;
+using helpers::OutputRegister;
+using helpers::OutputVRegister;
+using helpers::RegisterFrom;
+using helpers::SRegisterFrom;
+
+using namespace vixl::aarch32; // NOLINT(build/namespaces)
+
+ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() {
+ return codegen_->GetAssembler();
+}
+
+ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() {
+ return codegen_->GetGraph()->GetArena();
+}
+
+// Default slow-path for fallback (calling the managed code to handle the intrinsic) in an
+// intrinsified call. This will copy the arguments into the positions for a regular call.
+//
+// Note: The actual parameters are required to be in the locations given by the invoke's location
+// summary. If an intrinsic modifies those locations before a slowpath call, they must be
+// restored!
+//
+// Note: If an invoke wasn't sharpened, we will put down an invoke-virtual here. That's potentially
+// sub-optimal (compared to a direct pointer call), but this is a slow-path.
+
+class IntrinsicSlowPathARMVIXL : public SlowPathCodeARMVIXL {
+ public:
+ explicit IntrinsicSlowPathARMVIXL(HInvoke* invoke)
+ : SlowPathCodeARMVIXL(invoke), invoke_(invoke) {}
+
+ Location MoveArguments(CodeGenerator* codegen) {
+ InvokeDexCallingConventionVisitorARM calling_convention_visitor;
+ IntrinsicVisitor::MoveArguments(invoke_, codegen, &calling_convention_visitor);
+ return calling_convention_visitor.GetMethodLocation();
+ }
+
+ void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
+ ArmVIXLAssembler* assembler = down_cast<ArmVIXLAssembler*>(codegen->GetAssembler());
+ __ Bind(GetEntryLabel());
+
+ SaveLiveRegisters(codegen, invoke_->GetLocations());
+
+ Location method_loc = MoveArguments(codegen);
+
+ if (invoke_->IsInvokeStaticOrDirect()) {
+ codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(), method_loc);
+ } else {
+ codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), method_loc);
+ }
+ codegen->RecordPcInfo(invoke_, invoke_->GetDexPc(), this);
+
+ // Copy the result back to the expected output.
+ Location out = invoke_->GetLocations()->Out();
+ if (out.IsValid()) {
+ DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
+ DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
+ codegen->MoveFromReturnRegister(out, invoke_->GetType());
+ }
+
+ RestoreLiveRegisters(codegen, invoke_->GetLocations());
+ __ B(GetExitLabel());
+ }
+
+ const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPath"; }
+
+ private:
+ // The instruction where this slow path is happening.
+ HInvoke* const invoke_;
+
+ DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARMVIXL);
+};
+
+// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
+class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL {
+ public:
+ explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction)
+ : SlowPathCodeARMVIXL(instruction) {
+ DCHECK(kEmitCompilerReadBarrier);
+ DCHECK(kUseBakerReadBarrier);
+ }
+
+ void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
+ CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
+ ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
+ LocationSummary* locations = instruction_->GetLocations();
+ DCHECK(locations->CanCall());
+ DCHECK(instruction_->IsInvokeStaticOrDirect())
+ << "Unexpected instruction in read barrier arraycopy slow path: "
+ << instruction_->DebugName();
+ DCHECK(instruction_->GetLocations()->Intrinsified());
+ DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
+
+ int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
+ uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
+ uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
+
+ vixl32::Register dest = InputRegisterAt(instruction_, 2);
+ Location dest_pos = locations->InAt(3);
+ vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2));
+ vixl32::Register tmp = RegisterFrom(locations->GetTemp(3));
+
+ __ Bind(GetEntryLabel());
+ // Compute the base destination address in `dst_curr_addr`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(dst_curr_addr, dest, element_size * constant + offset);
+ } else {
+ __ Add(dst_curr_addr,
+ dest,
+ Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(dst_curr_addr, dst_curr_addr, offset);
+ }
+
+ vixl32::Label loop;
+ __ Bind(&loop);
+ __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
+ assembler->MaybeUnpoisonHeapReference(tmp);
+ // TODO: Inline the mark bit check before calling the runtime?
+ // tmp = ReadBarrier::Mark(tmp);
+ // No need to save live registers; it's taken care of by the
+ // entrypoint. Also, there is no need to update the stack mask,
+ // as this runtime call will not trigger a garbage collection.
+ // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
+ // explanations.)
+ DCHECK(!tmp.IsSP());
+ DCHECK(!tmp.IsLR());
+ DCHECK(!tmp.IsPC());
+ // IP is used internally by the ReadBarrierMarkRegX entry point
+ // as a temporary (and not preserved). It thus cannot be used by
+ // any live register in this slow path.
+ DCHECK(!src_curr_addr.Is(ip));
+ DCHECK(!dst_curr_addr.Is(ip));
+ DCHECK(!src_stop_addr.Is(ip));
+ DCHECK(!tmp.Is(ip));
+ DCHECK(tmp.IsRegister()) << tmp;
+ int32_t entry_point_offset =
+ CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode());
+ // This runtime call does not require a stack map.
+ arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
+ assembler->MaybePoisonHeapReference(tmp);
+ __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
+ __ Cmp(src_curr_addr, src_stop_addr);
+ __ B(ne, &loop);
+ __ B(GetExitLabel());
+ }
+
+ const char* GetDescription() const OVERRIDE {
+ return "ReadBarrierSystemArrayCopySlowPathARMVIXL";
+ }
+
+ private:
+ DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL);
+};
+
+IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen)
+ : arena_(codegen->GetGraph()->GetArena()),
+ assembler_(codegen->GetAssembler()),
+ features_(codegen->GetInstructionSetFeatures()) {}
+
+bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) {
+ Dispatch(invoke);
+ LocationSummary* res = invoke->GetLocations();
+ if (res == nullptr) {
+ return false;
+ }
+ return res->Intrinsified();
+}
+
+static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresRegister());
+}
+
+static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+}
+
+static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
+ Location input = locations->InAt(0);
+ Location output = locations->Out();
+ if (is64bit) {
+ __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input));
+ } else {
+ __ Vmov(RegisterFrom(output), SRegisterFrom(input));
+ }
+}
+
+static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
+ Location input = locations->InAt(0);
+ Location output = locations->Out();
+ if (is64bit) {
+ __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input));
+ } else {
+ __ Vmov(SRegisterFrom(output), RegisterFrom(input));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
+ CreateIntToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
+ MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
+ MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
+ CreateIntToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
+ MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
+ MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+
+static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
+}
+
+static void GenNumberOfLeadingZeros(LocationSummary* locations,
+ Primitive::Type type,
+ ArmVIXLAssembler* assembler) {
+ Location in = locations->InAt(0);
+ vixl32::Register out = RegisterFrom(locations->Out());
+
+ DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(in);
+ vixl32::Register in_reg_hi = HighRegisterFrom(in);
+ vixl32::Label end;
+ __ Clz(out, in_reg_hi);
+ __ Cbnz(in_reg_hi, &end);
+ __ Clz(out, in_reg_lo);
+ __ Add(out, out, 32);
+ __ Bind(&end);
+ } else {
+ __ Clz(out, RegisterFrom(in));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
+ GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
+ GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
+}
+
+static void GenNumberOfTrailingZeros(LocationSummary* locations,
+ Primitive::Type type,
+ ArmVIXLAssembler* assembler) {
+ DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
+
+ vixl32::Register out = RegisterFrom(locations->Out());
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Label end;
+ __ Rbit(out, in_reg_lo);
+ __ Clz(out, out);
+ __ Cbnz(in_reg_lo, &end);
+ __ Rbit(out, in_reg_hi);
+ __ Clz(out, out);
+ __ Add(out, out, 32);
+ __ Bind(&end);
+ } else {
+ vixl32::Register in = RegisterFrom(locations->InAt(0));
+ __ Rbit(out, in);
+ __ Clz(out, out);
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
+ GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
+ GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
+}
+
+static void MathAbsFP(HInvoke* invoke, ArmVIXLAssembler* assembler) {
+ __ Vabs(OutputVRegister(invoke), InputVRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsDouble(HInvoke* invoke) {
+ MathAbsFP(invoke, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsFloat(HInvoke* invoke) {
+ MathAbsFP(invoke, GetAssembler());
+}
+
+static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+
+ locations->AddTemp(Location::RequiresRegister());
+}
+
+static void GenAbsInteger(LocationSummary* locations,
+ bool is64bit,
+ ArmVIXLAssembler* assembler) {
+ Location in = locations->InAt(0);
+ Location output = locations->Out();
+
+ vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
+
+ if (is64bit) {
+ vixl32::Register in_reg_lo = LowRegisterFrom(in);
+ vixl32::Register in_reg_hi = HighRegisterFrom(in);
+ vixl32::Register out_reg_lo = LowRegisterFrom(output);
+ vixl32::Register out_reg_hi = HighRegisterFrom(output);
+
+ DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
+
+ __ Asr(mask, in_reg_hi, 31);
+ __ Adds(out_reg_lo, in_reg_lo, mask);
+ __ Adc(out_reg_hi, in_reg_hi, mask);
+ __ Eor(out_reg_lo, mask, out_reg_lo);
+ __ Eor(out_reg_hi, mask, out_reg_hi);
+ } else {
+ vixl32::Register in_reg = RegisterFrom(in);
+ vixl32::Register out_reg = RegisterFrom(output);
+
+ __ Asr(mask, in_reg, 31);
+ __ Add(out_reg, in_reg, mask);
+ __ Eor(out_reg, mask, out_reg);
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
+ CreateIntToIntPlusTemp(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsInt(HInvoke* invoke) {
+ GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
+}
+
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
+ CreateIntToIntPlusTemp(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAbsLong(HInvoke* invoke) {
+ GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
+}
+
+static void GenMinMax(HInvoke* invoke, bool is_min, ArmVIXLAssembler* assembler) {
+ vixl32::Register op1 = InputRegisterAt(invoke, 0);
+ vixl32::Register op2 = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ __ Cmp(op1, op2);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 3 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ ite(is_min ? lt : gt);
+ __ mov(is_min ? lt : gt, out, op1);
+ __ mov(is_min ? ge : le, out, op2);
+ }
+}
+
+static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
+ CreateIntIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathMinIntInt(HInvoke* invoke) {
+ GenMinMax(invoke, /* is_min */ true, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
+ CreateIntIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathMaxIntInt(HInvoke* invoke) {
+ GenMinMax(invoke, /* is_min */ false, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) {
+ CreateFPToFPLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldrsb(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldr(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
+ // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
+ // exception. So we can't use ldrd as addr may be unaligned.
+ vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out());
+ vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out());
+ if (addr.Is(lo)) {
+ __ Ldr(hi, MemOperand(addr, 4));
+ __ Ldr(lo, addr);
+ } else {
+ __ Ldr(lo, addr);
+ __ Ldr(hi, MemOperand(addr, 4));
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ __ Ldrsh(OutputRegister(invoke), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Strb(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Str(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ // Ignore upper 4B of long address.
+ vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
+ // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
+ // exception. So we can't use ldrd as addr may be unaligned.
+ __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), addr);
+ __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
+ CreateIntIntToVoidLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Strh(InputRegisterAt(invoke, 1), LowRegisterFrom(invoke->GetLocations()->InAt(0)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetOut(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Ldr(OutputRegister(invoke),
+ MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value()));
+}
+
+static void GenUnsafeGet(HInvoke* invoke,
+ Primitive::Type type,
+ bool is_volatile,
+ CodeGeneratorARMVIXL* codegen) {
+ LocationSummary* locations = invoke->GetLocations();
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+ Location base_loc = locations->InAt(1);
+ vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
+ Location offset_loc = locations->InAt(2);
+ vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only.
+ Location trg_loc = locations->Out();
+
+ switch (type) {
+ case Primitive::kPrimInt: {
+ vixl32::Register trg = RegisterFrom(trg_loc);
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ break;
+ }
+
+ case Primitive::kPrimNot: {
+ vixl32::Register trg = RegisterFrom(trg_loc);
+ if (kEmitCompilerReadBarrier) {
+ if (kUseBakerReadBarrier) {
+ Location temp = locations->GetTemp(0);
+ codegen->GenerateReferenceLoadWithBakerReadBarrier(
+ invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false);
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ } else {
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
+ }
+ } else {
+ __ Ldr(trg, MemOperand(base, offset));
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ assembler->MaybeUnpoisonHeapReference(trg);
+ }
+ break;
+ }
+
+ case Primitive::kPrimLong: {
+ vixl32::Register trg_lo = LowRegisterFrom(trg_loc);
+ vixl32::Register trg_hi = HighRegisterFrom(trg_loc);
+ if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
+ __ Ldrexd(trg_lo, trg_hi, MemOperand(base, offset));
+ } else {
+ __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset));
+ }
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+ break;
+ }
+
+ default:
+ LOG(FATAL) << "Unexpected type " << type;
+ UNREACHABLE();
+ }
+}
+
+static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
+ HInvoke* invoke,
+ Primitive::Type type) {
+ bool can_call = kEmitCompilerReadBarrier &&
+ (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
+ invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ (can_call
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall),
+ kIntrinsified);
+ if (can_call && kUseBakerReadBarrier) {
+ locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
+ }
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(),
+ (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
+ if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // We need a temporary register for the read barrier marking slow
+ // path in InstructionCodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier.
+ locations->AddTemp(Location::RequiresRegister());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
+ CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
+ GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
+}
+
+static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
+ const ArmInstructionSetFeatures& features,
+ Primitive::Type type,
+ bool is_volatile,
+ HInvoke* invoke) {
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+
+ if (type == Primitive::kPrimLong) {
+ // Potentially need temps for ldrexd-strexd loop.
+ if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
+ locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
+ locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
+ }
+ } else if (type == Primitive::kPrimNot) {
+ // Temps for card-marking.
+ locations->AddTemp(Location::RequiresRegister()); // Temp.
+ locations->AddTemp(Location::RequiresRegister()); // Card.
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
+ CreateIntIntIntIntToVoid(
+ arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
+}
+
+static void GenUnsafePut(LocationSummary* locations,
+ Primitive::Type type,
+ bool is_volatile,
+ bool is_ordered,
+ CodeGeneratorARMVIXL* codegen) {
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+
+ vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer.
+ vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only.
+ vixl32::Register value;
+
+ if (is_volatile || is_ordered) {
+ __ Dmb(vixl32::ISH);
+ }
+
+ if (type == Primitive::kPrimLong) {
+ vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3));
+ vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3));
+ value = value_lo;
+ if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
+ vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1));
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Add(temp_reg, base, offset);
+ vixl32::Label loop_head;
+ __ Bind(&loop_head);
+ __ Ldrexd(temp_lo, temp_hi, temp_reg);
+ __ Strexd(temp_lo, value_lo, value_hi, temp_reg);
+ __ Cmp(temp_lo, 0);
+ __ B(ne, &loop_head);
+ } else {
+ __ Strd(value_lo, value_hi, MemOperand(base, offset));
+ }
+ } else {
+ value = RegisterFrom(locations->InAt(3));
+ vixl32::Register source = value;
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ __ Mov(temp, value);
+ assembler->PoisonHeapReference(temp);
+ source = temp;
+ }
+ __ Str(source, MemOperand(base, offset));
+ }
+
+ if (is_volatile) {
+ __ Dmb(vixl32::ISH);
+ }
+
+ if (type == Primitive::kPrimNot) {
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register card = RegisterFrom(locations->GetTemp(1));
+ bool value_can_be_null = true; // TODO: Worth finding out this information?
+ codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
+ }
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimInt,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimNot,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ false,
+ /* is_ordered */ false,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ false,
+ /* is_ordered */ true,
+ codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
+ GenUnsafePut(invoke->GetLocations(),
+ Primitive::kPrimLong,
+ /* is_volatile */ true,
+ /* is_ordered */ false,
+ codegen_);
+}
+
+static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
+ HInvoke* invoke,
+ Primitive::Type type) {
+ bool can_call = kEmitCompilerReadBarrier &&
+ kUseBakerReadBarrier &&
+ (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
+ LocationSummary* locations = new (arena) LocationSummary(invoke,
+ (can_call
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall),
+ kIntrinsified);
+ locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+ locations->SetInAt(4, Location::RequiresRegister());
+
+ // If heap poisoning is enabled, we don't want the unpoisoning
+ // operations to potentially clobber the output. Likewise when
+ // emitting a (Baker) read barrier, which may call.
+ Location::OutputOverlap overlaps =
+ ((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
+ ? Location::kOutputOverlap
+ : Location::kNoOutputOverlap;
+ locations->SetOut(Location::RequiresRegister(), overlaps);
+
+ // Temporary registers used in CAS. In the object case
+ // (UnsafeCASObject intrinsic), these are also used for
+ // card-marking, and possibly for (Baker) read barrier.
+ locations->AddTemp(Location::RequiresRegister()); // Pointer.
+ locations->AddTemp(Location::RequiresRegister()); // Temp 1.
+}
+
+static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARMVIXL* codegen) {
+ DCHECK_NE(type, Primitive::kPrimLong);
+
+ ArmVIXLAssembler* assembler = codegen->GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ Location out_loc = locations->Out();
+ vixl32::Register out = OutputRegister(invoke); // Boolean result.
+
+ vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
+ Location offset_loc = locations->InAt(2);
+ vixl32::Register offset = LowRegisterFrom(offset_loc); // Offset (discard high 4B).
+ vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected.
+ vixl32::Register value = InputRegisterAt(invoke, 4); // Value.
+
+ Location tmp_ptr_loc = locations->GetTemp(0);
+ vixl32::Register tmp_ptr = RegisterFrom(tmp_ptr_loc); // Pointer to actual memory.
+ vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Value in memory.
+
+ if (type == Primitive::kPrimNot) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
+ // object and scan the receiver at the next GC for nothing.
+ bool value_can_be_null = true; // TODO: Worth finding out this information?
+ codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // Need to make sure the reference stored in the field is a to-space
+ // one before attempting the CAS or the CAS could fail incorrectly.
+ codegen->GenerateReferenceLoadWithBakerReadBarrier(
+ invoke,
+ out_loc, // Unused, used only as a "temporary" within the read barrier.
+ base,
+ /* offset */ 0u,
+ /* index */ offset_loc,
+ ScaleFactor::TIMES_1,
+ tmp_ptr_loc,
+ /* needs_null_check */ false,
+ /* always_update_field */ true,
+ &tmp);
+ }
+ }
+
+ // Prevent reordering with prior memory operations.
+ // Emit a DMB ISH instruction instead of an DMB ISHST one, as the
+ // latter allows a preceding load to be delayed past the STXR
+ // instruction below.
+ __ Dmb(vixl32::ISH);
+
+ __ Add(tmp_ptr, base, offset);
+
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ codegen->GetAssembler()->PoisonHeapReference(expected);
+ if (value.Is(expected)) {
+ // Do not poison `value`, as it is the same register as
+ // `expected`, which has just been poisoned.
+ } else {
+ codegen->GetAssembler()->PoisonHeapReference(value);
+ }
+ }
+
+ // do {
+ // tmp = [r_ptr] - expected;
+ // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
+ // result = tmp != 0;
+
+ vixl32::Label loop_head;
+ __ Bind(&loop_head);
+
+ __ Ldrex(tmp, tmp_ptr);
+
+ __ Subs(tmp, tmp, expected);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 3 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ itt(eq);
+ __ strex(eq, tmp, value, tmp_ptr);
+ __ cmp(eq, tmp, 1);
+ }
+
+ __ B(eq, &loop_head);
+
+ __ Dmb(vixl32::ISH);
+
+ __ Rsbs(out, tmp, 1);
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(cc);
+ __ mov(cc, out, 0);
+ }
+
+ if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
+ codegen->GetAssembler()->UnpoisonHeapReference(expected);
+ if (value.Is(expected)) {
+ // Do not unpoison `value`, as it is the same register as
+ // `expected`, which has just been unpoisoned.
+ } else {
+ codegen->GetAssembler()->UnpoisonHeapReference(value);
+ }
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
+ CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt);
+}
+void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
+ return;
+ }
+
+ CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
+ GenCas(invoke, Primitive::kPrimInt, codegen_);
+}
+void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // UnsafeCASObject intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ GenCas(invoke, Primitive::kPrimNot, codegen_);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
+ // The inputs plus one temp.
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ invoke->InputAt(1)->CanBeNull()
+ ? LocationSummary::kCallOnSlowPath
+ : LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ // Need temporary registers for String compression's feature.
+ if (mirror::kUseStringCompression) {
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ }
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register str = InputRegisterAt(invoke, 0);
+ vixl32::Register arg = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
+ vixl32::Register temp3, temp4;
+ if (mirror::kUseStringCompression) {
+ temp3 = RegisterFrom(locations->GetTemp(3));
+ temp4 = RegisterFrom(locations->GetTemp(4));
+ }
+
+ vixl32::Label loop;
+ vixl32::Label find_char_diff;
+ vixl32::Label end;
+ vixl32::Label different_compression;
+
+ // Get offsets of count and value fields within a string object.
+ const int32_t count_offset = mirror::String::CountOffset().Int32Value();
+ const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ // Take slow path and throw if input can be and is null.
+ SlowPathCodeARMVIXL* slow_path = nullptr;
+ const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
+ if (can_slow_path) {
+ slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ Cbz(arg, slow_path->GetEntryLabel());
+ }
+
+ // Reference equality check, return 0 if same reference.
+ __ Subs(out, str, arg);
+ __ B(eq, &end);
+
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ vixl32::Register temp_reg = temps.Acquire();
+
+ if (mirror::kUseStringCompression) {
+ // Load lengths of this and argument strings.
+ __ Ldr(temp3, MemOperand(str, count_offset));
+ __ Ldr(temp4, MemOperand(arg, count_offset));
+ // Clean out compression flag from lengths.
+ __ Bic(temp0, temp3, 0x80000000);
+ __ Bic(temp_reg, temp4, 0x80000000);
+ } else {
+ // Load lengths of this and argument strings.
+ __ Ldr(temp0, MemOperand(str, count_offset));
+ __ Ldr(temp_reg, MemOperand(arg, count_offset));
+ }
+ // out = length diff.
+ __ Subs(out, temp0, temp_reg);
+ // temp0 = min(len(str), len(arg)).
+
+ {
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(gt);
+ __ mov(gt, temp0, temp_reg);
+ }
+
+ temps.Release(temp_reg);
+ // Shorter string is empty?
+ __ Cbz(temp0, &end);
+
+ if (mirror::kUseStringCompression) {
+ // Check if both strings using same compression style to use this comparison loop.
+ __ Eors(temp3, temp3, temp4);
+ __ B(mi, &different_compression);
+ }
+ // Store offset of string value in preparation for comparison loop.
+ __ Mov(temp1, value_offset);
+ if (mirror::kUseStringCompression) {
+ // For string compression, calculate the number of bytes to compare (not chars).
+ // This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
+ __ Cmp(temp4, 0);
+
+ AssemblerAccurateScope aas(assembler->GetVIXLAssembler(),
+ 2 * kMaxInstructionSizeInBytes,
+ CodeBufferCheckScope::kMaximumSize);
+
+ __ it(ge);
+ __ add(ge, temp0, temp0, temp0);
+ }
+
+ // Assertions that must hold in order to compare multiple characters at a time.
+ CHECK_ALIGNED(value_offset, 8);
+ static_assert(IsAligned<8>(kObjectAlignment),
+ "String data must be 8-byte aligned for unrolled CompareTo loop.");
+
+ const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
+ DCHECK_EQ(char_size, 2u);
+
+ vixl32::Label find_char_diff_2nd_cmp;
+ // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
+ __ Bind(&loop);
+ temp_reg = temps.Acquire();
+ __ Ldr(temp_reg, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(temp_reg, temp2);
+ __ B(ne, &find_char_diff);
+ __ Add(temp1, temp1, char_size * 2);
+
+ __ Ldr(temp_reg, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(temp_reg, temp2);
+ __ B(ne, &find_char_diff_2nd_cmp);
+ __ Add(temp1, temp1, char_size * 2);
+ // With string compression, we have compared 8 bytes, otherwise 4 chars.
+ __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4));
+ __ B(hi, &loop);
+ __ B(&end);
+
+ __ Bind(&find_char_diff_2nd_cmp);
+ if (mirror::kUseStringCompression) {
+ __ Subs(temp0, temp0, 4); // 4 bytes previously compared.
+ __ B(ls, &end); // Was the second comparison fully beyond the end?
+ } else {
+ // Without string compression, we can start treating temp0 as signed
+ // and rely on the signed comparison below.
+ __ Sub(temp0, temp0, 2);
+ }
+
+ // Find the single character difference.
+ __ Bind(&find_char_diff);
+ // Get the bit position of the first character that differs.
+ __ Eor(temp1, temp2, temp_reg);
+ __ Rbit(temp1, temp1);
+ __ Clz(temp1, temp1);
+
+ // temp0 = number of characters remaining to compare.
+ // (Without string compression, it could be < 1 if a difference is found by the second CMP
+ // in the comparison loop, and after the end of the shorter string data).
+
+ // Without string compression (temp1 >> 4) = character where difference occurs between the last
+ // two words compared, in the interval [0,1].
+ // (0 for low half-word different, 1 for high half-word different).
+ // With string compression, (temp1 << 3) = byte where the difference occurs,
+ // in the interval [0,3].
+
+ // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
+ // the remaining string data, so just return length diff (out).
+ // The comparison is unsigned for string compression, otherwise signed.
+ __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4)));
+ __ B((mirror::kUseStringCompression ? ls : le), &end);
+ // Extract the characters and calculate the difference.
+ vixl32::Label uncompressed_string, continue_process;
+ if (mirror::kUseStringCompression) {
+ __ Cmp(temp4, 0);
+ __ B(ge, &uncompressed_string);
+ __ Bic(temp1, temp1, 0x7);
+ __ B(&continue_process);
+ }
+ __ Bind(&uncompressed_string);
+ __ Bic(temp1, temp1, 0xf);
+ __ Bind(&continue_process);
+
+ __ Lsr(temp2, temp2, temp1);
+ __ Lsr(temp_reg, temp_reg, temp1);
+ vixl32::Label calculate_difference, uncompressed_string_extract_chars;
+ if (mirror::kUseStringCompression) {
+ __ Cmp(temp4, 0);
+ __ B(ge, &uncompressed_string_extract_chars);
+ __ Ubfx(temp2, temp2, 0, 8);
+ __ Ubfx(temp_reg, temp_reg, 0, 8);
+ __ B(&calculate_difference);
+ }
+ __ Bind(&uncompressed_string_extract_chars);
+ __ Movt(temp2, 0);
+ __ Movt(temp_reg, 0);
+ __ Bind(&calculate_difference);
+ __ Sub(out, temp_reg, temp2);
+ temps.Release(temp_reg);
+ __ B(&end);
+
+ if (mirror::kUseStringCompression) {
+ const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
+ DCHECK_EQ(c_char_size, 1u);
+ vixl32::Label loop_arg_compressed, loop_this_compressed, find_diff;
+ // Comparison for different compression style.
+ // This part is when THIS is compressed and ARG is not.
+ __ Bind(&different_compression);
+ __ Add(temp2, str, value_offset);
+ __ Add(temp3, arg, value_offset);
+ __ Cmp(temp4, 0);
+ __ B(lt, &loop_arg_compressed);
+
+ __ Bind(&loop_this_compressed);
+ temp_reg = temps.Acquire();
+ __ Ldrb(temp_reg, MemOperand(temp2, c_char_size, PostIndex));
+ __ Ldrh(temp4, MemOperand(temp3, char_size, PostIndex));
+ __ Cmp(temp_reg, temp4);
+ __ B(ne, &find_diff);
+ __ Subs(temp0, temp0, 1);
+ __ B(gt, &loop_this_compressed);
+ __ B(&end);
+
+ // This part is when THIS is not compressed and ARG is.
+ __ Bind(&loop_arg_compressed);
+ __ Ldrh(temp_reg, MemOperand(temp2, char_size, PostIndex));
+ __ Ldrb(temp4, MemOperand(temp3, c_char_size, PostIndex));
+ __ Cmp(temp_reg, temp4);
+ __ B(ne, &find_diff);
+ __ Subs(temp0, temp0, 1);
+ __ B(gt, &loop_arg_compressed);
+ __ B(&end);
+
+ // Calculate the difference.
+ __ Bind(&find_diff);
+ __ Sub(out, temp_reg, temp4);
+ temps.Release(temp_reg);
+ }
+
+ __ Bind(&end);
+
+ if (can_slow_path) {
+ __ Bind(slow_path->GetExitLabel());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ // Temporary registers to store lengths of strings and for calculations.
+ // Using instruction cbz requires a low register, so explicitly set a temp to be R0.
+ locations->AddTemp(LocationFrom(r0));
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+
+ locations->SetOut(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register str = InputRegisterAt(invoke, 0);
+ vixl32::Register arg = InputRegisterAt(invoke, 1);
+ vixl32::Register out = OutputRegister(invoke);
+
+ vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
+
+ vixl32::Label loop, preloop;
+ vixl32::Label end;
+ vixl32::Label return_true;
+ vixl32::Label return_false;
+
+ // Get offsets of count, value, and class fields within a string object.
+ const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
+ const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
+ const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ StringEqualsOptimizations optimizations(invoke);
+ if (!optimizations.GetArgumentNotNull()) {
+ // Check if input is null, return false if it is.
+ __ Cbz(arg, &return_false);
+ }
+
+ if (!optimizations.GetArgumentIsString()) {
+ // Instanceof check for the argument by comparing class fields.
+ // All string objects must have the same type since String cannot be subclassed.
+ // Receiver must be a string object, so its class field is equal to all strings' class fields.
+ // If the argument is a string object, its class field must be equal to receiver's class field.
+ __ Ldr(temp, MemOperand(str, class_offset));
+ __ Ldr(temp1, MemOperand(arg, class_offset));
+ __ Cmp(temp, temp1);
+ __ B(ne, &return_false);
+ }
+
+ // Load lengths of this and argument strings.
+ __ Ldr(temp, MemOperand(str, count_offset));
+ __ Ldr(temp1, MemOperand(arg, count_offset));
+ // Check if lengths are equal, return false if they're not.
+ // Also compares the compression style, if differs return false.
+ __ Cmp(temp, temp1);
+ __ B(ne, &return_false);
+ // Return true if both strings are empty.
+ if (mirror::kUseStringCompression) {
+ // Length needs to be masked out first because 0 is treated as compressed.
+ __ Bic(temp, temp, 0x80000000);
+ }
+ __ Cbz(temp, &return_true);
+ // Reference equality check, return true if same reference.
+ __ Cmp(str, arg);
+ __ B(eq, &return_true);
+
+ // Assertions that must hold in order to compare strings 2 characters at a time.
+ DCHECK_ALIGNED(value_offset, 4);
+ static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
+
+ if (mirror::kUseStringCompression) {
+ // If not compressed, directly to fast compare. Else do preprocess on length.
+ __ Cmp(temp1, 0);
+ __ B(gt, &preloop);
+ // Mask out compression flag and adjust length for compressed string (8-bit)
+ // as if it is a 16-bit data, new_length = (length + 1) / 2.
+ __ Add(temp, temp, 1);
+ __ Lsr(temp, temp, 1);
+ __ Bind(&preloop);
+ }
+ // Loop to compare strings 2 characters at a time starting at the front of the string.
+ // Ok to do this because strings with an odd length are zero-padded.
+ __ Mov(temp1, value_offset);
+ __ Bind(&loop);
+ __ Ldr(out, MemOperand(str, temp1));
+ __ Ldr(temp2, MemOperand(arg, temp1));
+ __ Cmp(out, temp2);
+ __ B(ne, &return_false);
+ __ Add(temp1, temp1, sizeof(uint32_t));
+ __ Subs(temp, temp, sizeof(uint32_t) / sizeof(uint16_t));
+ __ B(gt, &loop);
+
+ // Return true and exit the function.
+ // If loop does not result in returning false, we return true.
+ __ Bind(&return_true);
+ __ Mov(out, 1);
+ __ B(&end);
+
+ // Return false and exit the function.
+ __ Bind(&return_false);
+ __ Mov(out, 0);
+ __ Bind(&end);
+}
+
+static void GenerateVisitStringIndexOf(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ ArenaAllocator* allocator,
+ bool start_at_zero) {
+ LocationSummary* locations = invoke->GetLocations();
+
+ // Note that the null check must have been done earlier.
+ DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
+
+ // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
+ // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
+ SlowPathCodeARMVIXL* slow_path = nullptr;
+ HInstruction* code_point = invoke->InputAt(1);
+ if (code_point->IsIntConstant()) {
+ if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
+ std::numeric_limits<uint16_t>::max()) {
+ // Always needs the slow-path. We could directly dispatch to it, but this case should be
+ // rare, so for simplicity just put the full slow-path down and branch unconditionally.
+ slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
+ codegen->AddSlowPath(slow_path);
+ __ B(slow_path->GetEntryLabel());
+ __ Bind(slow_path->GetExitLabel());
+ return;
+ }
+ } else if (code_point->GetType() != Primitive::kPrimChar) {
+ vixl32::Register char_reg = InputRegisterAt(invoke, 1);
+ // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
+ __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1);
+ slow_path = new (allocator) IntrinsicSlowPathARMVIXL(invoke);
+ codegen->AddSlowPath(slow_path);
+ __ B(hs, slow_path->GetEntryLabel());
+ }
+
+ if (start_at_zero) {
+ vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0));
+ DCHECK(tmp_reg.Is(r2));
+ // Start-index = 0.
+ __ Mov(tmp_reg, 0);
+ }
+
+ codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
+
+ if (slow_path != nullptr) {
+ __ Bind(slow_path->GetExitLabel());
+ }
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
+ // best to align the inputs accordingly.
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetOut(LocationFrom(r0));
+
+ // Need to send start-index=0.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
+ GenerateVisitStringIndexOf(
+ invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
+ // best to align the inputs accordingly.
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
+ GenerateVisitStringIndexOf(
+ invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ vixl32::Register byte_array = InputRegisterAt(invoke, 0);
+ __ Cmp(byte_array, 0);
+ SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ B(eq, slow_path->GetEntryLabel());
+
+ codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
+ __ Bind(slow_path->GetExitLabel());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
+ // No need to emit code checking whether `locations->InAt(2)` is a null
+ // pointer, as callers of the native method
+ //
+ // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
+ //
+ // all include a null check on `data` before calling that method.
+ codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
+ CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kCallOnMainAndSlowPath,
+ kIntrinsified);
+ InvokeRuntimeCallingConventionARMVIXL calling_convention;
+ locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->SetOut(LocationFrom(r0));
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ vixl32::Register string_to_copy = InputRegisterAt(invoke, 0);
+ __ Cmp(string_to_copy, 0);
+ SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(slow_path);
+ __ B(eq, slow_path->GetEntryLabel());
+
+ codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
+ CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
+
+ __ Bind(slow_path->GetExitLabel());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // SystemArrayCopy intrinsic is the Baker-style read barriers.
+ if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
+ return;
+ }
+
+ CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
+ LocationSummary* locations = invoke->GetLocations();
+ if (locations == nullptr) {
+ return;
+ }
+
+ HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
+ HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
+ HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
+
+ if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
+ locations->SetInAt(1, Location::RequiresRegister());
+ }
+ if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
+ locations->SetInAt(3, Location::RequiresRegister());
+ }
+ if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
+ locations->SetInAt(4, Location::RequiresRegister());
+ }
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // Temporary register IP cannot be used in
+ // ReadBarrierSystemArrayCopySlowPathARM (because that register
+ // is clobbered by ReadBarrierMarkRegX entry points). Get an extra
+ // temporary register from the register allocator.
+ locations->AddTemp(Location::RequiresRegister());
+ }
+}
+
+static void CheckPosition(ArmVIXLAssembler* assembler,
+ Location pos,
+ vixl32::Register input,
+ Location length,
+ SlowPathCodeARMVIXL* slow_path,
+ vixl32::Register temp,
+ bool length_is_input_length = false) {
+ // Where is the length in the Array?
+ const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
+
+ if (pos.IsConstant()) {
+ int32_t pos_const = Int32ConstantFrom(pos);
+ if (pos_const == 0) {
+ if (!length_is_input_length) {
+ // Check that length(input) >= length.
+ __ Ldr(temp, MemOperand(input, length_offset));
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+ } else {
+ // Check that length(input) >= pos.
+ __ Ldr(temp, MemOperand(input, length_offset));
+ __ Subs(temp, temp, pos_const);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that (length(input) - pos) >= length.
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+ } else if (length_is_input_length) {
+ // The only way the copy can succeed is if pos is zero.
+ vixl32::Register pos_reg = RegisterFrom(pos);
+ __ Cbnz(pos_reg, slow_path->GetEntryLabel());
+ } else {
+ // Check that pos >= 0.
+ vixl32::Register pos_reg = RegisterFrom(pos);
+ __ Cmp(pos_reg, 0);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that pos <= length(input).
+ __ Ldr(temp, MemOperand(input, length_offset));
+ __ Subs(temp, temp, pos_reg);
+ __ B(lt, slow_path->GetEntryLabel());
+
+ // Check that (length(input) - pos) >= length.
+ if (length.IsConstant()) {
+ __ Cmp(temp, Int32ConstantFrom(length));
+ } else {
+ __ Cmp(temp, RegisterFrom(length));
+ }
+ __ B(lt, slow_path->GetEntryLabel());
+ }
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
+ // The only read barrier implementation supporting the
+ // SystemArrayCopy intrinsic is the Baker-style read barriers.
+ DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
+
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
+ uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
+ uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
+ uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
+ uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
+
+ vixl32::Register src = InputRegisterAt(invoke, 0);
+ Location src_pos = locations->InAt(1);
+ vixl32::Register dest = InputRegisterAt(invoke, 2);
+ Location dest_pos = locations->InAt(3);
+ Location length = locations->InAt(4);
+ Location temp1_loc = locations->GetTemp(0);
+ vixl32::Register temp1 = RegisterFrom(temp1_loc);
+ Location temp2_loc = locations->GetTemp(1);
+ vixl32::Register temp2 = RegisterFrom(temp2_loc);
+ Location temp3_loc = locations->GetTemp(2);
+ vixl32::Register temp3 = RegisterFrom(temp3_loc);
+
+ SlowPathCodeARMVIXL* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(intrinsic_slow_path);
+
+ vixl32::Label conditions_on_positions_validated;
+ SystemArrayCopyOptimizations optimizations(invoke);
+
+ // If source and destination are the same, we go to slow path if we need to do
+ // forward copying.
+ if (src_pos.IsConstant()) {
+ int32_t src_pos_constant = Int32ConstantFrom(src_pos);
+ if (dest_pos.IsConstant()) {
+ int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
+ if (optimizations.GetDestinationIsSource()) {
+ // Checked when building locations.
+ DCHECK_GE(src_pos_constant, dest_pos_constant);
+ } else if (src_pos_constant < dest_pos_constant) {
+ __ Cmp(src, dest);
+ __ B(eq, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // Checked when building locations.
+ DCHECK(!optimizations.GetDestinationIsSource()
+ || (src_pos_constant >= Int32ConstantFrom(dest_pos)));
+ } else {
+ if (!optimizations.GetDestinationIsSource()) {
+ __ Cmp(src, dest);
+ __ B(ne, &conditions_on_positions_validated);
+ }
+ __ Cmp(RegisterFrom(dest_pos), src_pos_constant);
+ __ B(gt, intrinsic_slow_path->GetEntryLabel());
+ }
+ } else {
+ if (!optimizations.GetDestinationIsSource()) {
+ __ Cmp(src, dest);
+ __ B(ne, &conditions_on_positions_validated);
+ }
+ if (dest_pos.IsConstant()) {
+ int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
+ __ Cmp(RegisterFrom(src_pos), dest_pos_constant);
+ } else {
+ __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos));
+ }
+ __ B(lt, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ __ Bind(&conditions_on_positions_validated);
+
+ if (!optimizations.GetSourceIsNotNull()) {
+ // Bail out if the source is null.
+ __ Cbz(src, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
+ // Bail out if the destination is null.
+ __ Cbz(dest, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // If the length is negative, bail out.
+ // We have already checked in the LocationsBuilder for the constant case.
+ if (!length.IsConstant() &&
+ !optimizations.GetCountIsSourceLength() &&
+ !optimizations.GetCountIsDestinationLength()) {
+ __ Cmp(RegisterFrom(length), 0);
+ __ B(lt, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // Validity checks: source.
+ CheckPosition(assembler,
+ src_pos,
+ src,
+ length,
+ intrinsic_slow_path,
+ temp1,
+ optimizations.GetCountIsSourceLength());
+
+ // Validity checks: dest.
+ CheckPosition(assembler,
+ dest_pos,
+ dest,
+ length,
+ intrinsic_slow_path,
+ temp1,
+ optimizations.GetCountIsDestinationLength());
+
+ if (!optimizations.GetDoesNotNeedTypeCheck()) {
+ // Check whether all elements of the source array are assignable to the component
+ // type of the destination array. We do two checks: the classes are the same,
+ // or the destination is Object[]. If none of these checks succeed, we go to the
+ // slow path.
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
+ // Bail out if the source is not a non primitive array.
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ __ Cbz(temp1, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp1` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
+ __ Ldrh(temp1, MemOperand(temp1, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // /* HeapReference<Class> */ temp1 = dest->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false);
+
+ if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
+ // Bail out if the destination is not a non primitive array.
+ //
+ // Register `temp1` is not trashed by the read barrier emitted
+ // by GenerateFieldLoadWithBakerReadBarrier below, as that
+ // method produces a call to a ReadBarrierMarkRegX entry point,
+ // which saves all potentially live registers, including
+ // temporaries such a `temp1`.
+ // /* HeapReference<Class> */ temp2 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false);
+ __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp2` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
+ __ Ldrh(temp2, MemOperand(temp2, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ // For the same reason given earlier, `temp1` is not trashed by the
+ // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
+ // /* HeapReference<Class> */ temp2 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false);
+ // Note: if heap poisoning is on, we are comparing two unpoisoned references here.
+ __ Cmp(temp1, temp2);
+
+ if (optimizations.GetDestinationIsTypedObjectArray()) {
+ vixl32::Label do_copy;
+ __ B(eq, &do_copy);
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ // /* HeapReference<Class> */ temp1 = temp1->super_class_
+ // We do not need to emit a read barrier for the following
+ // heap reference load, as `temp1` is only used in a
+ // comparison with null below, and this reference is not
+ // kept afterwards.
+ __ Ldr(temp1, MemOperand(temp1, super_offset));
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ __ Bind(&do_copy);
+ } else {
+ __ B(ne, intrinsic_slow_path->GetEntryLabel());
+ }
+ } else {
+ // Non read barrier code.
+
+ // /* HeapReference<Class> */ temp1 = dest->klass_
+ __ Ldr(temp1, MemOperand(dest, class_offset));
+ // /* HeapReference<Class> */ temp2 = src->klass_
+ __ Ldr(temp2, MemOperand(src, class_offset));
+ bool did_unpoison = false;
+ if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
+ !optimizations.GetSourceIsNonPrimitiveArray()) {
+ // One or two of the references need to be unpoisoned. Unpoison them
+ // both to make the identity check valid.
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ assembler->MaybeUnpoisonHeapReference(temp2);
+ did_unpoison = true;
+ }
+
+ if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
+ // Bail out if the destination is not a non primitive array.
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ __ Ldr(temp3, MemOperand(temp1, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ // Bail out if the source is not a non primitive array.
+ // /* HeapReference<Class> */ temp3 = temp2->component_type_
+ __ Ldr(temp3, MemOperand(temp2, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ __ Cmp(temp1, temp2);
+
+ if (optimizations.GetDestinationIsTypedObjectArray()) {
+ vixl32::Label do_copy;
+ __ B(eq, &do_copy);
+ if (!did_unpoison) {
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ }
+ // /* HeapReference<Class> */ temp1 = temp1->component_type_
+ __ Ldr(temp1, MemOperand(temp1, component_offset));
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ // /* HeapReference<Class> */ temp1 = temp1->super_class_
+ __ Ldr(temp1, MemOperand(temp1, super_offset));
+ // No need to unpoison the result, we're comparing against null.
+ __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
+ __ Bind(&do_copy);
+ } else {
+ __ B(ne, intrinsic_slow_path->GetEntryLabel());
+ }
+ }
+ } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
+ DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
+ // Bail out if the source is not a non primitive array.
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false);
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ codegen_->GenerateFieldLoadWithBakerReadBarrier(
+ invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false);
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ // If heap poisoning is enabled, `temp3` has been unpoisoned
+ // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
+ } else {
+ // /* HeapReference<Class> */ temp1 = src->klass_
+ __ Ldr(temp1, MemOperand(src, class_offset));
+ assembler->MaybeUnpoisonHeapReference(temp1);
+ // /* HeapReference<Class> */ temp3 = temp1->component_type_
+ __ Ldr(temp3, MemOperand(temp1, component_offset));
+ __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
+ assembler->MaybeUnpoisonHeapReference(temp3);
+ }
+ // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
+ __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
+ static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
+ __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
+ }
+
+ int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
+ uint32_t element_size_shift = Primitive::ComponentSizeShift(Primitive::kPrimNot);
+ uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
+
+ // Compute the base source address in `temp1`.
+ if (src_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(src_pos);
+ __ Add(temp1, src, element_size * constant + offset);
+ } else {
+ __ Add(temp1, src, Operand(RegisterFrom(src_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp1, temp1, offset);
+ }
+
+ // Compute the end source address in `temp3`.
+ if (length.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(length);
+ __ Add(temp3, temp1, element_size * constant);
+ } else {
+ __ Add(temp3, temp1, Operand(RegisterFrom(length), vixl32::LSL, element_size_shift));
+ }
+
+ if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
+ // The base destination address is computed later, as `temp2` is
+ // used for intermediate computations.
+
+ // SystemArrayCopy implementation for Baker read barriers (see
+ // also CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier):
+ //
+ // if (src_ptr != end_ptr) {
+ // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
+ // lfence; // Load fence or artificial data dependency to prevent load-load reordering
+ // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
+ // if (is_gray) {
+ // // Slow-path copy.
+ // do {
+ // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
+ // } while (src_ptr != end_ptr)
+ // } else {
+ // // Fast-path copy.
+ // do {
+ // *dest_ptr++ = *src_ptr++;
+ // } while (src_ptr != end_ptr)
+ // }
+ // }
+
+ vixl32::Label loop, done;
+
+ // Don't enter copy loop if `length == 0`.
+ __ Cmp(temp1, temp3);
+ __ B(eq, &done);
+
+ // /* int32_t */ monitor = src->monitor_
+ __ Ldr(temp2, MemOperand(src, monitor_offset));
+ // /* LockWord */ lock_word = LockWord(monitor)
+ static_assert(sizeof(LockWord) == sizeof(int32_t),
+ "art::LockWord and int32_t have different sizes.");
+
+ // Introduce a dependency on the lock_word including the rb_state,
+ // which shall prevent load-load reordering without using
+ // a memory barrier (which would be more expensive).
+ // `src` is unchanged by this operation, but its value now depends
+ // on `temp2`.
+ __ Add(src, src, Operand(temp2, vixl32::LSR, 32));
+
+ // Slow path used to copy array when `src` is gray.
+ SlowPathCodeARMVIXL* read_barrier_slow_path =
+ new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke);
+ codegen_->AddSlowPath(read_barrier_slow_path);
+
+ // Given the numeric representation, it's enough to check the low bit of the
+ // rb_state. We do that by shifting the bit out of the lock word with LSRS
+ // which can be a 16-bit instruction unlike the TST immediate.
+ static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
+ static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
+ static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
+ __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
+ // Carry flag is the last bit shifted out by LSRS.
+ __ B(cs, read_barrier_slow_path->GetEntryLabel());
+
+ // Fast-path copy.
+
+ // Compute the base destination address in `temp2`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(temp2, dest, element_size * constant + offset);
+ } else {
+ __ Add(temp2, dest, Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp2, temp2, offset);
+ }
+
+ // Iterate over the arrays and do a raw copy of the objects. We don't need to
+ // poison/unpoison.
+ __ Bind(&loop);
+
+ {
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
+ __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
+ }
+
+ __ Cmp(temp1, temp3);
+ __ B(ne, &loop);
+
+ __ Bind(read_barrier_slow_path->GetExitLabel());
+ __ Bind(&done);
+ } else {
+ // Non read barrier code.
+
+ // Compute the base destination address in `temp2`.
+ if (dest_pos.IsConstant()) {
+ int32_t constant = Int32ConstantFrom(dest_pos);
+ __ Add(temp2, dest, element_size * constant + offset);
+ } else {
+ __ Add(temp2, dest, Operand(RegisterFrom(dest_pos), vixl32::LSL, element_size_shift));
+ __ Add(temp2, temp2, offset);
+ }
+
+ // Iterate over the arrays and do a raw copy of the objects. We don't need to
+ // poison/unpoison.
+ vixl32::Label loop, done;
+ __ Cmp(temp1, temp3);
+ __ B(eq, &done);
+ __ Bind(&loop);
+
+ {
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp_reg = temps.Acquire();
+
+ __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
+ __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
+ }
+
+ __ Cmp(temp1, temp3);
+ __ B(ne, &loop);
+ __ Bind(&done);
+ }
+
+ // We only need one card marking on the destination array.
+ codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* value_can_be_null */ false);
+
+ __ Bind(intrinsic_slow_path->GetExitLabel());
+}
+
+static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ // If the graph is debuggable, all callee-saved floating-point registers are blocked by
+ // the code generator. Furthermore, the register allocator creates fixed live intervals
+ // for all caller-saved registers because we are doing a function call. As a result, if
+ // the input and output locations are unallocated, the register allocator runs out of
+ // registers and fails; however, a debuggable graph is not the common case.
+ if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
+ return;
+ }
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
+ DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
+
+ LocationSummary* const locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ const InvokeRuntimeCallingConventionARMVIXL calling_convention;
+
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+ // Native code uses the soft float ABI.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
+}
+
+static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
+ // If the graph is debuggable, all callee-saved floating-point registers are blocked by
+ // the code generator. Furthermore, the register allocator creates fixed live intervals
+ // for all caller-saved registers because we are doing a function call. As a result, if
+ // the input and output locations are unallocated, the register allocator runs out of
+ // registers and fails; however, a debuggable graph is not the common case.
+ if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
+ return;
+ }
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
+ DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble);
+ DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble);
+
+ LocationSummary* const locations = new (arena) LocationSummary(invoke,
+ LocationSummary::kCallOnMainOnly,
+ kIntrinsified);
+ const InvokeRuntimeCallingConventionARMVIXL calling_convention;
+
+ locations->SetInAt(0, Location::RequiresFpuRegister());
+ locations->SetInAt(1, Location::RequiresFpuRegister());
+ locations->SetOut(Location::RequiresFpuRegister());
+ // Native code uses the soft float ABI.
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
+ locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3)));
+}
+
+static void GenFPToFPCall(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ QuickEntrypointEnum entry) {
+ LocationSummary* const locations = invoke->GetLocations();
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
+ DCHECK(locations->WillCall() && locations->Intrinsified());
+
+ // Native code uses the soft float ABI.
+ __ Vmov(RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)),
+ InputDRegisterAt(invoke, 0));
+ codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
+ __ Vmov(OutputDRegister(invoke),
+ RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)));
+}
+
+static void GenFPFPToFPCall(HInvoke* invoke,
+ ArmVIXLAssembler* assembler,
+ CodeGeneratorARMVIXL* codegen,
+ QuickEntrypointEnum entry) {
+ LocationSummary* const locations = invoke->GetLocations();
+
+ DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
+ DCHECK(locations->WillCall() && locations->Intrinsified());
+
+ // Native code uses the soft float ABI.
+ __ Vmov(RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)),
+ InputDRegisterAt(invoke, 0));
+ __ Vmov(RegisterFrom(locations->GetTemp(2)),
+ RegisterFrom(locations->GetTemp(3)),
+ InputDRegisterAt(invoke, 1));
+ codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
+ __ Vmov(OutputDRegister(invoke),
+ RegisterFrom(locations->GetTemp(0)),
+ RegisterFrom(locations->GetTemp(1)));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) {
+ CreateFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) {
+ GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
+ CreateFPFPToFPCallLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
+ GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
+ vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
+
+ __ Rbit(out_reg_lo, in_reg_hi);
+ __ Rbit(out_reg_hi, in_reg_lo);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
+ vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
+ vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
+ vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
+
+ __ Rev(out_reg_lo, in_reg_hi);
+ __ Rev(out_reg_hi, in_reg_lo);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0));
+}
+
+static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmVIXLAssembler* assembler) {
+ DCHECK(Primitive::IsIntOrLongType(type)) << type;
+ DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
+ DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
+
+ bool is_long = type == Primitive::kPrimLong;
+ LocationSummary* locations = instr->GetLocations();
+ Location in = locations->InAt(0);
+ vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in);
+ vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0;
+ vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0));
+ vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0));
+ vixl32::Register out_r = OutputRegister(instr);
+
+ // Move data from core register(s) to temp D-reg for bit count calculation, then move back.
+ // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
+ // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
+ // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
+ __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
+ __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
+ __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c|
+ __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c|
+ if (is_long) {
+ __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c|
+ }
+ __ Vmov(out_r, tmp_s);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
+ CreateIntToIntLocations(arena_, invoke);
+ invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
+ GenBitCount(invoke, Primitive::kPrimInt, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) {
+ VisitIntegerBitCount(invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) {
+ GenBitCount(invoke, Primitive::kPrimLong, GetAssembler());
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
+ LocationSummary* locations = new (arena_) LocationSummary(invoke,
+ LocationSummary::kNoCall,
+ kIntrinsified);
+ locations->SetInAt(0, Location::RequiresRegister());
+ locations->SetInAt(1, Location::RequiresRegister());
+ locations->SetInAt(2, Location::RequiresRegister());
+ locations->SetInAt(3, Location::RequiresRegister());
+ locations->SetInAt(4, Location::RequiresRegister());
+
+ // Temporary registers to store lengths of strings and for calculations.
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+ locations->AddTemp(Location::RequiresRegister());
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
+ ArmVIXLAssembler* assembler = GetAssembler();
+ LocationSummary* locations = invoke->GetLocations();
+
+ // Check assumption that sizeof(Char) is 2 (used in scaling below).
+ const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
+ DCHECK_EQ(char_size, 2u);
+
+ // Location of data in char array buffer.
+ const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
+
+ // Location of char array data in string.
+ const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
+
+ // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
+ // Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
+ vixl32::Register srcObj = InputRegisterAt(invoke, 0);
+ vixl32::Register srcBegin = InputRegisterAt(invoke, 1);
+ vixl32::Register srcEnd = InputRegisterAt(invoke, 2);
+ vixl32::Register dstObj = InputRegisterAt(invoke, 3);
+ vixl32::Register dstBegin = InputRegisterAt(invoke, 4);
+
+ vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0));
+ vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1));
+ vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2));
+
+ vixl32::Label done, compressed_string_loop;
+ // dst to be copied.
+ __ Add(dst_ptr, dstObj, data_offset);
+ __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1));
+
+ __ Subs(num_chr, srcEnd, srcBegin);
+ // Early out for valid zero-length retrievals.
+ __ B(eq, &done);
+
+ // src range to copy.
+ __ Add(src_ptr, srcObj, value_offset);
+
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ vixl32::Register temp;
+ vixl32::Label compressed_string_preloop;
+ if (mirror::kUseStringCompression) {
+ // Location of count in string.
+ const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
+ temp = temps.Acquire();
+ // String's length.
+ __ Ldr(temp, MemOperand(srcObj, count_offset));
+ __ Cmp(temp, 0);
+ temps.Release(temp);
+ __ B(lt, &compressed_string_preloop);
+ }
+ __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1));
+
+ // Do the copy.
+ vixl32::Label loop, remainder;
+
+ temp = temps.Acquire();
+ // Save repairing the value of num_chr on the < 4 character path.
+ __ Subs(temp, num_chr, 4);
+ __ B(lt, &remainder);
+
+ // Keep the result of the earlier subs, we are going to fetch at least 4 characters.
+ __ Mov(num_chr, temp);
+
+ // Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
+ // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
+ // to rectify these everywhere this intrinsic applies.)
+ __ Bind(&loop);
+ __ Ldr(temp, MemOperand(src_ptr, char_size * 2));
+ __ Subs(num_chr, num_chr, 4);
+ __ Str(temp, MemOperand(dst_ptr, char_size * 2));
+ __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex));
+ __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex));
+ temps.Release(temp);
+ __ B(ge, &loop);
+
+ __ Adds(num_chr, num_chr, 4);
+ __ B(eq, &done);
+
+ // Main loop for < 4 character case and remainder handling. Loads and stores one
+ // 16-bit Java character at a time.
+ __ Bind(&remainder);
+ temp = temps.Acquire();
+ __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex));
+ __ Subs(num_chr, num_chr, 1);
+ __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
+ temps.Release(temp);
+ __ B(gt, &remainder);
+ __ B(&done);
+
+ if (mirror::kUseStringCompression) {
+ const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
+ DCHECK_EQ(c_char_size, 1u);
+ // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
+ __ Bind(&compressed_string_preloop);
+ __ Add(src_ptr, src_ptr, srcBegin);
+ __ Bind(&compressed_string_loop);
+ temp = temps.Acquire();
+ __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex));
+ __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
+ temps.Release(temp);
+ __ Subs(num_chr, num_chr, 1);
+ __ B(gt, &compressed_string_loop);
+ }
+
+ __ Bind(&done);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
+ ArmVIXLAssembler* const assembler = GetAssembler();
+ const vixl32::Register out = OutputRegister(invoke);
+ // Shifting left by 1 bit makes the value encodable as an immediate operand;
+ // we don't care about the sign bit anyway.
+ constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
+
+ __ Vmov(out, InputSRegisterAt(invoke, 0));
+ // We don't care about the sign bit, so shift left.
+ __ Lsl(out, out, 1);
+ __ Eor(out, out, infinity);
+ // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
+ __ Clz(out, out);
+ // Any number less than 32 logically shifted right by 5 bits results in 0;
+ // the same operation on 32 yields 1.
+ __ Lsr(out, out, 5);
+}
+
+void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
+ CreateFPToIntLocations(arena_, invoke);
+}
+
+void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
+ ArmVIXLAssembler* const assembler = GetAssembler();
+ const vixl32::Register out = OutputRegister(invoke);
+ UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
+ const vixl32::Register temp = temps.Acquire();
+ // The highest 32 bits of double precision positive infinity separated into
+ // two constants encodable as immediate operands.
+ constexpr uint32_t infinity_high = 0x7f000000U;
+ constexpr uint32_t infinity_high2 = 0x00f00000U;
+
+ static_assert((infinity_high | infinity_high2) ==
+ static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
+ "The constants do not add up to the high 32 bits of double "
+ "precision positive infinity.");
+ __ Vmov(temp, out, InputDRegisterAt(invoke, 0));
+ __ Eor(out, out, infinity_high);
+ __ Eor(out, out, infinity_high2);
+ // We don't care about the sign bit, so shift left.
+ __ Orr(out, temp, Operand(out, vixl32::LSL, 1));
+ // If the result is 0, then it has 32 leading zeros, and less than that otherwise.
+ __ Clz(out, out);
+ // Any number less than 32 logically shifted right by 5 bits results in 0;
+ // the same operation on 32 yields 1.
+ __ Lsr(out, out, 5);
+}
+
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinDoubleDouble)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinFloatFloat)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxDoubleDouble)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxFloatFloat)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMinLongLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMaxLongLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathCeil) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathFloor) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRint)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundFloat) // Could be done by changing rounding mode, maybe?
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure.
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerHighestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongHighestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerLowestOneBit)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongLowestOneBit)
+
+// 1.8.
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong)
+UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject)
+
+UNREACHABLE_INTRINSICS(ARMVIXL)
+
+#undef __
+
+} // namespace arm
+} // namespace art