blob: e5dab569fd67f57989973e4accd30312d0f972f0 [file] [log] [blame]
David Brazdildee58d62016-04-07 09:54:26 +00001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "instruction_builder.h"
18
Matthew Gharrity465ecc82016-07-19 21:32:52 +000019#include "art_method-inl.h"
David Brazdildee58d62016-04-07 09:54:26 +000020#include "bytecode_utils.h"
21#include "class_linker.h"
Andreas Gampe26de38b2016-07-27 17:53:11 -070022#include "dex_instruction-inl.h"
David Brazdildee58d62016-04-07 09:54:26 +000023#include "driver/compiler_options.h"
24#include "scoped_thread_state_change.h"
25
26namespace art {
27
28void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
29 if (compilation_stats_ != nullptr) {
30 compilation_stats_->RecordStat(compilation_stat);
31 }
32}
33
34HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
35 return block_builder_->GetBlockAt(dex_pc);
36}
37
38ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
39 ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
40 const size_t vregs = graph_->GetNumberOfVRegs();
41 if (locals->size() != vregs) {
42 locals->resize(vregs, nullptr);
43
44 if (block->IsCatchBlock()) {
45 // We record incoming inputs of catch phis at throwing instructions and
46 // must therefore eagerly create the phis. Phis for undefined vregs will
47 // be deleted when the first throwing instruction with the vreg undefined
48 // is encountered. Unused phis will be removed by dead phi analysis.
49 for (size_t i = 0; i < vregs; ++i) {
50 // No point in creating the catch phi if it is already undefined at
51 // the first throwing instruction.
52 HInstruction* current_local_value = (*current_locals_)[i];
53 if (current_local_value != nullptr) {
54 HPhi* phi = new (arena_) HPhi(
55 arena_,
56 i,
57 0,
58 current_local_value->GetType());
59 block->AddPhi(phi);
60 (*locals)[i] = phi;
61 }
62 }
63 }
64 }
65 return locals;
66}
67
68HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
69 ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
70 return (*locals)[local];
71}
72
73void HInstructionBuilder::InitializeBlockLocals() {
74 current_locals_ = GetLocalsFor(current_block_);
75
76 if (current_block_->IsCatchBlock()) {
77 // Catch phis were already created and inputs collected from throwing sites.
78 if (kIsDebugBuild) {
79 // Make sure there was at least one throwing instruction which initialized
80 // locals (guaranteed by HGraphBuilder) and that all try blocks have been
81 // visited already (from HTryBoundary scoping and reverse post order).
82 bool catch_block_visited = false;
83 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
84 HBasicBlock* current = it.Current();
85 if (current == current_block_) {
86 catch_block_visited = true;
87 } else if (current->IsTryBlock()) {
88 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
89 if (try_entry.HasExceptionHandler(*current_block_)) {
90 DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
91 }
92 }
93 }
94 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
95 << "No instructions throwing into a live catch block.";
96 }
97 } else if (current_block_->IsLoopHeader()) {
98 // If the block is a loop header, we know we only have visited the pre header
99 // because we are visiting in reverse post order. We create phis for all initialized
100 // locals from the pre header. Their inputs will be populated at the end of
101 // the analysis.
102 for (size_t local = 0; local < current_locals_->size(); ++local) {
103 HInstruction* incoming =
104 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
105 if (incoming != nullptr) {
106 HPhi* phi = new (arena_) HPhi(
107 arena_,
108 local,
109 0,
110 incoming->GetType());
111 current_block_->AddPhi(phi);
112 (*current_locals_)[local] = phi;
113 }
114 }
115
116 // Save the loop header so that the last phase of the analysis knows which
117 // blocks need to be updated.
118 loop_headers_.push_back(current_block_);
119 } else if (current_block_->GetPredecessors().size() > 0) {
120 // All predecessors have already been visited because we are visiting in reverse post order.
121 // We merge the values of all locals, creating phis if those values differ.
122 for (size_t local = 0; local < current_locals_->size(); ++local) {
123 bool one_predecessor_has_no_value = false;
124 bool is_different = false;
125 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
126
127 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
128 HInstruction* current = ValueOfLocalAt(predecessor, local);
129 if (current == nullptr) {
130 one_predecessor_has_no_value = true;
131 break;
132 } else if (current != value) {
133 is_different = true;
134 }
135 }
136
137 if (one_predecessor_has_no_value) {
138 // If one predecessor has no value for this local, we trust the verifier has
139 // successfully checked that there is a store dominating any read after this block.
140 continue;
141 }
142
143 if (is_different) {
144 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
145 HPhi* phi = new (arena_) HPhi(
146 arena_,
147 local,
148 current_block_->GetPredecessors().size(),
149 first_input->GetType());
150 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
151 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
152 phi->SetRawInputAt(i, pred_value);
153 }
154 current_block_->AddPhi(phi);
155 value = phi;
156 }
157 (*current_locals_)[local] = value;
158 }
159 }
160}
161
162void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
163 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
164 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
165 ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
166 DCHECK_EQ(handler_locals->size(), current_locals_->size());
167 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
168 HInstruction* handler_value = (*handler_locals)[vreg];
169 if (handler_value == nullptr) {
170 // Vreg was undefined at a previously encountered throwing instruction
171 // and the catch phi was deleted. Do not record the local value.
172 continue;
173 }
174 DCHECK(handler_value->IsPhi());
175
176 HInstruction* local_value = (*current_locals_)[vreg];
177 if (local_value == nullptr) {
178 // This is the first instruction throwing into `catch_block` where
179 // `vreg` is undefined. Delete the catch phi.
180 catch_block->RemovePhi(handler_value->AsPhi());
181 (*handler_locals)[vreg] = nullptr;
182 } else {
183 // Vreg has been defined at all instructions throwing into `catch_block`
184 // encountered so far. Record the local value in the catch phi.
185 handler_value->AsPhi()->AddInput(local_value);
186 }
187 }
188 }
189}
190
191void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
192 current_block_->AddInstruction(instruction);
193 InitializeInstruction(instruction);
194}
195
196void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
197 if (current_block_->GetInstructions().IsEmpty()) {
198 current_block_->AddInstruction(instruction);
199 } else {
200 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
201 }
202 InitializeInstruction(instruction);
203}
204
205void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
206 if (instruction->NeedsEnvironment()) {
207 HEnvironment* environment = new (arena_) HEnvironment(
208 arena_,
209 current_locals_->size(),
210 graph_->GetDexFile(),
211 graph_->GetMethodIdx(),
212 instruction->GetDexPc(),
213 graph_->GetInvokeType(),
214 instruction);
215 environment->CopyFrom(*current_locals_);
216 instruction->SetRawEnvironment(environment);
217 }
218}
219
David Brazdilc120bbe2016-04-22 16:57:00 +0100220HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
221 HInstruction* ref = LoadLocal(register_index, Primitive::kPrimNot);
222 if (!ref->CanBeNull()) {
223 return ref;
224 }
225
226 HNullCheck* null_check = new (arena_) HNullCheck(ref, dex_pc);
227 AppendInstruction(null_check);
228 return null_check;
229}
230
David Brazdildee58d62016-04-07 09:54:26 +0000231void HInstructionBuilder::SetLoopHeaderPhiInputs() {
232 for (size_t i = loop_headers_.size(); i > 0; --i) {
233 HBasicBlock* block = loop_headers_[i - 1];
234 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
235 HPhi* phi = it.Current()->AsPhi();
236 size_t vreg = phi->GetRegNumber();
237 for (HBasicBlock* predecessor : block->GetPredecessors()) {
238 HInstruction* value = ValueOfLocalAt(predecessor, vreg);
239 if (value == nullptr) {
240 // Vreg is undefined at this predecessor. Mark it dead and leave with
241 // fewer inputs than predecessors. SsaChecker will fail if not removed.
242 phi->SetDead();
243 break;
244 } else {
245 phi->AddInput(value);
246 }
247 }
248 }
249 }
250}
251
252static bool IsBlockPopulated(HBasicBlock* block) {
253 if (block->IsLoopHeader()) {
254 // Suspend checks were inserted into loop headers during building of dominator tree.
255 DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
256 return block->GetFirstInstruction() != block->GetLastInstruction();
257 } else {
258 return !block->GetInstructions().IsEmpty();
259 }
260}
261
262bool HInstructionBuilder::Build() {
263 locals_for_.resize(graph_->GetBlocks().size(),
264 ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder)));
265
266 // Find locations where we want to generate extra stackmaps for native debugging.
267 // This allows us to generate the info only at interesting points (for example,
268 // at start of java statement) rather than before every dex instruction.
269 const bool native_debuggable = compiler_driver_ != nullptr &&
270 compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
271 ArenaBitVector* native_debug_info_locations = nullptr;
272 if (native_debuggable) {
273 const uint32_t num_instructions = code_item_.insns_size_in_code_units_;
274 native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
275 FindNativeDebugInfoLocations(native_debug_info_locations);
276 }
277
278 for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) {
279 current_block_ = block_it.Current();
280 uint32_t block_dex_pc = current_block_->GetDexPc();
281
282 InitializeBlockLocals();
283
284 if (current_block_->IsEntryBlock()) {
285 InitializeParameters();
286 AppendInstruction(new (arena_) HSuspendCheck(0u));
287 AppendInstruction(new (arena_) HGoto(0u));
288 continue;
289 } else if (current_block_->IsExitBlock()) {
290 AppendInstruction(new (arena_) HExit());
291 continue;
292 } else if (current_block_->IsLoopHeader()) {
293 HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc());
294 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
295 // This is slightly odd because the loop header might not be empty (TryBoundary).
296 // But we're still creating the environment with locals from the top of the block.
297 InsertInstructionAtTop(suspend_check);
298 }
299
300 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
301 // Synthetic block that does not need to be populated.
302 DCHECK(IsBlockPopulated(current_block_));
303 continue;
304 }
305
306 DCHECK(!IsBlockPopulated(current_block_));
307
308 for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) {
309 if (current_block_ == nullptr) {
310 // The previous instruction ended this block.
311 break;
312 }
313
314 uint32_t dex_pc = it.CurrentDexPc();
315 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
316 // This dex_pc starts a new basic block.
317 break;
318 }
319
320 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) {
321 PropagateLocalsToCatchBlocks();
322 }
323
324 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
325 AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc));
326 }
327
328 if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) {
329 return false;
330 }
331 }
332
333 if (current_block_ != nullptr) {
334 // Branching instructions clear current_block, so we know the last
335 // instruction of the current block is not a branching instruction.
336 // We add an unconditional Goto to the next block.
337 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
338 AppendInstruction(new (arena_) HGoto());
339 }
340 }
341
342 SetLoopHeaderPhiInputs();
343
344 return true;
345}
346
347void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) {
348 // The callback gets called when the line number changes.
349 // In other words, it marks the start of new java statement.
350 struct Callback {
351 static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
352 static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
353 return false;
354 }
355 };
356 dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations);
357 // Instruction-specific tweaks.
358 const Instruction* const begin = Instruction::At(code_item_.insns_);
359 const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_);
360 for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
361 switch (inst->Opcode()) {
362 case Instruction::MOVE_EXCEPTION: {
363 // Stop in native debugger after the exception has been moved.
364 // The compiler also expects the move at the start of basic block so
365 // we do not want to interfere by inserting native-debug-info before it.
366 locations->ClearBit(inst->GetDexPc(code_item_.insns_));
367 const Instruction* next = inst->Next();
368 if (next < end) {
369 locations->SetBit(next->GetDexPc(code_item_.insns_));
370 }
371 break;
372 }
373 default:
374 break;
375 }
376 }
377}
378
379HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const {
380 HInstruction* value = (*current_locals_)[reg_number];
381 DCHECK(value != nullptr);
382
383 // If the operation requests a specific type, we make sure its input is of that type.
384 if (type != value->GetType()) {
385 if (Primitive::IsFloatingPointType(type)) {
Aart Bik31883642016-06-06 15:02:44 -0700386 value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
David Brazdildee58d62016-04-07 09:54:26 +0000387 } else if (type == Primitive::kPrimNot) {
Aart Bik31883642016-06-06 15:02:44 -0700388 value = ssa_builder_->GetReferenceTypeEquivalent(value);
David Brazdildee58d62016-04-07 09:54:26 +0000389 }
Aart Bik31883642016-06-06 15:02:44 -0700390 DCHECK(value != nullptr);
David Brazdildee58d62016-04-07 09:54:26 +0000391 }
392
393 return value;
394}
395
396void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
397 Primitive::Type stored_type = stored_value->GetType();
398 DCHECK_NE(stored_type, Primitive::kPrimVoid);
399
400 // Storing into vreg `reg_number` may implicitly invalidate the surrounding
401 // registers. Consider the following cases:
402 // (1) Storing a wide value must overwrite previous values in both `reg_number`
403 // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
404 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
405 // must invalidate it. We store `nullptr` in `reg_number-1`.
406 // Consequently, storing a wide value into the high vreg of another wide value
407 // will invalidate both `reg_number-1` and `reg_number+1`.
408
409 if (reg_number != 0) {
410 HInstruction* local_low = (*current_locals_)[reg_number - 1];
411 if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) {
412 // The vreg we are storing into was previously the high vreg of a pair.
413 // We need to invalidate its low vreg.
414 DCHECK((*current_locals_)[reg_number] == nullptr);
415 (*current_locals_)[reg_number - 1] = nullptr;
416 }
417 }
418
419 (*current_locals_)[reg_number] = stored_value;
420 if (Primitive::Is64BitType(stored_type)) {
421 // We are storing a pair. Invalidate the instruction in the high vreg.
422 (*current_locals_)[reg_number + 1] = nullptr;
423 }
424}
425
426void HInstructionBuilder::InitializeParameters() {
427 DCHECK(current_block_->IsEntryBlock());
428
429 // dex_compilation_unit_ is null only when unit testing.
430 if (dex_compilation_unit_ == nullptr) {
431 return;
432 }
433
434 const char* shorty = dex_compilation_unit_->GetShorty();
435 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
436 uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
437 uint16_t parameter_index = 0;
438
439 const DexFile::MethodId& referrer_method_id =
440 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
441 if (!dex_compilation_unit_->IsStatic()) {
442 // Add the implicit 'this' argument, not expressed in the signature.
443 HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
444 referrer_method_id.class_idx_,
445 parameter_index++,
446 Primitive::kPrimNot,
447 true);
448 AppendInstruction(parameter);
449 UpdateLocal(locals_index++, parameter);
450 number_of_parameters--;
451 }
452
453 const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
454 const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
455 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
456 HParameterValue* parameter = new (arena_) HParameterValue(
457 *dex_file_,
458 arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
459 parameter_index++,
460 Primitive::GetType(shorty[shorty_pos]),
461 false);
462 ++shorty_pos;
463 AppendInstruction(parameter);
464 // Store the parameter value in the local that the dex code will use
465 // to reference that parameter.
466 UpdateLocal(locals_index++, parameter);
467 if (Primitive::Is64BitType(parameter->GetType())) {
468 i++;
469 locals_index++;
470 parameter_index++;
471 }
472 }
473}
474
475template<typename T>
476void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
477 HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
478 HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
479 T* comparison = new (arena_) T(first, second, dex_pc);
480 AppendInstruction(comparison);
481 AppendInstruction(new (arena_) HIf(comparison, dex_pc));
482 current_block_ = nullptr;
483}
484
485template<typename T>
486void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
487 HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
488 T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
489 AppendInstruction(comparison);
490 AppendInstruction(new (arena_) HIf(comparison, dex_pc));
491 current_block_ = nullptr;
492}
493
494template<typename T>
495void HInstructionBuilder::Unop_12x(const Instruction& instruction,
496 Primitive::Type type,
497 uint32_t dex_pc) {
498 HInstruction* first = LoadLocal(instruction.VRegB(), type);
499 AppendInstruction(new (arena_) T(type, first, dex_pc));
500 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
501}
502
503void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
504 Primitive::Type input_type,
505 Primitive::Type result_type,
506 uint32_t dex_pc) {
507 HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
508 AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
509 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
510}
511
512template<typename T>
513void HInstructionBuilder::Binop_23x(const Instruction& instruction,
514 Primitive::Type type,
515 uint32_t dex_pc) {
516 HInstruction* first = LoadLocal(instruction.VRegB(), type);
517 HInstruction* second = LoadLocal(instruction.VRegC(), type);
518 AppendInstruction(new (arena_) T(type, first, second, dex_pc));
519 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
520}
521
522template<typename T>
523void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
524 Primitive::Type type,
525 uint32_t dex_pc) {
526 HInstruction* first = LoadLocal(instruction.VRegB(), type);
527 HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
528 AppendInstruction(new (arena_) T(type, first, second, dex_pc));
529 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
530}
531
532void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
533 Primitive::Type type,
534 ComparisonBias bias,
535 uint32_t dex_pc) {
536 HInstruction* first = LoadLocal(instruction.VRegB(), type);
537 HInstruction* second = LoadLocal(instruction.VRegC(), type);
538 AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
539 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
540}
541
542template<typename T>
543void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
544 Primitive::Type type,
545 uint32_t dex_pc) {
546 HInstruction* first = LoadLocal(instruction.VRegA(), type);
547 HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
548 AppendInstruction(new (arena_) T(type, first, second, dex_pc));
549 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
550}
551
552template<typename T>
553void HInstructionBuilder::Binop_12x(const Instruction& instruction,
554 Primitive::Type type,
555 uint32_t dex_pc) {
556 HInstruction* first = LoadLocal(instruction.VRegA(), type);
557 HInstruction* second = LoadLocal(instruction.VRegB(), type);
558 AppendInstruction(new (arena_) T(type, first, second, dex_pc));
559 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
560}
561
562template<typename T>
563void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
564 HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
565 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
566 if (reverse) {
567 std::swap(first, second);
568 }
569 AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
570 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
571}
572
573template<typename T>
574void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
575 HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
576 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
577 if (reverse) {
578 std::swap(first, second);
579 }
580 AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
581 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
582}
583
Mathieu Chartierc4ae9162016-04-07 13:19:19 -0700584static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) {
David Brazdildee58d62016-04-07 09:54:26 +0000585 Thread* self = Thread::Current();
586 return cu->IsConstructor()
Mathieu Chartierc4ae9162016-04-07 13:19:19 -0700587 && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
David Brazdildee58d62016-04-07 09:54:26 +0000588}
589
590// Returns true if `block` has only one successor which starts at the next
591// dex_pc after `instruction` at `dex_pc`.
592static bool IsFallthroughInstruction(const Instruction& instruction,
593 uint32_t dex_pc,
594 HBasicBlock* block) {
595 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
596 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
597}
598
599void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
600 HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
601 DexSwitchTable table(instruction, dex_pc);
602
603 if (table.GetNumEntries() == 0) {
604 // Empty Switch. Code falls through to the next block.
605 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
606 AppendInstruction(new (arena_) HGoto(dex_pc));
607 } else if (table.ShouldBuildDecisionTree()) {
608 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
609 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
610 HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc);
611 AppendInstruction(comparison);
612 AppendInstruction(new (arena_) HIf(comparison, dex_pc));
613
614 if (!it.IsLast()) {
615 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
616 }
617 }
618 } else {
619 AppendInstruction(
620 new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
621 }
622
623 current_block_ = nullptr;
624}
625
626void HInstructionBuilder::BuildReturn(const Instruction& instruction,
627 Primitive::Type type,
628 uint32_t dex_pc) {
629 if (type == Primitive::kPrimVoid) {
630 if (graph_->ShouldGenerateConstructorBarrier()) {
631 // The compilation unit is null during testing.
632 if (dex_compilation_unit_ != nullptr) {
Mathieu Chartierc4ae9162016-04-07 13:19:19 -0700633 DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_))
David Brazdildee58d62016-04-07 09:54:26 +0000634 << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
635 }
636 AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
637 }
638 AppendInstruction(new (arena_) HReturnVoid(dex_pc));
639 } else {
640 HInstruction* value = LoadLocal(instruction.VRegA(), type);
641 AppendInstruction(new (arena_) HReturn(value, dex_pc));
642 }
643 current_block_ = nullptr;
644}
645
646static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
647 switch (opcode) {
648 case Instruction::INVOKE_STATIC:
649 case Instruction::INVOKE_STATIC_RANGE:
650 return kStatic;
651 case Instruction::INVOKE_DIRECT:
652 case Instruction::INVOKE_DIRECT_RANGE:
653 return kDirect;
654 case Instruction::INVOKE_VIRTUAL:
655 case Instruction::INVOKE_VIRTUAL_QUICK:
656 case Instruction::INVOKE_VIRTUAL_RANGE:
657 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
658 return kVirtual;
659 case Instruction::INVOKE_INTERFACE:
660 case Instruction::INVOKE_INTERFACE_RANGE:
661 return kInterface;
662 case Instruction::INVOKE_SUPER_RANGE:
663 case Instruction::INVOKE_SUPER:
664 return kSuper;
665 default:
666 LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
667 UNREACHABLE();
668 }
669}
670
671ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
672 ScopedObjectAccess soa(Thread::Current());
673 StackHandleScope<3> hs(soa.Self());
674
675 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
676 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
677 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
678 Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
Nicolas Geoffray393fdb82016-04-25 14:58:06 +0100679 // We fetch the referenced class eagerly (that is, the class pointed by in the MethodId
680 // at method_idx), as `CanAccessResolvedMethod` expects it be be in the dex cache.
681 Handle<mirror::Class> methods_class(hs.NewHandle(class_linker->ResolveReferencedClassOfMethod(
682 method_idx, dex_compilation_unit_->GetDexCache(), class_loader)));
683
684 if (UNLIKELY(methods_class.Get() == nullptr)) {
685 // Clean up any exception left by type resolution.
686 soa.Self()->ClearException();
687 return nullptr;
688 }
David Brazdildee58d62016-04-07 09:54:26 +0000689
690 ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
691 *dex_compilation_unit_->GetDexFile(),
692 method_idx,
693 dex_compilation_unit_->GetDexCache(),
694 class_loader,
695 /* referrer */ nullptr,
696 invoke_type);
697
698 if (UNLIKELY(resolved_method == nullptr)) {
699 // Clean up any exception left by type resolution.
700 soa.Self()->ClearException();
701 return nullptr;
702 }
703
704 // Check access. The class linker has a fast path for looking into the dex cache
705 // and does not check the access if it hits it.
706 if (compiling_class.Get() == nullptr) {
707 if (!resolved_method->IsPublic()) {
708 return nullptr;
709 }
710 } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
711 resolved_method,
712 dex_compilation_unit_->GetDexCache().Get(),
713 method_idx)) {
714 return nullptr;
715 }
716
717 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
718 // We need to look at the referrer's super class vtable. We need to do this to know if we need to
719 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
720 // which require runtime handling.
721 if (invoke_type == kSuper) {
722 if (compiling_class.Get() == nullptr) {
723 // We could not determine the method's class we need to wait until runtime.
724 DCHECK(Runtime::Current()->IsAotCompiler());
725 return nullptr;
726 }
Aart Bikf663e342016-04-04 17:28:59 -0700727 if (!methods_class->IsAssignableFrom(compiling_class.Get())) {
728 // We cannot statically determine the target method. The runtime will throw a
729 // NoSuchMethodError on this one.
730 return nullptr;
731 }
Nicolas Geoffray393fdb82016-04-25 14:58:06 +0100732 ArtMethod* actual_method;
733 if (methods_class->IsInterface()) {
734 actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
735 resolved_method, class_linker->GetImagePointerSize());
David Brazdildee58d62016-04-07 09:54:26 +0000736 } else {
Nicolas Geoffray393fdb82016-04-25 14:58:06 +0100737 uint16_t vtable_index = resolved_method->GetMethodIndex();
738 actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
739 vtable_index, class_linker->GetImagePointerSize());
David Brazdildee58d62016-04-07 09:54:26 +0000740 }
Nicolas Geoffray393fdb82016-04-25 14:58:06 +0100741 if (actual_method != resolved_method &&
742 !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
743 // The back-end code generator relies on this check in order to ensure that it will not
744 // attempt to read the dex_cache with a dex_method_index that is not from the correct
745 // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
746 // builder, which means that the code-generator (and compiler driver during sharpening and
747 // inliner, maybe) might invoke an incorrect method.
748 // TODO: The actual method could still be referenced in the current dex file, so we
749 // could try locating it.
750 // TODO: Remove the dex_file restriction.
751 return nullptr;
752 }
753 if (!actual_method->IsInvokable()) {
754 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
755 // could resolve the callee to the wrong method.
756 return nullptr;
757 }
758 resolved_method = actual_method;
David Brazdildee58d62016-04-07 09:54:26 +0000759 }
760
761 // Check for incompatible class changes. The class linker has a fast path for
762 // looking into the dex cache and does not check incompatible class changes if it hits it.
763 if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
764 return nullptr;
765 }
766
767 return resolved_method;
768}
769
770bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
771 uint32_t dex_pc,
772 uint32_t method_idx,
773 uint32_t number_of_vreg_arguments,
774 bool is_range,
775 uint32_t* args,
776 uint32_t register_index) {
777 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
778 const char* descriptor = dex_file_->GetMethodShorty(method_idx);
779 Primitive::Type return_type = Primitive::GetType(descriptor[0]);
780
781 // Remove the return type from the 'proto'.
782 size_t number_of_arguments = strlen(descriptor) - 1;
783 if (invoke_type != kStatic) { // instance call
784 // One extra argument for 'this'.
785 number_of_arguments++;
786 }
787
788 MethodReference target_method(dex_file_, method_idx);
789
790 // Special handling for string init.
791 int32_t string_init_offset = 0;
792 bool is_string_init = compiler_driver_->IsStringInit(method_idx,
793 dex_file_,
794 &string_init_offset);
795 // Replace calls to String.<init> with StringFactory.
796 if (is_string_init) {
797 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
798 HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
799 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
800 dchecked_integral_cast<uint64_t>(string_init_offset),
801 0U
802 };
803 HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
804 arena_,
805 number_of_arguments - 1,
806 Primitive::kPrimNot /*return_type */,
807 dex_pc,
808 method_idx,
809 target_method,
810 dispatch_info,
811 invoke_type,
812 kStatic /* optimized_invoke_type */,
813 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
814 return HandleStringInit(invoke,
815 number_of_vreg_arguments,
816 args,
817 register_index,
818 is_range,
819 descriptor);
820 }
821
822 ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
823
824 if (UNLIKELY(resolved_method == nullptr)) {
825 MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
826 HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
827 number_of_arguments,
828 return_type,
829 dex_pc,
830 method_idx,
831 invoke_type);
832 return HandleInvoke(invoke,
833 number_of_vreg_arguments,
834 args,
835 register_index,
836 is_range,
837 descriptor,
Aart Bik296fbb42016-06-07 13:49:12 -0700838 nullptr, /* clinit_check */
839 true /* is_unresolved */);
David Brazdildee58d62016-04-07 09:54:26 +0000840 }
841
842 // Potential class initialization check, in the case of a static method call.
843 HClinitCheck* clinit_check = nullptr;
844 HInvoke* invoke = nullptr;
845 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
846 // By default, consider that the called method implicitly requires
847 // an initialization check of its declaring method.
848 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
849 = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
850 ScopedObjectAccess soa(Thread::Current());
851 if (invoke_type == kStatic) {
852 clinit_check = ProcessClinitCheckForInvoke(
853 dex_pc, resolved_method, method_idx, &clinit_check_requirement);
854 } else if (invoke_type == kSuper) {
855 if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
856 // Update the target method to the one resolved. Note that this may be a no-op if
857 // we resolved to the method referenced by the instruction.
858 method_idx = resolved_method->GetDexMethodIndex();
859 target_method = MethodReference(dex_file_, method_idx);
860 }
861 }
862
863 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
864 HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
865 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
866 0u,
867 0U
868 };
869 invoke = new (arena_) HInvokeStaticOrDirect(arena_,
870 number_of_arguments,
871 return_type,
872 dex_pc,
873 method_idx,
874 target_method,
875 dispatch_info,
876 invoke_type,
877 invoke_type,
878 clinit_check_requirement);
879 } else if (invoke_type == kVirtual) {
880 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
881 invoke = new (arena_) HInvokeVirtual(arena_,
882 number_of_arguments,
883 return_type,
884 dex_pc,
885 method_idx,
886 resolved_method->GetMethodIndex());
887 } else {
888 DCHECK_EQ(invoke_type, kInterface);
889 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
890 invoke = new (arena_) HInvokeInterface(arena_,
891 number_of_arguments,
892 return_type,
893 dex_pc,
894 method_idx,
Matthew Gharrity465ecc82016-07-19 21:32:52 +0000895 resolved_method->GetImtIndex());
David Brazdildee58d62016-04-07 09:54:26 +0000896 }
897
898 return HandleInvoke(invoke,
899 number_of_vreg_arguments,
900 args,
901 register_index,
902 is_range,
903 descriptor,
Aart Bik296fbb42016-06-07 13:49:12 -0700904 clinit_check,
905 false /* is_unresolved */);
David Brazdildee58d62016-04-07 09:54:26 +0000906}
907
908bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
Vladimir Marko3cd50df2016-04-13 19:29:26 +0100909 ScopedObjectAccess soa(Thread::Current());
910 StackHandleScope<1> hs(soa.Self());
911 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
912 Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
913 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
914 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
915
David Brazdildee58d62016-04-07 09:54:26 +0000916 bool finalizable;
Mingyao Yang062157f2016-03-02 10:15:36 -0800917 bool needs_access_check = NeedsAccessCheck(type_index, dex_cache, &finalizable);
David Brazdildee58d62016-04-07 09:54:26 +0000918
919 // Only the non-resolved entrypoint handles the finalizable class case. If we
920 // need access checks, then we haven't resolved the method and the class may
921 // again be finalizable.
Mingyao Yang062157f2016-03-02 10:15:36 -0800922 QuickEntrypointEnum entrypoint = (finalizable || needs_access_check)
David Brazdildee58d62016-04-07 09:54:26 +0000923 ? kQuickAllocObject
924 : kQuickAllocObjectInitialized;
925
David Brazdildee58d62016-04-07 09:54:26 +0000926 if (outer_dex_cache.Get() != dex_cache.Get()) {
927 // We currently do not support inlining allocations across dex files.
928 return false;
929 }
930
931 HLoadClass* load_class = new (arena_) HLoadClass(
932 graph_->GetCurrentMethod(),
933 type_index,
934 outer_dex_file,
935 IsOutermostCompilingClass(type_index),
936 dex_pc,
Mingyao Yang062157f2016-03-02 10:15:36 -0800937 needs_access_check,
Vladimir Markodbb7f5b2016-03-30 13:23:58 +0100938 /* is_in_dex_cache */ false);
David Brazdildee58d62016-04-07 09:54:26 +0000939
940 AppendInstruction(load_class);
941 HInstruction* cls = load_class;
942 if (!IsInitialized(resolved_class)) {
943 cls = new (arena_) HClinitCheck(load_class, dex_pc);
944 AppendInstruction(cls);
945 }
946
947 AppendInstruction(new (arena_) HNewInstance(
948 cls,
949 graph_->GetCurrentMethod(),
950 dex_pc,
951 type_index,
952 *dex_compilation_unit_->GetDexFile(),
Mingyao Yang062157f2016-03-02 10:15:36 -0800953 needs_access_check,
David Brazdildee58d62016-04-07 09:54:26 +0000954 finalizable,
955 entrypoint));
956 return true;
957}
958
959static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
960 SHARED_REQUIRES(Locks::mutator_lock_) {
961 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
962}
963
964bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
965 if (cls.Get() == nullptr) {
966 return false;
967 }
968
969 // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
970 // check whether the class is in an image for the AOT compilation.
971 if (cls->IsInitialized() &&
972 compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
973 return true;
974 }
975
976 if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
977 return true;
978 }
979
980 // TODO: We should walk over the inlined methods, but we don't pass
981 // that information to the builder.
982 if (IsSubClass(GetCompilingClass(), cls.Get())) {
983 return true;
984 }
985
986 return false;
987}
988
989HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
990 uint32_t dex_pc,
991 ArtMethod* resolved_method,
992 uint32_t method_idx,
993 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
994 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
995 Thread* self = Thread::Current();
Vladimir Marko3cd50df2016-04-13 19:29:26 +0100996 StackHandleScope<2> hs(self);
997 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
998 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +0000999 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1000 Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
1001
1002 // The index at which the method's class is stored in the DexCache's type array.
1003 uint32_t storage_index = DexFile::kDexNoIndex;
1004 bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
1005 if (is_outer_class) {
1006 storage_index = outer_class->GetDexTypeIndex();
1007 } else if (outer_dex_cache.Get() == dex_cache.Get()) {
1008 // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
1009 compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
1010 GetCompilingClass(),
1011 resolved_method,
1012 method_idx,
1013 &storage_index);
1014 }
1015
1016 HClinitCheck* clinit_check = nullptr;
1017
1018 if (IsInitialized(resolved_method_class)) {
1019 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1020 } else if (storage_index != DexFile::kDexNoIndex) {
1021 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1022 HLoadClass* load_class = new (arena_) HLoadClass(
1023 graph_->GetCurrentMethod(),
1024 storage_index,
1025 outer_dex_file,
1026 is_outer_class,
1027 dex_pc,
1028 /*needs_access_check*/ false,
Vladimir Markodbb7f5b2016-03-30 13:23:58 +01001029 /* is_in_dex_cache */ false);
David Brazdildee58d62016-04-07 09:54:26 +00001030 AppendInstruction(load_class);
1031 clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
1032 AppendInstruction(clinit_check);
1033 }
1034 return clinit_check;
1035}
1036
1037bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
1038 uint32_t number_of_vreg_arguments,
1039 uint32_t* args,
1040 uint32_t register_index,
1041 bool is_range,
1042 const char* descriptor,
1043 size_t start_index,
1044 size_t* argument_index) {
1045 uint32_t descriptor_index = 1; // Skip the return type.
1046
1047 for (size_t i = start_index;
1048 // Make sure we don't go over the expected arguments or over the number of
1049 // dex registers given. If the instruction was seen as dead by the verifier,
1050 // it hasn't been properly checked.
1051 (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1052 i++, (*argument_index)++) {
1053 Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
1054 bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
1055 if (!is_range
1056 && is_wide
1057 && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1058 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1059 // reject any class where this is violated. However, the verifier only does these checks
1060 // on non trivially dead instructions, so we just bailout the compilation.
1061 VLOG(compiler) << "Did not compile "
1062 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1063 << " because of non-sequential dex register pair in wide argument";
1064 MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1065 return false;
1066 }
1067 HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
1068 invoke->SetArgumentAt(*argument_index, arg);
1069 if (is_wide) {
1070 i++;
1071 }
1072 }
1073
1074 if (*argument_index != invoke->GetNumberOfArguments()) {
1075 VLOG(compiler) << "Did not compile "
1076 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1077 << " because of wrong number of arguments in invoke instruction";
1078 MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1079 return false;
1080 }
1081
1082 if (invoke->IsInvokeStaticOrDirect() &&
1083 HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1084 invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
1085 invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1086 (*argument_index)++;
1087 }
1088
1089 return true;
1090}
1091
1092bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1093 uint32_t number_of_vreg_arguments,
1094 uint32_t* args,
1095 uint32_t register_index,
1096 bool is_range,
1097 const char* descriptor,
Aart Bik296fbb42016-06-07 13:49:12 -07001098 HClinitCheck* clinit_check,
1099 bool is_unresolved) {
David Brazdildee58d62016-04-07 09:54:26 +00001100 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1101
1102 size_t start_index = 0;
1103 size_t argument_index = 0;
1104 if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) { // Instance call.
Aart Bik296fbb42016-06-07 13:49:12 -07001105 uint32_t obj_reg = is_range ? register_index : args[0];
1106 HInstruction* arg = is_unresolved
1107 ? LoadLocal(obj_reg, Primitive::kPrimNot)
1108 : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
David Brazdilc120bbe2016-04-22 16:57:00 +01001109 invoke->SetArgumentAt(0, arg);
David Brazdildee58d62016-04-07 09:54:26 +00001110 start_index = 1;
1111 argument_index = 1;
1112 }
1113
1114 if (!SetupInvokeArguments(invoke,
1115 number_of_vreg_arguments,
1116 args,
1117 register_index,
1118 is_range,
1119 descriptor,
1120 start_index,
1121 &argument_index)) {
1122 return false;
1123 }
1124
1125 if (clinit_check != nullptr) {
1126 // Add the class initialization check as last input of `invoke`.
1127 DCHECK(invoke->IsInvokeStaticOrDirect());
1128 DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1129 == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1130 invoke->SetArgumentAt(argument_index, clinit_check);
1131 argument_index++;
1132 }
1133
1134 AppendInstruction(invoke);
1135 latest_result_ = invoke;
1136
1137 return true;
1138}
1139
1140bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1141 uint32_t number_of_vreg_arguments,
1142 uint32_t* args,
1143 uint32_t register_index,
1144 bool is_range,
1145 const char* descriptor) {
1146 DCHECK(invoke->IsInvokeStaticOrDirect());
1147 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1148
1149 size_t start_index = 1;
1150 size_t argument_index = 0;
1151 if (!SetupInvokeArguments(invoke,
1152 number_of_vreg_arguments,
1153 args,
1154 register_index,
1155 is_range,
1156 descriptor,
1157 start_index,
1158 &argument_index)) {
1159 return false;
1160 }
1161
1162 AppendInstruction(invoke);
1163
1164 // This is a StringFactory call, not an actual String constructor. Its result
1165 // replaces the empty String pre-allocated by NewInstance.
1166 uint32_t orig_this_reg = is_range ? register_index : args[0];
1167 HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot);
1168
1169 // Replacing the NewInstance might render it redundant. Keep a list of these
1170 // to be visited once it is clear whether it is has remaining uses.
1171 if (arg_this->IsNewInstance()) {
1172 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1173 } else {
1174 DCHECK(arg_this->IsPhi());
1175 // NewInstance is not the direct input of the StringFactory call. It might
1176 // be redundant but optimizing this case is not worth the effort.
1177 }
1178
1179 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1180 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1181 if ((*current_locals_)[vreg] == arg_this) {
1182 (*current_locals_)[vreg] = invoke;
1183 }
1184 }
1185
1186 return true;
1187}
1188
1189static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1190 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1191 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1192 return Primitive::GetType(type[0]);
1193}
1194
1195bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1196 uint32_t dex_pc,
1197 bool is_put) {
1198 uint32_t source_or_dest_reg = instruction.VRegA_22c();
1199 uint32_t obj_reg = instruction.VRegB_22c();
1200 uint16_t field_index;
1201 if (instruction.IsQuickened()) {
1202 if (!CanDecodeQuickenedInfo()) {
1203 return false;
1204 }
1205 field_index = LookupQuickenedInfo(dex_pc);
1206 } else {
1207 field_index = instruction.VRegC_22c();
1208 }
1209
1210 ScopedObjectAccess soa(Thread::Current());
1211 ArtField* resolved_field =
1212 compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
1213
1214
Aart Bik14154132016-06-02 17:53:58 -07001215 // Generate an explicit null check on the reference, unless the field access
1216 // is unresolved. In that case, we rely on the runtime to perform various
1217 // checks first, followed by a null check.
1218 HInstruction* object = (resolved_field == nullptr)
1219 ? LoadLocal(obj_reg, Primitive::kPrimNot)
1220 : LoadNullCheckedLocal(obj_reg, dex_pc);
David Brazdildee58d62016-04-07 09:54:26 +00001221
1222 Primitive::Type field_type = (resolved_field == nullptr)
1223 ? GetFieldAccessType(*dex_file_, field_index)
1224 : resolved_field->GetTypeAsPrimitiveType();
1225 if (is_put) {
1226 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1227 HInstruction* field_set = nullptr;
1228 if (resolved_field == nullptr) {
1229 MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
David Brazdilc120bbe2016-04-22 16:57:00 +01001230 field_set = new (arena_) HUnresolvedInstanceFieldSet(object,
David Brazdildee58d62016-04-07 09:54:26 +00001231 value,
1232 field_type,
1233 field_index,
1234 dex_pc);
1235 } else {
1236 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
David Brazdilc120bbe2016-04-22 16:57:00 +01001237 field_set = new (arena_) HInstanceFieldSet(object,
David Brazdildee58d62016-04-07 09:54:26 +00001238 value,
1239 field_type,
1240 resolved_field->GetOffset(),
1241 resolved_field->IsVolatile(),
1242 field_index,
1243 class_def_index,
1244 *dex_file_,
1245 dex_compilation_unit_->GetDexCache(),
1246 dex_pc);
1247 }
1248 AppendInstruction(field_set);
1249 } else {
1250 HInstruction* field_get = nullptr;
1251 if (resolved_field == nullptr) {
1252 MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
David Brazdilc120bbe2016-04-22 16:57:00 +01001253 field_get = new (arena_) HUnresolvedInstanceFieldGet(object,
David Brazdildee58d62016-04-07 09:54:26 +00001254 field_type,
1255 field_index,
1256 dex_pc);
1257 } else {
1258 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
David Brazdilc120bbe2016-04-22 16:57:00 +01001259 field_get = new (arena_) HInstanceFieldGet(object,
David Brazdildee58d62016-04-07 09:54:26 +00001260 field_type,
1261 resolved_field->GetOffset(),
1262 resolved_field->IsVolatile(),
1263 field_index,
1264 class_def_index,
1265 *dex_file_,
1266 dex_compilation_unit_->GetDexCache(),
1267 dex_pc);
1268 }
1269 AppendInstruction(field_get);
1270 UpdateLocal(source_or_dest_reg, field_get);
1271 }
1272
1273 return true;
1274}
1275
1276static mirror::Class* GetClassFrom(CompilerDriver* driver,
1277 const DexCompilationUnit& compilation_unit) {
1278 ScopedObjectAccess soa(Thread::Current());
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001279 StackHandleScope<1> hs(soa.Self());
David Brazdildee58d62016-04-07 09:54:26 +00001280 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1281 soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001282 Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +00001283
1284 return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1285}
1286
1287mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const {
1288 return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1289}
1290
1291mirror::Class* HInstructionBuilder::GetCompilingClass() const {
1292 return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1293}
1294
1295bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
1296 ScopedObjectAccess soa(Thread::Current());
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001297 StackHandleScope<3> hs(soa.Self());
1298 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +00001299 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1300 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1301 Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1302 soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1303 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1304
1305 // GetOutermostCompilingClass returns null when the class is unresolved
1306 // (e.g. if it derives from an unresolved class). This is bogus knowing that
1307 // we are compiling it.
1308 // When this happens we cannot establish a direct relation between the current
1309 // class and the outer class, so we return false.
1310 // (Note that this is only used for optimizing invokes and field accesses)
1311 return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
1312}
1313
1314void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1315 uint32_t dex_pc,
1316 bool is_put,
1317 Primitive::Type field_type) {
1318 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1319 uint16_t field_index = instruction.VRegB_21c();
1320
1321 if (is_put) {
1322 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1323 AppendInstruction(
1324 new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1325 } else {
1326 AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1327 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1328 }
1329}
1330
1331bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1332 uint32_t dex_pc,
1333 bool is_put) {
1334 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1335 uint16_t field_index = instruction.VRegB_21c();
1336
1337 ScopedObjectAccess soa(Thread::Current());
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001338 StackHandleScope<3> hs(soa.Self());
1339 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +00001340 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1341 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1342 ArtField* resolved_field = compiler_driver_->ResolveField(
1343 soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
1344
1345 if (resolved_field == nullptr) {
1346 MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1347 Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1348 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1349 return true;
1350 }
1351
1352 Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
1353 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001354 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +00001355 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1356
1357 // The index at which the field's class is stored in the DexCache's type array.
1358 uint32_t storage_index;
1359 bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
1360 if (is_outer_class) {
1361 storage_index = outer_class->GetDexTypeIndex();
1362 } else if (outer_dex_cache.Get() != dex_cache.Get()) {
1363 // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
1364 return false;
1365 } else {
1366 // TODO: This is rather expensive. Perf it and cache the results if needed.
1367 std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
1368 outer_dex_cache.Get(),
1369 GetCompilingClass(),
1370 resolved_field,
1371 field_index,
1372 &storage_index);
1373 bool can_easily_access = is_put ? pair.second : pair.first;
1374 if (!can_easily_access) {
1375 MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1376 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1377 return true;
1378 }
1379 }
1380
David Brazdildee58d62016-04-07 09:54:26 +00001381 HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
1382 storage_index,
1383 outer_dex_file,
1384 is_outer_class,
1385 dex_pc,
1386 /*needs_access_check*/ false,
Vladimir Markodbb7f5b2016-03-30 13:23:58 +01001387 /* is_in_dex_cache */ false);
David Brazdildee58d62016-04-07 09:54:26 +00001388 AppendInstruction(constant);
1389
1390 HInstruction* cls = constant;
1391
1392 Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
1393 if (!IsInitialized(klass)) {
1394 cls = new (arena_) HClinitCheck(constant, dex_pc);
1395 AppendInstruction(cls);
1396 }
1397
1398 uint16_t class_def_index = klass->GetDexClassDefIndex();
1399 if (is_put) {
1400 // We need to keep the class alive before loading the value.
1401 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1402 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
1403 AppendInstruction(new (arena_) HStaticFieldSet(cls,
1404 value,
1405 field_type,
1406 resolved_field->GetOffset(),
1407 resolved_field->IsVolatile(),
1408 field_index,
1409 class_def_index,
1410 *dex_file_,
1411 dex_cache_,
1412 dex_pc));
1413 } else {
1414 AppendInstruction(new (arena_) HStaticFieldGet(cls,
1415 field_type,
1416 resolved_field->GetOffset(),
1417 resolved_field->IsVolatile(),
1418 field_index,
1419 class_def_index,
1420 *dex_file_,
1421 dex_cache_,
1422 dex_pc));
1423 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1424 }
1425 return true;
1426}
1427
1428void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1429 uint16_t first_vreg,
1430 int64_t second_vreg_or_constant,
1431 uint32_t dex_pc,
1432 Primitive::Type type,
1433 bool second_is_constant,
1434 bool isDiv) {
1435 DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1436
1437 HInstruction* first = LoadLocal(first_vreg, type);
1438 HInstruction* second = nullptr;
1439 if (second_is_constant) {
1440 if (type == Primitive::kPrimInt) {
1441 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1442 } else {
1443 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1444 }
1445 } else {
1446 second = LoadLocal(second_vreg_or_constant, type);
1447 }
1448
1449 if (!second_is_constant
1450 || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
1451 || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
1452 second = new (arena_) HDivZeroCheck(second, dex_pc);
1453 AppendInstruction(second);
1454 }
1455
1456 if (isDiv) {
1457 AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc));
1458 } else {
1459 AppendInstruction(new (arena_) HRem(type, first, second, dex_pc));
1460 }
1461 UpdateLocal(out_vreg, current_block_->GetLastInstruction());
1462}
1463
1464void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
1465 uint32_t dex_pc,
1466 bool is_put,
1467 Primitive::Type anticipated_type) {
1468 uint8_t source_or_dest_reg = instruction.VRegA_23x();
1469 uint8_t array_reg = instruction.VRegB_23x();
1470 uint8_t index_reg = instruction.VRegC_23x();
1471
David Brazdilc120bbe2016-04-22 16:57:00 +01001472 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
David Brazdildee58d62016-04-07 09:54:26 +00001473 HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
1474 AppendInstruction(length);
1475 HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
1476 index = new (arena_) HBoundsCheck(index, length, dex_pc);
1477 AppendInstruction(index);
1478 if (is_put) {
1479 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
1480 // TODO: Insert a type check node if the type is Object.
1481 HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
1482 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1483 AppendInstruction(aset);
1484 } else {
1485 HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc);
1486 ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
1487 AppendInstruction(aget);
1488 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1489 }
1490 graph_->SetHasBoundsChecks(true);
1491}
1492
1493void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
1494 uint32_t type_index,
1495 uint32_t number_of_vreg_arguments,
1496 bool is_range,
1497 uint32_t* args,
1498 uint32_t register_index) {
1499 HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1500 bool finalizable;
1501 QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
1502 ? kQuickAllocArrayWithAccessCheck
1503 : kQuickAllocArray;
1504 HInstruction* object = new (arena_) HNewArray(length,
1505 graph_->GetCurrentMethod(),
1506 dex_pc,
1507 type_index,
1508 *dex_compilation_unit_->GetDexFile(),
1509 entrypoint);
1510 AppendInstruction(object);
1511
1512 const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1513 DCHECK_EQ(descriptor[0], '[') << descriptor;
1514 char primitive = descriptor[1];
1515 DCHECK(primitive == 'I'
1516 || primitive == 'L'
1517 || primitive == '[') << descriptor;
1518 bool is_reference_array = (primitive == 'L') || (primitive == '[');
1519 Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1520
1521 for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1522 HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
1523 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1524 HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc);
1525 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1526 AppendInstruction(aset);
1527 }
1528 latest_result_ = object;
1529}
1530
1531template <typename T>
1532void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
1533 const T* data,
1534 uint32_t element_count,
1535 Primitive::Type anticipated_type,
1536 uint32_t dex_pc) {
1537 for (uint32_t i = 0; i < element_count; ++i) {
1538 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1539 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1540 HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
1541 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1542 AppendInstruction(aset);
1543 }
1544}
1545
1546void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
David Brazdilc120bbe2016-04-22 16:57:00 +01001547 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
1548 HInstruction* length = new (arena_) HArrayLength(array, dex_pc);
David Brazdildee58d62016-04-07 09:54:26 +00001549 AppendInstruction(length);
1550
1551 int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1552 const Instruction::ArrayDataPayload* payload =
1553 reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset);
1554 const uint8_t* data = payload->data;
1555 uint32_t element_count = payload->element_count;
1556
1557 // Implementation of this DEX instruction seems to be that the bounds check is
1558 // done before doing any stores.
1559 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1560 AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1561
1562 switch (payload->element_width) {
1563 case 1:
David Brazdilc120bbe2016-04-22 16:57:00 +01001564 BuildFillArrayData(array,
David Brazdildee58d62016-04-07 09:54:26 +00001565 reinterpret_cast<const int8_t*>(data),
1566 element_count,
1567 Primitive::kPrimByte,
1568 dex_pc);
1569 break;
1570 case 2:
David Brazdilc120bbe2016-04-22 16:57:00 +01001571 BuildFillArrayData(array,
David Brazdildee58d62016-04-07 09:54:26 +00001572 reinterpret_cast<const int16_t*>(data),
1573 element_count,
1574 Primitive::kPrimShort,
1575 dex_pc);
1576 break;
1577 case 4:
David Brazdilc120bbe2016-04-22 16:57:00 +01001578 BuildFillArrayData(array,
David Brazdildee58d62016-04-07 09:54:26 +00001579 reinterpret_cast<const int32_t*>(data),
1580 element_count,
1581 Primitive::kPrimInt,
1582 dex_pc);
1583 break;
1584 case 8:
David Brazdilc120bbe2016-04-22 16:57:00 +01001585 BuildFillWideArrayData(array,
David Brazdildee58d62016-04-07 09:54:26 +00001586 reinterpret_cast<const int64_t*>(data),
1587 element_count,
1588 dex_pc);
1589 break;
1590 default:
1591 LOG(FATAL) << "Unknown element width for " << payload->element_width;
1592 }
1593 graph_->SetHasBoundsChecks(true);
1594}
1595
1596void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
1597 const int64_t* data,
1598 uint32_t element_count,
1599 uint32_t dex_pc) {
1600 for (uint32_t i = 0; i < element_count; ++i) {
1601 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1602 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1603 HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc);
1604 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1605 AppendInstruction(aset);
1606 }
1607}
1608
1609static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1610 SHARED_REQUIRES(Locks::mutator_lock_) {
1611 if (cls.Get() == nullptr) {
1612 return TypeCheckKind::kUnresolvedCheck;
1613 } else if (cls->IsInterface()) {
1614 return TypeCheckKind::kInterfaceCheck;
1615 } else if (cls->IsArrayClass()) {
1616 if (cls->GetComponentType()->IsObjectClass()) {
1617 return TypeCheckKind::kArrayObjectCheck;
1618 } else if (cls->CannotBeAssignedFromOtherTypes()) {
1619 return TypeCheckKind::kExactCheck;
1620 } else {
1621 return TypeCheckKind::kArrayCheck;
1622 }
1623 } else if (cls->IsFinal()) {
1624 return TypeCheckKind::kExactCheck;
1625 } else if (cls->IsAbstract()) {
1626 return TypeCheckKind::kAbstractClassCheck;
1627 } else {
1628 return TypeCheckKind::kClassHierarchyCheck;
1629 }
1630}
1631
1632void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
1633 uint8_t destination,
1634 uint8_t reference,
1635 uint16_t type_index,
1636 uint32_t dex_pc) {
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001637 ScopedObjectAccess soa(Thread::Current());
1638 StackHandleScope<1> hs(soa.Self());
1639 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
1640 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
1641 Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1642
David Brazdildee58d62016-04-07 09:54:26 +00001643 bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1644 dex_compilation_unit_->GetDexMethodIndex(),
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001645 dex_cache,
1646 type_index);
David Brazdildee58d62016-04-07 09:54:26 +00001647
1648 HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
1649 HLoadClass* cls = new (arena_) HLoadClass(
1650 graph_->GetCurrentMethod(),
1651 type_index,
1652 dex_file,
1653 IsOutermostCompilingClass(type_index),
1654 dex_pc,
1655 !can_access,
Vladimir Markodbb7f5b2016-03-30 13:23:58 +01001656 /* is_in_dex_cache */ false);
David Brazdildee58d62016-04-07 09:54:26 +00001657 AppendInstruction(cls);
1658
1659 TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
1660 if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1661 AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
1662 UpdateLocal(destination, current_block_->GetLastInstruction());
1663 } else {
1664 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1665 // We emit a CheckCast followed by a BoundType. CheckCast is a statement
1666 // which may throw. If it succeeds BoundType sets the new type of `object`
1667 // for all subsequent uses.
1668 AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
1669 AppendInstruction(new (arena_) HBoundType(object, dex_pc));
1670 UpdateLocal(reference, current_block_->GetLastInstruction());
1671 }
1672}
1673
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001674bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index,
1675 Handle<mirror::DexCache> dex_cache,
1676 bool* finalizable) const {
David Brazdildee58d62016-04-07 09:54:26 +00001677 return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
Vladimir Marko3cd50df2016-04-13 19:29:26 +01001678 dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index, finalizable);
1679}
1680
1681bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
1682 ScopedObjectAccess soa(Thread::Current());
1683 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
1684 return NeedsAccessCheck(type_index, dex_cache, finalizable);
David Brazdildee58d62016-04-07 09:54:26 +00001685}
1686
1687bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
1688 return interpreter_metadata_ != nullptr;
1689}
1690
1691uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
1692 DCHECK(interpreter_metadata_ != nullptr);
1693
1694 // First check if the info has already been decoded from `interpreter_metadata_`.
1695 auto it = skipped_interpreter_metadata_.find(dex_pc);
1696 if (it != skipped_interpreter_metadata_.end()) {
1697 // Remove the entry from the map and return the parsed info.
1698 uint16_t value_in_map = it->second;
1699 skipped_interpreter_metadata_.erase(it);
1700 return value_in_map;
1701 }
1702
1703 // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc`
1704 // is found. Store skipped values in the `skipped_interpreter_metadata_` map.
1705 while (true) {
1706 uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1707 uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1708 DCHECK_LE(dex_pc_in_map, dex_pc);
1709
1710 if (dex_pc_in_map == dex_pc) {
1711 return value_in_map;
1712 } else {
1713 skipped_interpreter_metadata_.Put(dex_pc_in_map, value_in_map);
1714 }
1715 }
1716}
1717
1718bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1719 switch (instruction.Opcode()) {
1720 case Instruction::CONST_4: {
1721 int32_t register_index = instruction.VRegA();
1722 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1723 UpdateLocal(register_index, constant);
1724 break;
1725 }
1726
1727 case Instruction::CONST_16: {
1728 int32_t register_index = instruction.VRegA();
1729 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1730 UpdateLocal(register_index, constant);
1731 break;
1732 }
1733
1734 case Instruction::CONST: {
1735 int32_t register_index = instruction.VRegA();
1736 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
1737 UpdateLocal(register_index, constant);
1738 break;
1739 }
1740
1741 case Instruction::CONST_HIGH16: {
1742 int32_t register_index = instruction.VRegA();
1743 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
1744 UpdateLocal(register_index, constant);
1745 break;
1746 }
1747
1748 case Instruction::CONST_WIDE_16: {
1749 int32_t register_index = instruction.VRegA();
1750 // Get 16 bits of constant value, sign extended to 64 bits.
1751 int64_t value = instruction.VRegB_21s();
1752 value <<= 48;
1753 value >>= 48;
1754 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1755 UpdateLocal(register_index, constant);
1756 break;
1757 }
1758
1759 case Instruction::CONST_WIDE_32: {
1760 int32_t register_index = instruction.VRegA();
1761 // Get 32 bits of constant value, sign extended to 64 bits.
1762 int64_t value = instruction.VRegB_31i();
1763 value <<= 32;
1764 value >>= 32;
1765 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1766 UpdateLocal(register_index, constant);
1767 break;
1768 }
1769
1770 case Instruction::CONST_WIDE: {
1771 int32_t register_index = instruction.VRegA();
1772 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
1773 UpdateLocal(register_index, constant);
1774 break;
1775 }
1776
1777 case Instruction::CONST_WIDE_HIGH16: {
1778 int32_t register_index = instruction.VRegA();
1779 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1780 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1781 UpdateLocal(register_index, constant);
1782 break;
1783 }
1784
1785 // Note that the SSA building will refine the types.
1786 case Instruction::MOVE:
1787 case Instruction::MOVE_FROM16:
1788 case Instruction::MOVE_16: {
1789 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
1790 UpdateLocal(instruction.VRegA(), value);
1791 break;
1792 }
1793
1794 // Note that the SSA building will refine the types.
1795 case Instruction::MOVE_WIDE:
1796 case Instruction::MOVE_WIDE_FROM16:
1797 case Instruction::MOVE_WIDE_16: {
1798 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
1799 UpdateLocal(instruction.VRegA(), value);
1800 break;
1801 }
1802
1803 case Instruction::MOVE_OBJECT:
1804 case Instruction::MOVE_OBJECT_16:
1805 case Instruction::MOVE_OBJECT_FROM16: {
1806 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
1807 UpdateLocal(instruction.VRegA(), value);
1808 break;
1809 }
1810
1811 case Instruction::RETURN_VOID_NO_BARRIER:
1812 case Instruction::RETURN_VOID: {
1813 BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
1814 break;
1815 }
1816
1817#define IF_XX(comparison, cond) \
1818 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1819 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1820
1821 IF_XX(HEqual, EQ);
1822 IF_XX(HNotEqual, NE);
1823 IF_XX(HLessThan, LT);
1824 IF_XX(HLessThanOrEqual, LE);
1825 IF_XX(HGreaterThan, GT);
1826 IF_XX(HGreaterThanOrEqual, GE);
1827
1828 case Instruction::GOTO:
1829 case Instruction::GOTO_16:
1830 case Instruction::GOTO_32: {
1831 AppendInstruction(new (arena_) HGoto(dex_pc));
1832 current_block_ = nullptr;
1833 break;
1834 }
1835
1836 case Instruction::RETURN: {
1837 BuildReturn(instruction, return_type_, dex_pc);
1838 break;
1839 }
1840
1841 case Instruction::RETURN_OBJECT: {
1842 BuildReturn(instruction, return_type_, dex_pc);
1843 break;
1844 }
1845
1846 case Instruction::RETURN_WIDE: {
1847 BuildReturn(instruction, return_type_, dex_pc);
1848 break;
1849 }
1850
1851 case Instruction::INVOKE_DIRECT:
1852 case Instruction::INVOKE_INTERFACE:
1853 case Instruction::INVOKE_STATIC:
1854 case Instruction::INVOKE_SUPER:
1855 case Instruction::INVOKE_VIRTUAL:
1856 case Instruction::INVOKE_VIRTUAL_QUICK: {
1857 uint16_t method_idx;
1858 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
1859 if (!CanDecodeQuickenedInfo()) {
1860 return false;
1861 }
1862 method_idx = LookupQuickenedInfo(dex_pc);
1863 } else {
1864 method_idx = instruction.VRegB_35c();
1865 }
1866 uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
1867 uint32_t args[5];
1868 instruction.GetVarArgs(args);
1869 if (!BuildInvoke(instruction, dex_pc, method_idx,
1870 number_of_vreg_arguments, false, args, -1)) {
1871 return false;
1872 }
1873 break;
1874 }
1875
1876 case Instruction::INVOKE_DIRECT_RANGE:
1877 case Instruction::INVOKE_INTERFACE_RANGE:
1878 case Instruction::INVOKE_STATIC_RANGE:
1879 case Instruction::INVOKE_SUPER_RANGE:
1880 case Instruction::INVOKE_VIRTUAL_RANGE:
1881 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
1882 uint16_t method_idx;
1883 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
1884 if (!CanDecodeQuickenedInfo()) {
1885 return false;
1886 }
1887 method_idx = LookupQuickenedInfo(dex_pc);
1888 } else {
1889 method_idx = instruction.VRegB_3rc();
1890 }
1891 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
1892 uint32_t register_index = instruction.VRegC();
1893 if (!BuildInvoke(instruction, dex_pc, method_idx,
1894 number_of_vreg_arguments, true, nullptr, register_index)) {
1895 return false;
1896 }
1897 break;
1898 }
1899
1900 case Instruction::NEG_INT: {
1901 Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
1902 break;
1903 }
1904
1905 case Instruction::NEG_LONG: {
1906 Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
1907 break;
1908 }
1909
1910 case Instruction::NEG_FLOAT: {
1911 Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
1912 break;
1913 }
1914
1915 case Instruction::NEG_DOUBLE: {
1916 Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
1917 break;
1918 }
1919
1920 case Instruction::NOT_INT: {
1921 Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
1922 break;
1923 }
1924
1925 case Instruction::NOT_LONG: {
1926 Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
1927 break;
1928 }
1929
1930 case Instruction::INT_TO_LONG: {
1931 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
1932 break;
1933 }
1934
1935 case Instruction::INT_TO_FLOAT: {
1936 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
1937 break;
1938 }
1939
1940 case Instruction::INT_TO_DOUBLE: {
1941 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
1942 break;
1943 }
1944
1945 case Instruction::LONG_TO_INT: {
1946 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
1947 break;
1948 }
1949
1950 case Instruction::LONG_TO_FLOAT: {
1951 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
1952 break;
1953 }
1954
1955 case Instruction::LONG_TO_DOUBLE: {
1956 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
1957 break;
1958 }
1959
1960 case Instruction::FLOAT_TO_INT: {
1961 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
1962 break;
1963 }
1964
1965 case Instruction::FLOAT_TO_LONG: {
1966 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
1967 break;
1968 }
1969
1970 case Instruction::FLOAT_TO_DOUBLE: {
1971 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
1972 break;
1973 }
1974
1975 case Instruction::DOUBLE_TO_INT: {
1976 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
1977 break;
1978 }
1979
1980 case Instruction::DOUBLE_TO_LONG: {
1981 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
1982 break;
1983 }
1984
1985 case Instruction::DOUBLE_TO_FLOAT: {
1986 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
1987 break;
1988 }
1989
1990 case Instruction::INT_TO_BYTE: {
1991 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
1992 break;
1993 }
1994
1995 case Instruction::INT_TO_SHORT: {
1996 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
1997 break;
1998 }
1999
2000 case Instruction::INT_TO_CHAR: {
2001 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
2002 break;
2003 }
2004
2005 case Instruction::ADD_INT: {
2006 Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2007 break;
2008 }
2009
2010 case Instruction::ADD_LONG: {
2011 Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2012 break;
2013 }
2014
2015 case Instruction::ADD_DOUBLE: {
2016 Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2017 break;
2018 }
2019
2020 case Instruction::ADD_FLOAT: {
2021 Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2022 break;
2023 }
2024
2025 case Instruction::SUB_INT: {
2026 Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2027 break;
2028 }
2029
2030 case Instruction::SUB_LONG: {
2031 Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2032 break;
2033 }
2034
2035 case Instruction::SUB_FLOAT: {
2036 Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2037 break;
2038 }
2039
2040 case Instruction::SUB_DOUBLE: {
2041 Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2042 break;
2043 }
2044
2045 case Instruction::ADD_INT_2ADDR: {
2046 Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2047 break;
2048 }
2049
2050 case Instruction::MUL_INT: {
2051 Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2052 break;
2053 }
2054
2055 case Instruction::MUL_LONG: {
2056 Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2057 break;
2058 }
2059
2060 case Instruction::MUL_FLOAT: {
2061 Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2062 break;
2063 }
2064
2065 case Instruction::MUL_DOUBLE: {
2066 Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2067 break;
2068 }
2069
2070 case Instruction::DIV_INT: {
2071 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2072 dex_pc, Primitive::kPrimInt, false, true);
2073 break;
2074 }
2075
2076 case Instruction::DIV_LONG: {
2077 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2078 dex_pc, Primitive::kPrimLong, false, true);
2079 break;
2080 }
2081
2082 case Instruction::DIV_FLOAT: {
2083 Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2084 break;
2085 }
2086
2087 case Instruction::DIV_DOUBLE: {
2088 Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2089 break;
2090 }
2091
2092 case Instruction::REM_INT: {
2093 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2094 dex_pc, Primitive::kPrimInt, false, false);
2095 break;
2096 }
2097
2098 case Instruction::REM_LONG: {
2099 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2100 dex_pc, Primitive::kPrimLong, false, false);
2101 break;
2102 }
2103
2104 case Instruction::REM_FLOAT: {
2105 Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2106 break;
2107 }
2108
2109 case Instruction::REM_DOUBLE: {
2110 Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2111 break;
2112 }
2113
2114 case Instruction::AND_INT: {
2115 Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2116 break;
2117 }
2118
2119 case Instruction::AND_LONG: {
2120 Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2121 break;
2122 }
2123
2124 case Instruction::SHL_INT: {
2125 Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2126 break;
2127 }
2128
2129 case Instruction::SHL_LONG: {
2130 Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2131 break;
2132 }
2133
2134 case Instruction::SHR_INT: {
2135 Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2136 break;
2137 }
2138
2139 case Instruction::SHR_LONG: {
2140 Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2141 break;
2142 }
2143
2144 case Instruction::USHR_INT: {
2145 Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2146 break;
2147 }
2148
2149 case Instruction::USHR_LONG: {
2150 Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2151 break;
2152 }
2153
2154 case Instruction::OR_INT: {
2155 Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2156 break;
2157 }
2158
2159 case Instruction::OR_LONG: {
2160 Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2161 break;
2162 }
2163
2164 case Instruction::XOR_INT: {
2165 Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2166 break;
2167 }
2168
2169 case Instruction::XOR_LONG: {
2170 Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2171 break;
2172 }
2173
2174 case Instruction::ADD_LONG_2ADDR: {
2175 Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2176 break;
2177 }
2178
2179 case Instruction::ADD_DOUBLE_2ADDR: {
2180 Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2181 break;
2182 }
2183
2184 case Instruction::ADD_FLOAT_2ADDR: {
2185 Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2186 break;
2187 }
2188
2189 case Instruction::SUB_INT_2ADDR: {
2190 Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2191 break;
2192 }
2193
2194 case Instruction::SUB_LONG_2ADDR: {
2195 Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2196 break;
2197 }
2198
2199 case Instruction::SUB_FLOAT_2ADDR: {
2200 Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2201 break;
2202 }
2203
2204 case Instruction::SUB_DOUBLE_2ADDR: {
2205 Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2206 break;
2207 }
2208
2209 case Instruction::MUL_INT_2ADDR: {
2210 Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2211 break;
2212 }
2213
2214 case Instruction::MUL_LONG_2ADDR: {
2215 Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2216 break;
2217 }
2218
2219 case Instruction::MUL_FLOAT_2ADDR: {
2220 Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2221 break;
2222 }
2223
2224 case Instruction::MUL_DOUBLE_2ADDR: {
2225 Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2226 break;
2227 }
2228
2229 case Instruction::DIV_INT_2ADDR: {
2230 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2231 dex_pc, Primitive::kPrimInt, false, true);
2232 break;
2233 }
2234
2235 case Instruction::DIV_LONG_2ADDR: {
2236 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2237 dex_pc, Primitive::kPrimLong, false, true);
2238 break;
2239 }
2240
2241 case Instruction::REM_INT_2ADDR: {
2242 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2243 dex_pc, Primitive::kPrimInt, false, false);
2244 break;
2245 }
2246
2247 case Instruction::REM_LONG_2ADDR: {
2248 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2249 dex_pc, Primitive::kPrimLong, false, false);
2250 break;
2251 }
2252
2253 case Instruction::REM_FLOAT_2ADDR: {
2254 Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2255 break;
2256 }
2257
2258 case Instruction::REM_DOUBLE_2ADDR: {
2259 Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2260 break;
2261 }
2262
2263 case Instruction::SHL_INT_2ADDR: {
2264 Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2265 break;
2266 }
2267
2268 case Instruction::SHL_LONG_2ADDR: {
2269 Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2270 break;
2271 }
2272
2273 case Instruction::SHR_INT_2ADDR: {
2274 Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2275 break;
2276 }
2277
2278 case Instruction::SHR_LONG_2ADDR: {
2279 Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2280 break;
2281 }
2282
2283 case Instruction::USHR_INT_2ADDR: {
2284 Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2285 break;
2286 }
2287
2288 case Instruction::USHR_LONG_2ADDR: {
2289 Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2290 break;
2291 }
2292
2293 case Instruction::DIV_FLOAT_2ADDR: {
2294 Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2295 break;
2296 }
2297
2298 case Instruction::DIV_DOUBLE_2ADDR: {
2299 Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2300 break;
2301 }
2302
2303 case Instruction::AND_INT_2ADDR: {
2304 Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2305 break;
2306 }
2307
2308 case Instruction::AND_LONG_2ADDR: {
2309 Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2310 break;
2311 }
2312
2313 case Instruction::OR_INT_2ADDR: {
2314 Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2315 break;
2316 }
2317
2318 case Instruction::OR_LONG_2ADDR: {
2319 Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2320 break;
2321 }
2322
2323 case Instruction::XOR_INT_2ADDR: {
2324 Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2325 break;
2326 }
2327
2328 case Instruction::XOR_LONG_2ADDR: {
2329 Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2330 break;
2331 }
2332
2333 case Instruction::ADD_INT_LIT16: {
2334 Binop_22s<HAdd>(instruction, false, dex_pc);
2335 break;
2336 }
2337
2338 case Instruction::AND_INT_LIT16: {
2339 Binop_22s<HAnd>(instruction, false, dex_pc);
2340 break;
2341 }
2342
2343 case Instruction::OR_INT_LIT16: {
2344 Binop_22s<HOr>(instruction, false, dex_pc);
2345 break;
2346 }
2347
2348 case Instruction::XOR_INT_LIT16: {
2349 Binop_22s<HXor>(instruction, false, dex_pc);
2350 break;
2351 }
2352
2353 case Instruction::RSUB_INT: {
2354 Binop_22s<HSub>(instruction, true, dex_pc);
2355 break;
2356 }
2357
2358 case Instruction::MUL_INT_LIT16: {
2359 Binop_22s<HMul>(instruction, false, dex_pc);
2360 break;
2361 }
2362
2363 case Instruction::ADD_INT_LIT8: {
2364 Binop_22b<HAdd>(instruction, false, dex_pc);
2365 break;
2366 }
2367
2368 case Instruction::AND_INT_LIT8: {
2369 Binop_22b<HAnd>(instruction, false, dex_pc);
2370 break;
2371 }
2372
2373 case Instruction::OR_INT_LIT8: {
2374 Binop_22b<HOr>(instruction, false, dex_pc);
2375 break;
2376 }
2377
2378 case Instruction::XOR_INT_LIT8: {
2379 Binop_22b<HXor>(instruction, false, dex_pc);
2380 break;
2381 }
2382
2383 case Instruction::RSUB_INT_LIT8: {
2384 Binop_22b<HSub>(instruction, true, dex_pc);
2385 break;
2386 }
2387
2388 case Instruction::MUL_INT_LIT8: {
2389 Binop_22b<HMul>(instruction, false, dex_pc);
2390 break;
2391 }
2392
2393 case Instruction::DIV_INT_LIT16:
2394 case Instruction::DIV_INT_LIT8: {
2395 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2396 dex_pc, Primitive::kPrimInt, true, true);
2397 break;
2398 }
2399
2400 case Instruction::REM_INT_LIT16:
2401 case Instruction::REM_INT_LIT8: {
2402 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2403 dex_pc, Primitive::kPrimInt, true, false);
2404 break;
2405 }
2406
2407 case Instruction::SHL_INT_LIT8: {
2408 Binop_22b<HShl>(instruction, false, dex_pc);
2409 break;
2410 }
2411
2412 case Instruction::SHR_INT_LIT8: {
2413 Binop_22b<HShr>(instruction, false, dex_pc);
2414 break;
2415 }
2416
2417 case Instruction::USHR_INT_LIT8: {
2418 Binop_22b<HUShr>(instruction, false, dex_pc);
2419 break;
2420 }
2421
2422 case Instruction::NEW_INSTANCE: {
2423 if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) {
2424 return false;
2425 }
2426 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
2427 break;
2428 }
2429
2430 case Instruction::NEW_ARRAY: {
2431 uint16_t type_index = instruction.VRegC_22c();
2432 HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
2433 bool finalizable;
2434 QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
2435 ? kQuickAllocArrayWithAccessCheck
2436 : kQuickAllocArray;
2437 AppendInstruction(new (arena_) HNewArray(length,
2438 graph_->GetCurrentMethod(),
2439 dex_pc,
2440 type_index,
2441 *dex_compilation_unit_->GetDexFile(),
2442 entrypoint));
2443 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
2444 break;
2445 }
2446
2447 case Instruction::FILLED_NEW_ARRAY: {
2448 uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2449 uint32_t type_index = instruction.VRegB_35c();
2450 uint32_t args[5];
2451 instruction.GetVarArgs(args);
2452 BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2453 break;
2454 }
2455
2456 case Instruction::FILLED_NEW_ARRAY_RANGE: {
2457 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2458 uint32_t type_index = instruction.VRegB_3rc();
2459 uint32_t register_index = instruction.VRegC_3rc();
2460 BuildFilledNewArray(
2461 dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2462 break;
2463 }
2464
2465 case Instruction::FILL_ARRAY_DATA: {
2466 BuildFillArrayData(instruction, dex_pc);
2467 break;
2468 }
2469
2470 case Instruction::MOVE_RESULT:
2471 case Instruction::MOVE_RESULT_WIDE:
2472 case Instruction::MOVE_RESULT_OBJECT: {
2473 DCHECK(latest_result_ != nullptr);
2474 UpdateLocal(instruction.VRegA(), latest_result_);
2475 latest_result_ = nullptr;
2476 break;
2477 }
2478
2479 case Instruction::CMP_LONG: {
2480 Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
2481 break;
2482 }
2483
2484 case Instruction::CMPG_FLOAT: {
2485 Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
2486 break;
2487 }
2488
2489 case Instruction::CMPG_DOUBLE: {
2490 Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
2491 break;
2492 }
2493
2494 case Instruction::CMPL_FLOAT: {
2495 Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
2496 break;
2497 }
2498
2499 case Instruction::CMPL_DOUBLE: {
2500 Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
2501 break;
2502 }
2503
2504 case Instruction::NOP:
2505 break;
2506
2507 case Instruction::IGET:
2508 case Instruction::IGET_QUICK:
2509 case Instruction::IGET_WIDE:
2510 case Instruction::IGET_WIDE_QUICK:
2511 case Instruction::IGET_OBJECT:
2512 case Instruction::IGET_OBJECT_QUICK:
2513 case Instruction::IGET_BOOLEAN:
2514 case Instruction::IGET_BOOLEAN_QUICK:
2515 case Instruction::IGET_BYTE:
2516 case Instruction::IGET_BYTE_QUICK:
2517 case Instruction::IGET_CHAR:
2518 case Instruction::IGET_CHAR_QUICK:
2519 case Instruction::IGET_SHORT:
2520 case Instruction::IGET_SHORT_QUICK: {
2521 if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2522 return false;
2523 }
2524 break;
2525 }
2526
2527 case Instruction::IPUT:
2528 case Instruction::IPUT_QUICK:
2529 case Instruction::IPUT_WIDE:
2530 case Instruction::IPUT_WIDE_QUICK:
2531 case Instruction::IPUT_OBJECT:
2532 case Instruction::IPUT_OBJECT_QUICK:
2533 case Instruction::IPUT_BOOLEAN:
2534 case Instruction::IPUT_BOOLEAN_QUICK:
2535 case Instruction::IPUT_BYTE:
2536 case Instruction::IPUT_BYTE_QUICK:
2537 case Instruction::IPUT_CHAR:
2538 case Instruction::IPUT_CHAR_QUICK:
2539 case Instruction::IPUT_SHORT:
2540 case Instruction::IPUT_SHORT_QUICK: {
2541 if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2542 return false;
2543 }
2544 break;
2545 }
2546
2547 case Instruction::SGET:
2548 case Instruction::SGET_WIDE:
2549 case Instruction::SGET_OBJECT:
2550 case Instruction::SGET_BOOLEAN:
2551 case Instruction::SGET_BYTE:
2552 case Instruction::SGET_CHAR:
2553 case Instruction::SGET_SHORT: {
2554 if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2555 return false;
2556 }
2557 break;
2558 }
2559
2560 case Instruction::SPUT:
2561 case Instruction::SPUT_WIDE:
2562 case Instruction::SPUT_OBJECT:
2563 case Instruction::SPUT_BOOLEAN:
2564 case Instruction::SPUT_BYTE:
2565 case Instruction::SPUT_CHAR:
2566 case Instruction::SPUT_SHORT: {
2567 if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2568 return false;
2569 }
2570 break;
2571 }
2572
2573#define ARRAY_XX(kind, anticipated_type) \
2574 case Instruction::AGET##kind: { \
2575 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
2576 break; \
2577 } \
2578 case Instruction::APUT##kind: { \
2579 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
2580 break; \
2581 }
2582
2583 ARRAY_XX(, Primitive::kPrimInt);
2584 ARRAY_XX(_WIDE, Primitive::kPrimLong);
2585 ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2586 ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2587 ARRAY_XX(_BYTE, Primitive::kPrimByte);
2588 ARRAY_XX(_CHAR, Primitive::kPrimChar);
2589 ARRAY_XX(_SHORT, Primitive::kPrimShort);
2590
2591 case Instruction::ARRAY_LENGTH: {
David Brazdilc120bbe2016-04-22 16:57:00 +01002592 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
David Brazdildee58d62016-04-07 09:54:26 +00002593 AppendInstruction(new (arena_) HArrayLength(object, dex_pc));
2594 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
2595 break;
2596 }
2597
2598 case Instruction::CONST_STRING: {
2599 uint32_t string_index = instruction.VRegB_21c();
2600 AppendInstruction(
2601 new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
2602 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2603 break;
2604 }
2605
2606 case Instruction::CONST_STRING_JUMBO: {
2607 uint32_t string_index = instruction.VRegB_31c();
2608 AppendInstruction(
2609 new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
2610 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
2611 break;
2612 }
2613
2614 case Instruction::CONST_CLASS: {
2615 uint16_t type_index = instruction.VRegB_21c();
David Brazdildee58d62016-04-07 09:54:26 +00002616 // `CanAccessTypeWithoutChecks` will tell whether the method being
2617 // built is trying to access its own class, so that the generated
2618 // code can optimize for this case. However, the optimization does not
2619 // work for inlining, so we use `IsOutermostCompilingClass` instead.
Vladimir Marko3cd50df2016-04-13 19:29:26 +01002620 ScopedObjectAccess soa(Thread::Current());
2621 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
David Brazdildee58d62016-04-07 09:54:26 +00002622 bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
Vladimir Marko3cd50df2016-04-13 19:29:26 +01002623 dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index);
David Brazdildee58d62016-04-07 09:54:26 +00002624 AppendInstruction(new (arena_) HLoadClass(
2625 graph_->GetCurrentMethod(),
2626 type_index,
2627 *dex_file_,
2628 IsOutermostCompilingClass(type_index),
2629 dex_pc,
2630 !can_access,
Vladimir Markodbb7f5b2016-03-30 13:23:58 +01002631 /* is_in_dex_cache */ false));
David Brazdildee58d62016-04-07 09:54:26 +00002632 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2633 break;
2634 }
2635
2636 case Instruction::MOVE_EXCEPTION: {
2637 AppendInstruction(new (arena_) HLoadException(dex_pc));
2638 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
2639 AppendInstruction(new (arena_) HClearException(dex_pc));
2640 break;
2641 }
2642
2643 case Instruction::THROW: {
2644 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
2645 AppendInstruction(new (arena_) HThrow(exception, dex_pc));
2646 // We finished building this block. Set the current block to null to avoid
2647 // adding dead instructions to it.
2648 current_block_ = nullptr;
2649 break;
2650 }
2651
2652 case Instruction::INSTANCE_OF: {
2653 uint8_t destination = instruction.VRegA_22c();
2654 uint8_t reference = instruction.VRegB_22c();
2655 uint16_t type_index = instruction.VRegC_22c();
2656 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
2657 break;
2658 }
2659
2660 case Instruction::CHECK_CAST: {
2661 uint8_t reference = instruction.VRegA_21c();
2662 uint16_t type_index = instruction.VRegB_21c();
2663 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
2664 break;
2665 }
2666
2667 case Instruction::MONITOR_ENTER: {
2668 AppendInstruction(new (arena_) HMonitorOperation(
2669 LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2670 HMonitorOperation::OperationKind::kEnter,
2671 dex_pc));
2672 break;
2673 }
2674
2675 case Instruction::MONITOR_EXIT: {
2676 AppendInstruction(new (arena_) HMonitorOperation(
2677 LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
2678 HMonitorOperation::OperationKind::kExit,
2679 dex_pc));
2680 break;
2681 }
2682
2683 case Instruction::SPARSE_SWITCH:
2684 case Instruction::PACKED_SWITCH: {
2685 BuildSwitch(instruction, dex_pc);
2686 break;
2687 }
2688
2689 default:
2690 VLOG(compiler) << "Did not compile "
2691 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2692 << " because of unhandled instruction "
2693 << instruction.Name();
2694 MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2695 return false;
2696 }
2697 return true;
2698} // NOLINT(readability/fn_size)
2699
2700} // namespace art