| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_LEB128_H_ |
| #define ART_RUNTIME_LEB128_H_ |
| |
| #include <vector> |
| |
| #include <android-base/logging.h> |
| |
| #include "base/bit_utils.h" |
| #include "base/macros.h" |
| #include "globals.h" |
| |
| namespace art { |
| |
| // Reads an unsigned LEB128 value, updating the given pointer to point |
| // just past the end of the read value. This function tolerates |
| // non-zero high-order bits in the fifth encoded byte. |
| static inline uint32_t DecodeUnsignedLeb128(const uint8_t** data) { |
| const uint8_t* ptr = *data; |
| int result = *(ptr++); |
| if (UNLIKELY(result > 0x7f)) { |
| int cur = *(ptr++); |
| result = (result & 0x7f) | ((cur & 0x7f) << 7); |
| if (cur > 0x7f) { |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 14; |
| if (cur > 0x7f) { |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 21; |
| if (cur > 0x7f) { |
| // Note: We don't check to see if cur is out of range here, |
| // meaning we tolerate garbage in the four high-order bits. |
| cur = *(ptr++); |
| result |= cur << 28; |
| } |
| } |
| } |
| } |
| *data = ptr; |
| return static_cast<uint32_t>(result); |
| } |
| |
| static inline uint32_t DecodeUnsignedLeb128WithoutMovingCursor(const uint8_t* data) { |
| return DecodeUnsignedLeb128(&data); |
| } |
| |
| static inline bool DecodeUnsignedLeb128Checked(const uint8_t** data, |
| const void* end, |
| uint32_t* out) { |
| const uint8_t* ptr = *data; |
| if (ptr >= end) { |
| return false; |
| } |
| int result = *(ptr++); |
| if (UNLIKELY(result > 0x7f)) { |
| if (ptr >= end) { |
| return false; |
| } |
| int cur = *(ptr++); |
| result = (result & 0x7f) | ((cur & 0x7f) << 7); |
| if (cur > 0x7f) { |
| if (ptr >= end) { |
| return false; |
| } |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 14; |
| if (cur > 0x7f) { |
| if (ptr >= end) { |
| return false; |
| } |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 21; |
| if (cur > 0x7f) { |
| if (ptr >= end) { |
| return false; |
| } |
| // Note: We don't check to see if cur is out of range here, |
| // meaning we tolerate garbage in the four high-order bits. |
| cur = *(ptr++); |
| result |= cur << 28; |
| } |
| } |
| } |
| } |
| *data = ptr; |
| *out = static_cast<uint32_t>(result); |
| return true; |
| } |
| |
| // Reads an unsigned LEB128 + 1 value. updating the given pointer to point |
| // just past the end of the read value. This function tolerates |
| // non-zero high-order bits in the fifth encoded byte. |
| // It is possible for this function to return -1. |
| static inline int32_t DecodeUnsignedLeb128P1(const uint8_t** data) { |
| return DecodeUnsignedLeb128(data) - 1; |
| } |
| |
| // Reads a signed LEB128 value, updating the given pointer to point |
| // just past the end of the read value. This function tolerates |
| // non-zero high-order bits in the fifth encoded byte. |
| static inline int32_t DecodeSignedLeb128(const uint8_t** data) { |
| const uint8_t* ptr = *data; |
| int32_t result = *(ptr++); |
| if (result <= 0x7f) { |
| result = (result << 25) >> 25; |
| } else { |
| int cur = *(ptr++); |
| result = (result & 0x7f) | ((cur & 0x7f) << 7); |
| if (cur <= 0x7f) { |
| result = (result << 18) >> 18; |
| } else { |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 14; |
| if (cur <= 0x7f) { |
| result = (result << 11) >> 11; |
| } else { |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 21; |
| if (cur <= 0x7f) { |
| result = (result << 4) >> 4; |
| } else { |
| // Note: We don't check to see if cur is out of range here, |
| // meaning we tolerate garbage in the four high-order bits. |
| cur = *(ptr++); |
| result |= cur << 28; |
| } |
| } |
| } |
| } |
| *data = ptr; |
| return result; |
| } |
| |
| static inline bool DecodeSignedLeb128Checked(const uint8_t** data, |
| const void* end, |
| int32_t* out) { |
| const uint8_t* ptr = *data; |
| if (ptr >= end) { |
| return false; |
| } |
| int32_t result = *(ptr++); |
| if (result <= 0x7f) { |
| result = (result << 25) >> 25; |
| } else { |
| if (ptr >= end) { |
| return false; |
| } |
| int cur = *(ptr++); |
| result = (result & 0x7f) | ((cur & 0x7f) << 7); |
| if (cur <= 0x7f) { |
| result = (result << 18) >> 18; |
| } else { |
| if (ptr >= end) { |
| return false; |
| } |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 14; |
| if (cur <= 0x7f) { |
| result = (result << 11) >> 11; |
| } else { |
| if (ptr >= end) { |
| return false; |
| } |
| cur = *(ptr++); |
| result |= (cur & 0x7f) << 21; |
| if (cur <= 0x7f) { |
| result = (result << 4) >> 4; |
| } else { |
| if (ptr >= end) { |
| return false; |
| } |
| // Note: We don't check to see if cur is out of range here, |
| // meaning we tolerate garbage in the four high-order bits. |
| cur = *(ptr++); |
| result |= cur << 28; |
| } |
| } |
| } |
| } |
| *data = ptr; |
| *out = static_cast<uint32_t>(result); |
| return true; |
| } |
| |
| // Returns the number of bytes needed to encode the value in unsigned LEB128. |
| static inline uint32_t UnsignedLeb128Size(uint32_t data) { |
| // bits_to_encode = (data != 0) ? 32 - CLZ(x) : 1 // 32 - CLZ(data | 1) |
| // bytes = ceil(bits_to_encode / 7.0); // (6 + bits_to_encode) / 7 |
| uint32_t x = 6 + 32 - CLZ(data | 1U); |
| // Division by 7 is done by (x * 37) >> 8 where 37 = ceil(256 / 7). |
| // This works for 0 <= x < 256 / (7 * 37 - 256), i.e. 0 <= x <= 85. |
| return (x * 37) >> 8; |
| } |
| |
| static inline bool IsLeb128Terminator(const uint8_t* ptr) { |
| return *ptr <= 0x7f; |
| } |
| |
| // Returns the first byte of a Leb128 value assuming that: |
| // (1) `end_ptr` points to the first byte after the Leb128 value, and |
| // (2) there is another Leb128 value before this one. |
| template <typename T> |
| static inline T* ReverseSearchUnsignedLeb128(T* end_ptr) { |
| static_assert(std::is_same<typename std::remove_const<T>::type, uint8_t>::value, |
| "T must be a uint8_t"); |
| T* ptr = end_ptr; |
| |
| // Move one byte back, check that this is the terminating byte. |
| ptr--; |
| DCHECK(IsLeb128Terminator(ptr)); |
| |
| // Keep moving back while the previous byte is not a terminating byte. |
| // Fail after reading five bytes in case there isn't another Leb128 value |
| // before this one. |
| while (!IsLeb128Terminator(ptr - 1)) { |
| ptr--; |
| DCHECK_LE(static_cast<ptrdiff_t>(end_ptr - ptr), 5); |
| } |
| |
| return ptr; |
| } |
| |
| // Returns the number of bytes needed to encode the value in unsigned LEB128. |
| static inline uint32_t SignedLeb128Size(int32_t data) { |
| // Like UnsignedLeb128Size(), but we need one bit beyond the highest bit that differs from sign. |
| data = data ^ (data >> 31); |
| uint32_t x = 1 /* we need to encode the sign bit */ + 6 + 32 - CLZ(data | 1U); |
| return (x * 37) >> 8; |
| } |
| |
| static inline uint8_t* EncodeUnsignedLeb128(uint8_t* dest, uint32_t value) { |
| uint8_t out = value & 0x7f; |
| value >>= 7; |
| while (value != 0) { |
| *dest++ = out | 0x80; |
| out = value & 0x7f; |
| value >>= 7; |
| } |
| *dest++ = out; |
| return dest; |
| } |
| |
| template <typename Vector> |
| static inline void EncodeUnsignedLeb128(Vector* dest, uint32_t value) { |
| static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type"); |
| uint8_t out = value & 0x7f; |
| value >>= 7; |
| while (value != 0) { |
| dest->push_back(out | 0x80); |
| out = value & 0x7f; |
| value >>= 7; |
| } |
| dest->push_back(out); |
| } |
| |
| // Overwrite encoded Leb128 with a new value. The new value must be less than |
| // or equal to the old value to ensure that it fits the allocated space. |
| static inline void UpdateUnsignedLeb128(uint8_t* dest, uint32_t value) { |
| const uint8_t* old_end = dest; |
| uint32_t old_value = DecodeUnsignedLeb128(&old_end); |
| DCHECK_LE(UnsignedLeb128Size(value), UnsignedLeb128Size(old_value)); |
| for (uint8_t* end = EncodeUnsignedLeb128(dest, value); end < old_end; end++) { |
| // Use longer encoding than necessary to fill the allocated space. |
| end[-1] |= 0x80; |
| end[0] = 0; |
| } |
| } |
| |
| static inline uint8_t* EncodeSignedLeb128(uint8_t* dest, int32_t value) { |
| uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6; |
| uint8_t out = value & 0x7f; |
| while (extra_bits != 0u) { |
| *dest++ = out | 0x80; |
| value >>= 7; |
| out = value & 0x7f; |
| extra_bits >>= 7; |
| } |
| *dest++ = out; |
| return dest; |
| } |
| |
| template<typename Vector> |
| static inline void EncodeSignedLeb128(Vector* dest, int32_t value) { |
| static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type"); |
| uint32_t extra_bits = static_cast<uint32_t>(value ^ (value >> 31)) >> 6; |
| uint8_t out = value & 0x7f; |
| while (extra_bits != 0u) { |
| dest->push_back(out | 0x80); |
| value >>= 7; |
| out = value & 0x7f; |
| extra_bits >>= 7; |
| } |
| dest->push_back(out); |
| } |
| |
| // An encoder that pushes int32_t/uint32_t data onto the given std::vector. |
| template <typename Vector = std::vector<uint8_t>> |
| class Leb128Encoder { |
| static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type"); |
| |
| public: |
| explicit Leb128Encoder(Vector* data) : data_(data) { |
| DCHECK(data != nullptr); |
| } |
| |
| void Reserve(uint32_t size) { |
| data_->reserve(size); |
| } |
| |
| void PushBackUnsigned(uint32_t value) { |
| EncodeUnsignedLeb128(data_, value); |
| } |
| |
| template<typename It> |
| void InsertBackUnsigned(It cur, It end) { |
| for (; cur != end; ++cur) { |
| PushBackUnsigned(*cur); |
| } |
| } |
| |
| void PushBackSigned(int32_t value) { |
| EncodeSignedLeb128(data_, value); |
| } |
| |
| template<typename It> |
| void InsertBackSigned(It cur, It end) { |
| for (; cur != end; ++cur) { |
| PushBackSigned(*cur); |
| } |
| } |
| |
| const Vector& GetData() const { |
| return *data_; |
| } |
| |
| protected: |
| Vector* const data_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(Leb128Encoder); |
| }; |
| |
| // An encoder with an API similar to vector<uint32_t> where the data is captured in ULEB128 format. |
| template <typename Vector = std::vector<uint8_t>> |
| class Leb128EncodingVector FINAL : private Vector, |
| public Leb128Encoder<Vector> { |
| static_assert(std::is_same<typename Vector::value_type, uint8_t>::value, "Invalid value type"); |
| |
| public: |
| Leb128EncodingVector() : Leb128Encoder<Vector>(this) { } |
| |
| explicit Leb128EncodingVector(const typename Vector::allocator_type& alloc) |
| : Vector(alloc), |
| Leb128Encoder<Vector>(this) { } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(Leb128EncodingVector); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_LEB128_H_ |