blob: 1290379569a16ae92cbe9ace32da19706cd1be84 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image.h"
#include <memory>
#include <string>
#include <vector>
#include "android-base/stringprintf.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "common_compiler_test.h"
#include "debug/method_debug_info.h"
#include "driver/compiler_options.h"
#include "elf_writer.h"
#include "elf_writer_quick.h"
#include "gc/space/image_space.h"
#include "image_writer.h"
#include "linker/buffered_output_stream.h"
#include "linker/file_output_stream.h"
#include "linker/multi_oat_relative_patcher.h"
#include "lock_word.h"
#include "mirror/object-inl.h"
#include "oat_writer.h"
#include "scoped_thread_state_change-inl.h"
#include "signal_catcher.h"
#include "utils.h"
namespace art {
static const uintptr_t kRequestedImageBase = ART_BASE_ADDRESS;
struct CompilationHelper {
std::vector<std::string> dex_file_locations;
std::vector<ScratchFile> image_locations;
std::vector<std::unique_ptr<const DexFile>> extra_dex_files;
std::vector<ScratchFile> image_files;
std::vector<ScratchFile> oat_files;
std::vector<ScratchFile> vdex_files;
std::string image_dir;
void Compile(CompilerDriver* driver,
ImageHeader::StorageMode storage_mode);
std::vector<size_t> GetImageObjectSectionSizes();
~CompilationHelper();
};
class ImageTest : public CommonCompilerTest {
protected:
virtual void SetUp() {
ReserveImageSpace();
CommonCompilerTest::SetUp();
}
void TestWriteRead(ImageHeader::StorageMode storage_mode);
void Compile(ImageHeader::StorageMode storage_mode,
CompilationHelper& out_helper,
const std::string& extra_dex = "",
const std::string& image_class = "");
std::unordered_set<std::string>* GetImageClasses() OVERRIDE {
return new std::unordered_set<std::string>(image_classes_);
}
private:
std::unordered_set<std::string> image_classes_;
};
CompilationHelper::~CompilationHelper() {
for (ScratchFile& image_file : image_files) {
image_file.Unlink();
}
for (ScratchFile& oat_file : oat_files) {
oat_file.Unlink();
}
for (ScratchFile& vdex_file : vdex_files) {
vdex_file.Unlink();
}
const int rmdir_result = rmdir(image_dir.c_str());
CHECK_EQ(0, rmdir_result);
}
std::vector<size_t> CompilationHelper::GetImageObjectSectionSizes() {
std::vector<size_t> ret;
for (ScratchFile& image_file : image_files) {
std::unique_ptr<File> file(OS::OpenFileForReading(image_file.GetFilename().c_str()));
CHECK(file.get() != nullptr);
ImageHeader image_header;
CHECK_EQ(file->ReadFully(&image_header, sizeof(image_header)), true);
CHECK(image_header.IsValid());
ret.push_back(image_header.GetImageSize());
}
return ret;
}
void CompilationHelper::Compile(CompilerDriver* driver,
ImageHeader::StorageMode storage_mode) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
std::vector<const DexFile*> class_path = class_linker->GetBootClassPath();
for (const std::unique_ptr<const DexFile>& dex_file : extra_dex_files) {
{
ScopedObjectAccess soa(Thread::Current());
// Inject in boot class path so that the compiler driver can see it.
class_linker->AppendToBootClassPath(soa.Self(), *dex_file.get());
}
class_path.push_back(dex_file.get());
}
// Enable write for dex2dex.
for (const DexFile* dex_file : class_path) {
dex_file_locations.push_back(dex_file->GetLocation());
if (dex_file->IsReadOnly()) {
dex_file->EnableWrite();
}
}
{
// Create a generic tmp file, to be the base of the .art and .oat temporary files.
ScratchFile location;
for (int i = 0; i < static_cast<int>(class_path.size()); ++i) {
std::string cur_location =
android::base::StringPrintf("%s-%d.art", location.GetFilename().c_str(), i);
image_locations.push_back(ScratchFile(cur_location));
}
}
std::vector<std::string> image_filenames;
for (ScratchFile& file : image_locations) {
std::string image_filename(GetSystemImageFilename(file.GetFilename().c_str(), kRuntimeISA));
image_filenames.push_back(image_filename);
size_t pos = image_filename.rfind('/');
CHECK_NE(pos, std::string::npos) << image_filename;
if (image_dir.empty()) {
image_dir = image_filename.substr(0, pos);
int mkdir_result = mkdir(image_dir.c_str(), 0700);
CHECK_EQ(0, mkdir_result) << image_dir;
}
image_files.push_back(ScratchFile(OS::CreateEmptyFile(image_filename.c_str())));
}
std::vector<std::string> oat_filenames;
std::vector<std::string> vdex_filenames;
for (const std::string& image_filename : image_filenames) {
std::string oat_filename = ReplaceFileExtension(image_filename, "oat");
oat_files.push_back(ScratchFile(OS::CreateEmptyFile(oat_filename.c_str())));
oat_filenames.push_back(oat_filename);
std::string vdex_filename = ReplaceFileExtension(image_filename, "vdex");
vdex_files.push_back(ScratchFile(OS::CreateEmptyFile(vdex_filename.c_str())));
vdex_filenames.push_back(vdex_filename);
}
std::unordered_map<const DexFile*, size_t> dex_file_to_oat_index_map;
std::vector<const char*> oat_filename_vector;
for (const std::string& file : oat_filenames) {
oat_filename_vector.push_back(file.c_str());
}
std::vector<const char*> image_filename_vector;
for (const std::string& file : image_filenames) {
image_filename_vector.push_back(file.c_str());
}
size_t image_idx = 0;
for (const DexFile* dex_file : class_path) {
dex_file_to_oat_index_map.emplace(dex_file, image_idx);
++image_idx;
}
// TODO: compile_pic should be a test argument.
std::unique_ptr<ImageWriter> writer(new ImageWriter(*driver,
kRequestedImageBase,
/*compile_pic*/false,
/*compile_app_image*/false,
storage_mode,
oat_filename_vector,
dex_file_to_oat_index_map));
{
{
jobject class_loader = nullptr;
TimingLogger timings("ImageTest::WriteRead", false, false);
TimingLogger::ScopedTiming t("CompileAll", &timings);
driver->SetDexFilesForOatFile(class_path);
driver->CompileAll(class_loader, class_path, /* verifier_deps */ nullptr, &timings);
t.NewTiming("WriteElf");
SafeMap<std::string, std::string> key_value_store;
std::vector<const char*> dex_filename_vector;
for (size_t i = 0; i < class_path.size(); ++i) {
dex_filename_vector.push_back("");
}
key_value_store.Put(OatHeader::kBootClassPathKey,
gc::space::ImageSpace::GetMultiImageBootClassPath(
dex_filename_vector,
oat_filename_vector,
image_filename_vector));
std::vector<std::unique_ptr<ElfWriter>> elf_writers;
std::vector<std::unique_ptr<OatWriter>> oat_writers;
for (ScratchFile& oat_file : oat_files) {
elf_writers.emplace_back(CreateElfWriterQuick(driver->GetInstructionSet(),
driver->GetInstructionSetFeatures(),
&driver->GetCompilerOptions(),
oat_file.GetFile()));
elf_writers.back()->Start();
oat_writers.emplace_back(new OatWriter(/*compiling_boot_image*/true,
&timings,
/*profile_compilation_info*/nullptr));
}
std::vector<OutputStream*> rodata;
std::vector<std::unique_ptr<MemMap>> opened_dex_files_map;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files;
// Now that we have finalized key_value_store_, start writing the oat file.
for (size_t i = 0, size = oat_writers.size(); i != size; ++i) {
const DexFile* dex_file = class_path[i];
rodata.push_back(elf_writers[i]->StartRoData());
ArrayRef<const uint8_t> raw_dex_file(
reinterpret_cast<const uint8_t*>(&dex_file->GetHeader()),
dex_file->GetHeader().file_size_);
oat_writers[i]->AddRawDexFileSource(raw_dex_file,
dex_file->GetLocation().c_str(),
dex_file->GetLocationChecksum());
std::unique_ptr<MemMap> cur_opened_dex_files_map;
std::vector<std::unique_ptr<const DexFile>> cur_opened_dex_files;
bool dex_files_ok = oat_writers[i]->WriteAndOpenDexFiles(
kIsVdexEnabled ? vdex_files[i].GetFile() : oat_files[i].GetFile(),
rodata.back(),
driver->GetInstructionSet(),
driver->GetInstructionSetFeatures(),
&key_value_store,
/* verify */ false, // Dex files may be dex-to-dex-ed, don't verify.
&cur_opened_dex_files_map,
&cur_opened_dex_files);
ASSERT_TRUE(dex_files_ok);
if (cur_opened_dex_files_map != nullptr) {
opened_dex_files_map.push_back(std::move(cur_opened_dex_files_map));
for (std::unique_ptr<const DexFile>& cur_dex_file : cur_opened_dex_files) {
// dex_file_oat_index_map_.emplace(dex_file.get(), i);
opened_dex_files.push_back(std::move(cur_dex_file));
}
} else {
ASSERT_TRUE(cur_opened_dex_files.empty());
}
}
bool image_space_ok = writer->PrepareImageAddressSpace();
ASSERT_TRUE(image_space_ok);
if (kIsVdexEnabled) {
for (size_t i = 0, size = vdex_files.size(); i != size; ++i) {
std::unique_ptr<BufferedOutputStream> vdex_out(
MakeUnique<BufferedOutputStream>(
MakeUnique<FileOutputStream>(vdex_files[i].GetFile())));
oat_writers[i]->WriteVerifierDeps(vdex_out.get(), nullptr);
oat_writers[i]->WriteChecksumsAndVdexHeader(vdex_out.get());
}
}
for (size_t i = 0, size = oat_files.size(); i != size; ++i) {
linker::MultiOatRelativePatcher patcher(driver->GetInstructionSet(),
driver->GetInstructionSetFeatures());
OatWriter* const oat_writer = oat_writers[i].get();
ElfWriter* const elf_writer = elf_writers[i].get();
std::vector<const DexFile*> cur_dex_files(1u, class_path[i]);
oat_writer->Initialize(driver, writer.get(), cur_dex_files);
oat_writer->PrepareLayout(&patcher);
size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset();
size_t text_size = oat_writer->GetOatSize() - rodata_size;
elf_writer->PrepareDynamicSection(rodata_size,
text_size,
oat_writer->GetBssSize(),
oat_writer->GetBssRootsOffset());
writer->UpdateOatFileLayout(i,
elf_writer->GetLoadedSize(),
oat_writer->GetOatDataOffset(),
oat_writer->GetOatSize());
bool rodata_ok = oat_writer->WriteRodata(rodata[i]);
ASSERT_TRUE(rodata_ok);
elf_writer->EndRoData(rodata[i]);
OutputStream* text = elf_writer->StartText();
bool text_ok = oat_writer->WriteCode(text);
ASSERT_TRUE(text_ok);
elf_writer->EndText(text);
bool header_ok = oat_writer->WriteHeader(elf_writer->GetStream(), 0u, 0u, 0u);
ASSERT_TRUE(header_ok);
writer->UpdateOatFileHeader(i, oat_writer->GetOatHeader());
elf_writer->WriteDynamicSection();
elf_writer->WriteDebugInfo(oat_writer->GetMethodDebugInfo());
elf_writer->WritePatchLocations(oat_writer->GetAbsolutePatchLocations());
bool success = elf_writer->End();
ASSERT_TRUE(success);
}
}
bool success_image = writer->Write(kInvalidFd,
image_filename_vector,
oat_filename_vector);
ASSERT_TRUE(success_image);
for (size_t i = 0, size = oat_filenames.size(); i != size; ++i) {
const char* oat_filename = oat_filenames[i].c_str();
std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename));
ASSERT_TRUE(oat_file != nullptr);
bool success_fixup = ElfWriter::Fixup(oat_file.get(),
writer->GetOatDataBegin(i));
ASSERT_TRUE(success_fixup);
ASSERT_EQ(oat_file->FlushCloseOrErase(), 0) << "Could not flush and close oat file "
<< oat_filename;
}
}
}
void ImageTest::Compile(ImageHeader::StorageMode storage_mode,
CompilationHelper& helper,
const std::string& extra_dex,
const std::string& image_class) {
if (!image_class.empty()) {
image_classes_.insert(image_class);
}
CreateCompilerDriver(Compiler::kOptimizing, kRuntimeISA, kIsTargetBuild ? 2U : 16U);
// Set inline filter values.
compiler_options_->SetInlineDepthLimit(CompilerOptions::kDefaultInlineDepthLimit);
compiler_options_->SetInlineMaxCodeUnits(CompilerOptions::kDefaultInlineMaxCodeUnits);
image_classes_.clear();
if (!extra_dex.empty()) {
helper.extra_dex_files = OpenTestDexFiles(extra_dex.c_str());
}
helper.Compile(compiler_driver_.get(), storage_mode);
if (!image_class.empty()) {
// Make sure the class got initialized.
ScopedObjectAccess soa(Thread::Current());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
mirror::Class* klass = class_linker->FindSystemClass(Thread::Current(), image_class.c_str());
EXPECT_TRUE(klass != nullptr);
EXPECT_TRUE(klass->IsInitialized());
}
}
void ImageTest::TestWriteRead(ImageHeader::StorageMode storage_mode) {
CompilationHelper helper;
Compile(storage_mode, /*out*/ helper);
std::vector<uint64_t> image_file_sizes;
for (ScratchFile& image_file : helper.image_files) {
std::unique_ptr<File> file(OS::OpenFileForReading(image_file.GetFilename().c_str()));
ASSERT_TRUE(file.get() != nullptr);
ImageHeader image_header;
ASSERT_EQ(file->ReadFully(&image_header, sizeof(image_header)), true);
ASSERT_TRUE(image_header.IsValid());
const auto& bitmap_section = image_header.GetImageSection(ImageHeader::kSectionImageBitmap);
ASSERT_GE(bitmap_section.Offset(), sizeof(image_header));
ASSERT_NE(0U, bitmap_section.Size());
gc::Heap* heap = Runtime::Current()->GetHeap();
ASSERT_TRUE(heap->HaveContinuousSpaces());
gc::space::ContinuousSpace* space = heap->GetNonMovingSpace();
ASSERT_FALSE(space->IsImageSpace());
ASSERT_TRUE(space != nullptr);
ASSERT_TRUE(space->IsMallocSpace());
image_file_sizes.push_back(file->GetLength());
}
ASSERT_TRUE(compiler_driver_->GetImageClasses() != nullptr);
std::unordered_set<std::string> image_classes(*compiler_driver_->GetImageClasses());
// Need to delete the compiler since it has worker threads which are attached to runtime.
compiler_driver_.reset();
// Tear down old runtime before making a new one, clearing out misc state.
// Remove the reservation of the memory for use to load the image.
// Need to do this before we reset the runtime.
UnreserveImageSpace();
helper.extra_dex_files.clear();
runtime_.reset();
java_lang_dex_file_ = nullptr;
MemMap::Init();
RuntimeOptions options;
std::string image("-Ximage:");
image.append(helper.image_locations[0].GetFilename());
options.push_back(std::make_pair(image.c_str(), static_cast<void*>(nullptr)));
// By default the compiler this creates will not include patch information.
options.push_back(std::make_pair("-Xnorelocate", nullptr));
if (!Runtime::Create(options, false)) {
LOG(FATAL) << "Failed to create runtime";
return;
}
runtime_.reset(Runtime::Current());
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more managable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
ASSERT_TRUE(runtime_.get() != nullptr);
class_linker_ = runtime_->GetClassLinker();
gc::Heap* heap = Runtime::Current()->GetHeap();
ASSERT_TRUE(heap->HasBootImageSpace());
ASSERT_TRUE(heap->GetNonMovingSpace()->IsMallocSpace());
// We loaded the runtime with an explicit image, so it must exist.
ASSERT_EQ(heap->GetBootImageSpaces().size(), image_file_sizes.size());
for (size_t i = 0; i < helper.dex_file_locations.size(); ++i) {
std::unique_ptr<const DexFile> dex(
LoadExpectSingleDexFile(helper.dex_file_locations[i].c_str()));
ASSERT_TRUE(dex != nullptr);
uint64_t image_file_size = image_file_sizes[i];
gc::space::ImageSpace* image_space = heap->GetBootImageSpaces()[i];
ASSERT_TRUE(image_space != nullptr);
if (storage_mode == ImageHeader::kStorageModeUncompressed) {
// Uncompressed, image should be smaller than file.
ASSERT_LE(image_space->GetImageHeader().GetImageSize(), image_file_size);
} else if (image_file_size > 16 * KB) {
// Compressed, file should be smaller than image. Not really valid for small images.
ASSERT_LE(image_file_size, image_space->GetImageHeader().GetImageSize());
}
image_space->VerifyImageAllocations();
uint8_t* image_begin = image_space->Begin();
uint8_t* image_end = image_space->End();
if (i == 0) {
// This check is only valid for image 0.
CHECK_EQ(kRequestedImageBase, reinterpret_cast<uintptr_t>(image_begin));
}
for (size_t j = 0; j < dex->NumClassDefs(); ++j) {
const DexFile::ClassDef& class_def = dex->GetClassDef(j);
const char* descriptor = dex->GetClassDescriptor(class_def);
mirror::Class* klass = class_linker_->FindSystemClass(soa.Self(), descriptor);
EXPECT_TRUE(klass != nullptr) << descriptor;
if (image_classes.find(descriptor) == image_classes.end()) {
EXPECT_TRUE(reinterpret_cast<uint8_t*>(klass) >= image_end ||
reinterpret_cast<uint8_t*>(klass) < image_begin) << descriptor;
} else {
// Image classes should be located inside the image.
EXPECT_LT(image_begin, reinterpret_cast<uint8_t*>(klass)) << descriptor;
EXPECT_LT(reinterpret_cast<uint8_t*>(klass), image_end) << descriptor;
}
EXPECT_TRUE(Monitor::IsValidLockWord(klass->GetLockWord(false)));
}
}
}
TEST_F(ImageTest, WriteReadUncompressed) {
TestWriteRead(ImageHeader::kStorageModeUncompressed);
}
TEST_F(ImageTest, WriteReadLZ4) {
TestWriteRead(ImageHeader::kStorageModeLZ4);
}
TEST_F(ImageTest, WriteReadLZ4HC) {
TestWriteRead(ImageHeader::kStorageModeLZ4HC);
}
TEST_F(ImageTest, TestImageLayout) {
std::vector<size_t> image_sizes;
std::vector<size_t> image_sizes_extra;
// Compile multi-image with ImageLayoutA being the last image.
{
CompilationHelper helper;
Compile(ImageHeader::kStorageModeUncompressed, helper, "ImageLayoutA", "LMyClass;");
image_sizes = helper.GetImageObjectSectionSizes();
}
TearDown();
runtime_.reset();
SetUp();
// Compile multi-image with ImageLayoutB being the last image.
{
CompilationHelper helper;
Compile(ImageHeader::kStorageModeUncompressed, helper, "ImageLayoutB", "LMyClass;");
image_sizes_extra = helper.GetImageObjectSectionSizes();
}
// Make sure that the new stuff in the clinit in ImageLayoutB is in the last image and not in the
// first two images.
ASSERT_EQ(image_sizes.size(), image_sizes.size());
// Sizes of the images should be the same. These sizes are for the whole image unrounded.
for (size_t i = 0; i < image_sizes.size() - 1; ++i) {
EXPECT_EQ(image_sizes[i], image_sizes_extra[i]);
}
// Last image should be larger since it has a hash map and a string.
EXPECT_LT(image_sizes.back(), image_sizes_extra.back());
}
TEST_F(ImageTest, ImageHeaderIsValid) {
uint32_t image_begin = ART_BASE_ADDRESS;
uint32_t image_size_ = 16 * KB;
uint32_t image_roots = ART_BASE_ADDRESS + (1 * KB);
uint32_t oat_checksum = 0;
uint32_t oat_file_begin = ART_BASE_ADDRESS + (4 * KB); // page aligned
uint32_t oat_data_begin = ART_BASE_ADDRESS + (8 * KB); // page aligned
uint32_t oat_data_end = ART_BASE_ADDRESS + (9 * KB);
uint32_t oat_file_end = ART_BASE_ADDRESS + (10 * KB);
ImageSection sections[ImageHeader::kSectionCount];
ImageHeader image_header(image_begin,
image_size_,
sections,
image_roots,
oat_checksum,
oat_file_begin,
oat_data_begin,
oat_data_end,
oat_file_end,
/*boot_image_begin*/0U,
/*boot_image_size*/0U,
/*boot_oat_begin*/0U,
/*boot_oat_size_*/0U,
sizeof(void*),
/*compile_pic*/false,
/*is_pic*/false,
ImageHeader::kDefaultStorageMode,
/*data_size*/0u);
ASSERT_TRUE(image_header.IsValid());
ASSERT_TRUE(!image_header.IsAppImage());
char* magic = const_cast<char*>(image_header.GetMagic());
strcpy(magic, ""); // bad magic
ASSERT_FALSE(image_header.IsValid());
strcpy(magic, "art\n000"); // bad version
ASSERT_FALSE(image_header.IsValid());
}
} // namespace art