blob: e5384235fbfd19a1cad4005b20888bba7a23e437 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ART_METHOD_H_
#define ART_RUNTIME_ART_METHOD_H_
#include <cstddef>
#include <limits>
#include <android-base/logging.h>
#include <jni.h>
#include "base/array_ref.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/runtime_debug.h"
#include "dex/dex_file_structs.h"
#include "dex/modifiers.h"
#include "dex/primitive.h"
#include "interpreter/mterp/nterp.h"
#include "gc_root.h"
#include "obj_ptr.h"
#include "offsets.h"
#include "read_barrier_option.h"
namespace art {
class CodeItemDataAccessor;
class CodeItemDebugInfoAccessor;
class CodeItemInstructionAccessor;
class DexFile;
template<class T> class Handle;
class ImtConflictTable;
enum InvokeType : uint32_t;
union JValue;
template<typename T> class LengthPrefixedArray;
class OatQuickMethodHeader;
class ProfilingInfo;
class ScopedObjectAccessAlreadyRunnable;
class ShadowFrame;
class Signature;
namespace mirror {
class Array;
class Class;
class ClassLoader;
class DexCache;
class IfTable;
class Object;
template <typename MirrorType> class ObjectArray;
class PointerArray;
class String;
} // namespace mirror
namespace detail {
template <char Shorty> struct ShortyTraits;
template <> struct ShortyTraits<'V'>;
template <> struct ShortyTraits<'Z'>;
template <> struct ShortyTraits<'B'>;
template <> struct ShortyTraits<'C'>;
template <> struct ShortyTraits<'S'>;
template <> struct ShortyTraits<'I'>;
template <> struct ShortyTraits<'J'>;
template <> struct ShortyTraits<'F'>;
template <> struct ShortyTraits<'D'>;
template <> struct ShortyTraits<'L'>;
template <char Shorty> struct HandleShortyTraits;
template <> struct HandleShortyTraits<'L'>;
} // namespace detail
class ArtMethod final {
public:
// Should the class state be checked on sensitive operations?
DECLARE_RUNTIME_DEBUG_FLAG(kCheckDeclaringClassState);
// The runtime dex_method_index is kDexNoIndex. To lower dependencies, we use this
// constexpr, and ensure that the value is correct in art_method.cc.
static constexpr uint32_t kRuntimeMethodDexMethodIndex = 0xFFFFFFFF;
ArtMethod() : access_flags_(0), dex_method_index_(0),
method_index_(0), hotness_count_(0) { }
ArtMethod(ArtMethod* src, PointerSize image_pointer_size) {
CopyFrom(src, image_pointer_size);
}
static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa,
jobject jlr_method)
REQUIRES_SHARED(Locks::mutator_lock_);
// Visit the declaring class in 'method' if it is within [start_boundary, end_boundary).
template<typename RootVisitorType>
static void VisitRoots(RootVisitorType& visitor,
uint8_t* start_boundary,
uint8_t* end_boundary,
ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_);
// Visit declaring classes of all the art-methods in 'array' that reside
// in [start_boundary, end_boundary).
template<PointerSize kPointerSize, typename RootVisitorType>
static void VisitArrayRoots(RootVisitorType& visitor,
uint8_t* start_boundary,
uint8_t* end_boundary,
LengthPrefixedArray<ArtMethod>* array)
REQUIRES_SHARED(Locks::mutator_lock_);
template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
ALWAYS_INLINE ObjPtr<mirror::Class> GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_);
template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
ALWAYS_INLINE ObjPtr<mirror::Class> GetDeclaringClassUnchecked()
REQUIRES_SHARED(Locks::mutator_lock_);
mirror::CompressedReference<mirror::Object>* GetDeclaringClassAddressWithoutBarrier() {
return declaring_class_.AddressWithoutBarrier();
}
void SetDeclaringClass(ObjPtr<mirror::Class> new_declaring_class)
REQUIRES_SHARED(Locks::mutator_lock_);
bool CASDeclaringClass(ObjPtr<mirror::Class> expected_class, ObjPtr<mirror::Class> desired_class)
REQUIRES_SHARED(Locks::mutator_lock_);
static constexpr MemberOffset DeclaringClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_));
}
uint32_t GetAccessFlags() const {
return access_flags_.load(std::memory_order_relaxed);
}
// This version should only be called when it's certain there is no
// concurrency so there is no need to guarantee atomicity. For example,
// before the method is linked.
void SetAccessFlags(uint32_t new_access_flags) REQUIRES_SHARED(Locks::mutator_lock_) {
// The following check ensures that we do not set `Intrinsics::kNone` (see b/228049006).
DCHECK_IMPLIES((new_access_flags & kAccIntrinsic) != 0,
(new_access_flags & kAccIntrinsicBits) != 0);
access_flags_.store(new_access_flags, std::memory_order_relaxed);
}
static constexpr MemberOffset AccessFlagsOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, access_flags_));
}
// Approximate what kind of method call would be used for this method.
InvokeType GetInvokeType() REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if the method is declared public.
bool IsPublic() const {
return IsPublic(GetAccessFlags());
}
static bool IsPublic(uint32_t access_flags) {
return (access_flags & kAccPublic) != 0;
}
// Returns true if the method is declared private.
bool IsPrivate() const {
return IsPrivate(GetAccessFlags());
}
static bool IsPrivate(uint32_t access_flags) {
return (access_flags & kAccPrivate) != 0;
}
// Returns true if the method is declared static.
bool IsStatic() const {
return IsStatic(GetAccessFlags());
}
static bool IsStatic(uint32_t access_flags) {
return (access_flags & kAccStatic) != 0;
}
// Returns true if the method is a constructor according to access flags.
bool IsConstructor() const {
return IsConstructor(GetAccessFlags());
}
static bool IsConstructor(uint32_t access_flags) {
return (access_flags & kAccConstructor) != 0;
}
// Returns true if the method is a class initializer according to access flags.
bool IsClassInitializer() const {
return IsClassInitializer(GetAccessFlags());
}
static bool IsClassInitializer(uint32_t access_flags) {
return IsConstructor(access_flags) && IsStatic(access_flags);
}
// Returns true if the method is static, private, or a constructor.
bool IsDirect() const {
return IsDirect(GetAccessFlags());
}
static bool IsDirect(uint32_t access_flags) {
constexpr uint32_t direct = kAccStatic | kAccPrivate | kAccConstructor;
return (access_flags & direct) != 0;
}
// Returns true if the method is declared synchronized.
bool IsSynchronized() const {
return IsSynchronized(GetAccessFlags());
}
static bool IsSynchronized(uint32_t access_flags) {
constexpr uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized;
return (access_flags & synchonized) != 0;
}
// Returns true if the method is declared final.
bool IsFinal() const {
return IsFinal(GetAccessFlags());
}
static bool IsFinal(uint32_t access_flags) {
return (access_flags & kAccFinal) != 0;
}
// Returns true if the method is an intrinsic.
bool IsIntrinsic() const {
return IsIntrinsic(GetAccessFlags());
}
static bool IsIntrinsic(uint32_t access_flags) {
return (access_flags & kAccIntrinsic) != 0;
}
ALWAYS_INLINE void SetIntrinsic(uint32_t intrinsic) REQUIRES_SHARED(Locks::mutator_lock_);
uint32_t GetIntrinsic() const {
static const int kAccFlagsShift = CTZ(kAccIntrinsicBits);
static_assert(IsPowerOfTwo((kAccIntrinsicBits >> kAccFlagsShift) + 1),
"kAccIntrinsicBits are not continuous");
static_assert((kAccIntrinsic & kAccIntrinsicBits) == 0,
"kAccIntrinsic overlaps kAccIntrinsicBits");
DCHECK(IsIntrinsic());
return (GetAccessFlags() & kAccIntrinsicBits) >> kAccFlagsShift;
}
void SetNotIntrinsic() REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if the method is a copied method.
bool IsCopied() const {
return IsCopied(GetAccessFlags());
}
static bool IsCopied(uint32_t access_flags) {
// We do not have intrinsics for any default methods and therefore intrinsics are never copied.
// So we are using a flag from the intrinsic flags range and need to check `kAccIntrinsic` too.
static_assert((kAccCopied & kAccIntrinsicBits) != 0,
"kAccCopied deliberately overlaps intrinsic bits");
const bool copied = (access_flags & (kAccIntrinsic | kAccCopied)) == kAccCopied;
// (IsMiranda() || IsDefaultConflicting()) implies copied
DCHECK(!(IsMiranda(access_flags) || IsDefaultConflicting(access_flags)) || copied)
<< "Miranda or default-conflict methods must always be copied.";
return copied;
}
bool IsMiranda() const {
return IsMiranda(GetAccessFlags());
}
static bool IsMiranda(uint32_t access_flags) {
// Miranda methods are marked as copied and abstract but not default.
// We need to check the kAccIntrinsic too, see `IsCopied()`.
static constexpr uint32_t kMask = kAccIntrinsic | kAccCopied | kAccAbstract | kAccDefault;
static constexpr uint32_t kValue = kAccCopied | kAccAbstract;
return (access_flags & kMask) == kValue;
}
// A default conflict method is a special sentinel method that stands for a conflict between
// multiple default methods. It cannot be invoked, throwing an IncompatibleClassChangeError
// if one attempts to do so.
bool IsDefaultConflicting() const {
return IsDefaultConflicting(GetAccessFlags());
}
static bool IsDefaultConflicting(uint32_t access_flags) {
// Default conflct methods are marked as copied, abstract and default.
// We need to check the kAccIntrinsic too, see `IsCopied()`.
static constexpr uint32_t kMask = kAccIntrinsic | kAccCopied | kAccAbstract | kAccDefault;
static constexpr uint32_t kValue = kAccCopied | kAccAbstract | kAccDefault;
return (access_flags & kMask) == kValue;
}
// Returns true if invoking this method will not throw an AbstractMethodError or
// IncompatibleClassChangeError.
bool IsInvokable() const {
return IsInvokable(GetAccessFlags());
}
static bool IsInvokable(uint32_t access_flags) {
// Default conflicting methods are marked with `kAccAbstract` (as well as `kAccCopied`
// and `kAccDefault`) but they are not considered abstract, see `IsAbstract()`.
DCHECK_EQ((access_flags & kAccAbstract) == 0,
!IsDefaultConflicting(access_flags) && !IsAbstract(access_flags));
return (access_flags & kAccAbstract) == 0;
}
// Returns true if the method is marked as pre-compiled.
bool IsPreCompiled() const {
return IsPreCompiled(GetAccessFlags());
}
static bool IsPreCompiled(uint32_t access_flags) {
// kAccCompileDontBother and kAccPreCompiled overlap with kAccIntrinsicBits.
static_assert((kAccCompileDontBother & kAccIntrinsicBits) != 0);
static_assert((kAccPreCompiled & kAccIntrinsicBits) != 0);
static constexpr uint32_t kMask = kAccIntrinsic | kAccCompileDontBother | kAccPreCompiled;
static constexpr uint32_t kValue = kAccCompileDontBother | kAccPreCompiled;
return (access_flags & kMask) == kValue;
}
void SetPreCompiled() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsInvokable());
DCHECK(IsCompilable());
// kAccPreCompiled and kAccCompileDontBother overlaps with kAccIntrinsicBits.
// We don't mark the intrinsics as precompiled, which means in JIT zygote
// mode, compiled code for intrinsics will not be shared, and apps will
// compile intrinsics themselves if needed.
if (IsIntrinsic()) {
return;
}
AddAccessFlags(kAccPreCompiled | kAccCompileDontBother);
}
void ClearPreCompiled() REQUIRES_SHARED(Locks::mutator_lock_) {
ClearAccessFlags(kAccPreCompiled | kAccCompileDontBother);
}
// Returns true if the method resides in shared memory.
bool IsMemorySharedMethod() {
return IsMemorySharedMethod(GetAccessFlags());
}
static bool IsMemorySharedMethod(uint32_t access_flags) {
return (access_flags & kAccMemorySharedMethod) != 0;
}
void SetMemorySharedMethod() REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t access_flags = GetAccessFlags();
if (!IsIntrinsic(access_flags) && !IsAbstract(access_flags)) {
AddAccessFlags(kAccMemorySharedMethod);
SetHotCounter();
}
}
void ClearMemorySharedMethod() REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t access_flags = GetAccessFlags();
if (IsIntrinsic(access_flags) || IsAbstract(access_flags)) {
return;
}
if (IsMemorySharedMethod(access_flags)) {
ClearAccessFlags(kAccMemorySharedMethod);
}
}
// Returns true if the method can be compiled.
bool IsCompilable() const {
return IsCompilable(GetAccessFlags());
}
static bool IsCompilable(uint32_t access_flags) {
if (IsIntrinsic(access_flags)) {
// kAccCompileDontBother overlaps with kAccIntrinsicBits.
return true;
}
if (IsPreCompiled(access_flags)) {
return true;
}
return (access_flags & kAccCompileDontBother) == 0;
}
void ClearDontCompile() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsMiranda());
ClearAccessFlags(kAccCompileDontBother);
}
void SetDontCompile() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsMiranda());
AddAccessFlags(kAccCompileDontBother);
}
// This is set by the class linker.
bool IsDefault() const {
return IsDefault(GetAccessFlags());
}
static bool IsDefault(uint32_t access_flags) {
static_assert((kAccDefault & (kAccIntrinsic | kAccIntrinsicBits)) == 0,
"kAccDefault conflicts with intrinsic modifier");
return (access_flags & kAccDefault) != 0;
}
// Returns true if the method is obsolete.
bool IsObsolete() const {
return IsObsolete(GetAccessFlags());
}
static bool IsObsolete(uint32_t access_flags) {
return (access_flags & kAccObsoleteMethod) != 0;
}
void SetIsObsolete() REQUIRES_SHARED(Locks::mutator_lock_) {
AddAccessFlags(kAccObsoleteMethod);
}
// Returns true if the method is native.
bool IsNative() const {
return IsNative(GetAccessFlags());
}
static bool IsNative(uint32_t access_flags) {
return (access_flags & kAccNative) != 0;
}
// Checks to see if the method was annotated with @dalvik.annotation.optimization.FastNative.
bool IsFastNative() const {
return IsFastNative(GetAccessFlags());
}
static bool IsFastNative(uint32_t access_flags) {
// The presence of the annotation is checked by ClassLinker and recorded in access flags.
// The kAccFastNative flag value is used with a different meaning for non-native methods,
// so we need to check the kAccNative flag as well.
constexpr uint32_t mask = kAccFastNative | kAccNative;
return (access_flags & mask) == mask;
}
// Checks to see if the method was annotated with @dalvik.annotation.optimization.CriticalNative.
bool IsCriticalNative() const {
return IsCriticalNative(GetAccessFlags());
}
static bool IsCriticalNative(uint32_t access_flags) {
// The presence of the annotation is checked by ClassLinker and recorded in access flags.
// The kAccCriticalNative flag value is used with a different meaning for non-native methods,
// so we need to check the kAccNative flag as well.
constexpr uint32_t mask = kAccCriticalNative | kAccNative;
return (access_flags & mask) == mask;
}
// Returns true if the method is managed (not native).
bool IsManaged() const {
return IsManaged(GetAccessFlags());
}
static bool IsManaged(uint32_t access_flags) {
return !IsNative(access_flags);
}
// Returns true if the method is managed (not native) and invokable.
bool IsManagedAndInvokable() const {
return IsManagedAndInvokable(GetAccessFlags());
}
static bool IsManagedAndInvokable(uint32_t access_flags) {
return IsManaged(access_flags) && IsInvokable(access_flags);
}
// Returns true if the method is abstract.
bool IsAbstract() const {
return IsAbstract(GetAccessFlags());
}
static bool IsAbstract(uint32_t access_flags) {
// Default confliciting methods have `kAccAbstract` set but they are not actually abstract.
return (access_flags & kAccAbstract) != 0 && !IsDefaultConflicting(access_flags);
}
// Returns true if the method is declared synthetic.
bool IsSynthetic() const {
return IsSynthetic(GetAccessFlags());
}
static bool IsSynthetic(uint32_t access_flags) {
return (access_flags & kAccSynthetic) != 0;
}
// Returns true if the method is declared varargs.
bool IsVarargs() const {
return IsVarargs(GetAccessFlags());
}
static bool IsVarargs(uint32_t access_flags) {
return (access_flags & kAccVarargs) != 0;
}
bool IsProxyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
bool IsSignaturePolymorphic() REQUIRES_SHARED(Locks::mutator_lock_);
bool SkipAccessChecks() const {
// The kAccSkipAccessChecks flag value is used with a different meaning for native methods,
// so we need to check the kAccNative flag as well.
return (GetAccessFlags() & (kAccSkipAccessChecks | kAccNative)) == kAccSkipAccessChecks;
}
void SetSkipAccessChecks() REQUIRES_SHARED(Locks::mutator_lock_) {
// SkipAccessChecks() is applicable only to non-native methods.
DCHECK(!IsNative());
AddAccessFlags(kAccSkipAccessChecks);
}
void ClearSkipAccessChecks() REQUIRES_SHARED(Locks::mutator_lock_) {
// SkipAccessChecks() is applicable only to non-native methods.
DCHECK(!IsNative());
ClearAccessFlags(kAccSkipAccessChecks);
}
// Returns true if the method has previously been warm.
bool PreviouslyWarm() const {
return PreviouslyWarm(GetAccessFlags());
}
static bool PreviouslyWarm(uint32_t access_flags) {
// kAccPreviouslyWarm overlaps with kAccIntrinsicBits. Return true for intrinsics.
constexpr uint32_t mask = kAccPreviouslyWarm | kAccIntrinsic;
return (access_flags & mask) != 0u;
}
void SetPreviouslyWarm() REQUIRES_SHARED(Locks::mutator_lock_) {
if (IsIntrinsic()) {
// kAccPreviouslyWarm overlaps with kAccIntrinsicBits.
return;
}
AddAccessFlags(kAccPreviouslyWarm);
}
// Should this method be run in the interpreter and count locks (e.g., failed structured-
// locking verification)?
bool MustCountLocks() const {
return MustCountLocks(GetAccessFlags());
}
static bool MustCountLocks(uint32_t access_flags) {
if (IsIntrinsic(access_flags)) {
return false;
}
return (access_flags & kAccMustCountLocks) != 0;
}
void ClearMustCountLocks() REQUIRES_SHARED(Locks::mutator_lock_) {
ClearAccessFlags(kAccMustCountLocks);
}
void SetMustCountLocks() REQUIRES_SHARED(Locks::mutator_lock_) {
ClearAccessFlags(kAccSkipAccessChecks);
AddAccessFlags(kAccMustCountLocks);
}
// Returns true if the method is using the nterp entrypoint fast path.
bool HasNterpEntryPointFastPathFlag() const {
return HasNterpEntryPointFastPathFlag(GetAccessFlags());
}
static bool HasNterpEntryPointFastPathFlag(uint32_t access_flags) {
constexpr uint32_t mask = kAccNative | kAccNterpEntryPointFastPathFlag;
return (access_flags & mask) == kAccNterpEntryPointFastPathFlag;
}
void SetNterpEntryPointFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsNative());
AddAccessFlags(kAccNterpEntryPointFastPathFlag);
}
void ClearNterpEntryPointFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsNative());
ClearAccessFlags(kAccNterpEntryPointFastPathFlag);
}
void SetNterpInvokeFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) {
AddAccessFlags(kAccNterpInvokeFastPathFlag);
}
void ClearNterpInvokeFastPathFlag() REQUIRES_SHARED(Locks::mutator_lock_) {
ClearAccessFlags(kAccNterpInvokeFastPathFlag);
}
// Returns whether the method is a string constructor. The method must not
// be a class initializer. (Class initializers are called from a different
// context where we do not need to check for string constructors.)
bool IsStringConstructor() REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if this method could be overridden by a default method.
bool IsOverridableByDefaultMethod() REQUIRES_SHARED(Locks::mutator_lock_);
bool CheckIncompatibleClassChange(InvokeType type) REQUIRES_SHARED(Locks::mutator_lock_);
// Throws the error that would result from trying to invoke this method (i.e.
// IncompatibleClassChangeError, AbstractMethodError, or IllegalAccessError).
// Only call if !IsInvokable();
void ThrowInvocationTimeError(ObjPtr<mirror::Object> receiver)
REQUIRES_SHARED(Locks::mutator_lock_);
uint16_t GetMethodIndex() REQUIRES_SHARED(Locks::mutator_lock_);
// Doesn't do erroneous / unresolved class checks.
uint16_t GetMethodIndexDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_);
size_t GetVtableIndex() REQUIRES_SHARED(Locks::mutator_lock_) {
return GetMethodIndex();
}
void SetMethodIndex(uint16_t new_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
// Not called within a transaction.
method_index_ = new_method_index;
}
static constexpr MemberOffset DexMethodIndexOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, dex_method_index_));
}
static constexpr MemberOffset MethodIndexOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, method_index_));
}
static constexpr MemberOffset ImtIndexOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, imt_index_));
}
// Number of 32bit registers that would be required to hold all the arguments
static size_t NumArgRegisters(std::string_view shorty);
ALWAYS_INLINE uint32_t GetDexMethodIndex() const {
return dex_method_index_;
}
void SetDexMethodIndex(uint32_t new_idx) REQUIRES_SHARED(Locks::mutator_lock_) {
// Not called within a transaction.
dex_method_index_ = new_idx;
}
// Lookup the Class from the type index into this method's dex cache.
ObjPtr<mirror::Class> LookupResolvedClassFromTypeIndex(dex::TypeIndex type_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
// Resolve the Class from the type index into this method's dex cache.
ObjPtr<mirror::Class> ResolveClassFromTypeIndex(dex::TypeIndex type_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if this method has the same name and signature of the other method.
bool HasSameNameAndSignature(ArtMethod* other) REQUIRES_SHARED(Locks::mutator_lock_);
// Find the method that this method overrides.
ArtMethod* FindOverriddenMethod(PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
// Find the method index for this method within other_dexfile. If this method isn't present then
// return dex::kDexNoIndex. The name_and_signature_idx MUST refer to a MethodId with the same
// name and signature in the other_dexfile, such as the method index used to resolve this method
// in the other_dexfile.
uint32_t FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile,
uint32_t name_and_signature_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char ReturnType, char... ArgType>
typename detail::ShortyTraits<ReturnType>::Type
InvokeStatic(Thread* self, typename detail::ShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char ReturnType, char... ArgType>
typename detail::ShortyTraits<ReturnType>::Type
InvokeInstance(Thread* self,
ObjPtr<mirror::Object> receiver,
typename detail::ShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char ReturnType, char... ArgType>
typename detail::ShortyTraits<ReturnType>::Type
InvokeFinal(Thread* self,
ObjPtr<mirror::Object> receiver,
typename detail::ShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char ReturnType, char... ArgType>
typename detail::ShortyTraits<ReturnType>::Type
InvokeVirtual(Thread* self,
ObjPtr<mirror::Object> receiver,
typename detail::ShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char ReturnType, char... ArgType>
typename detail::ShortyTraits<ReturnType>::Type
InvokeInterface(Thread* self,
ObjPtr<mirror::Object> receiver,
typename detail::ShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char... ArgType, typename HandleScopeType>
Handle<mirror::Object> NewObject(HandleScopeType& hs,
Thread* self,
typename detail::HandleShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
template <char... ArgType>
ObjPtr<mirror::Object> NewObject(Thread* self,
typename detail::HandleShortyTraits<ArgType>::Type... args)
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns true if the method needs a class initialization check according to access flags.
// Only static methods other than the class initializer need this check.
// The caller is responsible for performing the actual check.
bool NeedsClinitCheckBeforeCall() const {
return NeedsClinitCheckBeforeCall(GetAccessFlags());
}
static bool NeedsClinitCheckBeforeCall(uint32_t access_flags) {
// The class initializer is special as it is invoked during initialization
// and does not need the check.
return IsStatic(access_flags) && !IsConstructor(access_flags);
}
// Check if the method needs a class initialization check before call
// and its declaring class is not yet visibly initialized.
// (The class needs to be visibly initialized before we can use entrypoints
// to compiled code for static methods. See b/18161648 .)
template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
bool StillNeedsClinitCheck() REQUIRES_SHARED(Locks::mutator_lock_);
// Similar to `StillNeedsClinitCheck()` but the method's declaring class may
// be dead but not yet reclaimed by the GC, so we cannot do a full read barrier
// but we still want to check the class status in the to-space class if any.
// Note: JIT can hold and use such methods during managed heap GC.
bool StillNeedsClinitCheckMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_);
// Check if the declaring class has been verified and look at the to-space
// class object, if any, as in `StillNeedsClinitCheckMayBeDead()`.
bool IsDeclaringClassVerifiedMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_);
const void* GetEntryPointFromQuickCompiledCode() const {
return GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize);
}
ALWAYS_INLINE
const void* GetEntryPointFromQuickCompiledCodePtrSize(PointerSize pointer_size) const {
return GetNativePointer<const void*>(
EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size);
}
void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code)
REQUIRES_SHARED(Locks::mutator_lock_) {
SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code,
kRuntimePointerSize);
}
ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize(
const void* entry_point_from_quick_compiled_code, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
SetNativePointer(EntryPointFromQuickCompiledCodeOffset(pointer_size),
entry_point_from_quick_compiled_code,
pointer_size);
}
static constexpr MemberOffset DataOffset(PointerSize pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, data_) / sizeof(void*) * static_cast<size_t>(pointer_size));
}
static constexpr MemberOffset EntryPointFromJniOffset(PointerSize pointer_size) {
return DataOffset(pointer_size);
}
static constexpr MemberOffset EntryPointFromQuickCompiledCodeOffset(PointerSize pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*)
* static_cast<size_t>(pointer_size));
}
ImtConflictTable* GetImtConflictTable(PointerSize pointer_size) const {
DCHECK(IsRuntimeMethod());
return reinterpret_cast<ImtConflictTable*>(GetDataPtrSize(pointer_size));
}
ALWAYS_INLINE void SetImtConflictTable(ImtConflictTable* table, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsRuntimeMethod());
SetDataPtrSize(table, pointer_size);
}
ALWAYS_INLINE bool HasSingleImplementation() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE void SetHasSingleImplementation(bool single_impl)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsIntrinsic()) << "conflict with intrinsic bits";
if (single_impl) {
AddAccessFlags(kAccSingleImplementation);
} else {
ClearAccessFlags(kAccSingleImplementation);
}
}
ALWAYS_INLINE bool HasSingleImplementationFlag() const {
return (GetAccessFlags() & kAccSingleImplementation) != 0;
}
// Takes a method and returns a 'canonical' one if the method is default (and therefore
// potentially copied from some other class). For example, this ensures that the debugger does not
// get confused as to which method we are in.
ArtMethod* GetCanonicalMethod(PointerSize pointer_size = kRuntimePointerSize)
REQUIRES_SHARED(Locks::mutator_lock_);
ArtMethod* GetSingleImplementation(PointerSize pointer_size);
ALWAYS_INLINE void SetSingleImplementation(ArtMethod* method, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!IsNative());
// Non-abstract method's single implementation is just itself.
DCHECK(IsAbstract());
DCHECK(method == nullptr || method->IsInvokable());
SetDataPtrSize(method, pointer_size);
}
void* GetEntryPointFromJni() const {
DCHECK(IsNative());
return GetEntryPointFromJniPtrSize(kRuntimePointerSize);
}
ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(PointerSize pointer_size) const {
return GetDataPtrSize(pointer_size);
}
void SetEntryPointFromJni(const void* entrypoint)
REQUIRES_SHARED(Locks::mutator_lock_) {
// The resolution method also has a JNI entrypoint for direct calls from
// compiled code to the JNI dlsym lookup stub for @CriticalNative.
DCHECK(IsNative() || IsRuntimeMethod());
SetEntryPointFromJniPtrSize(entrypoint, kRuntimePointerSize);
}
ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
SetDataPtrSize(entrypoint, pointer_size);
}
ALWAYS_INLINE void* GetDataPtrSize(PointerSize pointer_size) const {
DCHECK(IsImagePointerSize(pointer_size));
return GetNativePointer<void*>(DataOffset(pointer_size), pointer_size);
}
ALWAYS_INLINE void SetDataPtrSize(const void* data, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsImagePointerSize(pointer_size));
SetNativePointer(DataOffset(pointer_size), data, pointer_size);
}
// Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal
// conventions for a method of managed code. Returns false for Proxy methods.
ALWAYS_INLINE bool IsRuntimeMethod() const {
return dex_method_index_ == kRuntimeMethodDexMethodIndex;
}
bool HasCodeItem() REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t access_flags = GetAccessFlags();
return !IsNative(access_flags) &&
!IsAbstract(access_flags) &&
!IsDefaultConflicting(access_flags) &&
!IsRuntimeMethod() &&
!IsProxyMethod();
}
// We need to explicitly indicate whether the code item is obtained from the compact dex file,
// because in JVMTI, we obtain the code item from the standard dex file to update the method.
void SetCodeItem(const dex::CodeItem* code_item, bool is_compact_dex_code_item)
REQUIRES_SHARED(Locks::mutator_lock_);
// Is this a hand crafted method used for something like describing callee saves?
bool IsCalleeSaveMethod() REQUIRES_SHARED(Locks::mutator_lock_);
bool IsResolutionMethod() REQUIRES_SHARED(Locks::mutator_lock_);
bool IsImtUnimplementedMethod() REQUIRES_SHARED(Locks::mutator_lock_);
// Find the catch block for the given exception type and dex_pc. When a catch block is found,
// indicates whether the found catch block is responsible for clearing the exception or whether
// a move-exception instruction is present.
uint32_t FindCatchBlock(Handle<mirror::Class> exception_type, uint32_t dex_pc,
bool* has_no_move_exception)
REQUIRES_SHARED(Locks::mutator_lock_);
// NO_THREAD_SAFETY_ANALYSIS since we don't know what the callback requires.
template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier,
bool kVisitProxyMethod = true,
typename RootVisitorType>
void VisitRoots(RootVisitorType& visitor, PointerSize pointer_size) NO_THREAD_SAFETY_ANALYSIS;
const DexFile* GetDexFile() REQUIRES_SHARED(Locks::mutator_lock_);
const char* GetDeclaringClassDescriptor() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE const char* GetShorty() REQUIRES_SHARED(Locks::mutator_lock_);
const char* GetShorty(uint32_t* out_length) REQUIRES_SHARED(Locks::mutator_lock_);
std::string_view GetShortyView() REQUIRES_SHARED(Locks::mutator_lock_);
const Signature GetSignature() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE const char* GetName() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE std::string_view GetNameView() REQUIRES_SHARED(Locks::mutator_lock_);
ObjPtr<mirror::String> ResolveNameString() REQUIRES_SHARED(Locks::mutator_lock_);
bool NameEquals(ObjPtr<mirror::String> name) REQUIRES_SHARED(Locks::mutator_lock_);
const dex::CodeItem* GetCodeItem() REQUIRES_SHARED(Locks::mutator_lock_);
bool IsResolvedTypeIdx(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_);
int32_t GetLineNumFromDexPC(uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_);
const dex::ProtoId& GetPrototype() REQUIRES_SHARED(Locks::mutator_lock_);
const dex::TypeList* GetParameterTypeList() REQUIRES_SHARED(Locks::mutator_lock_);
const char* GetDeclaringClassSourceFile() REQUIRES_SHARED(Locks::mutator_lock_);
uint16_t GetClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_);
const dex::ClassDef& GetClassDef() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE size_t GetNumberOfParameters() REQUIRES_SHARED(Locks::mutator_lock_);
const char* GetReturnTypeDescriptor() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE Primitive::Type GetReturnTypePrimitive() REQUIRES_SHARED(Locks::mutator_lock_);
const char* GetTypeDescriptorFromTypeIdx(dex::TypeIndex type_idx)
REQUIRES_SHARED(Locks::mutator_lock_);
// Lookup return type.
ObjPtr<mirror::Class> LookupResolvedReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
// Resolve return type. May cause thread suspension due to GetClassFromTypeIdx
// calling ResolveType this caused a large number of bugs at call sites.
ObjPtr<mirror::Class> ResolveReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
ObjPtr<mirror::ClassLoader> GetClassLoader() REQUIRES_SHARED(Locks::mutator_lock_);
template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
ObjPtr<mirror::DexCache> GetDexCache() REQUIRES_SHARED(Locks::mutator_lock_);
template <ReadBarrierOption kReadBarrierOption>
ObjPtr<mirror::DexCache> GetObsoleteDexCache() REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE ArtMethod* GetInterfaceMethodForProxyUnchecked(PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy(PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
ArtMethod* GetNonObsoleteMethod() REQUIRES_SHARED(Locks::mutator_lock_);
// May cause thread suspension due to class resolution.
bool EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params)
REQUIRES_SHARED(Locks::mutator_lock_);
// Size of an instance of this native class.
static constexpr size_t Size(PointerSize pointer_size) {
return PtrSizedFieldsOffset(pointer_size) +
(sizeof(PtrSizedFields) / sizeof(void*)) * static_cast<size_t>(pointer_size);
}
// Alignment of an instance of this native class.
static constexpr size_t Alignment(PointerSize pointer_size) {
// The ArtMethod alignment is the same as image pointer size. This differs from
// alignof(ArtMethod) if cross-compiling with pointer_size != sizeof(void*).
return static_cast<size_t>(pointer_size);
}
void CopyFrom(ArtMethod* src, PointerSize image_pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE void ResetCounter(uint16_t new_value);
ALWAYS_INLINE void UpdateCounter(int32_t new_samples);
ALWAYS_INLINE void SetHotCounter();
ALWAYS_INLINE bool CounterIsHot();
ALWAYS_INLINE bool CounterHasReached(uint16_t samples, uint16_t threshold);
ALWAYS_INLINE uint16_t GetCounter();
ALWAYS_INLINE bool CounterHasChanged(uint16_t threshold);
ALWAYS_INLINE static constexpr uint16_t MaxCounter() {
return std::numeric_limits<decltype(hotness_count_)>::max();
}
ALWAYS_INLINE uint32_t GetImtIndex() REQUIRES_SHARED(Locks::mutator_lock_);
void CalculateAndSetImtIndex() REQUIRES_SHARED(Locks::mutator_lock_);
static constexpr MemberOffset HotnessCountOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, hotness_count_));
}
// Returns the method header for the compiled code containing 'pc'. Note that runtime
// methods will return null for this method, as they are not oat based.
const OatQuickMethodHeader* GetOatQuickMethodHeader(uintptr_t pc)
REQUIRES_SHARED(Locks::mutator_lock_);
// Get compiled code for the method, return null if no code exists.
const void* GetOatMethodQuickCode(PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns whether the method has any compiled code, JIT or AOT.
bool HasAnyCompiledCode() REQUIRES_SHARED(Locks::mutator_lock_);
// Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
// "a.b.C.m(II)V" (depending on the value of 'with_signature').
static std::string PrettyMethod(ArtMethod* m, bool with_signature = true)
REQUIRES_SHARED(Locks::mutator_lock_);
std::string PrettyMethod(bool with_signature = true)
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the JNI native function name for the non-overloaded method 'm'.
std::string JniShortName()
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the JNI native function name for the overloaded method 'm'.
std::string JniLongName()
REQUIRES_SHARED(Locks::mutator_lock_);
// Update entry points by passing them through the visitor.
template <typename Visitor>
ALWAYS_INLINE void UpdateEntrypoints(const Visitor& visitor, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_);
// Visit the individual members of an ArtMethod. Used by imgdiag.
// As imgdiag does not support mixing instruction sets or pointer sizes (e.g., using imgdiag32
// to inspect 64-bit images, etc.), we can go beneath the accessors directly to the class members.
template <typename VisitorFunc>
void VisitMembers(VisitorFunc& visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsImagePointerSize(kRuntimePointerSize));
visitor(this, &declaring_class_, "declaring_class_");
visitor(this, &access_flags_, "access_flags_");
visitor(this, &dex_method_index_, "dex_method_index_");
visitor(this, &method_index_, "method_index_");
visitor(this, &hotness_count_, "hotness_count_");
visitor(this, &ptr_sized_fields_.data_, "ptr_sized_fields_.data_");
visitor(this,
&ptr_sized_fields_.entry_point_from_quick_compiled_code_,
"ptr_sized_fields_.entry_point_from_quick_compiled_code_");
}
// Returns the dex instructions of the code item for the art method. Returns an empty array for
// the null code item case.
ALWAYS_INLINE CodeItemInstructionAccessor DexInstructions()
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the dex code item data section of the DexFile for the art method.
ALWAYS_INLINE CodeItemDataAccessor DexInstructionData()
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the dex code item debug info section of the DexFile for the art method.
ALWAYS_INLINE CodeItemDebugInfoAccessor DexInstructionDebugInfo()
REQUIRES_SHARED(Locks::mutator_lock_);
GcRoot<mirror::Class>& DeclaringClassRoot() {
return declaring_class_;
}
protected:
// Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses".
// The class we are a part of.
GcRoot<mirror::Class> declaring_class_;
// Access flags; low 16 bits are defined by spec.
// Getting and setting this flag needs to be atomic when concurrency is
// possible, e.g. after this method's class is linked. Such as when setting
// verifier flags and single-implementation flag.
std::atomic<std::uint32_t> access_flags_;
/* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */
// Index into method_ids of the dex file associated with this method.
uint32_t dex_method_index_;
/* End of dex file fields. */
// Entry within a dispatch table for this method. For static/direct methods the index is into
// the declaringClass.directMethods, for virtual methods the vtable and for interface methods the
// interface's method array in `IfTable`s of implementing classes.
uint16_t method_index_;
union {
// Non-abstract methods: The hotness we measure for this method. Not atomic,
// as we allow missing increments: if the method is hot, we will see it eventually.
uint16_t hotness_count_;
// Abstract methods: IMT index.
uint16_t imt_index_;
};
// Fake padding field gets inserted here.
// Must be the last fields in the method.
struct PtrSizedFields {
// Depending on the method type, the data is
// - native method: pointer to the JNI function registered to this method
// or a function to resolve the JNI function,
// - resolution method: pointer to a function to resolve the method and
// the JNI function for @CriticalNative.
// - conflict method: ImtConflictTable,
// - abstract/interface method: the single-implementation if any,
// - proxy method: the original interface method or constructor,
// - default conflict method: null
// - other methods: during AOT the code item offset, at runtime a pointer
// to the code item.
void* data_;
// Method dispatch from quick compiled code invokes this pointer which may cause bridging into
// the interpreter.
void* entry_point_from_quick_compiled_code_;
} ptr_sized_fields_;
private:
uint16_t FindObsoleteDexClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_);
static constexpr size_t PtrSizedFieldsOffset(PointerSize pointer_size) {
// Round up to pointer size for padding field. Tested in art_method.cc.
return RoundUp(offsetof(ArtMethod, hotness_count_) + sizeof(hotness_count_),
static_cast<size_t>(pointer_size));
}
// Compare given pointer size to the image pointer size.
static bool IsImagePointerSize(PointerSize pointer_size);
dex::TypeIndex GetReturnTypeIndex() REQUIRES_SHARED(Locks::mutator_lock_);
template<typename T>
ALWAYS_INLINE T GetNativePointer(MemberOffset offset, PointerSize pointer_size) const {
static_assert(std::is_pointer<T>::value, "T must be a pointer type");
const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value();
if (pointer_size == PointerSize::k32) {
return reinterpret_cast<T>(*reinterpret_cast<const uint32_t*>(addr));
} else {
auto v = *reinterpret_cast<const uint64_t*>(addr);
return reinterpret_cast<T>(dchecked_integral_cast<uintptr_t>(v));
}
}
template<typename T>
ALWAYS_INLINE void SetNativePointer(MemberOffset offset, T new_value, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
static_assert(std::is_pointer<T>::value, "T must be a pointer type");
const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value();
if (pointer_size == PointerSize::k32) {
uintptr_t ptr = reinterpret_cast<uintptr_t>(new_value);
*reinterpret_cast<uint32_t*>(addr) = dchecked_integral_cast<uint32_t>(ptr);
} else {
*reinterpret_cast<uint64_t*>(addr) = reinterpret_cast<uintptr_t>(new_value);
}
}
static inline bool IsValidIntrinsicUpdate(uint32_t modifier) {
return (((modifier & kAccIntrinsic) == kAccIntrinsic) &&
((modifier & ~(kAccIntrinsic | kAccIntrinsicBits)) == 0) &&
((modifier & kAccIntrinsicBits) != 0)); // b/228049006: ensure intrinsic is not `kNone`
}
static inline bool OverlapsIntrinsicBits(uint32_t modifier) {
return (modifier & kAccIntrinsicBits) != 0;
}
// This setter guarantees atomicity.
void AddAccessFlags(uint32_t flag) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_IMPLIES(IsIntrinsic(), !OverlapsIntrinsicBits(flag) || IsValidIntrinsicUpdate(flag));
// None of the readers rely ordering.
access_flags_.fetch_or(flag, std::memory_order_relaxed);
}
// This setter guarantees atomicity.
void ClearAccessFlags(uint32_t flag) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_IMPLIES(IsIntrinsic(), !OverlapsIntrinsicBits(flag) || IsValidIntrinsicUpdate(flag));
access_flags_.fetch_and(~flag, std::memory_order_relaxed);
}
// Helper method for checking the class status of a possibly dead declaring class.
// See `StillNeedsClinitCheckMayBeDead()` and `IsDeclaringClassVerifierMayBeDead()`.
ObjPtr<mirror::Class> GetDeclaringClassMayBeDead() REQUIRES_SHARED(Locks::mutator_lock_);
// Used by GetName and GetNameView to share common code.
const char* GetRuntimeMethodName() REQUIRES_SHARED(Locks::mutator_lock_);
DISALLOW_COPY_AND_ASSIGN(ArtMethod); // Need to use CopyFrom to deal with 32 vs 64 bits.
};
class MethodCallback {
public:
virtual ~MethodCallback() {}
virtual void RegisterNativeMethod(ArtMethod* method,
const void* original_implementation,
/*out*/void** new_implementation)
REQUIRES_SHARED(Locks::mutator_lock_) = 0;
};
} // namespace art
#endif // ART_RUNTIME_ART_METHOD_H_