summaryrefslogtreecommitdiff
path: root/services/sensorservice/HidlSensorHalWrapper.cpp
blob: 8c867bdd32006dc7e5231294c78ea90eea540f21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * Copyright (C) 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "HidlSensorHalWrapper.h"
#include "android/hardware/sensors/2.0/types.h"
#include "android/hardware/sensors/2.1/ISensorsCallback.h"
#include "android/hardware/sensors/2.1/types.h"
#include "convertV2_1.h"

#include <android-base/logging.h>

using android::hardware::hidl_vec;
using android::hardware::sensors::V1_0::RateLevel;
using android::hardware::sensors::V1_0::Result;
using android::hardware::sensors::V1_0::SharedMemFormat;
using android::hardware::sensors::V1_0::SharedMemInfo;
using android::hardware::sensors::V1_0::SharedMemType;
using android::hardware::sensors::V2_0::EventQueueFlagBits;
using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using android::hardware::sensors::V2_1::Event;
using android::hardware::sensors::V2_1::ISensorsCallback;
using android::hardware::sensors::V2_1::implementation::convertFromSensorEvent;
using android::hardware::sensors::V2_1::implementation::convertToNewEvents;
using android::hardware::sensors::V2_1::implementation::convertToNewSensorInfos;
using android::hardware::sensors::V2_1::implementation::convertToSensor;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV1_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_1;

namespace android {

namespace {

status_t statusFromResult(Result result) {
    switch (result) {
        case Result::OK:
            return OK;
        case Result::BAD_VALUE:
            return BAD_VALUE;
        case Result::PERMISSION_DENIED:
            return PERMISSION_DENIED;
        case Result::INVALID_OPERATION:
            return INVALID_OPERATION;
        case Result::NO_MEMORY:
            return NO_MEMORY;
    }
}

template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
    return static_cast<typename std::underlying_type<EnumType>::type>(value);
}

enum EventQueueFlagBitsInternal : uint32_t {
    INTERNAL_WAKE = 1 << 16,
};

} // anonymous namespace

void SensorsHalDeathReceiver::serviceDied(
        uint64_t /* cookie */, const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
    ALOGW("Sensors HAL died, attempting to reconnect.");
    mHidlSensorHalWrapper->prepareForReconnect();
}

struct HidlSensorsCallback : public ISensorsCallback {
    using Result = ::android::hardware::sensors::V1_0::Result;
    using SensorInfo = ::android::hardware::sensors::V2_1::SensorInfo;

    HidlSensorsCallback(ISensorHalWrapper::SensorDeviceCallback* sensorDeviceCallback) {
        mSensorDeviceCallback = sensorDeviceCallback;
    }

    Return<void> onDynamicSensorsConnected_2_1(
            const hidl_vec<SensorInfo>& dynamicSensorsAdded) override {
        std::vector<sensor_t> sensors;
        for (const android::hardware::sensors::V2_1::SensorInfo& info : dynamicSensorsAdded) {
            sensor_t sensor;
            convertToSensor(info, &sensor);
            sensors.push_back(sensor);
        }

        mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
        return Return<void>();
    }

    Return<void> onDynamicSensorsConnected(
            const hidl_vec<android::hardware::sensors::V1_0::SensorInfo>& dynamicSensorsAdded)
            override {
        return onDynamicSensorsConnected_2_1(convertToNewSensorInfos(dynamicSensorsAdded));
    }

    Return<void> onDynamicSensorsDisconnected(
            const hidl_vec<int32_t>& dynamicSensorHandlesRemoved) override {
        mSensorDeviceCallback->onDynamicSensorsDisconnected(dynamicSensorHandlesRemoved);
        return Return<void>();
    }

private:
    ISensorHalWrapper::SensorDeviceCallback* mSensorDeviceCallback;
};

bool HidlSensorHalWrapper::supportsPolling() {
    return mSensors->supportsPolling();
}

bool HidlSensorHalWrapper::supportsMessageQueues() {
    return mSensors->supportsMessageQueues();
}

bool HidlSensorHalWrapper::connect(SensorDeviceCallback* callback) {
    mSensorDeviceCallback = callback;
    bool ret = connectHidlService();
    if (mEventQueueFlag != nullptr) {
        mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
    }
    return ret;
}

void HidlSensorHalWrapper::prepareForReconnect() {
    mReconnecting = true;
    if (mEventQueueFlag != nullptr) {
        mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
    }
}

ssize_t HidlSensorHalWrapper::poll(sensors_event_t* buffer, size_t count) {
    ssize_t err;
    int numHidlTransportErrors = 0;
    bool hidlTransportError = false;

    do {
        auto ret = mSensors->poll(count,
                                  [&](auto result, const auto& events,
                                      const auto& dynamicSensorsAdded) {
                                      if (result == Result::OK) {
                                          convertToSensorEvents(convertToNewEvents(events),
                                                                convertToNewSensorInfos(
                                                                        dynamicSensorsAdded),
                                                                buffer);
                                          err = (ssize_t)events.size();
                                      } else {
                                          err = statusFromResult(result);
                                      }
                                  });

        if (ret.isOk()) {
            hidlTransportError = false;
        } else {
            hidlTransportError = true;
            numHidlTransportErrors++;
            if (numHidlTransportErrors > 50) {
                // Log error and bail
                ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
                handleHidlDeath(ret.description());
            } else {
                std::this_thread::sleep_for(std::chrono::milliseconds(10));
            }
        }
    } while (hidlTransportError);

    if (numHidlTransportErrors > 0) {
        ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
        HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
        mHidlTransportErrors.add(errLog);
        mTotalHidlTransportErrors++;
    }

    return err;
}

ssize_t HidlSensorHalWrapper::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
    ssize_t eventsRead = 0;
    size_t availableEvents = mSensors->getEventQueue()->availableToRead();

    if (availableEvents == 0) {
        uint32_t eventFlagState = 0;

        // Wait for events to become available. This is necessary so that the Event FMQ's read() is
        // able to be called with the correct number of events to read. If the specified number of
        // events is not available, then read() would return no events, possibly introducing
        // additional latency in delivering events to applications.
        if (mEventQueueFlag != nullptr) {
            mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
                                          asBaseType(INTERNAL_WAKE),
                                  &eventFlagState);
        }
        availableEvents = mSensors->getEventQueue()->availableToRead();

        if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
            ALOGD("Event FMQ internal wake, returning from poll with no events");
            return DEAD_OBJECT;
        } else if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mInHalBypassMode &&
                   availableEvents == 0) {
            ALOGD("Event FMQ internal wake due to HAL Bypass Mode, returning from poll with no "
                  "events");
            return OK;
        }
    }

    size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
    if (eventsToRead > 0) {
        if (mSensors->getEventQueue()->read(mEventBuffer.data(), eventsToRead)) {
            // Notify the Sensors HAL that sensor events have been read. This is required to support
            // the use of writeBlocking by the Sensors HAL.
            if (mEventQueueFlag != nullptr) {
                mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
            }

            for (size_t i = 0; i < eventsToRead; i++) {
                convertToSensorEvent(mEventBuffer[i], &buffer[i]);
            }
            eventsRead = eventsToRead;
        } else {
            ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
                  availableEvents);
        }
    }

    return eventsRead;
}

std::vector<sensor_t> HidlSensorHalWrapper::getSensorsList() {
    std::vector<sensor_t> sensorsFound;
    if (mSensors != nullptr) {
        checkReturn(mSensors->getSensorsList([&](const auto& list) {
            for (size_t i = 0; i < list.size(); i++) {
                sensor_t sensor;
                convertToSensor(list[i], &sensor);
                sensorsFound.push_back(sensor);

                // Only disable all sensors on HAL 1.0 since HAL 2.0
                // handles this in its initialize method
                if (!mSensors->supportsMessageQueues()) {
                    checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
                }
            }
        }));
    }

    return sensorsFound;
}

status_t HidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
    if (mSensors == nullptr) return NO_INIT;
    if (mode == SensorService::Mode::HAL_BYPASS_REPLAY_DATA_INJECTION) {
        if (!mInHalBypassMode) {
            mInHalBypassMode = true;
            mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
        }
        return OK;
    } else {
        if (mInHalBypassMode) {
            mInHalBypassMode = false;
        }
    }
    return checkReturnAndGetStatus(
            mSensors->setOperationMode(static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
}

status_t HidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
    if (mSensors == nullptr) return NO_INIT;
    return checkReturnAndGetStatus(mSensors->activate(sensorHandle, enabled));
}

status_t HidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
                                     int64_t maxReportLatencyNs) {
    if (mSensors == nullptr) return NO_INIT;
    return checkReturnAndGetStatus(
            mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
}

status_t HidlSensorHalWrapper::flush(int32_t sensorHandle) {
    if (mSensors == nullptr) return NO_INIT;
    return checkReturnAndGetStatus(mSensors->flush(sensorHandle));
}

status_t HidlSensorHalWrapper::injectSensorData(const sensors_event_t* event) {
    if (mSensors == nullptr) return NO_INIT;

    Event ev;
    convertFromSensorEvent(*event, &ev);
    return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
}

status_t HidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t* memory,
                                                     int32_t* outChannelHandle) {
    if (mSensors == nullptr) return NO_INIT;

    SharedMemType type;
    switch (memory->type) {
        case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
            type = SharedMemType::ASHMEM;
            break;
        case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
            type = SharedMemType::GRALLOC;
            break;
        default:
            return BAD_VALUE;
    }

    SharedMemFormat format;
    if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
        return BAD_VALUE;
    }
    format = SharedMemFormat::SENSORS_EVENT;

    SharedMemInfo mem = {
            .type = type,
            .format = format,
            .size = static_cast<uint32_t>(memory->size),
            .memoryHandle = memory->handle,
    };

    status_t ret = OK;
    checkReturn(mSensors->registerDirectChannel(mem,
                                                [&ret, &outChannelHandle](auto result,
                                                                          auto channelHandle) {
                                                    if (result == Result::OK) {
                                                        *outChannelHandle = channelHandle;
                                                    } else {
                                                        ret = statusFromResult(result);
                                                    }
                                                }));
    return ret;
}

status_t HidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
    if (mSensors == nullptr) return NO_INIT;
    return checkReturnAndGetStatus(mSensors->unregisterDirectChannel(channelHandle));
}

status_t HidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
                                                      const struct sensors_direct_cfg_t* config) {
    if (mSensors == nullptr) return NO_INIT;

    RateLevel rate;
    switch (config->rate_level) {
        case SENSOR_DIRECT_RATE_STOP:
            rate = RateLevel::STOP;
            break;
        case SENSOR_DIRECT_RATE_NORMAL:
            rate = RateLevel::NORMAL;
            break;
        case SENSOR_DIRECT_RATE_FAST:
            rate = RateLevel::FAST;
            break;
        case SENSOR_DIRECT_RATE_VERY_FAST:
            rate = RateLevel::VERY_FAST;
            break;
        default:
            return BAD_VALUE;
    }

    status_t ret;
    checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
                                             [&ret, rate](auto result, auto token) {
                                                 if (rate == RateLevel::STOP) {
                                                     ret = statusFromResult(result);
                                                 } else {
                                                     if (result == Result::OK) {
                                                         ret = token;
                                                     } else {
                                                         ret = statusFromResult(result);
                                                     }
                                                 }
                                             }));

    return ret;
}

void HidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
    if (mWakeLockQueue->write(&count)) {
        mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
    } else {
        ALOGW("Failed to write wake lock handled");
    }
}

status_t HidlSensorHalWrapper::checkReturnAndGetStatus(const hardware::Return<Result>& ret) {
    checkReturn(ret);
    return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
}

void HidlSensorHalWrapper::handleHidlDeath(const std::string& detail) {
    if (!mSensors->supportsMessageQueues()) {
        // restart is the only option at present.
        LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
    } else {
        ALOGD("ISensors HAL died, death recipient will attempt reconnect");
    }
}

bool HidlSensorHalWrapper::connectHidlService() {
    HalConnectionStatus status = connectHidlServiceV2_1();
    if (status == HalConnectionStatus::DOES_NOT_EXIST) {
        status = connectHidlServiceV2_0();
    }

    if (status == HalConnectionStatus::DOES_NOT_EXIST) {
        status = connectHidlServiceV1_0();
    }
    return (status == HalConnectionStatus::CONNECTED);
}

ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV1_0() {
    // SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
    size_t retry = 10;
    HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;

    while (retry-- > 0) {
        sp<android::hardware::sensors::V1_0::ISensors> sensors =
                android::hardware::sensors::V1_0::ISensors::getService();
        if (sensors == nullptr) {
            // no sensor hidl service found
            connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
            break;
        }

        mSensors = new ISensorsWrapperV1_0(sensors);
        mRestartWaiter->reset();
        // Poke ISensor service. If it has lingering connection from previous generation of
        // system server, it will kill itself. There is no intention to handle the poll result,
        // which will be done since the size is 0.
        if (mSensors->poll(0, [](auto, const auto&, const auto&) {}).isOk()) {
            // ok to continue
            connectionStatus = HalConnectionStatus::CONNECTED;
            break;
        }

        // hidl service is restarting, pointer is invalid.
        mSensors = nullptr;
        connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
        ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
        mRestartWaiter->wait();
    }

    return connectionStatus;
}

ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_0() {
    HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
    sp<android::hardware::sensors::V2_0::ISensors> sensors =
            android::hardware::sensors::V2_0::ISensors::getService();

    if (sensors == nullptr) {
        connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
    } else {
        mSensors = new ISensorsWrapperV2_0(sensors);
        connectionStatus = initializeHidlServiceV2_X();
    }

    return connectionStatus;
}

ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_1() {
    HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
    sp<android::hardware::sensors::V2_1::ISensors> sensors =
            android::hardware::sensors::V2_1::ISensors::getService();

    if (sensors == nullptr) {
        connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
    } else {
        mSensors = new ISensorsWrapperV2_1(sensors);
        connectionStatus = initializeHidlServiceV2_X();
    }

    return connectionStatus;
}

ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::initializeHidlServiceV2_X() {
    HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;

    mWakeLockQueue =
            std::make_unique<WakeLockQueue>(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
                                            true /* configureEventFlagWord */);

    hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
    hardware::EventFlag::createEventFlag(mSensors->getEventQueue()->getEventFlagWord(),
                                         &mEventQueueFlag);

    hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
    hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);

    CHECK(mSensors != nullptr && mWakeLockQueue != nullptr && mEventQueueFlag != nullptr &&
          mWakeLockQueueFlag != nullptr);

    mCallback = sp<HidlSensorsCallback>::make(mSensorDeviceCallback);
    status_t status =
            checkReturnAndGetStatus(mSensors->initialize(*mWakeLockQueue->getDesc(), mCallback));

    if (status != NO_ERROR) {
        connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
        ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
    } else {
        connectionStatus = HalConnectionStatus::CONNECTED;
        mSensorsHalDeathReceiver = new SensorsHalDeathReceiver(this);
        mSensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
    }

    return connectionStatus;
}

void HidlSensorHalWrapper::convertToSensorEvent(const Event& src, sensors_event_t* dst) {
    android::hardware::sensors::V2_1::implementation::convertToSensorEvent(src, dst);
}

void HidlSensorHalWrapper::convertToSensorEvents(const hidl_vec<Event>& src,
                                                 const hidl_vec<SensorInfo>& dynamicSensorsAdded,
                                                 sensors_event_t* dst) {
    if (dynamicSensorsAdded.size() > 0 && mCallback != nullptr) {
        mCallback->onDynamicSensorsConnected_2_1(dynamicSensorsAdded);
    }

    for (size_t i = 0; i < src.size(); ++i) {
        convertToSensorEvent(src[i], &dst[i]);
    }
}

} // namespace android