1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <deque>
#include <map>
#include <memory>
#include <string>
#include <string_view>
#include <unordered_map>
#include <vector>
#include "android-base/logging.h"
#include "base/os.h"
#include "base/unix_file/fd_file.h"
#include "elf/elf_builder.h"
#include "elf/elf_debug_reader.h"
#include "elf/xz_utils.h"
#include "stream/file_output_stream.h"
#include "stream/vector_output_stream.h"
namespace art {
static constexpr size_t kBlockSize = 32 * KB;
constexpr const char kSortedSymbolName[] = "$android.symtab.sorted";
template<typename ElfTypes>
static void WriteMinidebugInfo(const std::vector<uint8_t>& input, std::vector<uint8_t>* output) {
using Elf_Addr = typename ElfTypes::Addr;
using Elf_Shdr = typename ElfTypes::Shdr;
using Elf_Sym = typename ElfTypes::Sym;
using Elf_Word = typename ElfTypes::Word;
using CIE = typename ElfDebugReader<ElfTypes>::CIE;
using FDE = typename ElfDebugReader<ElfTypes>::FDE;
ElfDebugReader<ElfTypes> reader(input);
std::vector<uint8_t> output_elf_data;
VectorOutputStream output_stream("Output ELF", &output_elf_data);
InstructionSet isa = ElfBuilder<ElfTypes>::GetIsaFromHeader(*reader.GetHeader());
std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &output_stream));
builder->Start(/*write_program_headers=*/ false);
auto* text = builder->GetText();
const Elf_Shdr* original_text = reader.GetSection(".text");
CHECK(original_text != nullptr);
text->AllocateVirtualMemory(original_text->sh_addr, original_text->sh_size);
auto* strtab = builder->GetStrTab();
auto* symtab = builder->GetSymTab();
strtab->Start();
{
std::unordered_map<uint64_t, uint64_t> dyn_funcs_by_offset;
reader.VisitDynamicSymbols([&](Elf_Sym sym, const char*) {
// Keep track of all of the dynamic function symbols.
if (ELF32_ST_TYPE(sym.st_info) == STT_FUNC && sym.st_size != 0) {
auto it = dyn_funcs_by_offset.find(sym.st_value);
if (it == dyn_funcs_by_offset.end() || it->second < sym.st_size) {
dyn_funcs_by_offset[sym.st_value] = sym.st_size;
}
}
});
std::unordered_map<uint64_t, std::string_view> funcs_by_offset;
std::multimap<std::string_view, Elf_Sym> syms;
reader.VisitFunctionSymbols([&](Elf_Sym sym, const char* name) {
// Exclude non-function or empty symbols.
if (ELF32_ST_TYPE(sym.st_info) != STT_FUNC || sym.st_size == 0) {
return;
}
// Exclude symbols at the same offset as a symbol in the set of
// dynamic symbols.
auto dyn_it = dyn_funcs_by_offset.find(sym.st_value);
if (dyn_it != dyn_funcs_by_offset.end()) {
CHECK(dyn_it->second >= sym.st_size);
return;
}
// Exclude symbols with the same offset as a previous symbol.
if (funcs_by_offset.contains(sym.st_value)) {
const std::string_view& previous_name = funcs_by_offset[sym.st_value];
// Find the previous symbol entry.
auto it = syms.find(previous_name);
while (it != syms.end() && it->second.st_value != sym.st_value) {
++it;
}
CHECK(it != syms.end());
// When there is a duplicate, always choose the symbol with the
// largest size.
// In order to produce the same symbol table every time, if the
// symbol has the same size choose the symbol with the shortest
// name, or the symbol first according to ascii comparison.
if (sym.st_size < it->second.st_size ||
(sym.st_size == it->second.st_size &&
(previous_name.size() < strlen(name) || previous_name.compare(name) <= 0))) {
return;
}
syms.erase(it);
}
funcs_by_offset[sym.st_value] = name;
syms.emplace(name, sym);
});
if (!syms.empty()) {
symtab->Add(strtab->Write(kSortedSymbolName), nullptr, 0, 0, STB_GLOBAL, STT_NOTYPE);
}
for (auto& entry : syms) {
std::string_view name = entry.first;
const Elf_Sym& sym = entry.second;
Elf_Word name_idx = strtab->Write(name);
symtab->Add(name_idx, text, sym.st_value, sym.st_size, STB_GLOBAL, STT_FUNC);
}
}
strtab->End();
symtab->WriteCachedSection();
auto* debug_frame = builder->GetDebugFrame();
debug_frame->Start();
{
std::map<std::string_view, Elf_Addr> cie_dedup;
std::unordered_map<const CIE*, Elf_Addr> new_cie_offset;
std::deque<std::pair<const FDE*, const CIE*>> entries;
// Read, de-duplicate and write CIE entries. Read FDE entries.
reader.VisitDebugFrame(
[&](const CIE* cie) {
std::string_view key(reinterpret_cast<const char*>(cie->data()), cie->size());
auto it = cie_dedup.emplace(key, debug_frame->GetPosition());
if (/* inserted */ it.second) {
debug_frame->WriteFully(cie->data(), cie->size());
}
new_cie_offset[cie] = it.first->second;
},
[&](const FDE* fde, const CIE* cie) { entries.emplace_back(std::make_pair(fde, cie)); });
// Sort FDE entries by opcodes to improve locality for compression (saves ~25%).
std::stable_sort(entries.begin(), entries.end(), [](const auto& lhs, const auto& rhs) {
constexpr size_t opcode_offset = sizeof(FDE);
return std::lexicographical_compare(
lhs.first->data() + opcode_offset, lhs.first->data() + lhs.first->size(),
rhs.first->data() + opcode_offset, rhs.first->data() + rhs.first->size());
});
// Write all FDE entries while adjusting the CIE offsets to the new locations.
for (const auto& entry : entries) {
const FDE* fde = entry.first;
const CIE* cie = entry.second;
FDE new_header = *fde;
new_header.cie_pointer = new_cie_offset[cie];
debug_frame->WriteFully(&new_header, sizeof(FDE));
debug_frame->WriteFully(fde->data() + sizeof(FDE), fde->size() - sizeof(FDE));
}
}
debug_frame->End();
builder->End();
CHECK(builder->Good());
XzCompress(ArrayRef<const uint8_t>(output_elf_data), output, 9 /*size*/, kBlockSize);
}
static int Main(int argc, char** argv) {
// Check command like arguments.
if (argc != 3) {
printf("Usage: create_minidebuginfo ELF_FILE OUT_FILE\n");
printf(" ELF_FILE: The path to an ELF file with full symbols (before being stripped).\n");
printf(" OUT_FILE: The path for the generated mini-debug-info data (not an elf file).\n");
return 1;
}
const char* input_filename = argv[1];
const char* output_filename = argv[2];
// Read input file.
std::unique_ptr<File> input_file(OS::OpenFileForReading(input_filename));
CHECK(input_file.get() != nullptr) << "Failed to open input file";
std::vector<uint8_t> elf(input_file->GetLength());
CHECK(input_file->ReadFully(elf.data(), elf.size())) << "Failed to read input file";
// Write output file.
std::vector<uint8_t> output;
if (ElfDebugReader<ElfTypes32>::IsValidElfHeader(elf)) {
WriteMinidebugInfo<ElfTypes32>(elf, &output);
} else if (ElfDebugReader<ElfTypes64>::IsValidElfHeader(elf)) {
WriteMinidebugInfo<ElfTypes64>(elf, &output);
} else {
LOG(FATAL) << "Invalid ELF file header " << input_filename;
}
std::unique_ptr<File> output_file(OS::CreateEmptyFile(output_filename));
if (!output_file->WriteFully(output.data(), output.size()) || output_file->FlushClose() != 0) {
LOG(FATAL) << "Failed to write " << output_filename;
}
return 0;
}
} // namespace art
int main(int argc, char** argv) {
return art::Main(argc, argv);
}
|