summaryrefslogtreecommitdiff
path: root/dex2oat/linker/code_info_table_deduper.cc
blob: a1c2e7fd664038ca9bb735adb7db27b4b47579ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
 * Copyright (C) 2022 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "code_info_table_deduper.h"

#include "oat/stack_map.h"

namespace art {
namespace linker {

void CodeInfoTableDeduper::ReserveDedupeBuffer(size_t num_code_infos) {
  DCHECK(dedupe_set_.empty());
  const size_t max_size = num_code_infos * CodeInfo::kNumBitTables;
  // Reserve space for 1/2 of the maximum dedupe set size to avoid rehashing.
  // Usually only 30%-40% of bit tables are unique.
  dedupe_set_.reserve(max_size / 2u);
}

size_t CodeInfoTableDeduper::Dedupe(const uint8_t* code_info_data) {
  static constexpr size_t kNumHeaders = CodeInfo::kNumHeaders;
  static constexpr size_t kNumBitTables = CodeInfo::kNumBitTables;

  // The back-reference offset takes space so dedupe is not worth it for tiny tables.
  constexpr size_t kMinDedupSize = 33;  // Assume 32-bit offset on average.

  size_t start_bit_offset = writer_.NumberOfWrittenBits();
  DCHECK_ALIGNED(start_bit_offset, kBitsPerByte);

  // Reserve enough space in the `dedupe_set_` to avoid reashing later in this
  // function and allow using direct pointers to the `HashSet<>` entries.
  size_t elements_until_expand = dedupe_set_.ElementsUntilExpand();
  if (UNLIKELY(elements_until_expand - dedupe_set_.size() < kNumBitTables)) {
    // When resizing, try to make the load factor close to the minimum load factor.
    size_t required_capacity = dedupe_set_.size() + kNumBitTables;
    double factor = dedupe_set_.GetMaxLoadFactor() / dedupe_set_.GetMinLoadFactor();
    size_t reservation = required_capacity * factor;
    DCHECK_GE(reservation, required_capacity);
    dedupe_set_.reserve(reservation);
    elements_until_expand = dedupe_set_.ElementsUntilExpand();
    DCHECK_GE(elements_until_expand - dedupe_set_.size(), kNumBitTables);
  }

  // Read the existing code info and record bit table starts and end.
  BitMemoryReader reader(code_info_data);
  std::array<uint32_t, kNumHeaders> header = reader.ReadInterleavedVarints<kNumHeaders>();
  CodeInfo code_info;
  CodeInfo::ForEachHeaderField([&code_info, &header](size_t i, auto member_pointer) {
    code_info.*member_pointer = header[i];
  });
  DCHECK(!code_info.HasDedupedBitTables());  // Input `CodeInfo` has no deduped tables.
  std::array<uint32_t, kNumBitTables + 1u> bit_table_bit_starts;
  CodeInfo::ForEachBitTableField([&](size_t i, auto member_pointer) {
    bit_table_bit_starts[i] = dchecked_integral_cast<uint32_t>(reader.NumberOfReadBits());
    DCHECK(!code_info.IsBitTableDeduped(i));
    if (LIKELY(code_info.HasBitTable(i))) {
      auto& table = code_info.*member_pointer;
      table.Decode(reader);
    }
  });
  bit_table_bit_starts[kNumBitTables] = dchecked_integral_cast<uint32_t>(reader.NumberOfReadBits());

  // Copy the source data.
  BitMemoryRegion read_region = reader.GetReadRegion();
  writer_.WriteBytesAligned(code_info_data, BitsToBytesRoundUp(read_region.size_in_bits()));

  // Insert entries for large tables to the `dedupe_set_` and check for duplicates.
  std::array<DedupeSetEntry*, kNumBitTables> dedupe_entries;
  std::fill(dedupe_entries.begin(), dedupe_entries.end(), nullptr);
  CodeInfo::ForEachBitTableField([&](size_t i, [[maybe_unused]] auto member_pointer) {
    if (LIKELY(code_info.HasBitTable(i))) {
      uint32_t table_bit_size = bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i];
      if (table_bit_size >= kMinDedupSize) {
        uint32_t table_bit_start = start_bit_offset + bit_table_bit_starts[i];
        BitMemoryRegion region(
            const_cast<uint8_t*>(writer_.data()), table_bit_start, table_bit_size);
        DedupeSetEntry entry{table_bit_start, table_bit_size};
        auto [it, inserted] = dedupe_set_.insert(entry);
        dedupe_entries[i] = &*it;
        if (!inserted) {
          code_info.SetBitTableDeduped(i);  // Mark as deduped before we write header.
        }
      }
    }
  });
  DCHECK_EQ(elements_until_expand, dedupe_set_.ElementsUntilExpand()) << "Unexpected resizing!";

  if (code_info.HasDedupedBitTables()) {
    // Reset the writer to the original position. This makes new entries in the
    // `dedupe_set_` effectively point to non-existent data. We shall write the
    // new data again at the correct position and update these entries.
    writer_.Truncate(start_bit_offset);
    // Update bit table flags in the `header` and write the `header`.
    header[kNumHeaders - 1u] = code_info.bit_table_flags_;
    CodeInfo::ForEachHeaderField([&code_info, &header](size_t i, auto member_pointer) {
      DCHECK_EQ(code_info.*member_pointer, header[i]);
    });
    writer_.WriteInterleavedVarints(header);
    // Write bit tables and update offsets in `dedupe_set_` after encoding the `header`.
    CodeInfo::ForEachBitTableField([&](size_t i, [[maybe_unused]] auto member_pointer) {
      if (code_info.HasBitTable(i)) {
        size_t current_bit_offset = writer_.NumberOfWrittenBits();
        if (code_info.IsBitTableDeduped(i)) {
          DCHECK_GE(bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i], kMinDedupSize);
          DCHECK(dedupe_entries[i] != nullptr);
          size_t deduped_offset = dedupe_entries[i]->bit_start;
          writer_.WriteVarint(current_bit_offset - deduped_offset);
        } else {
          uint32_t table_bit_size = bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i];
          writer_.WriteRegion(read_region.Subregion(bit_table_bit_starts[i], table_bit_size));
          if (table_bit_size >= kMinDedupSize) {
            // Update offset in the `dedupe_set_` entry.
            DCHECK(dedupe_entries[i] != nullptr);
            dedupe_entries[i]->bit_start = current_bit_offset;
          }
        }
      }
    });
    writer_.ByteAlign();
  }  // else nothing to do - we already copied the data.

  if (kIsDebugBuild) {
    CodeInfo old_code_info(code_info_data);
    CodeInfo new_code_info(writer_.data() + start_bit_offset / kBitsPerByte);
    CodeInfo::ForEachHeaderField([&old_code_info, &new_code_info](size_t, auto member_pointer) {
      if (member_pointer != &CodeInfo::bit_table_flags_) {  // Expected to differ.
        DCHECK_EQ(old_code_info.*member_pointer, new_code_info.*member_pointer);
      }
    });
    CodeInfo::ForEachBitTableField([&old_code_info, &new_code_info](size_t i, auto member_pointer) {
      DCHECK_EQ(old_code_info.HasBitTable(i), new_code_info.HasBitTable(i));
      DCHECK((old_code_info.*member_pointer).Equals(new_code_info.*member_pointer));
    });
  }

  return start_bit_offset / kBitsPerByte;
}

}  //  namespace linker
}  //  namespace art