1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
|
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_RISCV64_ASSEMBLER_RISCV64_H_
#define ART_COMPILER_UTILS_RISCV64_ASSEMBLER_RISCV64_H_
#include <cstdint>
#include <string>
#include <utility>
#include <vector>
#include "arch/riscv64/instruction_set_features_riscv64.h"
#include "base/arena_containers.h"
#include "base/globals.h"
#include "base/macros.h"
#include "base/pointer_size.h"
#include "managed_register_riscv64.h"
#include "utils/assembler.h"
#include "utils/label.h"
namespace art HIDDEN {
namespace riscv64 {
class ScratchRegisterScope;
static constexpr size_t kRiscv64HalfwordSize = 2;
static constexpr size_t kRiscv64WordSize = 4;
static constexpr size_t kRiscv64DoublewordSize = 8;
static constexpr size_t kRiscv64FloatRegSizeInBytes = 8;
// The `Riscv64Extension` enumeration is used for restricting the instructions that the assembler
// can use. Some restrictions are checked only in debug mode (for example load and store
// instructions check `kLoadStore`), other restrictions are checked at run time and affect the
// emitted code (for example, the `SextW()` pseudo-instruction selects between an implementation
// from "Zcb", "Zbb" and a two-instruction sequence from the basic instruction set.
enum class Riscv64Extension : uint32_t {
kLoadStore, // Pseudo-extension encompassing all loads and stores. Used to check that
// we do not have loads and stores in the middle of a LR/SC sequence.
kZifencei,
kM,
kA,
kZicsr,
kF,
kD,
kZba,
kZbb,
kZbs,
kV,
kZca, // "C" extension instructions except floating point loads/stores.
kZcd, // "C" extension double loads/stores.
// Note: RV64 cannot implement Zcf ("C" extension float loads/stores).
kZcb, // Simple 16-bit operations not present in the original "C" extension.
kLast = kZcb
};
using Riscv64ExtensionMask = uint32_t;
constexpr Riscv64ExtensionMask Riscv64ExtensionBit(Riscv64Extension ext) {
return 1u << enum_cast<>(ext);
}
constexpr Riscv64ExtensionMask kRiscv64AllExtensionsMask =
MaxInt<Riscv64ExtensionMask>(enum_cast<>(Riscv64Extension::kLast) + 1);
// Extensions allowed in a LR/SC sequence (between the LR and SC).
constexpr Riscv64ExtensionMask kRiscv64LrScSequenceExtensionsMask =
Riscv64ExtensionBit(Riscv64Extension::kZca);
enum class FPRoundingMode : uint32_t {
kRNE = 0x0, // Round to Nearest, ties to Even
kRTZ = 0x1, // Round towards Zero
kRDN = 0x2, // Round Down (towards −Infinity)
kRUP = 0x3, // Round Up (towards +Infinity)
kRMM = 0x4, // Round to Nearest, ties to Max Magnitude
kDYN = 0x7, // Dynamic rounding mode
kDefault = kDYN,
// Some instructions never need to round even though the spec includes the RM field.
// To simplify testing, emit the RM as 0 by default for these instructions because that's what
// `clang` does and because the `llvm-objdump` fails to disassemble the other rounding modes.
kIgnored = 0
};
enum class AqRl : uint32_t {
kNone = 0x0,
kRelease = 0x1,
kAcquire = 0x2,
kAqRl = kRelease | kAcquire
};
// the type for fence
enum FenceType {
kFenceNone = 0,
kFenceWrite = 1,
kFenceRead = 2,
kFenceOutput = 4,
kFenceInput = 8,
kFenceDefault = 0xf,
};
// Used to test the values returned by FClassS/FClassD.
enum FPClassMaskType {
kNegativeInfinity = 0x001,
kNegativeNormal = 0x002,
kNegativeSubnormal = 0x004,
kNegativeZero = 0x008,
kPositiveZero = 0x010,
kPositiveSubnormal = 0x020,
kPositiveNormal = 0x040,
kPositiveInfinity = 0x080,
kSignalingNaN = 0x100,
kQuietNaN = 0x200,
};
enum class CSRAddress : uint32_t {
kVstart = 0x008, // Vector start position, URW
kVxsat = 0x009, // Fixed-Point Saturate Flag, URW
kVxrm = 0x00A, // Fixed-Point Rounding Mode, URW
kReserved1 = 0x00B, // Reserved for future vector CSRs
kReserved2 = 0x00C,
kReserved3 = 0x00D,
kReserved4 = 0x00E,
kVcsr = 0x00F, // Vector control and status register, URW
kVl = 0xC20, // Vector length, URO
kVtype = 0xC21, // Vector data type register, URO
kVlenb = 0xC22, // VLEN/8 (vector register length in bytes), URO
};
class Riscv64Label : public Label {
public:
Riscv64Label() : prev_branch_id_(kNoPrevBranchId) {}
Riscv64Label(Riscv64Label&& src) noexcept
// NOLINTNEXTLINE - src.prev_branch_id_ is valid after the move
: Label(std::move(src)), prev_branch_id_(src.prev_branch_id_) {}
private:
static constexpr uint32_t kNoPrevBranchId = std::numeric_limits<uint32_t>::max();
uint32_t prev_branch_id_; // To get distance from preceding branch, if any.
friend class Riscv64Assembler;
DISALLOW_COPY_AND_ASSIGN(Riscv64Label);
};
// Assembler literal is a value embedded in code, retrieved using a PC-relative load.
class Literal {
public:
static constexpr size_t kMaxSize = 8;
Literal(uint32_t size, const uint8_t* data) : label_(), size_(size) {
DCHECK_LE(size, Literal::kMaxSize);
memcpy(data_, data, size);
}
template <typename T>
T GetValue() const {
DCHECK_EQ(size_, sizeof(T));
T value;
memcpy(&value, data_, sizeof(T));
return value;
}
uint32_t GetSize() const { return size_; }
const uint8_t* GetData() const { return data_; }
Riscv64Label* GetLabel() { return &label_; }
const Riscv64Label* GetLabel() const { return &label_; }
private:
Riscv64Label label_;
const uint32_t size_;
uint8_t data_[kMaxSize];
DISALLOW_COPY_AND_ASSIGN(Literal);
};
// Jump table: table of labels emitted after the code and before the literals. Similar to literals.
class JumpTable {
public:
explicit JumpTable(ArenaVector<Riscv64Label*>&& labels) : label_(), labels_(std::move(labels)) {}
size_t GetSize() const { return labels_.size() * sizeof(int32_t); }
const ArenaVector<Riscv64Label*>& GetData() const { return labels_; }
Riscv64Label* GetLabel() { return &label_; }
const Riscv64Label* GetLabel() const { return &label_; }
private:
Riscv64Label label_;
ArenaVector<Riscv64Label*> labels_;
DISALLOW_COPY_AND_ASSIGN(JumpTable);
};
class Riscv64Assembler final : public Assembler {
public:
explicit Riscv64Assembler(ArenaAllocator* allocator,
const Riscv64InstructionSetFeatures* instruction_set_features = nullptr)
: Riscv64Assembler(allocator,
instruction_set_features != nullptr
? ConvertExtensions(instruction_set_features)
: kRiscv64AllExtensionsMask) {}
Riscv64Assembler(ArenaAllocator* allocator, Riscv64ExtensionMask enabled_extensions)
: Assembler(allocator),
branches_(allocator->Adapter(kArenaAllocAssembler)),
finalized_(false),
overwriting_(false),
overwrite_location_(0),
literals_(allocator->Adapter(kArenaAllocAssembler)),
long_literals_(allocator->Adapter(kArenaAllocAssembler)),
jump_tables_(allocator->Adapter(kArenaAllocAssembler)),
last_position_adjustment_(0),
last_old_position_(0),
last_branch_id_(0),
enabled_extensions_(enabled_extensions),
available_scratch_core_registers_((1u << TMP) | (1u << TMP2)),
available_scratch_fp_registers_(1u << FTMP) {
cfi().DelayEmittingAdvancePCs();
}
virtual ~Riscv64Assembler() {
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
}
}
size_t CodeSize() const override { return Assembler::CodeSize(); }
DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
bool IsExtensionEnabled(Riscv64Extension ext) const {
return (enabled_extensions_ & Riscv64ExtensionBit(ext)) != 0u;
}
// According to "The RISC-V Instruction Set Manual"
// LUI/AUIPC (RV32I, with sign-extension on RV64I), opcode = 0x17, 0x37
// Note: These take a 20-bit unsigned value to align with the clang assembler for testing,
// but the value stored in the register shall actually be sign-extended to 64 bits.
void Lui(XRegister rd, uint32_t imm20);
void Auipc(XRegister rd, uint32_t imm20);
// Jump instructions (RV32I), opcode = 0x67, 0x6f
void Jal(XRegister rd, int32_t offset);
void Jalr(XRegister rd, XRegister rs1, int32_t offset);
// Branch instructions (RV32I), opcode = 0x63, funct3 from 0x0 ~ 0x1 and 0x4 ~ 0x7
void Beq(XRegister rs1, XRegister rs2, int32_t offset);
void Bne(XRegister rs1, XRegister rs2, int32_t offset);
void Blt(XRegister rs1, XRegister rs2, int32_t offset);
void Bge(XRegister rs1, XRegister rs2, int32_t offset);
void Bltu(XRegister rs1, XRegister rs2, int32_t offset);
void Bgeu(XRegister rs1, XRegister rs2, int32_t offset);
// Load instructions (RV32I+RV64I): opcode = 0x03, funct3 from 0x0 ~ 0x6
void Lb(XRegister rd, XRegister rs1, int32_t offset);
void Lh(XRegister rd, XRegister rs1, int32_t offset);
void Lw(XRegister rd, XRegister rs1, int32_t offset);
void Ld(XRegister rd, XRegister rs1, int32_t offset);
void Lbu(XRegister rd, XRegister rs1, int32_t offset);
void Lhu(XRegister rd, XRegister rs1, int32_t offset);
void Lwu(XRegister rd, XRegister rs1, int32_t offset);
// Store instructions (RV32I+RV64I): opcode = 0x23, funct3 from 0x0 ~ 0x3
void Sb(XRegister rs2, XRegister rs1, int32_t offset);
void Sh(XRegister rs2, XRegister rs1, int32_t offset);
void Sw(XRegister rs2, XRegister rs1, int32_t offset);
void Sd(XRegister rs2, XRegister rs1, int32_t offset);
// IMM ALU instructions (RV32I): opcode = 0x13, funct3 from 0x0 ~ 0x7
void Addi(XRegister rd, XRegister rs1, int32_t imm12);
void Slti(XRegister rd, XRegister rs1, int32_t imm12);
void Sltiu(XRegister rd, XRegister rs1, int32_t imm12);
void Xori(XRegister rd, XRegister rs1, int32_t imm12);
void Ori(XRegister rd, XRegister rs1, int32_t imm12);
void Andi(XRegister rd, XRegister rs1, int32_t imm12);
void Slli(XRegister rd, XRegister rs1, int32_t shamt);
void Srli(XRegister rd, XRegister rs1, int32_t shamt);
void Srai(XRegister rd, XRegister rs1, int32_t shamt);
// ALU instructions (RV32I): opcode = 0x33, funct3 from 0x0 ~ 0x7
void Add(XRegister rd, XRegister rs1, XRegister rs2);
void Sub(XRegister rd, XRegister rs1, XRegister rs2);
void Slt(XRegister rd, XRegister rs1, XRegister rs2);
void Sltu(XRegister rd, XRegister rs1, XRegister rs2);
void Xor(XRegister rd, XRegister rs1, XRegister rs2);
void Or(XRegister rd, XRegister rs1, XRegister rs2);
void And(XRegister rd, XRegister rs1, XRegister rs2);
void Sll(XRegister rd, XRegister rs1, XRegister rs2);
void Srl(XRegister rd, XRegister rs1, XRegister rs2);
void Sra(XRegister rd, XRegister rs1, XRegister rs2);
// 32bit Imm ALU instructions (RV64I): opcode = 0x1b, funct3 from 0x0, 0x1, 0x5
void Addiw(XRegister rd, XRegister rs1, int32_t imm12);
void Slliw(XRegister rd, XRegister rs1, int32_t shamt);
void Srliw(XRegister rd, XRegister rs1, int32_t shamt);
void Sraiw(XRegister rd, XRegister rs1, int32_t shamt);
// 32bit ALU instructions (RV64I): opcode = 0x3b, funct3 from 0x0 ~ 0x7
void Addw(XRegister rd, XRegister rs1, XRegister rs2);
void Subw(XRegister rd, XRegister rs1, XRegister rs2);
void Sllw(XRegister rd, XRegister rs1, XRegister rs2);
void Srlw(XRegister rd, XRegister rs1, XRegister rs2);
void Sraw(XRegister rd, XRegister rs1, XRegister rs2);
// Environment call and breakpoint (RV32I), opcode = 0x73
void Ecall();
void Ebreak();
// Fence instruction (RV32I): opcode = 0xf, funct3 = 0
void Fence(uint32_t pred = kFenceDefault, uint32_t succ = kFenceDefault);
void FenceTso();
// "Zifencei" Standard Extension, opcode = 0xf, funct3 = 1
void FenceI();
// RV32M Standard Extension: opcode = 0x33, funct3 from 0x0 ~ 0x7
void Mul(XRegister rd, XRegister rs1, XRegister rs2);
void Mulh(XRegister rd, XRegister rs1, XRegister rs2);
void Mulhsu(XRegister rd, XRegister rs1, XRegister rs2);
void Mulhu(XRegister rd, XRegister rs1, XRegister rs2);
void Div(XRegister rd, XRegister rs1, XRegister rs2);
void Divu(XRegister rd, XRegister rs1, XRegister rs2);
void Rem(XRegister rd, XRegister rs1, XRegister rs2);
void Remu(XRegister rd, XRegister rs1, XRegister rs2);
// RV64M Standard Extension: opcode = 0x3b, funct3 0x0 and from 0x4 ~ 0x7
void Mulw(XRegister rd, XRegister rs1, XRegister rs2);
void Divw(XRegister rd, XRegister rs1, XRegister rs2);
void Divuw(XRegister rd, XRegister rs1, XRegister rs2);
void Remw(XRegister rd, XRegister rs1, XRegister rs2);
void Remuw(XRegister rd, XRegister rs1, XRegister rs2);
// RV32A/RV64A Standard Extension
void LrW(XRegister rd, XRegister rs1, AqRl aqrl);
void LrD(XRegister rd, XRegister rs1, AqRl aqrl);
void ScW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void ScD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoSwapW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoSwapD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoAddW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoAddD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoXorW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoXorD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoAndW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoAndD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoOrW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoOrD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMinW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMinD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMaxW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMaxD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMinuW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMinuD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMaxuW(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
void AmoMaxuD(XRegister rd, XRegister rs2, XRegister rs1, AqRl aqrl);
// "Zicsr" Standard Extension, opcode = 0x73, funct3 from 0x1 ~ 0x3 and 0x5 ~ 0x7
void Csrrw(XRegister rd, uint32_t csr, XRegister rs1);
void Csrrs(XRegister rd, uint32_t csr, XRegister rs1);
void Csrrc(XRegister rd, uint32_t csr, XRegister rs1);
void Csrrwi(XRegister rd, uint32_t csr, uint32_t uimm5);
void Csrrsi(XRegister rd, uint32_t csr, uint32_t uimm5);
void Csrrci(XRegister rd, uint32_t csr, uint32_t uimm5);
// FP load/store instructions (RV32F+RV32D): opcode = 0x07, 0x27
void FLw(FRegister rd, XRegister rs1, int32_t offset);
void FLd(FRegister rd, XRegister rs1, int32_t offset);
void FSw(FRegister rs2, XRegister rs1, int32_t offset);
void FSd(FRegister rs2, XRegister rs1, int32_t offset);
// FP FMA instructions (RV32F+RV32D): opcode = 0x43, 0x47, 0x4b, 0x4f
void FMAddS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FMAddD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FMSubS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FMSubD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FNMSubS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FNMSubD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FNMAddS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
void FNMAddD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3, FPRoundingMode frm);
// FP FMA instruction helpers passing the default rounding mode.
void FMAddS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FMAddS(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FMAddD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FMAddD(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FMSubS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FMSubS(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FMSubD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FMSubD(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FNMSubS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FNMSubS(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FNMSubD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FNMSubD(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FNMAddS(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FNMAddS(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
void FNMAddD(FRegister rd, FRegister rs1, FRegister rs2, FRegister rs3) {
FNMAddD(rd, rs1, rs2, rs3, FPRoundingMode::kDefault);
}
// Simple FP instructions (RV32F+RV32D): opcode = 0x53, funct7 = 0b0XXXX0D
void FAddS(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FAddD(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FSubS(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FSubD(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FMulS(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FMulD(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FDivS(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FDivD(FRegister rd, FRegister rs1, FRegister rs2, FPRoundingMode frm);
void FSqrtS(FRegister rd, FRegister rs1, FPRoundingMode frm);
void FSqrtD(FRegister rd, FRegister rs1, FPRoundingMode frm);
void FSgnjS(FRegister rd, FRegister rs1, FRegister rs2);
void FSgnjD(FRegister rd, FRegister rs1, FRegister rs2);
void FSgnjnS(FRegister rd, FRegister rs1, FRegister rs2);
void FSgnjnD(FRegister rd, FRegister rs1, FRegister rs2);
void FSgnjxS(FRegister rd, FRegister rs1, FRegister rs2);
void FSgnjxD(FRegister rd, FRegister rs1, FRegister rs2);
void FMinS(FRegister rd, FRegister rs1, FRegister rs2);
void FMinD(FRegister rd, FRegister rs1, FRegister rs2);
void FMaxS(FRegister rd, FRegister rs1, FRegister rs2);
void FMaxD(FRegister rd, FRegister rs1, FRegister rs2);
void FCvtSD(FRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtDS(FRegister rd, FRegister rs1, FPRoundingMode frm);
// Simple FP instruction helpers passing the default rounding mode.
void FAddS(FRegister rd, FRegister rs1, FRegister rs2) {
FAddS(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FAddD(FRegister rd, FRegister rs1, FRegister rs2) {
FAddD(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FSubS(FRegister rd, FRegister rs1, FRegister rs2) {
FSubS(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FSubD(FRegister rd, FRegister rs1, FRegister rs2) {
FSubD(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FMulS(FRegister rd, FRegister rs1, FRegister rs2) {
FMulS(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FMulD(FRegister rd, FRegister rs1, FRegister rs2) {
FMulD(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FDivS(FRegister rd, FRegister rs1, FRegister rs2) {
FDivS(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FDivD(FRegister rd, FRegister rs1, FRegister rs2) {
FDivD(rd, rs1, rs2, FPRoundingMode::kDefault);
}
void FSqrtS(FRegister rd, FRegister rs1) {
FSqrtS(rd, rs1, FPRoundingMode::kDefault);
}
void FSqrtD(FRegister rd, FRegister rs1) {
FSqrtD(rd, rs1, FPRoundingMode::kDefault);
}
void FCvtSD(FRegister rd, FRegister rs1) {
FCvtSD(rd, rs1, FPRoundingMode::kDefault);
}
void FCvtDS(FRegister rd, FRegister rs1) {
FCvtDS(rd, rs1, FPRoundingMode::kIgnored);
}
// FP compare instructions (RV32F+RV32D): opcode = 0x53, funct7 = 0b101000D
void FEqS(XRegister rd, FRegister rs1, FRegister rs2);
void FEqD(XRegister rd, FRegister rs1, FRegister rs2);
void FLtS(XRegister rd, FRegister rs1, FRegister rs2);
void FLtD(XRegister rd, FRegister rs1, FRegister rs2);
void FLeS(XRegister rd, FRegister rs1, FRegister rs2);
void FLeD(XRegister rd, FRegister rs1, FRegister rs2);
// FP conversion instructions (RV32F+RV32D+RV64F+RV64D): opcode = 0x53, funct7 = 0b110X00D
void FCvtWS(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtWD(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtWuS(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtWuD(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtLS(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtLD(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtLuS(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtLuD(XRegister rd, FRegister rs1, FPRoundingMode frm);
void FCvtSW(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtDW(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtSWu(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtDWu(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtSL(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtDL(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtSLu(FRegister rd, XRegister rs1, FPRoundingMode frm);
void FCvtDLu(FRegister rd, XRegister rs1, FPRoundingMode frm);
// FP conversion instruction helpers passing the default rounding mode.
void FCvtWS(XRegister rd, FRegister rs1) { FCvtWS(rd, rs1, FPRoundingMode::kDefault); }
void FCvtWD(XRegister rd, FRegister rs1) { FCvtWD(rd, rs1, FPRoundingMode::kDefault); }
void FCvtWuS(XRegister rd, FRegister rs1) { FCvtWuS(rd, rs1, FPRoundingMode::kDefault); }
void FCvtWuD(XRegister rd, FRegister rs1) { FCvtWuD(rd, rs1, FPRoundingMode::kDefault); }
void FCvtLS(XRegister rd, FRegister rs1) { FCvtLS(rd, rs1, FPRoundingMode::kDefault); }
void FCvtLD(XRegister rd, FRegister rs1) { FCvtLD(rd, rs1, FPRoundingMode::kDefault); }
void FCvtLuS(XRegister rd, FRegister rs1) { FCvtLuS(rd, rs1, FPRoundingMode::kDefault); }
void FCvtLuD(XRegister rd, FRegister rs1) { FCvtLuD(rd, rs1, FPRoundingMode::kDefault); }
void FCvtSW(FRegister rd, XRegister rs1) { FCvtSW(rd, rs1, FPRoundingMode::kDefault); }
void FCvtDW(FRegister rd, XRegister rs1) { FCvtDW(rd, rs1, FPRoundingMode::kIgnored); }
void FCvtSWu(FRegister rd, XRegister rs1) { FCvtSWu(rd, rs1, FPRoundingMode::kDefault); }
void FCvtDWu(FRegister rd, XRegister rs1) { FCvtDWu(rd, rs1, FPRoundingMode::kIgnored); }
void FCvtSL(FRegister rd, XRegister rs1) { FCvtSL(rd, rs1, FPRoundingMode::kDefault); }
void FCvtDL(FRegister rd, XRegister rs1) { FCvtDL(rd, rs1, FPRoundingMode::kDefault); }
void FCvtSLu(FRegister rd, XRegister rs1) { FCvtSLu(rd, rs1, FPRoundingMode::kDefault); }
void FCvtDLu(FRegister rd, XRegister rs1) { FCvtDLu(rd, rs1, FPRoundingMode::kDefault); }
// FP move instructions (RV32F+RV32D): opcode = 0x53, funct3 = 0x0, funct7 = 0b111X00D
void FMvXW(XRegister rd, FRegister rs1);
void FMvXD(XRegister rd, FRegister rs1);
void FMvWX(FRegister rd, XRegister rs1);
void FMvDX(FRegister rd, XRegister rs1);
// FP classify instructions (RV32F+RV32D): opcode = 0x53, funct3 = 0x1, funct7 = 0b111X00D
void FClassS(XRegister rd, FRegister rs1);
void FClassD(XRegister rd, FRegister rs1);
// "C" Standard Extension, Compresseed Instructions
void CLwsp(XRegister rd, int32_t offset);
void CLdsp(XRegister rd, int32_t offset);
void CFLdsp(FRegister rd, int32_t offset);
void CSwsp(XRegister rs2, int32_t offset);
void CSdsp(XRegister rs2, int32_t offset);
void CFSdsp(FRegister rs2, int32_t offset);
void CLw(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CLd(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CFLd(FRegister rd_s, XRegister rs1_s, int32_t offset);
void CSw(XRegister rs2_s, XRegister rs1_s, int32_t offset);
void CSd(XRegister rs2_s, XRegister rs1_s, int32_t offset);
void CFSd(FRegister rs2_s, XRegister rs1_s, int32_t offset);
void CLi(XRegister rd, int32_t imm);
void CLui(XRegister rd, uint32_t nzimm6);
void CAddi(XRegister rd, int32_t nzimm);
void CAddiw(XRegister rd, int32_t imm);
void CAddi16Sp(int32_t nzimm);
void CAddi4Spn(XRegister rd_s, uint32_t nzuimm);
void CSlli(XRegister rd, int32_t shamt);
void CSrli(XRegister rd_s, int32_t shamt);
void CSrai(XRegister rd_s, int32_t shamt);
void CAndi(XRegister rd_s, int32_t imm);
void CMv(XRegister rd, XRegister rs2);
void CAdd(XRegister rd, XRegister rs2);
void CAnd(XRegister rd_s, XRegister rs2_s);
void COr(XRegister rd_s, XRegister rs2_s);
void CXor(XRegister rd_s, XRegister rs2_s);
void CSub(XRegister rd_s, XRegister rs2_s);
void CAddw(XRegister rd_s, XRegister rs2_s);
void CSubw(XRegister rd_s, XRegister rs2_s);
// "Zcb" Standard Extension, part of "C", opcode = 0b00, 0b01, funct3 = 0b100.
void CLbu(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CLhu(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CLh(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CSb(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CSh(XRegister rd_s, XRegister rs1_s, int32_t offset);
void CZextB(XRegister rd_rs1_s);
void CSextB(XRegister rd_rs1_s);
void CZextH(XRegister rd_rs1_s);
void CSextH(XRegister rd_rs1_s);
void CZextW(XRegister rd_rs1_s);
void CNot(XRegister rd_rs1_s);
void CMul(XRegister rd_s, XRegister rs2_s);
// "Zcb" Standard Extension End; resume "C" Standard Extension.
// TODO(riscv64): Reorder "Zcb" after remaining "C" instructions.
void CJ(int32_t offset);
void CJr(XRegister rs1);
void CJalr(XRegister rs1);
void CBeqz(XRegister rs1_s, int32_t offset);
void CBnez(XRegister rs1_s, int32_t offset);
void CEbreak();
void CNop();
void CUnimp();
// "Zba" Standard Extension, opcode = 0x1b, 0x33 or 0x3b, funct3 and funct7 varies.
void AddUw(XRegister rd, XRegister rs1, XRegister rs2);
void Sh1Add(XRegister rd, XRegister rs1, XRegister rs2);
void Sh1AddUw(XRegister rd, XRegister rs1, XRegister rs2);
void Sh2Add(XRegister rd, XRegister rs1, XRegister rs2);
void Sh2AddUw(XRegister rd, XRegister rs1, XRegister rs2);
void Sh3Add(XRegister rd, XRegister rs1, XRegister rs2);
void Sh3AddUw(XRegister rd, XRegister rs1, XRegister rs2);
void SlliUw(XRegister rd, XRegister rs1, int32_t shamt);
// "Zbb" Standard Extension, opcode = 0x13, 0x1b, 0x33 or 0x3b, funct3 and funct7 varies.
// Note: 32-bit sext.b, sext.h and zext.h from the Zbb extension are explicitly
// prefixed with "Zbb" to differentiate them from the utility macros.
void Andn(XRegister rd, XRegister rs1, XRegister rs2);
void Orn(XRegister rd, XRegister rs1, XRegister rs2);
void Xnor(XRegister rd, XRegister rs1, XRegister rs2);
void Clz(XRegister rd, XRegister rs1);
void Clzw(XRegister rd, XRegister rs1);
void Ctz(XRegister rd, XRegister rs1);
void Ctzw(XRegister rd, XRegister rs1);
void Cpop(XRegister rd, XRegister rs1);
void Cpopw(XRegister rd, XRegister rs1);
void Min(XRegister rd, XRegister rs1, XRegister rs2);
void Minu(XRegister rd, XRegister rs1, XRegister rs2);
void Max(XRegister rd, XRegister rs1, XRegister rs2);
void Maxu(XRegister rd, XRegister rs1, XRegister rs2);
void Rol(XRegister rd, XRegister rs1, XRegister rs2);
void Rolw(XRegister rd, XRegister rs1, XRegister rs2);
void Ror(XRegister rd, XRegister rs1, XRegister rs2);
void Rorw(XRegister rd, XRegister rs1, XRegister rs2);
void Rori(XRegister rd, XRegister rs1, int32_t shamt);
void Roriw(XRegister rd, XRegister rs1, int32_t shamt);
void OrcB(XRegister rd, XRegister rs1);
void Rev8(XRegister rd, XRegister rs1);
void ZbbSextB(XRegister rd, XRegister rs1);
void ZbbSextH(XRegister rd, XRegister rs1);
void ZbbZextH(XRegister rd, XRegister rs1);
// "Zbs" Standard Extension, opcode = 0x13, or 0x33, funct3 and funct7 varies.
void Bclr(XRegister rd, XRegister rs1, XRegister rs2);
void Bclri(XRegister rd, XRegister rs1, int32_t shamt);
void Bext(XRegister rd, XRegister rs1, XRegister rs2);
void Bexti(XRegister rd, XRegister rs1, int32_t shamt);
void Binv(XRegister rd, XRegister rs1, XRegister rs2);
void Binvi(XRegister rd, XRegister rs1, int32_t shamt);
void Bset(XRegister rd, XRegister rs1, XRegister rs2);
void Bseti(XRegister rd, XRegister rs1, int32_t shamt);
////////////////////////////// RISC-V Vector Instructions START ///////////////////////////////
enum class LengthMultiplier : uint32_t {
kM1Over8 = 0b101,
kM1Over4 = 0b110,
kM1Over2 = 0b111,
kM1 = 0b000,
kM2 = 0b001,
kM4 = 0b010,
kM8 = 0b011,
kReserved1 = 0b100,
};
enum class SelectedElementWidth : uint32_t {
kE8 = 0b000,
kE16 = 0b001,
kE32 = 0b010,
kE64 = 0b011,
kReserved1 = 0b100,
kReserved2 = 0b101,
kReserved3 = 0b110,
kReserved4 = 0b111,
};
enum class VectorMaskAgnostic : uint32_t {
kUndisturbed = 0,
kAgnostic = 1,
};
enum class VectorTailAgnostic : uint32_t {
kUndisturbed = 0,
kAgnostic = 1,
};
enum class VM : uint32_t { // Vector mask
kV0_t = 0b0,
kUnmasked = 0b1
};
// Vector Conguration-Setting Instructions, opcode = 0x57, funct3 = 0x3
void VSetvli(XRegister rd, XRegister rs1, uint32_t vtypei);
void VSetivli(XRegister rd, uint32_t uimm, uint32_t vtypei);
void VSetvl(XRegister rd, XRegister rs1, XRegister rs2);
static uint32_t VTypeiValue(VectorMaskAgnostic vma,
VectorTailAgnostic vta,
SelectedElementWidth sew,
LengthMultiplier lmul) {
return static_cast<uint32_t>(vma) << 7 | static_cast<uint32_t>(vta) << 6 |
static_cast<uint32_t>(sew) << 3 | static_cast<uint32_t>(lmul);
}
// Vector Unit-Stride Load/Store Instructions
void VLe8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLe16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLe32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLe64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLm(VRegister vd, XRegister rs1);
void VSe8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSe16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSe32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSe64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSm(VRegister vs3, XRegister rs1);
// Vector unit-stride fault-only-first Instructions
void VLe8ff(VRegister vd, XRegister rs1);
void VLe16ff(VRegister vd, XRegister rs1);
void VLe32ff(VRegister vd, XRegister rs1);
void VLe64ff(VRegister vd, XRegister rs1);
// Vector Strided Load/Store Instructions
void VLse8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLse16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLse32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLse64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSse8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSse16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSse32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSse64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
// Vector Indexed Load/Store Instructions
void VLoxei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector Segment Load/Store
// Vector Unit-Stride Segment Loads/Stores
void VLseg2e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e8(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e16(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e32(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e64(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg2e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg2e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg2e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg2e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg3e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg3e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg3e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg3e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg4e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg4e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg4e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg4e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg5e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg5e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg5e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg5e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg6e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg6e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg6e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg6e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg7e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg7e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg7e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg7e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg8e8(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg8e16(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg8e32(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
void VSseg8e64(VRegister vs3, XRegister rs1, VM vm = VM::kUnmasked);
// Vector Unit-Stride Fault-only-First Segment Loads
void VLseg2e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg2e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg3e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg4e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg5e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg6e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg7e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e8ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e16ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e32ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
void VLseg8e64ff(VRegister vd, XRegister rs1, VM vm = VM::kUnmasked);
// Vector Strided Segment Loads/Stores
void VLsseg2e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg2e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg2e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg2e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg3e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg3e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg3e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg3e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg4e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg4e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg4e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg4e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg5e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg5e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg5e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg5e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg6e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg6e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg6e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg6e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg7e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg7e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg7e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg7e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg8e8(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg8e16(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg8e32(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VLsseg8e64(VRegister vd, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg2e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg2e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg2e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg2e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg3e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg3e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg3e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg3e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg4e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg4e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg4e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg4e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg5e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg5e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg5e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg5e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg6e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg6e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg6e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg6e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg7e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg7e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg7e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg7e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg8e8(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg8e16(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg8e32(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
void VSsseg8e64(VRegister vs3, XRegister rs1, XRegister rs2, VM vm = VM::kUnmasked);
// Vector Indexed-unordered Segment Loads/Stores
void VLuxseg2ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg2ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg2ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg2ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg3ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg3ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg3ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg3ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg4ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg4ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg4ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg4ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg5ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg5ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg5ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg5ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg6ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg6ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg6ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg6ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg7ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg7ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg7ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg7ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg8ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg8ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg8ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLuxseg8ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg2ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg2ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg2ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg2ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg3ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg3ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg3ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg3ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg4ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg4ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg4ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg4ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg5ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg5ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg5ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg5ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg6ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg6ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg6ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg6ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg7ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg7ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg7ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg7ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg8ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg8ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg8ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSuxseg8ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector Indexed-ordered Segment Loads/Stores
void VLoxseg2ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg2ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg2ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg2ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg3ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg3ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg3ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg3ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg4ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg4ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg4ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg4ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg5ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg5ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg5ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg5ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg6ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg6ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg6ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg6ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg7ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg7ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg7ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg7ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg8ei8(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg8ei16(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg8ei32(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VLoxseg8ei64(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg2ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg2ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg2ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg2ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg3ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg3ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg3ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg3ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg4ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg4ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg4ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg4ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg5ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg5ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg5ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg5ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg6ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg6ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg6ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg6ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg7ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg7ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg7ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg7ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg8ei8(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg8ei16(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg8ei32(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
void VSoxseg8ei64(VRegister vs3, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector Whole Register Load/Store Instructions
void VL1re8(VRegister vd, XRegister rs1);
void VL1re16(VRegister vd, XRegister rs1);
void VL1re32(VRegister vd, XRegister rs1);
void VL1re64(VRegister vd, XRegister rs1);
void VL2re8(VRegister vd, XRegister rs1);
void VL2re16(VRegister vd, XRegister rs1);
void VL2re32(VRegister vd, XRegister rs1);
void VL2re64(VRegister vd, XRegister rs1);
void VL4re8(VRegister vd, XRegister rs1);
void VL4re16(VRegister vd, XRegister rs1);
void VL4re32(VRegister vd, XRegister rs1);
void VL4re64(VRegister vd, XRegister rs1);
void VL8re8(VRegister vd, XRegister rs1);
void VL8re16(VRegister vd, XRegister rs1);
void VL8re32(VRegister vd, XRegister rs1);
void VL8re64(VRegister vd, XRegister rs1);
void VL1r(VRegister vd, XRegister rs1); // Pseudoinstruction equal to VL1re8
void VL2r(VRegister vd, XRegister rs1); // Pseudoinstruction equal to VL2re8
void VL4r(VRegister vd, XRegister rs1); // Pseudoinstruction equal to VL4re8
void VL8r(VRegister vd, XRegister rs1); // Pseudoinstruction equal to VL8re8
void VS1r(VRegister vs3, XRegister rs1); // Store {vs3} to address in a1
void VS2r(VRegister vs3, XRegister rs1); // Store {vs3}-{vs3 + 1} to address in a1
void VS4r(VRegister vs3, XRegister rs1); // Store {vs3}-{vs3 + 3} to address in a1
void VS8r(VRegister vs3, XRegister rs1); // Store {vs3}-{vs3 + 7} to address in a1
// Vector Arithmetic Instruction
// Vector vadd instructions, funct6 = 0b000000
void VAdd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAdd_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VAdd_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vsub instructions, funct6 = 0b000010
void VSub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSub_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vrsub instructions, funct6 = 0b000011
void VRsub_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VRsub_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instruction over VRsub_vi
void VNeg_v(VRegister vd, VRegister vs2);
// Vector vminu instructions, funct6 = 0b000100
void VMinu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMinu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmin instructions, funct6 = 0b000101
void VMin_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMin_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmaxu instructions, funct6 = 0b000110
void VMaxu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMaxu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmax instructions, funct6 = 0b000111
void VMax_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMax_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vand instructions, funct6 = 0b001001
void VAnd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAnd_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VAnd_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vor instructions, funct6 = 0b001010
void VOr_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VOr_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VOr_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vxor instructions, funct6 = 0b001011
void VXor_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VXor_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VXor_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instruction over VXor_vi
void VNot_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vrgather instructions, funct6 = 0b001100
void VRgather_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VRgather_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VRgather_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vslideup instructions, funct6 = 0b001110
void VSlideup_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSlideup_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vrgatherei16 instructions, funct6 = 0b001110
void VRgatherei16_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vslidedown instructions, funct6 = 0b001111
void VSlidedown_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSlidedown_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vadc instructions, funct6 = 0b010000
void VAdc_vvm(VRegister vd, VRegister vs2, VRegister vs1);
void VAdc_vxm(VRegister vd, VRegister vs2, XRegister rs1);
void VAdc_vim(VRegister vd, VRegister vs2, int32_t imm5);
// Vector vmadc instructions, funct6 = 0b010001
void VMadc_vvm(VRegister vd, VRegister vs2, VRegister vs1);
void VMadc_vxm(VRegister vd, VRegister vs2, XRegister rs1);
void VMadc_vim(VRegister vd, VRegister vs2, int32_t imm5);
// Vector vmadc instructions, funct6 = 0b010001
void VMadc_vv(VRegister vd, VRegister vs2, VRegister vs1);
void VMadc_vx(VRegister vd, VRegister vs2, XRegister rs1);
void VMadc_vi(VRegister vd, VRegister vs2, int32_t imm5);
// Vector vsbc instructions, funct6 = 0b010010
void VSbc_vvm(VRegister vd, VRegister vs2, VRegister vs1);
void VSbc_vxm(VRegister vd, VRegister vs2, XRegister rs1);
// Vector vmsbc instructions, funct6 = 0b010011
void VMsbc_vvm(VRegister vd, VRegister vs2, VRegister vs1);
void VMsbc_vxm(VRegister vd, VRegister vs2, XRegister rs1);
void VMsbc_vv(VRegister vd, VRegister vs2, VRegister vs1);
void VMsbc_vx(VRegister vd, VRegister vs2, XRegister rs1);
// Vector vmerge instructions, funct6 = 0b010111, vm = 0
void VMerge_vvm(VRegister vd, VRegister vs2, VRegister vs1);
void VMerge_vxm(VRegister vd, VRegister vs2, XRegister rs1);
void VMerge_vim(VRegister vd, VRegister vs2, int32_t imm5);
// Vector vmv instructions, funct6 = 0b010111, vm = 1, vs2 = v0
void VMv_vv(VRegister vd, VRegister vs1);
void VMv_vx(VRegister vd, XRegister rs1);
void VMv_vi(VRegister vd, int32_t imm5);
// Vector vmseq instructions, funct6 = 0b011000
void VMseq_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMseq_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMseq_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vmsne instructions, funct6 = 0b011001
void VMsne_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMsne_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMsne_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vmsltu instructions, funct6 = 0b011010
void VMsltu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMsltu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMsltu_vv
void VMsgtu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vmslt instructions, funct6 = 0b011011
void VMslt_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMslt_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMslt_vv
void VMsgt_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vmsleu instructions, funct6 = 0b011100
void VMsleu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMsleu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMsleu_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instructions over VMsleu_*
void VMsgeu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMsltu_vi(VRegister vd, VRegister vs2, int32_t aimm5, VM vm = VM::kUnmasked);
// Vector vmsle instructions, funct6 = 0b011101
void VMsle_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMsle_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMsle_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instructions over VMsle_*
void VMsge_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMslt_vi(VRegister vd, VRegister vs2, int32_t aimm5, VM vm = VM::kUnmasked);
// Vector vmsgtu instructions, funct6 = 0b011110
void VMsgtu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMsgtu_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMsgtu_vi
void VMsgeu_vi(VRegister vd, VRegister vs2, int32_t aimm5, VM vm = VM::kUnmasked);
// Vector vmsgt instructions, funct6 = 0b011111
void VMsgt_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VMsgt_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMsgt_vi
void VMsge_vi(VRegister vd, VRegister vs2, int32_t aimm5, VM vm = VM::kUnmasked);
// Vector vsaddu instructions, funct6 = 0b100000
void VSaddu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSaddu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSaddu_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vsadd instructions, funct6 = 0b100001
void VSadd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSadd_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSadd_vi(VRegister vd, VRegister vs2, int32_t imm5, VM vm = VM::kUnmasked);
// Vector vssubu instructions, funct6 = 0b100010
void VSsubu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSsubu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vssub instructions, funct6 = 0b100011
void VSsub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSsub_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vsll instructions, funct6 = 0b100101
void VSll_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSll_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSll_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vsmul instructions, funct6 = 0b100111
void VSmul_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSmul_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmv<nr>r.v instructions, funct6 = 0b100111
void Vmv1r_v(VRegister vd, VRegister vs2);
void Vmv2r_v(VRegister vd, VRegister vs2);
void Vmv4r_v(VRegister vd, VRegister vs2);
void Vmv8r_v(VRegister vd, VRegister vs2);
// Vector vsrl instructions, funct6 = 0b101000
void VSrl_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSrl_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSrl_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vsra instructions, funct6 = 0b101001
void VSra_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSra_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSra_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vssrl instructions, funct6 = 0b101010
void VSsrl_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSsrl_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSsrl_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vssra instructions, funct6 = 0b101011
void VSsra_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VSsra_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VSsra_vi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vnsrl instructions, funct6 = 0b101100
void VNsrl_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VNsrl_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VNsrl_wi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Pseudo-instruction over VNsrl_wx
void VNcvt_x_x_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vnsra instructions, funct6 = 0b101101
void VNsra_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VNsra_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VNsra_wi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vnclipu instructions, funct6 = 0b101110
void VNclipu_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VNclipu_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VNclipu_wi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vnclip instructions, funct6 = 0b101111
void VNclip_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VNclip_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
void VNclip_wi(VRegister vd, VRegister vs2, uint32_t uimm5, VM vm = VM::kUnmasked);
// Vector vwredsumu instructions, funct6 = 0b110000
void VWredsumu_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vwredsum instructions, funct6 = 0b110001
void VWredsum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredsum instructions, funct6 = 0b000000
void VRedsum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredand instructions, funct6 = 0b000001
void VRedand_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredor instructions, funct6 = 0b000010
void VRedor_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredxor instructions, funct6 = 0b000011
void VRedxor_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredminu instructions, funct6 = 0b000100
void VRedminu_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredmin instructions, funct6 = 0b000101
void VRedmin_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredmaxu instructions, funct6 = 0b000110
void VRedmaxu_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vredmax instructions, funct6 = 0b000111
void VRedmax_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vaaddu instructions, funct6 = 0b001000
void VAaddu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAaddu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vaadd instructions, funct6 = 0b001001
void VAadd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAadd_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vasubu instructions, funct6 = 0b001010
void VAsubu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAsubu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vasub instructions, funct6 = 0b001011
void VAsub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VAsub_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vslide1up instructions, funct6 = 0b001110
void VSlide1up_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vslide1down instructions, funct6 = 0b001111
void VSlide1down_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vcompress instructions, funct6 = 0b010111
void VCompress_vm(VRegister vd, VRegister vs2, VRegister vs1);
// Vector vmandn instructions, funct6 = 0b011000
void VMandn_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Vector vmand instructions, funct6 = 0b011001
void VMand_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Pseudo-instruction over VMand_mm
void VMmv_m(VRegister vd, VRegister vs2);
// Vector vmor instructions, funct6 = 0b011010
void VMor_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Vector vmxor instructions, funct6 = 0b011011
void VMxor_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Pseudo-instruction over VMxor_mm
void VMclr_m(VRegister vd);
// Vector vmorn instructions, funct6 = 0b011100
void VMorn_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Vector vmnand instructions, funct6 = 0b011101
void VMnand_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Pseudo-instruction over VMnand_mm
void VMnot_m(VRegister vd, VRegister vs2);
// Vector vmnor instructions, funct6 = 0b011110
void VMnor_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Vector vmxnor instructions, funct6 = 0b011111
void VMxnor_mm(VRegister vd, VRegister vs2, VRegister vs1);
// Pseudo-instruction over VMxnor_mm
void VMset_m(VRegister vd);
// Vector vdivu instructions, funct6 = 0b100000
void VDivu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VDivu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vdiv instructions, funct6 = 0b100001
void VDiv_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VDiv_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vremu instructions, funct6 = 0b100010
void VRemu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VRemu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vrem instructions, funct6 = 0b100011
void VRem_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VRem_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmulhu instructions, funct6 = 0b100100
void VMulhu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMulhu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmul instructions, funct6 = 0b100101
void VMul_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMul_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmulhsu instructions, funct6 = 0b100110
void VMulhsu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMulhsu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmulh instructions, funct6 = 0b100111
void VMulh_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMulh_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vmadd instructions, funct6 = 0b101001
void VMadd_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VMadd_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vnmsub instructions, funct6 = 0b101011
void VNmsub_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VNmsub_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vmacc instructions, funct6 = 0b101101
void VMacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VMacc_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vnmsac instructions, funct6 = 0b101111
void VNmsac_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VNmsac_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vwaddu instructions, funct6 = 0b110000
void VWaddu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWaddu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VWaddu_vx
void VWcvtu_x_x_v(VRegister vd, VRegister vs, VM vm = VM::kUnmasked);
// Vector vwadd instructions, funct6 = 0b110001
void VWadd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWadd_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VWadd_vx
void VWcvt_x_x_v(VRegister vd, VRegister vs, VM vm = VM::kUnmasked);
// Vector vwsubu instructions, funct6 = 0b110010
void VWsubu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWsubu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwsub instructions, funct6 = 0b110011
void VWsub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWsub_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwaddu.w instructions, funct6 = 0b110100
void VWaddu_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWaddu_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwadd.w instructions, funct6 = 0b110101
void VWadd_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWadd_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwsubu.w instructions, funct6 = 0b110110
void VWsubu_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWsubu_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwsub.w instructions, funct6 = 0b110111
void VWsub_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWsub_wx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwmulu instructions, funct6 = 0b111000
void VWmulu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWmulu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwmulsu instructions, funct6 = 0b111010
void VWmulsu_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWmulsu_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwmul instructions, funct6 = 0b111011
void VWmul_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VWmul_vx(VRegister vd, VRegister vs2, XRegister rs1, VM vm = VM::kUnmasked);
// Vector vwmaccu instructions, funct6 = 0b111100
void VWmaccu_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VWmaccu_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vwmacc instructions, funct6 = 0b111101
void VWmacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VWmacc_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vwmaccus instructions, funct6 = 0b111110
void VWmaccus_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vwmaccsu instructions, funct6 = 0b111111
void VWmaccsu_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VWmaccsu_vx(VRegister vd, XRegister rs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfadd instructions, funct6 = 0b000000
void VFadd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFadd_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfredusum instructions, funct6 = 0b000001
void VFredusum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfsub instructions, funct6 = 0b000010
void VFsub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFsub_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfredosum instructions, funct6 = 0b000011
void VFredosum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfmin instructions, funct6 = 0b000100
void VFmin_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFmin_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfredmin instructions, funct6 = 0b000101
void VFredmin_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfmax instructions, funct6 = 0b000110
void VFmax_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFmax_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfredmax instructions, funct6 = 0b000111
void VFredmax_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfsgnj instructions, funct6 = 0b001000
void VFsgnj_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFsgnj_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfsgnjn instructions, funct6 = 0b001001
void VFsgnjn_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFsgnjn_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VFsgnjn_vv
void VFneg_v(VRegister vd, VRegister vs);
// Vector vfsgnjx instructions, funct6 = 0b001010
void VFsgnjx_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFsgnjx_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VFsgnjx_vv
void VFabs_v(VRegister vd, VRegister vs);
// Vector vfslide1up instructions, funct6 = 0b001110
void VFslide1up_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfslide1down instructions, funct6 = 0b001111
void VFslide1down_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfmerge/vfmv instructions, funct6 = 0b010111
void VFmerge_vfm(VRegister vd, VRegister vs2, FRegister fs1);
void VFmv_v_f(VRegister vd, FRegister fs1);
// Vector vmfeq instructions, funct6 = 0b011000
void VMfeq_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMfeq_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vmfle instructions, funct6 = 0b011001
void VMfle_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMfle_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMfle_vv
void VMfge_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vmflt instructions, funct6 = 0b011011
void VMflt_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMflt_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Pseudo-instruction over VMflt_vv
void VMfgt_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vmfne instructions, funct6 = 0b011100
void VMfne_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VMfne_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vmfgt instructions, funct6 = 0b011101
void VMfgt_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vmfge instructions, funct6 = 0b011111
void VMfge_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfdiv instructions, funct6 = 0b100000
void VFdiv_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFdiv_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfrdiv instructions, funct6 = 0b100001
void VFrdiv_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfmul instructions, funct6 = 0b100100
void VFmul_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFmul_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfrsub instructions, funct6 = 0b100111
void VFrsub_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfmadd instructions, funct6 = 0b101000
void VFmadd_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFmadd_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfnmadd instructions, funct6 = 0b101001
void VFnmadd_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFnmadd_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfmsub instructions, funct6 = 0b101010
void VFmsub_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFmsub_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfnmsub instructions, funct6 = 0b101011
void VFnmsub_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFnmsub_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfmacc instructions, funct6 = 0b101100
void VFmacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFmacc_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfnmacc instructions, funct6 = 0b101101
void VFnmacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFnmacc_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfmsac instructions, funct6 = 0b101110
void VFmsac_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFmsac_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfnmsac instructions, funct6 = 0b101111
void VFnmsac_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFnmsac_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfwadd instructions, funct6 = 0b110000
void VFwadd_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFwadd_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfwredusum instructions, funct6 = 0b110001
void VFwredusum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfwsub instructions, funct6 = 0b110010
void VFwsub_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFwsub_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfwredosum instructions, funct6 = 0b110011
void VFwredosum_vs(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
// Vector vfwadd.w instructions, funct6 = 0b110100
void VFwadd_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFwadd_wf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfwsub.w instructions, funct6 = 0b110110
void VFwsub_wv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFwsub_wf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfwmul instructions, funct6 = 0b111000
void VFwmul_vv(VRegister vd, VRegister vs2, VRegister vs1, VM vm = VM::kUnmasked);
void VFwmul_vf(VRegister vd, VRegister vs2, FRegister fs1, VM vm = VM::kUnmasked);
// Vector vfwmacc instructions, funct6 = 0b111100
void VFwmacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFwmacc_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfwnmacc instructions, funct6 = 0b111101
void VFwnmacc_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFwnmacc_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfwmsac instructions, funct6 = 0b111110
void VFwmsac_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFwmsac_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector vfwnmsac instructions, funct6 = 0b111111
void VFwnmsac_vv(VRegister vd, VRegister vs1, VRegister vs2, VM vm = VM::kUnmasked);
void VFwnmsac_vf(VRegister vd, FRegister fs1, VRegister vs2, VM vm = VM::kUnmasked);
// Vector VRXUNARY0 kind instructions, funct6 = 0b010000
void VMv_s_x(VRegister vd, XRegister rs1);
// Vector VWXUNARY0 kind instructions, funct6 = 0b010000
void VMv_x_s(XRegister rd, VRegister vs2);
void VCpop_m(XRegister rd, VRegister vs2, VM vm = VM::kUnmasked);
void VFirst_m(XRegister rd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector VXUNARY0 kind instructions, funct6 = 0b010010
void VZext_vf8(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VSext_vf8(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VZext_vf4(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VSext_vf4(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VZext_vf2(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VSext_vf2(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector VRFUNARY0 kind instructions, funct6 = 0b010000
void VFmv_s_f(VRegister vd, FRegister fs1);
// Vector VWFUNARY0 kind instructions, funct6 = 0b010000
void VFmv_f_s(FRegister fd, VRegister vs2);
// Vector VFUNARY0 kind instructions, funct6 = 0b010010
void VFcvt_xu_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFcvt_x_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFcvt_f_xu_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFcvt_f_x_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFcvt_rtz_xu_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFcvt_rtz_x_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_xu_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_x_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_f_xu_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_f_x_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_f_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_rtz_xu_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFwcvt_rtz_x_f_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_xu_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_x_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_f_xu_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_f_x_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_f_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_rod_f_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_rtz_xu_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFncvt_rtz_x_f_w(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector VFUNARY1 kind instructions, funct6 = 0b010011
void VFsqrt_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFrsqrt7_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFrec7_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VFclass_v(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
// Vector VMUNARY0 kind instructions, funct6 = 0b010100
void VMsbf_m(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VMsof_m(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VMsif_m(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VIota_m(VRegister vd, VRegister vs2, VM vm = VM::kUnmasked);
void VId_v(VRegister vd, VM vm = VM::kUnmasked);
////////////////////////////// RISC-V Vector Instructions END //////////////////////////////
////////////////////////////// RV64 MACRO Instructions START ///////////////////////////////
// These pseudo instructions are from "RISC-V Assembly Programmer's Manual".
void Nop();
void Li(XRegister rd, int64_t imm);
void Mv(XRegister rd, XRegister rs);
void Not(XRegister rd, XRegister rs);
void Neg(XRegister rd, XRegister rs);
void NegW(XRegister rd, XRegister rs);
void SextB(XRegister rd, XRegister rs);
void SextH(XRegister rd, XRegister rs);
void SextW(XRegister rd, XRegister rs);
void ZextB(XRegister rd, XRegister rs);
void ZextH(XRegister rd, XRegister rs);
void ZextW(XRegister rd, XRegister rs);
void Seqz(XRegister rd, XRegister rs);
void Snez(XRegister rd, XRegister rs);
void Sltz(XRegister rd, XRegister rs);
void Sgtz(XRegister rd, XRegister rs);
void FMvS(FRegister rd, FRegister rs);
void FAbsS(FRegister rd, FRegister rs);
void FNegS(FRegister rd, FRegister rs);
void FMvD(FRegister rd, FRegister rs);
void FAbsD(FRegister rd, FRegister rs);
void FNegD(FRegister rd, FRegister rs);
// Branch pseudo instructions
void Beqz(XRegister rs, int32_t offset);
void Bnez(XRegister rs, int32_t offset);
void Blez(XRegister rs, int32_t offset);
void Bgez(XRegister rs, int32_t offset);
void Bltz(XRegister rs, int32_t offset);
void Bgtz(XRegister rs, int32_t offset);
void Bgt(XRegister rs, XRegister rt, int32_t offset);
void Ble(XRegister rs, XRegister rt, int32_t offset);
void Bgtu(XRegister rs, XRegister rt, int32_t offset);
void Bleu(XRegister rs, XRegister rt, int32_t offset);
// Jump pseudo instructions
void J(int32_t offset);
void Jal(int32_t offset);
void Jr(XRegister rs);
void Jalr(XRegister rs);
void Jalr(XRegister rd, XRegister rs);
void Ret();
// Pseudo instructions for accessing control and status registers
void RdCycle(XRegister rd);
void RdTime(XRegister rd);
void RdInstret(XRegister rd);
void Csrr(XRegister rd, uint32_t csr);
void Csrw(uint32_t csr, XRegister rs);
void Csrs(uint32_t csr, XRegister rs);
void Csrc(uint32_t csr, XRegister rs);
void Csrwi(uint32_t csr, uint32_t uimm5);
void Csrsi(uint32_t csr, uint32_t uimm5);
void Csrci(uint32_t csr, uint32_t uimm5);
// Load/store macros for arbitrary 32-bit offsets.
void Loadb(XRegister rd, XRegister rs1, int32_t offset);
void Loadh(XRegister rd, XRegister rs1, int32_t offset);
void Loadw(XRegister rd, XRegister rs1, int32_t offset);
void Loadd(XRegister rd, XRegister rs1, int32_t offset);
void Loadbu(XRegister rd, XRegister rs1, int32_t offset);
void Loadhu(XRegister rd, XRegister rs1, int32_t offset);
void Loadwu(XRegister rd, XRegister rs1, int32_t offset);
void Storeb(XRegister rs2, XRegister rs1, int32_t offset);
void Storeh(XRegister rs2, XRegister rs1, int32_t offset);
void Storew(XRegister rs2, XRegister rs1, int32_t offset);
void Stored(XRegister rs2, XRegister rs1, int32_t offset);
void FLoadw(FRegister rd, XRegister rs1, int32_t offset);
void FLoadd(FRegister rd, XRegister rs1, int32_t offset);
void FStorew(FRegister rs2, XRegister rs1, int32_t offset);
void FStored(FRegister rs2, XRegister rs1, int32_t offset);
// Macros for loading constants.
void LoadConst32(XRegister rd, int32_t value);
void LoadConst64(XRegister rd, int64_t value);
// Macros for adding constants.
void AddConst32(XRegister rd, XRegister rs1, int32_t value);
void AddConst64(XRegister rd, XRegister rs1, int64_t value);
// Jumps and branches to a label.
void Beqz(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Bnez(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Blez(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Bgez(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Bltz(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Bgtz(XRegister rs, Riscv64Label* label, bool is_bare = false);
void Beq(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bne(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Ble(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bge(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Blt(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bgt(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bleu(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bgeu(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bltu(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Bgtu(XRegister rs, XRegister rt, Riscv64Label* label, bool is_bare = false);
void Jal(XRegister rd, Riscv64Label* label, bool is_bare = false);
void J(Riscv64Label* label, bool is_bare = false);
void Jal(Riscv64Label* label, bool is_bare = false);
// Literal load.
void Loadw(XRegister rd, Literal* literal);
void Loadwu(XRegister rd, Literal* literal);
void Loadd(XRegister rd, Literal* literal);
void FLoadw(FRegister rd, Literal* literal);
void FLoadd(FRegister rd, Literal* literal);
// Illegal instruction that triggers SIGILL.
void Unimp();
/////////////////////////////// RV64 MACRO Instructions END ///////////////////////////////
void Bind(Label* label) override { Bind(down_cast<Riscv64Label*>(label)); }
void Jump([[maybe_unused]] Label* label) override {
UNIMPLEMENTED(FATAL) << "Do not use Jump for RISCV64";
}
void Jump(Riscv64Label* label) {
J(label);
}
void Bind(Riscv64Label* label);
// Load label address using PC-relative loads.
void LoadLabelAddress(XRegister rd, Riscv64Label* label);
// Create a new literal with a given value.
// NOTE:Use `Identity<>` to force the template parameter to be explicitly specified.
template <typename T>
Literal* NewLiteral(typename Identity<T>::type value) {
static_assert(std::is_integral<T>::value, "T must be an integral type.");
return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
}
// Create a new literal with the given data.
Literal* NewLiteral(size_t size, const uint8_t* data);
// Create a jump table for the given labels that will be emitted when finalizing.
// When the table is emitted, offsets will be relative to the location of the table.
// The table location is determined by the location of its label (the label precedes
// the table data) and should be loaded using LoadLabelAddress().
JumpTable* CreateJumpTable(ArenaVector<Riscv64Label*>&& labels);
public:
// Emit slow paths queued during assembly, promote short branches to long if needed,
// and emit branches.
void FinalizeCode() override;
template <typename Reg>
static inline bool IsShortReg(Reg reg) {
static_assert(std::is_same_v<Reg, XRegister> || std::is_same_v<Reg, FRegister>);
uint32_t uv = enum_cast<uint32_t>(reg) - 8u;
return IsUint<3>(uv);
}
// Returns the current location of a label.
//
// This function must be used instead of `Riscv64Label::GetPosition()`
// which returns assembler's internal data instead of an actual location.
//
// The location can change during branch fixup in `FinalizeCode()`. Before that,
// the location is not final and therefore not very useful to external users,
// so they should preferably retrieve the location only after `FinalizeCode()`.
uint32_t GetLabelLocation(const Riscv64Label* label) const;
// Get the final position of a label after local fixup based on the old position
// recorded before FinalizeCode().
uint32_t GetAdjustedPosition(uint32_t old_position);
private:
static uint32_t ConvertExtensions(
const Riscv64InstructionSetFeatures* instruction_set_features) {
// The `Riscv64InstructionSetFeatures` currently does not support "Zcb",
// only the original "C" extension. For riscv64 that means "Zca" and "Zcd".
constexpr Riscv64ExtensionMask kCompressedExtensionsMask =
Riscv64ExtensionBit(Riscv64Extension::kZca) | Riscv64ExtensionBit(Riscv64Extension::kZcd);
return
(Riscv64ExtensionBit(Riscv64Extension::kLoadStore)) |
(Riscv64ExtensionBit(Riscv64Extension::kZifencei)) |
(Riscv64ExtensionBit(Riscv64Extension::kM)) |
(Riscv64ExtensionBit(Riscv64Extension::kA)) |
(Riscv64ExtensionBit(Riscv64Extension::kZicsr)) |
(Riscv64ExtensionBit(Riscv64Extension::kF)) |
(Riscv64ExtensionBit(Riscv64Extension::kD)) |
(instruction_set_features->HasZba() ? Riscv64ExtensionBit(Riscv64Extension::kZba) : 0u) |
(instruction_set_features->HasZbb() ? Riscv64ExtensionBit(Riscv64Extension::kZbb) : 0u) |
(instruction_set_features->HasZbs() ? Riscv64ExtensionBit(Riscv64Extension::kZbs) : 0u) |
(instruction_set_features->HasVector() ? Riscv64ExtensionBit(Riscv64Extension::kV) : 0u) |
(instruction_set_features->HasCompressed() ? kCompressedExtensionsMask : 0u);
}
void AssertExtensionsEnabled(Riscv64Extension ext) {
DCHECK(IsExtensionEnabled(ext))
<< "ext=" << enum_cast<>(ext) << " enabled=0x" << std::hex << enabled_extensions_;
}
template <typename... OtherExt>
void AssertExtensionsEnabled(Riscv64Extension ext, OtherExt... other_ext) {
AssertExtensionsEnabled(ext);
AssertExtensionsEnabled(other_ext...);
}
enum BranchCondition : uint8_t {
kCondEQ,
kCondNE,
kCondLT,
kCondGE,
kCondLE,
kCondGT,
kCondLTU,
kCondGEU,
kCondLEU,
kCondGTU,
kUncond,
};
// Note that PC-relative literal loads are handled as pseudo branches because they need
// to be emitted after branch relocation to use correct offsets.
class Branch {
public:
enum Type : uint8_t {
// Compressed branches (can be promoted to longer)
kCondCBranch,
kUncondCBranch,
// Compressed branches (can't be promoted to longer)
kBareCondCBranch,
kBareUncondCBranch,
// Short branches (can be promoted to longer).
kCondBranch,
kUncondBranch,
kCall,
// Short branches (can't be promoted to longer).
kBareCondBranch,
kBareUncondBranch,
kBareCall,
// Medium branches (can be promoted to long).
// Compressed version
kCondCBranch21,
kCondBranch21,
// Long branches.
kLongCondCBranch,
kLongCondBranch,
kLongUncondBranch,
kLongCall,
// Label.
kLabel,
// Literals.
kLiteral,
kLiteralUnsigned,
kLiteralLong,
kLiteralFloat,
kLiteralDouble,
};
// Bit sizes of offsets defined as enums to minimize chance of typos.
enum OffsetBits {
kOffset9 = 9,
kOffset12 = 12,
kOffset13 = 13,
kOffset21 = 21,
kOffset32 = 32,
};
static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_
static constexpr uint32_t kMaxBranchLength = 12; // In bytes.
struct BranchInfo {
// Branch length in bytes.
uint32_t length;
// The offset in bytes of the PC used in the (only) PC-relative instruction from
// the start of the branch sequence. RISC-V always uses the address of the PC-relative
// instruction as the PC, so this is essentially the offset of that instruction.
uint32_t pc_offset;
// How large (in bits) a PC-relative offset can be for a given type of branch.
OffsetBits offset_size;
};
static const BranchInfo branch_info_[/* Type */];
// Unconditional branch or call.
Branch(
uint32_t location, uint32_t target, XRegister rd, bool is_bare, bool compression_allowed);
// Conditional branch.
Branch(uint32_t location,
uint32_t target,
BranchCondition condition,
XRegister lhs_reg,
XRegister rhs_reg,
bool is_bare,
bool compression_allowed);
// Label address or literal.
Branch(uint32_t location, uint32_t target, XRegister rd, Type label_or_literal_type);
Branch(uint32_t location, uint32_t target, FRegister rd, Type literal_type);
// Some conditional branches with lhs = rhs are effectively NOPs, while some
// others are effectively unconditional.
static bool IsNop(BranchCondition condition, XRegister lhs, XRegister rhs);
static bool IsUncond(BranchCondition condition, XRegister lhs, XRegister rhs);
static bool IsCompressed(Type type);
static BranchCondition OppositeCondition(BranchCondition cond);
Type GetType() const;
Type GetOldType() const;
BranchCondition GetCondition() const;
XRegister GetLeftRegister() const;
XRegister GetRightRegister() const;
XRegister GetNonZeroRegister() const;
FRegister GetFRegister() const;
uint32_t GetTarget() const;
uint32_t GetLocation() const;
uint32_t GetOldLocation() const;
uint32_t GetLength() const;
uint32_t GetOldLength() const;
uint32_t GetEndLocation() const;
uint32_t GetOldEndLocation() const;
bool IsBare() const;
bool IsResolved() const;
uint32_t NextBranchId() const;
// Checks if condition meets compression requirements
bool IsCompressableCondition() const;
// Returns the bit size of the signed offset that the branch instruction can handle.
OffsetBits GetOffsetSize() const;
// Calculates the distance between two byte locations in the assembler buffer and
// returns the number of bits needed to represent the distance as a signed integer.
static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
// Resolve a branch when the target is known.
void Resolve(uint32_t target);
// Relocate a branch by a given delta if needed due to expansion of this or another
// branch at a given location by this delta (just changes location_ and target_).
void Relocate(uint32_t expand_location, uint32_t delta);
// If necessary, updates the type by promoting a short branch to a longer branch
// based on the branch location and target. Returns the amount (in bytes) by
// which the branch size has increased.
uint32_t PromoteIfNeeded();
// Returns the offset into assembler buffer that shall be used as the base PC for
// offset calculation. RISC-V always uses the address of the PC-relative instruction
// as the PC, so this is essentially the location of that instruction.
uint32_t GetOffsetLocation() const;
// Calculates and returns the offset ready for encoding in the branch instruction(s).
int32_t GetOffset() const;
// Link with the next branch
void LinkToList(uint32_t next_branch_id);
private:
// Completes branch construction by determining and recording its type.
void InitializeType(Type initial_type);
// Helper for the above.
void InitShortOrLong(OffsetBits ofs_size, std::initializer_list<Type> types);
uint32_t old_location_; // Offset into assembler buffer in bytes.
uint32_t location_; // Offset into assembler buffer in bytes.
uint32_t target_; // Offset into assembler buffer in bytes.
XRegister lhs_reg_; // Left-hand side register in conditional branches or
// destination register in calls or literals.
XRegister rhs_reg_; // Right-hand side register in conditional branches.
FRegister freg_; // Destination register in FP literals.
BranchCondition condition_; // Condition for conditional branches.
Type type_; // Current type of the branch.
Type old_type_; // Initial type of the branch.
bool compression_allowed_;
// Id of the next branch bound to the same label in singly-linked zero-terminated list
// NOTE: encoded the same way as a position in a linked Label (id + sizeof(void*))
// Label itself is used to hold the 'head' of this list
uint32_t next_branch_id_;
};
// Branch and literal fixup.
void EmitBcond(BranchCondition cond, XRegister rs, XRegister rt, int32_t offset);
void EmitBranch(Branch* branch);
void EmitBranches();
void EmitJumpTables();
void EmitLiterals();
void FinalizeLabeledBranch(Riscv64Label* label);
void Bcond(Riscv64Label* label,
bool is_bare,
BranchCondition condition,
XRegister lhs,
XRegister rhs);
void Buncond(Riscv64Label* label, XRegister rd, bool is_bare);
template <typename XRegisterOrFRegister>
void LoadLiteral(Literal* literal, XRegisterOrFRegister rd, Branch::Type literal_type);
Branch* GetBranch(uint32_t branch_id);
const Branch* GetBranch(uint32_t branch_id) const;
void ReserveJumpTableSpace();
void PromoteBranches();
void PatchCFI();
// Emit data (e.g. encoded instruction or immediate) to the instruction stream.
template <typename T>
void Emit(T value) {
static_assert(std::is_same_v<T, uint32_t> || std::is_same_v<T, uint16_t>,
"Only Integer types are allowed");
if (overwriting_) {
// Branches to labels are emitted into their placeholders here.
buffer_.Store<T>(overwrite_location_, value);
overwrite_location_ += sizeof(T);
} else {
// Other instructions are simply appended at the end here.
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<T>(value);
}
}
void Emit16(uint32_t value) { Emit(dchecked_integral_cast<uint16_t>(value)); }
void Emit32(uint32_t value) { Emit(value); }
// Adjust base register and offset if needed for load/store with a large offset.
void AdjustBaseAndOffset(XRegister& base, int32_t& offset, ScratchRegisterScope& srs);
// Helper templates for loads/stores with 32-bit offsets.
template <void (Riscv64Assembler::*insn)(XRegister, XRegister, int32_t)>
void LoadFromOffset(XRegister rd, XRegister rs1, int32_t offset);
template <void (Riscv64Assembler::*insn)(XRegister, XRegister, int32_t)>
void StoreToOffset(XRegister rs2, XRegister rs1, int32_t offset);
template <void (Riscv64Assembler::*insn)(FRegister, XRegister, int32_t)>
void FLoadFromOffset(FRegister rd, XRegister rs1, int32_t offset);
template <void (Riscv64Assembler::*insn)(FRegister, XRegister, int32_t)>
void FStoreToOffset(FRegister rs2, XRegister rs1, int32_t offset);
// Implementation helper for `Li()`, `LoadConst32()` and `LoadConst64()`.
void LoadImmediate(XRegister rd, int64_t imm, bool can_use_tmp);
// RVV constants and helpers
enum class Nf : uint32_t {
k1 = 0b000,
k2 = 0b001,
k3 = 0b010,
k4 = 0b011,
k5 = 0b100,
k6 = 0b101,
k7 = 0b110,
k8 = 0b111,
};
enum class VAIEncoding : uint32_t {
// ----Operands---- | Type of Scalar | Instruction type
kOPIVV = 0b000, // vector-vector | -- | R-type
kOPFVV = 0b001, // vector-vector | -- | R-type
kOPMVV = 0b010, // vector-vector | -- | R-type
kOPIVI = 0b011, // vector-immediate | imm[4:0] | R-type
kOPIVX = 0b100, // vector-scalar | GPR x register rs1 | R-type
kOPFVF = 0b101, // vector-scalar | FP f register rs1 | R-type
kOPMVX = 0b110, // vector-scalar | GPR x register rs1 | R-type
kOPCFG = 0b111, // scalars-imms | GPR x register rs1 & rs2/imm | R/I-type
};
enum class MemAddressMode : uint32_t {
kUnitStride = 0b00,
kIndexedUnordered = 0b01,
kStrided = 0b10,
kIndexedOrdered = 0b11,
};
enum class VectorWidth : uint32_t {
k8 = 0b000,
k16 = 0b101,
k32 = 0b110,
k64 = 0b111,
kMask = 0b000,
kWholeR = 0b000,
};
static constexpr uint32_t EncodeRVVMemF7(const Nf nf,
const uint32_t mew,
const MemAddressMode mop,
const VM vm) {
DCHECK(IsUint<3>(enum_cast<uint32_t>(nf)));
DCHECK(IsUint<1>(mew));
DCHECK(IsUint<2>(enum_cast<uint32_t>(mop)));
DCHECK(IsUint<1>(enum_cast<uint32_t>(vm)));
return enum_cast<uint32_t>(nf) << 4 | mew << 3 | enum_cast<uint32_t>(mop) << 1 |
enum_cast<uint32_t>(vm);
}
static constexpr uint32_t EncodeRVVF7(const uint32_t funct6, const VM vm) {
DCHECK(IsUint<6>(funct6));
return funct6 << 1 | enum_cast<uint32_t>(vm);
}
template <unsigned kWidth>
static constexpr uint32_t EncodeIntWidth(const int32_t imm) {
DCHECK(IsInt<kWidth>(imm));
return static_cast<uint32_t>(imm) & MaskLeastSignificant<uint32_t>(kWidth);
}
static constexpr uint32_t EncodeInt5(const int32_t imm) { return EncodeIntWidth<5>(imm); }
static constexpr uint32_t EncodeInt6(const int32_t imm) { return EncodeIntWidth<6>(imm); }
template <typename Reg>
static constexpr uint32_t EncodeShortReg(const Reg reg) {
DCHECK(IsShortReg(reg));
return enum_cast<uint32_t>(reg) - 8u;
}
// Rearrange given offset in the way {offset[0] | offset[1]}
static constexpr uint32_t EncodeOffset0_1(int32_t offset) {
uint32_t u_offset = static_cast<uint32_t>(offset);
DCHECK(IsUint<2>(u_offset));
return u_offset >> 1 | (u_offset & 1u) << 1;
}
// Rearrange given offset, scaled by 4, in the way {offset[5:2] | offset[7:6]}
static constexpr uint32_t ExtractOffset52_76(int32_t offset) {
DCHECK(IsAligned<4>(offset)) << "Offset should be scalable by 4";
uint32_t u_offset = static_cast<uint32_t>(offset);
DCHECK(IsUint<6 + 2>(u_offset));
uint32_t imm_52 = BitFieldExtract(u_offset, 2, 4);
uint32_t imm_76 = BitFieldExtract(u_offset, 6, 2);
return BitFieldInsert(imm_76, imm_52, 2, 4);
}
// Rearrange given offset, scaled by 8, in the way {offset[5:3] | offset[8:6]}
static constexpr uint32_t ExtractOffset53_86(int32_t offset) {
DCHECK(IsAligned<8>(offset)) << "Offset should be scalable by 8";
uint32_t u_offset = static_cast<uint32_t>(offset);
DCHECK(IsUint<6 + 3>(u_offset));
uint32_t imm_53 = BitFieldExtract(u_offset, 3, 3);
uint32_t imm_86 = BitFieldExtract(u_offset, 6, 3);
return BitFieldInsert(imm_86, imm_53, 3, 3);
}
// Rearrange given offset, scaled by 4, in the way {offset[5:2] | offset[6]}
static constexpr uint32_t ExtractOffset52_6(int32_t offset) {
DCHECK(IsAligned<4>(offset)) << "Offset should be scalable by 4";
uint32_t u_offset = static_cast<uint32_t>(offset);
DCHECK(IsUint<5 + 2>(u_offset));
uint32_t imm_52 = BitFieldExtract(u_offset, 2, 4);
uint32_t imm_6 = BitFieldExtract(u_offset, 6, 1);
return BitFieldInsert(imm_6, imm_52, 1, 4);
}
// Rearrange given offset, scaled by 8, in the way {offset[5:3], offset[7:6]}
static constexpr uint32_t ExtractOffset53_76(int32_t offset) {
DCHECK(IsAligned<8>(offset)) << "Offset should be scalable by 4";
uint32_t u_offset = static_cast<uint32_t>(offset);
DCHECK(IsUint<5 + 3>(u_offset));
uint32_t imm_53 = BitFieldExtract(u_offset, 3, 3);
uint32_t imm_76 = BitFieldExtract(u_offset, 6, 2);
return BitFieldInsert(imm_76, imm_53, 2, 3);
}
static constexpr bool IsImmCLuiEncodable(uint32_t uimm) {
// Instruction c.lui is odd and its immediate value is a bit tricky
// Its value is not a full 32 bits value, but its bits [31:12]
// (where the bit 17 marks the sign bit) shifted towards the bottom i.e. bits [19:0]
// are the meaningful ones. Since that we want a signed non-zero 6-bit immediate to
// keep values in the range [0, 0x1f], and the range [0xfffe0, 0xfffff] for negative values
// since the sign bit was bit 17 (which is now bit 5 and replicated in the higher bits too)
// Also encoding with immediate = 0 is reserved
// For more details please see 16.5 chapter is the specification
return uimm != 0u && (IsUint<5>(uimm) || IsUint<5>(uimm - 0xfffe0u));
}
// Emit helpers.
// I-type instruction:
//
// 31 20 19 15 14 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . . . . . . . . | . . . . | . . | . . . . | . . . . . . ]
// [ imm11:0 rs1 funct3 rd opcode ]
// -----------------------------------------------------------------
template <typename Reg1, typename Reg2>
void EmitI(int32_t imm12, Reg1 rs1, uint32_t funct3, Reg2 rd, uint32_t opcode) {
DCHECK(IsInt<12>(imm12)) << imm12;
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = static_cast<uint32_t>(imm12) << 20 | static_cast<uint32_t>(rs1) << 15 |
funct3 << 12 | static_cast<uint32_t>(rd) << 7 | opcode;
Emit32(encoding);
}
// R-type instruction:
//
// 31 25 24 20 19 15 14 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . . . | . . . . | . . . . | . . | . . . . | . . . . . . ]
// [ funct7 rs2 rs1 funct3 rd opcode ]
// -----------------------------------------------------------------
template <typename Reg1, typename Reg2, typename Reg3>
void EmitR(uint32_t funct7, Reg1 rs2, Reg2 rs1, uint32_t funct3, Reg3 rd, uint32_t opcode) {
DCHECK(IsUint<7>(funct7));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = funct7 << 25 | static_cast<uint32_t>(rs2) << 20 |
static_cast<uint32_t>(rs1) << 15 | funct3 << 12 |
static_cast<uint32_t>(rd) << 7 | opcode;
Emit32(encoding);
}
// R-type instruction variant for floating-point fused multiply-add/sub (F[N]MADD/ F[N]MSUB):
//
// 31 27 25 24 20 19 15 14 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . | . | . . . . | . . . . | . . | . . . . | . . . . . . ]
// [ rs3 fmt rs2 rs1 funct3 rd opcode ]
// -----------------------------------------------------------------
template <typename Reg1, typename Reg2, typename Reg3, typename Reg4>
void EmitR4(
Reg1 rs3, uint32_t fmt, Reg2 rs2, Reg3 rs1, uint32_t funct3, Reg4 rd, uint32_t opcode) {
DCHECK(IsUint<5>(static_cast<uint32_t>(rs3)));
DCHECK(IsUint<2>(fmt));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = static_cast<uint32_t>(rs3) << 27 | static_cast<uint32_t>(fmt) << 25 |
static_cast<uint32_t>(rs2) << 20 | static_cast<uint32_t>(rs1) << 15 |
static_cast<uint32_t>(funct3) << 12 | static_cast<uint32_t>(rd) << 7 |
opcode;
Emit32(encoding);
}
// S-type instruction:
//
// 31 25 24 20 19 15 14 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . . . | . . . . | . . . . | . . | . . . . | . . . . . . ]
// [ imm11:5 rs2 rs1 funct3 imm4:0 opcode ]
// -----------------------------------------------------------------
template <typename Reg1, typename Reg2>
void EmitS(int32_t imm12, Reg1 rs2, Reg2 rs1, uint32_t funct3, uint32_t opcode) {
DCHECK(IsInt<12>(imm12)) << imm12;
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = (static_cast<uint32_t>(imm12) & 0xFE0) << 20 |
static_cast<uint32_t>(rs2) << 20 | static_cast<uint32_t>(rs1) << 15 |
static_cast<uint32_t>(funct3) << 12 |
(static_cast<uint32_t>(imm12) & 0x1F) << 7 | opcode;
Emit32(encoding);
}
// I-type instruction variant for shifts (SLLI / SRLI / SRAI):
//
// 31 26 25 20 19 15 14 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . . | . . . . . | . . . . | . . | . . . . | . . . . . . ]
// [ imm11:6 imm5:0(shamt) rs1 funct3 rd opcode ]
// -----------------------------------------------------------------
void EmitI6(uint32_t funct6,
uint32_t imm6,
XRegister rs1,
uint32_t funct3,
XRegister rd,
uint32_t opcode) {
DCHECK(IsUint<6>(funct6));
DCHECK(IsUint<6>(imm6)) << imm6;
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = funct6 << 26 | static_cast<uint32_t>(imm6) << 20 |
static_cast<uint32_t>(rs1) << 15 | funct3 << 12 |
static_cast<uint32_t>(rd) << 7 | opcode;
Emit32(encoding);
}
// B-type instruction:
//
// 31 30 25 24 20 19 15 14 12 11 8 7 6 0
// -----------------------------------------------------------------
// [ | . . . . . | . . . . | . . . . | . . | . . . | | . . . . . . ]
// imm12 imm11:5 rs2 rs1 funct3 imm4:1 imm11 opcode ]
// -----------------------------------------------------------------
void EmitB(int32_t offset, XRegister rs2, XRegister rs1, uint32_t funct3, uint32_t opcode) {
DCHECK_ALIGNED(offset, 2);
DCHECK(IsInt<13>(offset)) << offset;
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs1)));
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<7>(opcode));
uint32_t imm12 = (static_cast<uint32_t>(offset) >> 1) & 0xfffu;
uint32_t encoding = (imm12 & 0x800u) << (31 - 11) | (imm12 & 0x03f0u) << (25 - 4) |
static_cast<uint32_t>(rs2) << 20 | static_cast<uint32_t>(rs1) << 15 |
static_cast<uint32_t>(funct3) << 12 |
(imm12 & 0xfu) << 8 | (imm12 & 0x400u) >> (10 - 7) | opcode;
Emit32(encoding);
}
// U-type instruction:
//
// 31 12 11 7 6 0
// -----------------------------------------------------------------
// [ . . . . . . . . . . . . . . . . . . . | . . . . | . . . . . . ]
// [ imm31:12 rd opcode ]
// -----------------------------------------------------------------
void EmitU(uint32_t imm20, XRegister rd, uint32_t opcode) {
CHECK(IsUint<20>(imm20)) << imm20;
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t encoding = imm20 << 12 | static_cast<uint32_t>(rd) << 7 | opcode;
Emit32(encoding);
}
// J-type instruction:
//
// 31 30 21 19 12 11 7 6 0
// -----------------------------------------------------------------
// [ | . . . . . . . . . | | . . . . . . . | . . . . | . . . . . . ]
// imm20 imm10:1 imm11 imm19:12 rd opcode ]
// -----------------------------------------------------------------
void EmitJ(int32_t offset, XRegister rd, uint32_t opcode) {
DCHECK_ALIGNED(offset, 2);
CHECK(IsInt<21>(offset)) << offset;
DCHECK(IsUint<5>(static_cast<uint32_t>(rd)));
DCHECK(IsUint<7>(opcode));
uint32_t imm20 = (static_cast<uint32_t>(offset) >> 1) & 0xfffffu;
uint32_t encoding = (imm20 & 0x80000u) << (31 - 19) | (imm20 & 0x03ffu) << 21 |
(imm20 & 0x400u) << (20 - 10) | (imm20 & 0x7f800u) << (12 - 11) |
static_cast<uint32_t>(rd) << 7 | opcode;
Emit32(encoding);
}
// Compressed Instruction Encodings
// CR-type instruction:
//
// 15 12 11 7 6 2 1 0
// ---------------------------------
// [ . . . | . . . . | . . . . | . ]
// [ func4 rd/rs1 rs2 op ]
// ---------------------------------
//
void EmitCR(uint32_t funct4, XRegister rd_rs1, XRegister rs2, uint32_t opcode) {
DCHECK(IsUint<4>(funct4));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd_rs1)));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<2>(opcode));
uint32_t encoding = funct4 << 12 | static_cast<uint32_t>(rd_rs1) << 7 |
static_cast<uint32_t>(rs2) << 2 | opcode;
Emit16(encoding);
}
// CI-type instruction:
//
// 15 13 11 7 6 2 1 0
// ---------------------------------
// [ . . | | . . . . | . . . . | . ]
// [func3 imm rd/rs1 imm op ]
// ---------------------------------
//
template <typename Reg>
void EmitCI(uint32_t funct3, Reg rd_rs1, uint32_t imm6, uint32_t opcode) {
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(static_cast<uint32_t>(rd_rs1)));
DCHECK(IsUint<6>(imm6));
DCHECK(IsUint<2>(opcode));
uint32_t immH1 = BitFieldExtract(imm6, 5, 1);
uint32_t immL5 = BitFieldExtract(imm6, 0, 5);
uint32_t encoding =
funct3 << 13 | immH1 << 12 | static_cast<uint32_t>(rd_rs1) << 7 | immL5 << 2 | opcode;
Emit16(encoding);
}
// CSS-type instruction:
//
// 15 13 12 7 6 2 1 0
// ---------------------------------
// [ . . | . . . . . | . . . . | . ]
// [func3 imm6 rs2 op ]
// ---------------------------------
//
template <typename Reg>
void EmitCSS(uint32_t funct3, uint32_t offset6, Reg rs2, uint32_t opcode) {
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<6>(offset6));
DCHECK(IsUint<5>(static_cast<uint32_t>(rs2)));
DCHECK(IsUint<2>(opcode));
uint32_t encoding = funct3 << 13 | offset6 << 7 | static_cast<uint32_t>(rs2) << 2 | opcode;
Emit16(encoding);
}
// CIW-type instruction:
//
// 15 13 12 5 4 2 1 0
// ---------------------------------
// [ . . | . . . . . . . | . . | . ]
// [func3 imm8 rd' op ]
// ---------------------------------
//
void EmitCIW(uint32_t funct3, uint32_t imm8, XRegister rd_s, uint32_t opcode) {
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<8>(imm8));
DCHECK(IsShortReg(rd_s)) << rd_s;
DCHECK(IsUint<2>(opcode));
uint32_t encoding = funct3 << 13 | imm8 << 5 | EncodeShortReg(rd_s) << 2 | opcode;
Emit16(encoding);
}
// CL/S-type instruction:
//
// 15 13 12 10 9 7 6 5 4 2 1 0
// ---------------------------------
// [ . . | . . | . . | . | . . | . ]
// [func3 imm rs1' imm rds2' op ]
// ---------------------------------
//
template <typename Reg>
void EmitCM(uint32_t funct3, uint32_t imm5, XRegister rs1_s, Reg rd_rs2_s, uint32_t opcode) {
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<5>(imm5));
DCHECK(IsShortReg(rs1_s)) << rs1_s;
DCHECK(IsShortReg(rd_rs2_s)) << rd_rs2_s;
DCHECK(IsUint<2>(opcode));
uint32_t immH3 = BitFieldExtract(imm5, 2, 3);
uint32_t immL2 = BitFieldExtract(imm5, 0, 2);
uint32_t encoding = funct3 << 13 | immH3 << 10 | EncodeShortReg(rs1_s) << 7 | immL2 << 5 |
EncodeShortReg(rd_rs2_s) << 2 | opcode;
Emit16(encoding);
}
// CA-type instruction:
//
// 15 10 9 7 6 5 4 2 1 0
// ---------------------------------
// [ . . . . . | . . | . | . . | . ]
// [ funct6 rds1' funct2 rs2' op]
// ---------------------------------
//
void EmitCA(
uint32_t funct6, XRegister rd_rs1_s, uint32_t funct2, uint32_t rs2_v, uint32_t opcode) {
DCHECK(IsUint<6>(funct6));
DCHECK(IsShortReg(rd_rs1_s)) << rd_rs1_s;
DCHECK(IsUint<2>(funct2));
DCHECK(IsUint<3>(rs2_v));
DCHECK(IsUint<2>(opcode));
uint32_t encoding =
funct6 << 10 | EncodeShortReg(rd_rs1_s) << 7 | funct2 << 5 | rs2_v << 2 | opcode;
Emit16(encoding);
}
void EmitCAReg(
uint32_t funct6, XRegister rd_rs1_s, uint32_t funct2, XRegister rs2_s, uint32_t opcode) {
DCHECK(IsShortReg(rs2_s)) << rs2_s;
EmitCA(funct6, rd_rs1_s, funct2, EncodeShortReg(rs2_s), opcode);
}
void EmitCAImm(
uint32_t funct6, XRegister rd_rs1_s, uint32_t funct2, uint32_t funct3, uint32_t opcode) {
EmitCA(funct6, rd_rs1_s, funct2, funct3, opcode);
}
// CB-type instruction:
//
// 15 13 12 10 9 7 6 2 1 0
// ---------------------------------
// [ . . | . . | . . | . . . . | . ]
// [func3 offset rs1' offset op ]
// ---------------------------------
//
void EmitCB(uint32_t funct3, int32_t offset8, XRegister rd_rs1_s, uint32_t opcode) {
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<8>(offset8));
DCHECK(IsShortReg(rd_rs1_s)) << rd_rs1_s;
DCHECK(IsUint<2>(opcode));
uint32_t offsetH3 = BitFieldExtract<uint32_t>(offset8, 5, 3);
uint32_t offsetL5 = BitFieldExtract<uint32_t>(offset8, 0, 5);
uint32_t encoding =
funct3 << 13 | offsetH3 << 10 | EncodeShortReg(rd_rs1_s) << 7 | offsetL5 << 2 | opcode;
Emit16(encoding);
}
// Wrappers for EmitCB with different imm bit permutation
void EmitCBBranch(uint32_t funct3, int32_t offset, XRegister rs1_s, uint32_t opcode) {
DCHECK(IsInt<9>(offset));
DCHECK_ALIGNED(offset, 2);
uint32_t u_offset = static_cast<uint32_t>(offset);
// offset[8|4:3]
uint32_t offsetH3 = (BitFieldExtract(u_offset, 8, 1) << 2) |
BitFieldExtract(u_offset, 3, 2);
// offset[7:6|2:1|5]
uint32_t offsetL5 = (BitFieldExtract(u_offset, 6, 2) << 3) |
(BitFieldExtract(u_offset, 1, 2) << 1) |
BitFieldExtract(u_offset, 5, 1);
EmitCB(funct3, BitFieldInsert(offsetL5, offsetH3, 5, 3), rs1_s, opcode);
}
void EmitCBArithmetic(
uint32_t funct3, uint32_t funct2, uint32_t imm, XRegister rd_s, uint32_t opcode) {
uint32_t imm_5 = BitFieldExtract(imm, 5, 1);
uint32_t immH3 = BitFieldInsert(funct2, imm_5, 2, 1);
uint32_t immL5 = BitFieldExtract(imm, 0, 5);
EmitCB(funct3, BitFieldInsert(immL5, immH3, 5, 3), rd_s, opcode);
}
// CJ-type instruction:
//
// 15 13 12 2 1 0
// ---------------------------------
// [ . . | . . . . . . . . . . | . ]
// [func3 jump target 11 op ]
// ---------------------------------
//
void EmitCJ(uint32_t funct3, int32_t offset, uint32_t opcode) {
DCHECK_ALIGNED(offset, 2);
DCHECK(IsInt<12>(offset)) << offset;
DCHECK(IsUint<3>(funct3));
DCHECK(IsUint<2>(opcode));
uint32_t uoffset = static_cast<uint32_t>(offset);
// offset[11|4|9:8|10|6|7|3:1|5]
uint32_t jumpt = (BitFieldExtract(uoffset, 11, 1) << 10) |
(BitFieldExtract(uoffset, 4, 1) << 9) |
(BitFieldExtract(uoffset, 8, 2) << 7) |
(BitFieldExtract(uoffset, 10, 1) << 6) |
(BitFieldExtract(uoffset, 6, 1) << 5) |
(BitFieldExtract(uoffset, 7, 1) << 4) |
(BitFieldExtract(uoffset, 1, 3) << 1) |
BitFieldExtract(uoffset, 5, 1);
DCHECK(IsUint<11>(jumpt));
uint32_t encoding = funct3 << 13 | jumpt << 2 | opcode;
Emit16(encoding);
}
ArenaVector<Branch> branches_;
// For checking that we finalize the code only once.
bool finalized_;
// Whether appending instructions at the end of the buffer or overwriting the existing ones.
bool overwriting_;
// The current overwrite location.
uint32_t overwrite_location_;
// Use `std::deque<>` for literal labels to allow insertions at the end
// without invalidating pointers and references to existing elements.
ArenaDeque<Literal> literals_;
ArenaDeque<Literal> long_literals_; // 64-bit literals separated for alignment reasons.
// Jump table list.
ArenaDeque<JumpTable> jump_tables_;
// Data for `GetAdjustedPosition()`, see the description there.
uint32_t last_position_adjustment_;
uint32_t last_old_position_;
uint32_t last_branch_id_;
Riscv64ExtensionMask enabled_extensions_;
uint32_t available_scratch_core_registers_;
uint32_t available_scratch_fp_registers_;
static constexpr uint32_t kXlen = 64;
friend class ScopedExtensionsOverride;
friend class ScratchRegisterScope;
DISALLOW_COPY_AND_ASSIGN(Riscv64Assembler);
};
class ScopedExtensionsOverride {
public:
ScopedExtensionsOverride(Riscv64Assembler* assembler, Riscv64ExtensionMask enabled_extensions)
: assembler_(assembler),
old_enabled_extensions_(assembler->enabled_extensions_) {
assembler->enabled_extensions_ = enabled_extensions;
}
~ScopedExtensionsOverride() {
assembler_->enabled_extensions_ = old_enabled_extensions_;
}
protected:
static Riscv64ExtensionMask GetEnabledExtensions(Riscv64Assembler* assembler) {
return assembler->enabled_extensions_;
}
private:
Riscv64Assembler* const assembler_;
const Riscv64ExtensionMask old_enabled_extensions_;
};
template <Riscv64ExtensionMask kMask>
class ScopedExtensionsRestriction : public ScopedExtensionsOverride {
public:
explicit ScopedExtensionsRestriction(Riscv64Assembler* assembler)
: ScopedExtensionsOverride(assembler, GetEnabledExtensions(assembler) & kMask) {}
};
template <Riscv64ExtensionMask kMask>
class ScopedExtensionsInclusion : public ScopedExtensionsOverride {
public:
explicit ScopedExtensionsInclusion(Riscv64Assembler* assembler)
: ScopedExtensionsOverride(assembler, GetEnabledExtensions(assembler) | kMask) {}
};
template <Riscv64ExtensionMask kMask>
using ScopedExtensionsExclusion = ScopedExtensionsRestriction<~kMask>;
using ScopedLrScExtensionsRestriction =
ScopedExtensionsRestriction<kRiscv64LrScSequenceExtensionsMask>;
class ScratchRegisterScope {
public:
explicit ScratchRegisterScope(Riscv64Assembler* assembler)
: assembler_(assembler),
old_available_scratch_core_registers_(assembler->available_scratch_core_registers_),
old_available_scratch_fp_registers_(assembler->available_scratch_fp_registers_) {}
~ScratchRegisterScope() {
assembler_->available_scratch_core_registers_ = old_available_scratch_core_registers_;
assembler_->available_scratch_fp_registers_ = old_available_scratch_fp_registers_;
}
// Alocate a scratch `XRegister`. There must be an available register to allocate.
XRegister AllocateXRegister() {
CHECK_NE(assembler_->available_scratch_core_registers_, 0u);
// Allocate the highest available scratch register (prefer TMP(T6) over TMP2(T5)).
uint32_t reg_num = (BitSizeOf(assembler_->available_scratch_core_registers_) - 1u) -
CLZ(assembler_->available_scratch_core_registers_);
assembler_->available_scratch_core_registers_ &= ~(1u << reg_num);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfXRegisters));
return enum_cast<XRegister>(reg_num);
}
// Free a previously unavailable core register for use as a scratch register.
// This can be an arbitrary register, not necessarly the usual `TMP` or `TMP2`.
void FreeXRegister(XRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfXRegisters));
CHECK_EQ((1u << reg_num) & assembler_->available_scratch_core_registers_, 0u);
assembler_->available_scratch_core_registers_ |= 1u << reg_num;
}
// The number of available scratch core registers.
size_t AvailableXRegisters() {
return POPCOUNT(assembler_->available_scratch_core_registers_);
}
// Make sure a core register is available for use as a scratch register.
void IncludeXRegister(XRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfXRegisters));
assembler_->available_scratch_core_registers_ |= 1u << reg_num;
}
// Make sure a core register is not available for use as a scratch register.
void ExcludeXRegister(XRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfXRegisters));
assembler_->available_scratch_core_registers_ &= ~(1u << reg_num);
}
// Alocate a scratch `FRegister`. There must be an available register to allocate.
FRegister AllocateFRegister() {
CHECK_NE(assembler_->available_scratch_fp_registers_, 0u);
// Allocate the highest available scratch register (same as for core registers).
uint32_t reg_num = (BitSizeOf(assembler_->available_scratch_fp_registers_) - 1u) -
CLZ(assembler_->available_scratch_fp_registers_);
assembler_->available_scratch_fp_registers_ &= ~(1u << reg_num);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfFRegisters));
return enum_cast<FRegister>(reg_num);
}
// Free a previously unavailable FP register for use as a scratch register.
// This can be an arbitrary register, not necessarly the usual `FTMP`.
void FreeFRegister(FRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfFRegisters));
CHECK_EQ((1u << reg_num) & assembler_->available_scratch_fp_registers_, 0u);
assembler_->available_scratch_fp_registers_ |= 1u << reg_num;
}
// The number of available scratch FP registers.
size_t AvailableFRegisters() {
return POPCOUNT(assembler_->available_scratch_fp_registers_);
}
// Make sure an FP register is available for use as a scratch register.
void IncludeFRegister(FRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfFRegisters));
assembler_->available_scratch_fp_registers_ |= 1u << reg_num;
}
// Make sure an FP register is not available for use as a scratch register.
void ExcludeFRegister(FRegister reg) {
uint32_t reg_num = enum_cast<uint32_t>(reg);
DCHECK_LT(reg_num, enum_cast<uint32_t>(kNumberOfFRegisters));
assembler_->available_scratch_fp_registers_ &= ~(1u << reg_num);
}
private:
Riscv64Assembler* const assembler_;
const uint32_t old_available_scratch_core_registers_;
const uint32_t old_available_scratch_fp_registers_;
DISALLOW_COPY_AND_ASSIGN(ScratchRegisterScope);
};
constexpr Riscv64ExtensionMask kRiscv64CompressedExtensionsMask =
Riscv64ExtensionBit(Riscv64Extension::kZca) |
Riscv64ExtensionBit(Riscv64Extension::kZcd) |
Riscv64ExtensionBit(Riscv64Extension::kZcb);
using ScopedNoCInstructions = ScopedExtensionsExclusion<kRiscv64CompressedExtensionsMask>;
using ScopedUseCInstructions = ScopedExtensionsInclusion<kRiscv64CompressedExtensionsMask>;
} // namespace riscv64
} // namespace art
#endif // ART_COMPILER_UTILS_RISCV64_ASSEMBLER_RISCV64_H_
|