| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "init.h" |
| |
| #include <ctype.h> |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <libgen.h> |
| #include <paths.h> |
| #include <signal.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/epoll.h> |
| #include <sys/mount.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/sysmacros.h> |
| #include <sys/types.h> |
| #include <sys/un.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| |
| #include <selinux/selinux.h> |
| #include <selinux/label.h> |
| #include <selinux/android.h> |
| |
| #include <android-base/chrono_utils.h> |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <libavb/libavb.h> |
| #include <private/android_filesystem_config.h> |
| |
| #include <fstream> |
| #include <memory> |
| #include <set> |
| #include <vector> |
| |
| #include "action.h" |
| #include "bootchart.h" |
| #include "devices.h" |
| #include "fs_mgr.h" |
| #include "fs_mgr_avb.h" |
| #include "import_parser.h" |
| #include "init_parser.h" |
| #include "keychords.h" |
| #include "log.h" |
| #include "property_service.h" |
| #include "service.h" |
| #include "signal_handler.h" |
| #include "ueventd.h" |
| #include "util.h" |
| #include "watchdogd.h" |
| |
| using android::base::boot_clock; |
| using android::base::GetProperty; |
| using android::base::StringPrintf; |
| |
| struct selabel_handle *sehandle; |
| struct selabel_handle *sehandle_prop; |
| |
| static int property_triggers_enabled = 0; |
| |
| static char qemu[32]; |
| |
| std::string default_console = "/dev/console"; |
| static time_t process_needs_restart_at; |
| |
| const char *ENV[32]; |
| |
| static int epoll_fd = -1; |
| |
| static std::unique_ptr<Timer> waiting_for_prop(nullptr); |
| static std::string wait_prop_name; |
| static std::string wait_prop_value; |
| |
| void register_epoll_handler(int fd, void (*fn)()) { |
| epoll_event ev; |
| ev.events = EPOLLIN; |
| ev.data.ptr = reinterpret_cast<void*>(fn); |
| if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) { |
| PLOG(ERROR) << "epoll_ctl failed"; |
| } |
| } |
| |
| /* add_environment - add "key=value" to the current environment */ |
| int add_environment(const char *key, const char *val) |
| { |
| size_t n; |
| size_t key_len = strlen(key); |
| |
| /* The last environment entry is reserved to terminate the list */ |
| for (n = 0; n < (arraysize(ENV) - 1); n++) { |
| |
| /* Delete any existing entry for this key */ |
| if (ENV[n] != NULL) { |
| size_t entry_key_len = strcspn(ENV[n], "="); |
| if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) { |
| free((char*)ENV[n]); |
| ENV[n] = NULL; |
| } |
| } |
| |
| /* Add entry if a free slot is available */ |
| if (ENV[n] == NULL) { |
| char* entry; |
| asprintf(&entry, "%s=%s", key, val); |
| ENV[n] = entry; |
| return 0; |
| } |
| } |
| |
| LOG(ERROR) << "No env. room to store: '" << key << "':'" << val << "'"; |
| |
| return -1; |
| } |
| |
| bool start_waiting_for_property(const char *name, const char *value) |
| { |
| if (waiting_for_prop) { |
| return false; |
| } |
| if (GetProperty(name, "") != value) { |
| // Current property value is not equal to expected value |
| wait_prop_name = name; |
| wait_prop_value = value; |
| waiting_for_prop.reset(new Timer()); |
| } else { |
| LOG(INFO) << "start_waiting_for_property(\"" |
| << name << "\", \"" << value << "\"): already set"; |
| } |
| return true; |
| } |
| |
| void property_changed(const char *name, const char *value) |
| { |
| if (property_triggers_enabled) |
| ActionManager::GetInstance().QueuePropertyTrigger(name, value); |
| if (waiting_for_prop) { |
| if (wait_prop_name == name && wait_prop_value == value) { |
| wait_prop_name.clear(); |
| wait_prop_value.clear(); |
| LOG(INFO) << "Wait for property took " << *waiting_for_prop; |
| waiting_for_prop.reset(); |
| } |
| } |
| } |
| |
| static void restart_processes() |
| { |
| process_needs_restart_at = 0; |
| ServiceManager::GetInstance().ForEachServiceWithFlags(SVC_RESTARTING, [](Service* s) { |
| s->RestartIfNeeded(&process_needs_restart_at); |
| }); |
| } |
| |
| void handle_control_message(const std::string& msg, const std::string& name) { |
| Service* svc = ServiceManager::GetInstance().FindServiceByName(name); |
| if (svc == nullptr) { |
| LOG(ERROR) << "no such service '" << name << "'"; |
| return; |
| } |
| |
| if (msg == "start") { |
| svc->Start(); |
| } else if (msg == "stop") { |
| svc->Stop(); |
| } else if (msg == "restart") { |
| svc->Restart(); |
| } else { |
| LOG(ERROR) << "unknown control msg '" << msg << "'"; |
| } |
| } |
| |
| static int wait_for_coldboot_done_action(const std::vector<std::string>& args) { |
| Timer t; |
| |
| LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "..."; |
| |
| // Historically we had a 1s timeout here because we weren't otherwise |
| // tracking boot time, and many OEMs made their sepolicy regular |
| // expressions too expensive (http://b/19899875). |
| |
| // Now we're tracking boot time, just log the time taken to a system |
| // property. We still panic if it takes more than a minute though, |
| // because any build that slow isn't likely to boot at all, and we'd |
| // rather any test lab devices fail back to the bootloader. |
| if (wait_for_file(COLDBOOT_DONE, 60s) < 0) { |
| LOG(ERROR) << "Timed out waiting for " COLDBOOT_DONE; |
| panic(); |
| } |
| |
| property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration_ms()).c_str()); |
| return 0; |
| } |
| |
| /* |
| * Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed |
| * by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom. |
| * Does nothing if Hardware RNG is not present. |
| * |
| * Since we don't yet trust the quality of Hardware RNG, these bytes are not |
| * mixed into the primary pool of Linux RNG and the entropy estimate is left |
| * unmodified. |
| * |
| * If the HW RNG device /dev/hw_random is present, we require that at least |
| * 512 bytes read from it are written into Linux RNG. QA is expected to catch |
| * devices/configurations where these I/O operations are blocking for a long |
| * time. We do not reboot or halt on failures, as this is a best-effort |
| * attempt. |
| */ |
| static int mix_hwrng_into_linux_rng_action(const std::vector<std::string>& args) |
| { |
| int result = -1; |
| int hwrandom_fd = -1; |
| int urandom_fd = -1; |
| char buf[512]; |
| ssize_t chunk_size; |
| size_t total_bytes_written = 0; |
| |
| hwrandom_fd = TEMP_FAILURE_RETRY( |
| open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); |
| if (hwrandom_fd == -1) { |
| if (errno == ENOENT) { |
| LOG(ERROR) << "/dev/hw_random not found"; |
| // It's not an error to not have a Hardware RNG. |
| result = 0; |
| } else { |
| PLOG(ERROR) << "Failed to open /dev/hw_random"; |
| } |
| goto ret; |
| } |
| |
| urandom_fd = TEMP_FAILURE_RETRY( |
| open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); |
| if (urandom_fd == -1) { |
| PLOG(ERROR) << "Failed to open /dev/urandom"; |
| goto ret; |
| } |
| |
| while (total_bytes_written < sizeof(buf)) { |
| chunk_size = TEMP_FAILURE_RETRY( |
| read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written)); |
| if (chunk_size == -1) { |
| PLOG(ERROR) << "Failed to read from /dev/hw_random"; |
| goto ret; |
| } else if (chunk_size == 0) { |
| LOG(ERROR) << "Failed to read from /dev/hw_random: EOF"; |
| goto ret; |
| } |
| |
| chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size)); |
| if (chunk_size == -1) { |
| PLOG(ERROR) << "Failed to write to /dev/urandom"; |
| goto ret; |
| } |
| total_bytes_written += chunk_size; |
| } |
| |
| LOG(INFO) << "Mixed " << total_bytes_written << " bytes from /dev/hw_random into /dev/urandom"; |
| result = 0; |
| |
| ret: |
| if (hwrandom_fd != -1) { |
| close(hwrandom_fd); |
| } |
| if (urandom_fd != -1) { |
| close(urandom_fd); |
| } |
| return result; |
| } |
| |
| static void security_failure() { |
| LOG(ERROR) << "Security failure..."; |
| panic(); |
| } |
| |
| static bool set_highest_available_option_value(std::string path, int min, int max) |
| { |
| std::ifstream inf(path, std::fstream::in); |
| if (!inf) { |
| LOG(ERROR) << "Cannot open for reading: " << path; |
| return false; |
| } |
| |
| int current = max; |
| while (current >= min) { |
| // try to write out new value |
| std::string str_val = std::to_string(current); |
| std::ofstream of(path, std::fstream::out); |
| if (!of) { |
| LOG(ERROR) << "Cannot open for writing: " << path; |
| return false; |
| } |
| of << str_val << std::endl; |
| of.close(); |
| |
| // check to make sure it was recorded |
| inf.seekg(0); |
| std::string str_rec; |
| inf >> str_rec; |
| if (str_val.compare(str_rec) == 0) { |
| break; |
| } |
| current--; |
| } |
| inf.close(); |
| |
| if (current < min) { |
| LOG(ERROR) << "Unable to set minimum option value " << min << " in " << path; |
| return false; |
| } |
| return true; |
| } |
| |
| #define MMAP_RND_PATH "/proc/sys/vm/mmap_rnd_bits" |
| #define MMAP_RND_COMPAT_PATH "/proc/sys/vm/mmap_rnd_compat_bits" |
| |
| /* __attribute__((unused)) due to lack of mips support: see mips block |
| * in set_mmap_rnd_bits_action */ |
| static bool __attribute__((unused)) set_mmap_rnd_bits_min(int start, int min, bool compat) { |
| std::string path; |
| if (compat) { |
| path = MMAP_RND_COMPAT_PATH; |
| } else { |
| path = MMAP_RND_PATH; |
| } |
| |
| return set_highest_available_option_value(path, min, start); |
| } |
| |
| /* |
| * Set /proc/sys/vm/mmap_rnd_bits and potentially |
| * /proc/sys/vm/mmap_rnd_compat_bits to the maximum supported values. |
| * Returns -1 if unable to set these to an acceptable value. |
| * |
| * To support this sysctl, the following upstream commits are needed: |
| * |
| * d07e22597d1d mm: mmap: add new /proc tunable for mmap_base ASLR |
| * e0c25d958f78 arm: mm: support ARCH_MMAP_RND_BITS |
| * 8f0d3aa9de57 arm64: mm: support ARCH_MMAP_RND_BITS |
| * 9e08f57d684a x86: mm: support ARCH_MMAP_RND_BITS |
| * ec9ee4acd97c drivers: char: random: add get_random_long() |
| * 5ef11c35ce86 mm: ASLR: use get_random_long() |
| */ |
| static int set_mmap_rnd_bits_action(const std::vector<std::string>& args) |
| { |
| int ret = -1; |
| |
| /* values are arch-dependent */ |
| #if defined(__aarch64__) |
| /* arm64 supports 18 - 33 bits depending on pagesize and VA_SIZE */ |
| if (set_mmap_rnd_bits_min(33, 24, false) |
| && set_mmap_rnd_bits_min(16, 16, true)) { |
| ret = 0; |
| } |
| #elif defined(__x86_64__) |
| /* x86_64 supports 28 - 32 bits */ |
| if (set_mmap_rnd_bits_min(32, 32, false) |
| && set_mmap_rnd_bits_min(16, 16, true)) { |
| ret = 0; |
| } |
| #elif defined(__arm__) || defined(__i386__) |
| /* check to see if we're running on 64-bit kernel */ |
| bool h64 = !access(MMAP_RND_COMPAT_PATH, F_OK); |
| /* supported 32-bit architecture must have 16 bits set */ |
| if (set_mmap_rnd_bits_min(16, 16, h64)) { |
| ret = 0; |
| } |
| #elif defined(__mips__) || defined(__mips64__) |
| // TODO: add mips support b/27788820 |
| ret = 0; |
| #else |
| LOG(ERROR) << "Unknown architecture"; |
| #endif |
| |
| if (ret == -1) { |
| LOG(ERROR) << "Unable to set adequate mmap entropy value!"; |
| security_failure(); |
| } |
| return ret; |
| } |
| |
| #define KPTR_RESTRICT_PATH "/proc/sys/kernel/kptr_restrict" |
| #define KPTR_RESTRICT_MINVALUE 2 |
| #define KPTR_RESTRICT_MAXVALUE 4 |
| |
| /* Set kptr_restrict to the highest available level. |
| * |
| * Aborts if unable to set this to an acceptable value. |
| */ |
| static int set_kptr_restrict_action(const std::vector<std::string>& args) |
| { |
| std::string path = KPTR_RESTRICT_PATH; |
| |
| if (!set_highest_available_option_value(path, KPTR_RESTRICT_MINVALUE, KPTR_RESTRICT_MAXVALUE)) { |
| LOG(ERROR) << "Unable to set adequate kptr_restrict value!"; |
| security_failure(); |
| } |
| return 0; |
| } |
| |
| static int keychord_init_action(const std::vector<std::string>& args) |
| { |
| keychord_init(); |
| return 0; |
| } |
| |
| static int console_init_action(const std::vector<std::string>& args) |
| { |
| std::string console = GetProperty("ro.boot.console", ""); |
| if (!console.empty()) { |
| default_console = "/dev/" + console; |
| } |
| return 0; |
| } |
| |
| static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) { |
| if (key.empty()) return; |
| |
| if (for_emulator) { |
| // In the emulator, export any kernel option with the "ro.kernel." prefix. |
| property_set(StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str()); |
| return; |
| } |
| |
| if (key == "qemu") { |
| strlcpy(qemu, value.c_str(), sizeof(qemu)); |
| } else if (android::base::StartsWith(key, "androidboot.")) { |
| property_set(StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str()); |
| } |
| } |
| |
| static void export_oem_lock_status() { |
| if (!android::base::GetBoolProperty("ro.oem_unlock_supported", false)) { |
| return; |
| } |
| |
| std::string value = GetProperty("ro.boot.verifiedbootstate", ""); |
| |
| if (!value.empty()) { |
| property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1"); |
| } |
| } |
| |
| static void export_kernel_boot_props() { |
| struct { |
| const char *src_prop; |
| const char *dst_prop; |
| const char *default_value; |
| } prop_map[] = { |
| { "ro.boot.serialno", "ro.serialno", "", }, |
| { "ro.boot.mode", "ro.bootmode", "unknown", }, |
| { "ro.boot.baseband", "ro.baseband", "unknown", }, |
| { "ro.boot.bootloader", "ro.bootloader", "unknown", }, |
| { "ro.boot.hardware", "ro.hardware", "unknown", }, |
| { "ro.boot.revision", "ro.revision", "0", }, |
| }; |
| for (size_t i = 0; i < arraysize(prop_map); i++) { |
| std::string value = GetProperty(prop_map[i].src_prop, ""); |
| property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value); |
| } |
| } |
| |
| /* Reads the content of device tree file into dt_value. |
| * Returns true if the read is success, false otherwise. |
| */ |
| static bool read_dt_file(const std::string& file_name, std::string* dt_value) { |
| if (android::base::ReadFileToString(file_name, dt_value)) { |
| if (!dt_value->empty()) { |
| dt_value->pop_back(); // Trim the trailing '\0' out. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static const std::string kAndroidDtDir("/proc/device-tree/firmware/android/"); |
| |
| static bool is_dt_value_expected(const std::string& dt_file_suffix, |
| const std::string& expected_value) { |
| std::string dt_value; |
| std::string file_name = kAndroidDtDir + dt_file_suffix; |
| |
| if (read_dt_file(file_name, &dt_value)) { |
| if (dt_value == expected_value) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static inline bool is_dt_compatible() { |
| return is_dt_value_expected("compatible", "android,firmware"); |
| } |
| |
| static inline bool is_dt_fstab_compatible() { |
| return is_dt_value_expected("fstab/compatible", "android,fstab"); |
| } |
| |
| static inline bool is_dt_vbmeta_compatible() { |
| return is_dt_value_expected("vbmeta/compatible", "android,vbmeta"); |
| } |
| |
| // Gets the vbmeta config from device tree. Specifically, the 'parts' and 'by_name_prefix'. |
| // /{ |
| // firmware { |
| // android { |
| // vbmeta { |
| // compatible = "android,vbmeta"; |
| // parts = "vbmeta,boot,system,vendor" |
| // by_name_prefix="/dev/block/platform/soc.0/f9824900.sdhci/by-name/" |
| // }; |
| // }; |
| // }; |
| // } |
| static bool get_vbmeta_config_from_dt(std::string* vbmeta_partitions, |
| std::string* device_file_by_name_prefix) { |
| std::string file_name = kAndroidDtDir + "vbmeta/parts"; |
| if (!read_dt_file(file_name, vbmeta_partitions)) return false; |
| |
| file_name = kAndroidDtDir + "vbmeta/by_name_prefix"; |
| if (!read_dt_file(file_name, device_file_by_name_prefix)) return false; |
| |
| return true; |
| } |
| |
| static void process_kernel_dt() { |
| if (!is_dt_compatible()) return; |
| |
| std::unique_ptr<DIR, int (*)(DIR*)> dir(opendir(kAndroidDtDir.c_str()), closedir); |
| if (!dir) return; |
| |
| std::string dt_file; |
| struct dirent *dp; |
| while ((dp = readdir(dir.get())) != NULL) { |
| if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) { |
| continue; |
| } |
| |
| std::string file_name = kAndroidDtDir + dp->d_name; |
| |
| android::base::ReadFileToString(file_name, &dt_file); |
| std::replace(dt_file.begin(), dt_file.end(), ',', '.'); |
| |
| std::string property_name = StringPrintf("ro.boot.%s", dp->d_name); |
| property_set(property_name.c_str(), dt_file.c_str()); |
| } |
| } |
| |
| static void process_kernel_cmdline() { |
| // The first pass does the common stuff, and finds if we are in qemu. |
| // The second pass is only necessary for qemu to export all kernel params |
| // as properties. |
| import_kernel_cmdline(false, import_kernel_nv); |
| if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv); |
| } |
| |
| static int property_enable_triggers_action(const std::vector<std::string>& args) |
| { |
| /* Enable property triggers. */ |
| property_triggers_enabled = 1; |
| return 0; |
| } |
| |
| static int queue_property_triggers_action(const std::vector<std::string>& args) |
| { |
| ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger"); |
| ActionManager::GetInstance().QueueAllPropertyTriggers(); |
| return 0; |
| } |
| |
| static void selinux_init_all_handles(void) |
| { |
| sehandle = selinux_android_file_context_handle(); |
| selinux_android_set_sehandle(sehandle); |
| sehandle_prop = selinux_android_prop_context_handle(); |
| } |
| |
| enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING }; |
| |
| static selinux_enforcing_status selinux_status_from_cmdline() { |
| selinux_enforcing_status status = SELINUX_ENFORCING; |
| |
| import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) { |
| if (key == "androidboot.selinux" && value == "permissive") { |
| status = SELINUX_PERMISSIVE; |
| } |
| }); |
| |
| return status; |
| } |
| |
| static bool selinux_is_enforcing(void) |
| { |
| if (ALLOW_PERMISSIVE_SELINUX) { |
| return selinux_status_from_cmdline() == SELINUX_ENFORCING; |
| } |
| return true; |
| } |
| |
| static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) { |
| |
| property_audit_data *d = reinterpret_cast<property_audit_data*>(data); |
| |
| if (!d || !d->name || !d->cr) { |
| LOG(ERROR) << "audit_callback invoked with null data arguments!"; |
| return 0; |
| } |
| |
| snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name, |
| d->cr->pid, d->cr->uid, d->cr->gid); |
| return 0; |
| } |
| |
| /* |
| * Forks, executes the provided program in the child, and waits for the completion in the parent. |
| * Child's stderr is captured and logged using LOG(ERROR). |
| * |
| * Returns true if the child exited with status code 0, returns false otherwise. |
| */ |
| static bool fork_execve_and_wait_for_completion(const char* filename, char* const argv[], |
| char* const envp[]) { |
| // Create a pipe used for redirecting child process's output. |
| // * pipe_fds[0] is the FD the parent will use for reading. |
| // * pipe_fds[1] is the FD the child will use for writing. |
| int pipe_fds[2]; |
| if (pipe(pipe_fds) == -1) { |
| PLOG(ERROR) << "Failed to create pipe"; |
| return false; |
| } |
| |
| pid_t child_pid = fork(); |
| if (child_pid == -1) { |
| PLOG(ERROR) << "Failed to fork for " << filename; |
| return false; |
| } |
| |
| if (child_pid == 0) { |
| // fork succeeded -- this is executing in the child process |
| |
| // Close the pipe FD not used by this process |
| TEMP_FAILURE_RETRY(close(pipe_fds[0])); |
| |
| // Redirect stderr to the pipe FD provided by the parent |
| if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) { |
| PLOG(ERROR) << "Failed to redirect stderr of " << filename; |
| _exit(127); |
| return false; |
| } |
| TEMP_FAILURE_RETRY(close(pipe_fds[1])); |
| |
| if (execve(filename, argv, envp) == -1) { |
| PLOG(ERROR) << "Failed to execve " << filename; |
| return false; |
| } |
| // Unreachable because execve will have succeeded and replaced this code |
| // with child process's code. |
| _exit(127); |
| return false; |
| } else { |
| // fork succeeded -- this is executing in the original/parent process |
| |
| // Close the pipe FD not used by this process |
| TEMP_FAILURE_RETRY(close(pipe_fds[1])); |
| |
| // Log the redirected output of the child process. |
| // It's unfortunate that there's no standard way to obtain an istream for a file descriptor. |
| // As a result, we're buffering all output and logging it in one go at the end of the |
| // invocation, instead of logging it as it comes in. |
| const int child_out_fd = pipe_fds[0]; |
| std::string child_output; |
| if (!android::base::ReadFdToString(child_out_fd, &child_output)) { |
| PLOG(ERROR) << "Failed to capture full output of " << filename; |
| } |
| TEMP_FAILURE_RETRY(close(child_out_fd)); |
| if (!child_output.empty()) { |
| // Log captured output, line by line, because LOG expects to be invoked for each line |
| std::istringstream in(child_output); |
| std::string line; |
| while (std::getline(in, line)) { |
| LOG(ERROR) << filename << ": " << line; |
| } |
| } |
| |
| // Wait for child to terminate |
| int status; |
| if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) { |
| PLOG(ERROR) << "Failed to wait for " << filename; |
| return false; |
| } |
| |
| if (WIFEXITED(status)) { |
| int status_code = WEXITSTATUS(status); |
| if (status_code == 0) { |
| return true; |
| } else { |
| LOG(ERROR) << filename << " exited with status " << status_code; |
| } |
| } else if (WIFSIGNALED(status)) { |
| LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status); |
| } else if (WIFSTOPPED(status)) { |
| LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status); |
| } else { |
| LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status; |
| } |
| |
| return false; |
| } |
| } |
| |
| static bool read_first_line(const char* file, std::string* line) { |
| line->clear(); |
| |
| std::string contents; |
| if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) { |
| return false; |
| } |
| std::istringstream in(contents); |
| std::getline(in, *line); |
| return true; |
| } |
| |
| static bool selinux_find_precompiled_split_policy(std::string* file) { |
| file->clear(); |
| |
| static constexpr const char precompiled_sepolicy[] = "/vendor/etc/selinux/precompiled_sepolicy"; |
| if (access(precompiled_sepolicy, R_OK) == -1) { |
| return false; |
| } |
| std::string actual_plat_id; |
| if (!read_first_line("/system/etc/selinux/plat_and_mapping_sepolicy.cil.sha256", |
| &actual_plat_id)) { |
| PLOG(INFO) << "Failed to read " |
| "/system/etc/selinux/plat_and_mapping_sepolicy.cil.sha256"; |
| return false; |
| } |
| std::string precompiled_plat_id; |
| if (!read_first_line("/vendor/etc/selinux/precompiled_sepolicy.plat_and_mapping.sha256", |
| &precompiled_plat_id)) { |
| PLOG(INFO) << "Failed to read " |
| "/vendor/etc/selinux/" |
| "precompiled_sepolicy.plat_and_mapping.sha256"; |
| return false; |
| } |
| if ((actual_plat_id.empty()) || (actual_plat_id != precompiled_plat_id)) { |
| return false; |
| } |
| |
| *file = precompiled_sepolicy; |
| return true; |
| } |
| |
| static constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil"; |
| |
| static bool selinux_is_split_policy_device() { return access(plat_policy_cil_file, R_OK) != -1; } |
| |
| /* |
| * Loads SELinux policy split across platform/system and non-platform/vendor files. |
| * |
| * Returns true upon success, false otherwise (failure cause is logged). |
| */ |
| static bool selinux_load_split_policy() { |
| // IMPLEMENTATION NOTE: Split policy consists of three CIL files: |
| // * platform -- policy needed due to logic contained in the system image, |
| // * non-platform -- policy needed due to logic contained in the vendor image, |
| // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy |
| // with newer versions of platform policy. |
| // |
| // secilc is invoked to compile the above three policy files into a single monolithic policy |
| // file. This file is then loaded into the kernel. |
| |
| // Load precompiled policy from vendor image, if a matching policy is found there. The policy |
| // must match the platform policy on the system image. |
| std::string precompiled_sepolicy_file; |
| if (selinux_find_precompiled_split_policy(&precompiled_sepolicy_file)) { |
| android::base::unique_fd fd( |
| open(precompiled_sepolicy_file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)); |
| if (fd != -1) { |
| if (selinux_android_load_policy_from_fd(fd, precompiled_sepolicy_file.c_str()) < 0) { |
| LOG(ERROR) << "Failed to load SELinux policy from " << precompiled_sepolicy_file; |
| return false; |
| } |
| return true; |
| } |
| } |
| // No suitable precompiled policy could be loaded |
| |
| LOG(INFO) << "Compiling SELinux policy"; |
| |
| // Determine the highest policy language version supported by the kernel |
| set_selinuxmnt("/sys/fs/selinux"); |
| int max_policy_version = security_policyvers(); |
| if (max_policy_version == -1) { |
| PLOG(ERROR) << "Failed to determine highest policy version supported by kernel"; |
| return false; |
| } |
| |
| // We store the output of the compilation on /dev because this is the most convenient tmpfs |
| // storage mount available this early in the boot sequence. |
| char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX"; |
| android::base::unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC)); |
| if (compiled_sepolicy_fd < 0) { |
| PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy; |
| return false; |
| } |
| |
| // clang-format off |
| const char* compile_args[] = { |
| "/system/bin/secilc", |
| plat_policy_cil_file, |
| "-M", "true", |
| // Target the highest policy language version supported by the kernel |
| "-c", std::to_string(max_policy_version).c_str(), |
| "/system/etc/selinux/mapping_sepolicy.cil", |
| "/vendor/etc/selinux/nonplat_sepolicy.cil", |
| "-o", compiled_sepolicy, |
| // We don't care about file_contexts output by the compiler |
| "-f", "/sys/fs/selinux/null", // /dev/null is not yet available |
| nullptr}; |
| // clang-format on |
| |
| if (!fork_execve_and_wait_for_completion(compile_args[0], (char**)compile_args, (char**)ENV)) { |
| unlink(compiled_sepolicy); |
| return false; |
| } |
| unlink(compiled_sepolicy); |
| |
| LOG(INFO) << "Loading compiled SELinux policy"; |
| if (selinux_android_load_policy_from_fd(compiled_sepolicy_fd, compiled_sepolicy) < 0) { |
| LOG(ERROR) << "Failed to load SELinux policy from " << compiled_sepolicy; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Loads SELinux policy from a monolithic file. |
| * |
| * Returns true upon success, false otherwise (failure cause is logged). |
| */ |
| static bool selinux_load_monolithic_policy() { |
| LOG(VERBOSE) << "Loading SELinux policy from monolithic file"; |
| if (selinux_android_load_policy() < 0) { |
| PLOG(ERROR) << "Failed to load monolithic SELinux policy"; |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Loads SELinux policy into the kernel. |
| * |
| * Returns true upon success, false otherwise (failure cause is logged). |
| */ |
| static bool selinux_load_policy() { |
| return selinux_is_split_policy_device() ? selinux_load_split_policy() |
| : selinux_load_monolithic_policy(); |
| } |
| |
| static void selinux_initialize(bool in_kernel_domain) { |
| Timer t; |
| |
| selinux_callback cb; |
| cb.func_log = selinux_klog_callback; |
| selinux_set_callback(SELINUX_CB_LOG, cb); |
| cb.func_audit = audit_callback; |
| selinux_set_callback(SELINUX_CB_AUDIT, cb); |
| |
| if (in_kernel_domain) { |
| LOG(INFO) << "Loading SELinux policy"; |
| if (!selinux_load_policy()) { |
| panic(); |
| } |
| |
| bool kernel_enforcing = (security_getenforce() == 1); |
| bool is_enforcing = selinux_is_enforcing(); |
| if (kernel_enforcing != is_enforcing) { |
| if (security_setenforce(is_enforcing)) { |
| PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false"); |
| security_failure(); |
| } |
| } |
| |
| if (!write_file("/sys/fs/selinux/checkreqprot", "0")) { |
| security_failure(); |
| } |
| |
| // init's first stage can't set properties, so pass the time to the second stage. |
| setenv("INIT_SELINUX_TOOK", std::to_string(t.duration_ms()).c_str(), 1); |
| } else { |
| selinux_init_all_handles(); |
| } |
| } |
| |
| // The files and directories that were created before initial sepolicy load |
| // need to have their security context restored to the proper value. |
| // This must happen before /dev is populated by ueventd. |
| static void selinux_restore_context() { |
| LOG(INFO) << "Running restorecon..."; |
| restorecon("/dev"); |
| restorecon("/dev/kmsg"); |
| if constexpr (WORLD_WRITABLE_KMSG) { |
| restorecon("/dev/kmsg_debug"); |
| } |
| restorecon("/dev/socket"); |
| restorecon("/dev/random"); |
| restorecon("/dev/urandom"); |
| restorecon("/dev/__properties__"); |
| restorecon("/plat_property_contexts"); |
| restorecon("/nonplat_property_contexts"); |
| restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE); |
| restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE); |
| restorecon("/dev/device-mapper"); |
| } |
| |
| // Set the UDC controller for the ConfigFS USB Gadgets. |
| // Read the UDC controller in use from "/sys/class/udc". |
| // In case of multiple UDC controllers select the first one. |
| static void set_usb_controller() { |
| std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir); |
| if (!dir) return; |
| |
| dirent* dp; |
| while ((dp = readdir(dir.get())) != nullptr) { |
| if (dp->d_name[0] == '.') continue; |
| |
| property_set("sys.usb.controller", dp->d_name); |
| break; |
| } |
| } |
| |
| // Creates "/dev/block/dm-XX" for dm-verity by running coldboot on /sys/block/dm-XX. |
| static void device_init_dm_device(const std::string& dm_device) { |
| const std::string device_name(basename(dm_device.c_str())); |
| const std::string syspath = "/sys/block/" + device_name; |
| |
| device_init(syspath.c_str(), [&](uevent* uevent) -> coldboot_action_t { |
| if (uevent->device_name == device_name) { |
| LOG(VERBOSE) << "early_mount: creating dm-verity device : " << dm_device; |
| return COLDBOOT_STOP; |
| } |
| return COLDBOOT_CONTINUE; |
| }); |
| device_close(); |
| } |
| |
| static bool vboot_1_0_mount_partitions(const std::vector<fstab_rec*>& fstab_recs) { |
| if (fstab_recs.empty()) return false; |
| |
| for (auto rec : fstab_recs) { |
| bool need_create_dm_device = false; |
| if (fs_mgr_is_verified(rec)) { |
| // setup verity and create the dm-XX block device |
| // needed to mount this partition |
| int ret = fs_mgr_setup_verity(rec, false /* wait_for_verity_dev */); |
| if (ret == FS_MGR_SETUP_VERITY_DISABLED) { |
| LOG(INFO) << "verity disabled for '" << rec->mount_point << "'"; |
| } else if (ret == FS_MGR_SETUP_VERITY_SUCCESS) { |
| need_create_dm_device = true; |
| } else { |
| PLOG(ERROR) << "early_mount: failed to setup verity for '" << rec->mount_point |
| << "'"; |
| return false; |
| } |
| } |
| if (need_create_dm_device) { |
| // The exact block device name (rec->blk_device) is changed to "/dev/block/dm-XX". |
| // Need to create it because ueventd isn't started during early mount. |
| device_init_dm_device(rec->blk_device); |
| } |
| if (fs_mgr_do_mount_one(rec)) { |
| PLOG(ERROR) << "early_mount: failed to mount '" << rec->mount_point << "'"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool vboot_2_0_mount_partitions(const std::vector<fstab_rec*>& fstab_recs, |
| const std::string& device_file_by_name_prefix) { |
| if (fstab_recs.empty()) return false; |
| |
| FsManagerAvbUniquePtr avb_handle = FsManagerAvbHandle::Open(device_file_by_name_prefix); |
| if (!avb_handle) { |
| LOG(INFO) << "Failed to Open FsManagerAvbHandle"; |
| return false; |
| } |
| |
| for (auto rec : fstab_recs) { |
| bool need_create_dm_device = false; |
| if (fs_mgr_is_avb(rec)) { |
| if (avb_handle->AvbHashtreeDisabled()) { |
| LOG(INFO) << "avb hashtree disabled for '" << rec->mount_point << "'"; |
| } else if (avb_handle->SetUpAvb(rec, false /* wait_for_verity_dev */)) { |
| need_create_dm_device = true; |
| } else { |
| PLOG(ERROR) << "early_mount: failed to set up AVB on partition: '" |
| << rec->mount_point << "'"; |
| return false; |
| } |
| } |
| if (need_create_dm_device) { |
| // The exact block device name (rec->blk_device) is changed to "/dev/block/dm-XX". |
| // Need to create it because ueventd isn't started during early mount. |
| device_init_dm_device(rec->blk_device); |
| } |
| if (fs_mgr_do_mount_one(rec)) { |
| PLOG(ERROR) << "early_mount: failed to mount '" << rec->mount_point << "'"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool mount_early_partitions(const std::vector<fstab_rec*>& fstab_recs, |
| const std::string& device_file_by_name_prefix) { |
| if (is_dt_vbmeta_compatible()) { // AVB (external/avb) is used to setup dm-verity. |
| return vboot_2_0_mount_partitions(fstab_recs, device_file_by_name_prefix); |
| } else { |
| return vboot_1_0_mount_partitions(fstab_recs); |
| } |
| } |
| |
| // Creates devices with uevent->partition_name matching one in the in/out |
| // partition_names. Note that the partition_names MUST have A/B suffix |
| // when A/B is used. Found partitions will then be removed from the |
| // partition_names for caller to check which devices are NOT created. |
| static void early_device_init(std::set<std::string>* partition_names) { |
| if (partition_names->empty()) { |
| return; |
| } |
| device_init(nullptr, [=](uevent* uevent) -> coldboot_action_t { |
| // we need platform devices to create symlinks |
| if (uevent->subsystem == "platform") { |
| return COLDBOOT_CREATE; |
| } |
| |
| // Ignore everything that is not a block device |
| if (uevent->subsystem != "block") { |
| return COLDBOOT_CONTINUE; |
| } |
| |
| if (!uevent->partition_name.empty()) { |
| // match partition names to create device nodes for partitions |
| // both partition_names and uevent->partition_name have A/B suffix when A/B is used |
| auto iter = partition_names->find(uevent->partition_name); |
| if (iter != partition_names->end()) { |
| LOG(VERBOSE) << "early_mount: found partition: " << *iter; |
| partition_names->erase(iter); |
| if (partition_names->empty()) { |
| return COLDBOOT_STOP; // found all partitions, stop coldboot |
| } else { |
| return COLDBOOT_CREATE; // create this device and continue to find others |
| } |
| } |
| } |
| // Not found a partition or find an unneeded partition, continue to find others |
| return COLDBOOT_CONTINUE; |
| }); |
| } |
| |
| static bool vboot_1_0_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs, |
| std::set<std::string>* out_partitions, |
| bool* out_need_verity) { |
| std::string meta_partition; |
| for (auto fstab_rec : early_fstab_recs) { |
| // don't allow verifyatboot for early mounted partitions |
| if (fs_mgr_is_verifyatboot(fstab_rec)) { |
| LOG(ERROR) << "early_mount: partitions can't be verified at boot"; |
| return false; |
| } |
| // check for verified partitions |
| if (fs_mgr_is_verified(fstab_rec)) { |
| *out_need_verity = true; |
| } |
| // check if verity metadata is on a separate partition and get partition |
| // name from the end of the ->verity_loc path. verity state is not partition |
| // specific, so there must be only 1 additional partition that carries |
| // verity state. |
| if (fstab_rec->verity_loc) { |
| if (!meta_partition.empty()) { |
| LOG(ERROR) << "early_mount: more than one meta partition found: " << meta_partition |
| << ", " << basename(fstab_rec->verity_loc); |
| return false; |
| } else { |
| meta_partition = basename(fstab_rec->verity_loc); |
| } |
| } |
| } |
| |
| // includes those early mount partitions and meta_partition (if any) |
| // note that fstab_rec->blk_device has A/B suffix updated by fs_mgr when A/B is used |
| for (auto fstab_rec : early_fstab_recs) { |
| out_partitions->emplace(basename(fstab_rec->blk_device)); |
| } |
| |
| if (!meta_partition.empty()) { |
| out_partitions->emplace(std::move(meta_partition)); |
| } |
| |
| return true; |
| } |
| |
| // a.k.a. AVB (external/avb) |
| static bool vboot_2_0_early_partitions(std::set<std::string>* out_partitions, bool* out_need_verity, |
| std::string* out_device_file_by_name_prefix) { |
| std::string vbmeta_partitions; |
| if (!get_vbmeta_config_from_dt(&vbmeta_partitions, out_device_file_by_name_prefix)) { |
| return false; |
| } |
| // libavb verifies AVB metadata on all verified partitions at once. |
| // e.g., The vbmeta_partitions will be "vbmeta,boot,system,vendor" |
| // for libavb to verify metadata, even if we only need to early mount /vendor. |
| std::vector<std::string> partitions = android::base::Split(vbmeta_partitions, ","); |
| std::string ab_suffix = fs_mgr_get_slot_suffix(); |
| for (const auto& partition : partitions) { |
| out_partitions->emplace(partition + ab_suffix); |
| } |
| *out_need_verity = true; |
| return true; |
| } |
| |
| static bool get_early_partitions(const std::vector<fstab_rec*>& early_fstab_recs, |
| std::set<std::string>* out_partitions, bool* out_need_verity, |
| std::string* out_device_file_by_name_prefix) { |
| *out_need_verity = false; |
| out_partitions->clear(); |
| out_device_file_by_name_prefix->clear(); |
| |
| if (is_dt_vbmeta_compatible()) { // AVB (external/avb) is used to setup dm-verity. |
| return vboot_2_0_early_partitions(out_partitions, out_need_verity, |
| out_device_file_by_name_prefix); |
| } else { |
| return vboot_1_0_early_partitions(early_fstab_recs, out_partitions, out_need_verity); |
| } |
| } |
| |
| /* Early mount vendor and ODM partitions. The fstab is read from device-tree. */ |
| static bool early_mount() { |
| // skip early mount if we're in recovery mode |
| if (access("/sbin/recovery", F_OK) == 0) { |
| LOG(INFO) << "Early mount skipped (recovery mode)"; |
| return true; |
| } |
| |
| // first check if device tree fstab entries are compatible |
| if (!is_dt_fstab_compatible()) { |
| LOG(INFO) << "Early mount skipped (missing/incompatible fstab in device tree)"; |
| return true; |
| } |
| |
| std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> tab( |
| fs_mgr_read_fstab_dt(), fs_mgr_free_fstab); |
| if (!tab) { |
| LOG(ERROR) << "Early mount failed to read fstab from device tree"; |
| return false; |
| } |
| |
| // find out fstab records for odm, system and vendor |
| std::vector<fstab_rec*> early_fstab_recs; |
| for (auto mount_point : {"/odm", "/system", "/vendor"}) { |
| fstab_rec* fstab_rec = fs_mgr_get_entry_for_mount_point(tab.get(), mount_point); |
| if (fstab_rec != nullptr) { |
| early_fstab_recs.push_back(fstab_rec); |
| } |
| } |
| |
| // nothing to early mount |
| if (early_fstab_recs.empty()) return true; |
| |
| bool need_verity; |
| std::string device_file_by_name_prefix; |
| std::set<std::string> partition_names; |
| // partition_names MUST have A/B suffix when A/B is used |
| if (!get_early_partitions(early_fstab_recs, &partition_names, &need_verity, |
| &device_file_by_name_prefix)) { |
| return false; |
| } |
| |
| bool success = false; |
| // create the devices we need.. |
| early_device_init(&partition_names); |
| |
| // early_device_init will remove found partitions from partition_names |
| // So if the partition_names is not empty here, means some partitions |
| // are not found |
| if (!partition_names.empty()) { |
| LOG(ERROR) << "early_mount: partition(s) not found: " |
| << android::base::Join(partition_names, ", "); |
| goto done; |
| } |
| |
| if (need_verity) { |
| // create /dev/device mapper |
| device_init("/sys/devices/virtual/misc/device-mapper", |
| [&](uevent* uevent) -> coldboot_action_t { return COLDBOOT_STOP; }); |
| } |
| |
| if (mount_early_partitions(early_fstab_recs, device_file_by_name_prefix)) { |
| success = true; |
| } |
| |
| done: |
| device_close(); |
| return success; |
| } |
| |
| static void install_reboot_signal_handlers() { |
| // Instead of panic'ing the kernel as is the default behavior when init crashes, |
| // we prefer to reboot to bootloader on development builds, as this will prevent |
| // boot looping bad configurations and allow both developers and test farms to easily |
| // recover. |
| struct sigaction action; |
| memset(&action, 0, sizeof(action)); |
| sigfillset(&action.sa_mask); |
| action.sa_handler = [](int) { |
| // panic() reboots to bootloader |
| panic(); |
| }; |
| action.sa_flags = SA_RESTART; |
| sigaction(SIGABRT, &action, nullptr); |
| sigaction(SIGBUS, &action, nullptr); |
| sigaction(SIGFPE, &action, nullptr); |
| sigaction(SIGILL, &action, nullptr); |
| sigaction(SIGSEGV, &action, nullptr); |
| #if defined(SIGSTKFLT) |
| sigaction(SIGSTKFLT, &action, nullptr); |
| #endif |
| sigaction(SIGSYS, &action, nullptr); |
| sigaction(SIGTRAP, &action, nullptr); |
| } |
| |
| int main(int argc, char** argv) { |
| if (!strcmp(basename(argv[0]), "ueventd")) { |
| return ueventd_main(argc, argv); |
| } |
| |
| if (!strcmp(basename(argv[0]), "watchdogd")) { |
| return watchdogd_main(argc, argv); |
| } |
| |
| if (REBOOT_BOOTLOADER_ON_PANIC) { |
| install_reboot_signal_handlers(); |
| } |
| |
| add_environment("PATH", _PATH_DEFPATH); |
| |
| bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr); |
| |
| if (is_first_stage) { |
| boot_clock::time_point start_time = boot_clock::now(); |
| |
| // Clear the umask. |
| umask(0); |
| |
| // Get the basic filesystem setup we need put together in the initramdisk |
| // on / and then we'll let the rc file figure out the rest. |
| mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); |
| mkdir("/dev/pts", 0755); |
| mkdir("/dev/socket", 0755); |
| mount("devpts", "/dev/pts", "devpts", 0, NULL); |
| #define MAKE_STR(x) __STRING(x) |
| mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)); |
| // Don't expose the raw commandline to unprivileged processes. |
| chmod("/proc/cmdline", 0440); |
| gid_t groups[] = { AID_READPROC }; |
| setgroups(arraysize(groups), groups); |
| mount("sysfs", "/sys", "sysfs", 0, NULL); |
| mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL); |
| |
| mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)); |
| |
| if constexpr (WORLD_WRITABLE_KMSG) { |
| mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11)); |
| } |
| |
| mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)); |
| mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)); |
| |
| // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually |
| // talk to the outside world... |
| InitKernelLogging(argv); |
| |
| LOG(INFO) << "init first stage started!"; |
| |
| if (!early_mount()) { |
| LOG(ERROR) << "Failed to mount required partitions early ..."; |
| panic(); |
| } |
| |
| // Set up SELinux, loading the SELinux policy. |
| selinux_initialize(true); |
| |
| // We're in the kernel domain, so re-exec init to transition to the init domain now |
| // that the SELinux policy has been loaded. |
| if (restorecon("/init") == -1) { |
| PLOG(ERROR) << "restorecon failed"; |
| security_failure(); |
| } |
| |
| setenv("INIT_SECOND_STAGE", "true", 1); |
| |
| static constexpr uint32_t kNanosecondsPerMillisecond = 1e6; |
| uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond; |
| setenv("INIT_STARTED_AT", StringPrintf("%" PRIu64, start_ms).c_str(), 1); |
| |
| char* path = argv[0]; |
| char* args[] = { path, nullptr }; |
| execv(path, args); |
| |
| // execv() only returns if an error happened, in which case we |
| // panic and never fall through this conditional. |
| PLOG(ERROR) << "execv(\"" << path << "\") failed"; |
| security_failure(); |
| } |
| |
| // At this point we're in the second stage of init. |
| InitKernelLogging(argv); |
| LOG(INFO) << "init second stage started!"; |
| |
| // Indicate that booting is in progress to background fw loaders, etc. |
| close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); |
| |
| property_init(); |
| |
| // If arguments are passed both on the command line and in DT, |
| // properties set in DT always have priority over the command-line ones. |
| process_kernel_dt(); |
| process_kernel_cmdline(); |
| |
| // Propagate the kernel variables to internal variables |
| // used by init as well as the current required properties. |
| export_kernel_boot_props(); |
| |
| // Make the time that init started available for bootstat to log. |
| property_set("ro.boottime.init", getenv("INIT_STARTED_AT")); |
| property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK")); |
| |
| // Set libavb version for Framework-only OTA match in Treble build. |
| property_set("ro.boot.init.avb_version", std::to_string(AVB_MAJOR_VERSION).c_str()); |
| |
| // Clean up our environment. |
| unsetenv("INIT_SECOND_STAGE"); |
| unsetenv("INIT_STARTED_AT"); |
| unsetenv("INIT_SELINUX_TOOK"); |
| |
| // Now set up SELinux for second stage. |
| selinux_initialize(false); |
| selinux_restore_context(); |
| |
| epoll_fd = epoll_create1(EPOLL_CLOEXEC); |
| if (epoll_fd == -1) { |
| PLOG(ERROR) << "epoll_create1 failed"; |
| exit(1); |
| } |
| |
| signal_handler_init(); |
| |
| property_load_boot_defaults(); |
| export_oem_lock_status(); |
| start_property_service(); |
| set_usb_controller(); |
| |
| const BuiltinFunctionMap function_map; |
| Action::set_function_map(&function_map); |
| |
| Parser& parser = Parser::GetInstance(); |
| parser.AddSectionParser("service",std::make_unique<ServiceParser>()); |
| parser.AddSectionParser("on", std::make_unique<ActionParser>()); |
| parser.AddSectionParser("import", std::make_unique<ImportParser>()); |
| std::string bootscript = GetProperty("ro.boot.init_rc", ""); |
| if (bootscript.empty()) { |
| parser.ParseConfig("/init.rc"); |
| parser.set_is_system_etc_init_loaded( |
| parser.ParseConfig("/system/etc/init")); |
| parser.set_is_vendor_etc_init_loaded( |
| parser.ParseConfig("/vendor/etc/init")); |
| parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init")); |
| } else { |
| parser.ParseConfig(bootscript); |
| parser.set_is_system_etc_init_loaded(true); |
| parser.set_is_vendor_etc_init_loaded(true); |
| parser.set_is_odm_etc_init_loaded(true); |
| } |
| |
| // Turning this on and letting the INFO logging be discarded adds 0.2s to |
| // Nexus 9 boot time, so it's disabled by default. |
| if (false) parser.DumpState(); |
| |
| ActionManager& am = ActionManager::GetInstance(); |
| |
| am.QueueEventTrigger("early-init"); |
| |
| // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev... |
| am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done"); |
| // ... so that we can start queuing up actions that require stuff from /dev. |
| am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); |
| am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits"); |
| am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict"); |
| am.QueueBuiltinAction(keychord_init_action, "keychord_init"); |
| am.QueueBuiltinAction(console_init_action, "console_init"); |
| |
| // Trigger all the boot actions to get us started. |
| am.QueueEventTrigger("init"); |
| |
| // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random |
| // wasn't ready immediately after wait_for_coldboot_done |
| am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng"); |
| |
| // Don't mount filesystems or start core system services in charger mode. |
| std::string bootmode = GetProperty("ro.bootmode", ""); |
| if (bootmode == "charger") { |
| am.QueueEventTrigger("charger"); |
| } else { |
| am.QueueEventTrigger("late-init"); |
| } |
| |
| // Run all property triggers based on current state of the properties. |
| am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers"); |
| |
| while (true) { |
| // By default, sleep until something happens. |
| int epoll_timeout_ms = -1; |
| |
| if (!(waiting_for_prop || ServiceManager::GetInstance().IsWaitingForExec())) { |
| am.ExecuteOneCommand(); |
| } |
| if (!(waiting_for_prop || ServiceManager::GetInstance().IsWaitingForExec())) { |
| restart_processes(); |
| |
| // If there's a process that needs restarting, wake up in time for that. |
| if (process_needs_restart_at != 0) { |
| epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000; |
| if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; |
| } |
| |
| // If there's more work to do, wake up again immediately. |
| if (am.HasMoreCommands()) epoll_timeout_ms = 0; |
| } |
| |
| epoll_event ev; |
| int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms)); |
| if (nr == -1) { |
| PLOG(ERROR) << "epoll_wait failed"; |
| } else if (nr == 1) { |
| ((void (*)()) ev.data.ptr)(); |
| } |
| } |
| |
| return 0; |
| } |