| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdint.h> |
| |
| #include <ios> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <unwindstack/DwarfError.h> |
| #include <unwindstack/DwarfMemory.h> |
| #include <unwindstack/Log.h> |
| |
| #include "DwarfOp.h" |
| |
| #include "MemoryFake.h" |
| #include "RegsFake.h" |
| |
| namespace unwindstack { |
| |
| template <typename TypeParam> |
| class DwarfOpTest : public ::testing::Test { |
| protected: |
| void SetUp() override { |
| op_memory_.Clear(); |
| regular_memory_.Clear(); |
| mem_.reset(new DwarfMemory(&op_memory_)); |
| op_.reset(new DwarfOp<TypeParam>(mem_.get(), ®ular_memory_)); |
| } |
| |
| MemoryFake op_memory_; |
| MemoryFake regular_memory_; |
| |
| std::unique_ptr<DwarfMemory> mem_; |
| std::unique_ptr<DwarfOp<TypeParam>> op_; |
| }; |
| TYPED_TEST_SUITE_P(DwarfOpTest); |
| |
| TYPED_TEST_P(DwarfOpTest, decode) { |
| // Memory error. |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); |
| EXPECT_EQ(0U, this->op_->LastErrorAddress()); |
| |
| // No error. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x96}); |
| this->mem_->set_cur_offset(0); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode()); |
| ASSERT_EQ(0x96U, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->mem_->cur_offset()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, eval) { |
| // Memory error. |
| ASSERT_FALSE(this->op_->Eval(0, 2)); |
| ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); |
| EXPECT_EQ(0U, this->op_->LastErrorAddress()); |
| |
| // Register set. |
| // Do this first, to verify that subsequent calls reset the value. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x50}); |
| ASSERT_TRUE(this->op_->Eval(0, 1)); |
| ASSERT_TRUE(this->op_->is_register()); |
| ASSERT_EQ(1U, this->mem_->cur_offset()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| // Multi operation opcodes. |
| std::vector<uint8_t> opcode_buffer = { |
| 0x08, 0x04, 0x08, 0x03, 0x08, 0x02, 0x08, 0x01, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Eval(0, 8)); |
| ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode()); |
| ASSERT_FALSE(this->op_->is_register()); |
| ASSERT_EQ(8U, this->mem_->cur_offset()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(1U, this->op_->StackAt(0)); |
| ASSERT_EQ(2U, this->op_->StackAt(1)); |
| ASSERT_EQ(3U, this->op_->StackAt(2)); |
| ASSERT_EQ(4U, this->op_->StackAt(3)); |
| |
| // Infinite loop. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x2f, 0xfd, 0xff}); |
| ASSERT_FALSE(this->op_->Eval(0, 4)); |
| ASSERT_EQ(DWARF_ERROR_TOO_MANY_ITERATIONS, this->op_->LastErrorCode()); |
| ASSERT_FALSE(this->op_->is_register()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, illegal_opcode) { |
| // Fill the buffer with all of the illegal opcodes. |
| std::vector<uint8_t> opcode_buffer = {0x00, 0x01, 0x02, 0x04, 0x05, 0x07}; |
| for (size_t opcode = 0xa0; opcode < 256; opcode++) { |
| opcode_buffer.push_back(opcode); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| for (size_t i = 0; i < opcode_buffer.size(); i++) { |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| ASSERT_EQ(opcode_buffer[i], this->op_->cur_op()); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, not_implemented) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Push values so that any not implemented ops will return the right error. |
| 0x08, 0x03, 0x08, 0x02, 0x08, 0x01, |
| // xderef |
| 0x18, |
| // fbreg |
| 0x91, 0x01, |
| // piece |
| 0x93, 0x01, |
| // xderef_size |
| 0x95, 0x01, |
| // push_object_address |
| 0x97, |
| // call2 |
| 0x98, 0x01, 0x02, |
| // call4 |
| 0x99, 0x01, 0x02, 0x03, 0x04, |
| // call_ref |
| 0x9a, |
| // form_tls_address |
| 0x9b, |
| // call_frame_cfa |
| 0x9c, |
| // bit_piece |
| 0x9d, 0x01, 0x01, |
| // implicit_value |
| 0x9e, 0x01, |
| // stack_value |
| 0x9f, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| // Push the stack values. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_TRUE(this->op_->Decode()); |
| |
| while (this->mem_->cur_offset() < opcode_buffer.size()) { |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_NOT_IMPLEMENTED, this->op_->LastErrorCode()); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_addr) { |
| std::vector<uint8_t> opcode_buffer = {0x03, 0x12, 0x23, 0x34, 0x45}; |
| if (sizeof(TypeParam) == 8) { |
| opcode_buffer.push_back(0x56); |
| opcode_buffer.push_back(0x67); |
| opcode_buffer.push_back(0x78); |
| opcode_buffer.push_back(0x89); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x03, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x45342312U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x8978675645342312UL, this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_deref) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Try a dereference with nothing on the stack. |
| 0x06, |
| // Add an address, then dereference. |
| 0x0a, 0x10, 0x20, 0x06, |
| // Now do another dereference that should fail in memory. |
| 0x06, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| TypeParam value = 0x12345678; |
| this->regular_memory_.SetMemory(0x2010, &value, sizeof(value)); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x06, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(value, this->op_->StackAt(0)); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); |
| ASSERT_EQ(0x12345678U, this->op_->LastErrorAddress()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_deref_size) { |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x94}); |
| TypeParam value = 0x12345678; |
| this->regular_memory_.SetMemory(0x2010, &value, sizeof(value)); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| // Read all byte sizes up to the sizeof the type. |
| for (size_t i = 1; i < sizeof(TypeParam); i++) { |
| this->op_memory_.SetMemory( |
| 0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, static_cast<uint8_t>(i)}); |
| ASSERT_TRUE(this->op_->Eval(0, 5)) << "Failed at size " << i; |
| ASSERT_EQ(1U, this->op_->StackSize()) << "Failed at size " << i; |
| ASSERT_EQ(0x94, this->op_->cur_op()) << "Failed at size " << i; |
| TypeParam expected_value = 0; |
| memcpy(&expected_value, &value, i); |
| ASSERT_EQ(expected_value, this->op_->StackAt(0)) << "Failed at size " << i; |
| } |
| |
| // Zero byte read. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, 0x00}); |
| ASSERT_FALSE(this->op_->Eval(0, 5)); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| |
| // Read too many bytes. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x20, 0x94, sizeof(TypeParam) + 1}); |
| ASSERT_FALSE(this->op_->Eval(0, 5)); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| |
| // Force bad memory read. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0a, 0x10, 0x40, 0x94, 0x01}); |
| ASSERT_FALSE(this->op_->Eval(0, 5)); |
| ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); |
| EXPECT_EQ(0x4010U, this->op_->LastErrorAddress()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, const_unsigned) { |
| std::vector<uint8_t> opcode_buffer = { |
| // const1u |
| 0x08, 0x12, 0x08, 0xff, |
| // const2u |
| 0x0a, 0x45, 0x12, 0x0a, 0x00, 0xff, |
| // const4u |
| 0x0c, 0x12, 0x23, 0x34, 0x45, 0x0c, 0x03, 0x02, 0x01, 0xff, |
| // const8u |
| 0x0e, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x0e, 0x87, 0x98, 0xa9, 0xba, 0xcb, |
| 0xdc, 0xed, 0xfe, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| // const1u |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x08, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x12U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x08, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0xffU, this->op_->StackAt(0)); |
| |
| // const2u |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0a, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x1245U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0a, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(0xff00U, this->op_->StackAt(0)); |
| |
| // const4u |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0c, this->op_->cur_op()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| ASSERT_EQ(0x45342312U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0c, this->op_->cur_op()); |
| ASSERT_EQ(6U, this->op_->StackSize()); |
| ASSERT_EQ(0xff010203U, this->op_->StackAt(0)); |
| |
| // const8u |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0e, this->op_->cur_op()); |
| ASSERT_EQ(7U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x05060708U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x0102030405060708ULL, this->op_->StackAt(0)); |
| } |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0e, this->op_->cur_op()); |
| ASSERT_EQ(8U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0xbaa99887UL, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0xfeeddccbbaa99887ULL, this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, const_signed) { |
| std::vector<uint8_t> opcode_buffer = { |
| // const1s |
| 0x09, 0x12, 0x09, 0xff, |
| // const2s |
| 0x0b, 0x21, 0x32, 0x0b, 0x08, 0xff, |
| // const4s |
| 0x0d, 0x45, 0x34, 0x23, 0x12, 0x0d, 0x01, 0x02, 0x03, 0xff, |
| // const8s |
| 0x0f, 0x89, 0x78, 0x67, 0x56, 0x45, 0x34, 0x23, 0x12, 0x0f, 0x04, 0x03, 0x02, 0x01, 0xef, |
| 0xef, 0xef, 0xff, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| // const1s |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x09, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x12U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x09, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-1), this->op_->StackAt(0)); |
| |
| // const2s |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0b, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x3221U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0b, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-248), this->op_->StackAt(0)); |
| |
| // const4s |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0d, this->op_->cur_op()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| ASSERT_EQ(0x12233445U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0d, this->op_->cur_op()); |
| ASSERT_EQ(6U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-16580095), this->op_->StackAt(0)); |
| |
| // const8s |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0f, this->op_->cur_op()); |
| ASSERT_EQ(7U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x56677889ULL, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x1223344556677889ULL, this->op_->StackAt(0)); |
| } |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x0f, this->op_->cur_op()); |
| ASSERT_EQ(8U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x01020304U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(static_cast<TypeParam>(-4521264810949884LL), this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, const_uleb) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Single byte ULEB128 |
| 0x10, 0x22, 0x10, 0x7f, |
| // Multi byte ULEB128 |
| 0x10, 0xa2, 0x22, 0x10, 0xa2, 0x74, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, |
| 0x09, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x79, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| // Single byte ULEB128 |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x22U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x7fU, this->op_->StackAt(0)); |
| |
| // Multi byte ULEB128 |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x1122U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(0x3a22U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0)); |
| } |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x10, this->op_->cur_op()); |
| ASSERT_EQ(6U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x79101c305080c101ULL, this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, const_sleb) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Single byte SLEB128 |
| 0x11, 0x22, 0x11, 0x7f, |
| // Multi byte SLEB128 |
| 0x11, 0xa2, 0x22, 0x11, 0xa2, 0x74, 0x11, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, |
| 0x09, 0x11, |
| }; |
| if (sizeof(TypeParam) == 4) { |
| opcode_buffer.push_back(0xb8); |
| opcode_buffer.push_back(0xd3); |
| opcode_buffer.push_back(0x63); |
| } else { |
| opcode_buffer.push_back(0x81); |
| opcode_buffer.push_back(0x82); |
| opcode_buffer.push_back(0x83); |
| opcode_buffer.push_back(0x84); |
| opcode_buffer.push_back(0x85); |
| opcode_buffer.push_back(0x86); |
| opcode_buffer.push_back(0x87); |
| opcode_buffer.push_back(0x88); |
| opcode_buffer.push_back(0x79); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| // Single byte SLEB128 |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x22U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-1), this->op_->StackAt(0)); |
| |
| // Multi byte SLEB128 |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x1122U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-1502), this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0)); |
| } |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x11, this->op_->cur_op()); |
| ASSERT_EQ(6U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(static_cast<TypeParam>(-464456), this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(static_cast<TypeParam>(-499868564803501823LL), this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_dup) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Should fail since nothing is on the stack. |
| 0x12, |
| // Push on a value and dup. |
| 0x08, 0x15, 0x12, |
| // Do it again. |
| 0x08, 0x23, 0x12, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(0x12, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x12, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x15U, this->op_->StackAt(0)); |
| ASSERT_EQ(0x15U, this->op_->StackAt(1)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x12, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(0x23U, this->op_->StackAt(0)); |
| ASSERT_EQ(0x23U, this->op_->StackAt(1)); |
| ASSERT_EQ(0x15U, this->op_->StackAt(2)); |
| ASSERT_EQ(0x15U, this->op_->StackAt(3)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_drop) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Push a couple of values. |
| 0x08, 0x10, 0x08, 0x20, |
| // Drop the values. |
| 0x13, 0x13, |
| // Attempt to drop empty stack. |
| 0x13, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x13, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x10U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x13, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(0x13, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_over) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Push a couple of values. |
| 0x08, 0x1a, 0x08, 0xed, |
| // Copy a value. |
| 0x14, |
| // Remove all but one element. |
| 0x13, 0x13, |
| // Provoke a failure with this opcode. |
| 0x14, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x14, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x1aU, this->op_->StackAt(0)); |
| ASSERT_EQ(0xedU, this->op_->StackAt(1)); |
| ASSERT_EQ(0x1aU, this->op_->StackAt(2)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(0x14, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_pick) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Push a few values. |
| 0x08, 0x1a, 0x08, 0xed, 0x08, 0x34, |
| // Copy the value at offset 2. |
| 0x15, 0x01, |
| // Copy the last value in the stack. |
| 0x15, 0x03, |
| // Choose an invalid index. |
| 0x15, 0x10, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x15, this->op_->cur_op()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| ASSERT_EQ(0xedU, this->op_->StackAt(0)); |
| ASSERT_EQ(0x34U, this->op_->StackAt(1)); |
| ASSERT_EQ(0xedU, this->op_->StackAt(2)); |
| ASSERT_EQ(0x1aU, this->op_->StackAt(3)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x15, this->op_->cur_op()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| ASSERT_EQ(0x1aU, this->op_->StackAt(0)); |
| ASSERT_EQ(0xedU, this->op_->StackAt(1)); |
| ASSERT_EQ(0x34U, this->op_->StackAt(2)); |
| ASSERT_EQ(0xedU, this->op_->StackAt(3)); |
| ASSERT_EQ(0x1aU, this->op_->StackAt(4)); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(0x15, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_swap) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Push a couple of values. |
| 0x08, 0x26, 0x08, 0xab, |
| // Swap values. |
| 0x16, |
| // Pop a value to cause a failure. |
| 0x13, 0x16, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0xabU, this->op_->StackAt(0)); |
| ASSERT_EQ(0x26U, this->op_->StackAt(1)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x16, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x26U, this->op_->StackAt(0)); |
| ASSERT_EQ(0xabU, this->op_->StackAt(1)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(0x16, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_rot) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Rotate that should cause a failure. |
| 0x17, 0x08, 0x10, |
| // Only 1 value on stack, should fail. |
| 0x17, 0x08, 0x20, |
| // Only 2 values on stack, should fail. |
| 0x17, 0x08, 0x30, |
| // Should rotate properly. |
| 0x17, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x30U, this->op_->StackAt(0)); |
| ASSERT_EQ(0x20U, this->op_->StackAt(1)); |
| ASSERT_EQ(0x10U, this->op_->StackAt(2)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x17, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(0x20U, this->op_->StackAt(0)); |
| ASSERT_EQ(0x10U, this->op_->StackAt(1)); |
| ASSERT_EQ(0x30U, this->op_->StackAt(2)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_abs) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Abs that should fail. |
| 0x19, |
| // A value that is already positive. |
| 0x08, 0x10, 0x19, |
| // A value that is negative. |
| 0x11, 0x7f, 0x19, |
| // A value that is large and negative. |
| 0x11, 0x81, 0x80, 0x80, 0x80, |
| }; |
| if (sizeof(TypeParam) == 4) { |
| opcode_buffer.push_back(0x08); |
| } else { |
| opcode_buffer.push_back(0x80); |
| opcode_buffer.push_back(0x80); |
| opcode_buffer.push_back(0x01); |
| } |
| opcode_buffer.push_back(0x19); |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x10U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x19, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x10U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x19, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x1U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x19, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(2147483647U, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(4398046511105UL, this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_and) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1b, |
| // Push a single value. |
| 0x08, 0x20, |
| // One element stack, and op will fail. |
| 0x1b, |
| // Push another value. |
| 0x08, 0x02, 0x1b, |
| // Push on two negative values. |
| 0x11, 0x7c, 0x11, 0x7f, 0x1b, |
| // Push one negative, one positive. |
| 0x11, 0x10, 0x11, 0x7c, 0x1b, |
| // Divide by zero. |
| 0x11, 0x10, 0x11, 0x00, 0x1b, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| // Two positive values. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1b, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x10U, this->op_->StackAt(0)); |
| |
| // Two negative values. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1b, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x04U, this->op_->StackAt(0)); |
| |
| // One negative value, one positive value. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1b, this->op_->cur_op()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-4), this->op_->StackAt(0)); |
| |
| // Divide by zero. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(4U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(5U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_div) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1a, |
| // Push a single value. |
| 0x08, 0x48, |
| // One element stack, and op will fail. |
| 0x1a, |
| // Push another value. |
| 0x08, 0xf0, 0x1a, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1a, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x40U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_minus) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1c, |
| // Push a single value. |
| 0x08, 0x48, |
| // One element stack, and op will fail. |
| 0x1c, |
| // Push another value. |
| 0x08, 0x04, 0x1c, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1c, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x44U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_mod) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1d, |
| // Push a single value. |
| 0x08, 0x47, |
| // One element stack, and op will fail. |
| 0x1d, |
| // Push another value. |
| 0x08, 0x04, 0x1d, |
| // Try a mod of zero. |
| 0x08, 0x01, 0x08, 0x00, 0x1d, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1d, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x03U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_mul) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1e, |
| // Push a single value. |
| 0x08, 0x48, |
| // One element stack, and op will fail. |
| 0x1e, |
| // Push another value. |
| 0x08, 0x04, 0x1e, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1e, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x120U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_neg) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x1f, |
| // Push a single value. |
| 0x08, 0x48, 0x1f, |
| // Push a negative value. |
| 0x11, 0x7f, 0x1f, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1f, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-72), this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x1f, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x01U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_not) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x20, |
| // Push a single value. |
| 0x08, 0x4, 0x20, |
| // Push a negative value. |
| 0x11, 0x7c, 0x20, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x20, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-5), this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x20, this->op_->cur_op()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| ASSERT_EQ(0x03U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_or) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x21, |
| // Push a single value. |
| 0x08, 0x48, |
| // One element stack, and op will fail. |
| 0x21, |
| // Push another value. |
| 0x08, 0xf4, 0x21, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x21, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0xfcU, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_plus) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x22, |
| // Push a single value. |
| 0x08, 0xff, |
| // One element stack, and op will fail. |
| 0x22, |
| // Push another value. |
| 0x08, 0xf2, 0x22, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x22, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x1f1U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_plus_uconst) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x23, |
| // Push a single value. |
| 0x08, 0x50, 0x23, 0x80, 0x51, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x23, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x28d0U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_shl) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x24, |
| // Push a single value. |
| 0x08, 0x67, |
| // One element stack, and op will fail. |
| 0x24, |
| // Push another value. |
| 0x08, 0x03, 0x24, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x24, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x338U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_shr) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x25, |
| // Push a single value. |
| 0x11, 0x70, |
| // One element stack, and op will fail. |
| 0x25, |
| // Push another value. |
| 0x08, 0x03, 0x25, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x25, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| if (sizeof(TypeParam) == 4) { |
| ASSERT_EQ(0x1ffffffeU, this->op_->StackAt(0)); |
| } else { |
| ASSERT_EQ(0x1ffffffffffffffeULL, this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_shra) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x26, |
| // Push a single value. |
| 0x11, 0x70, |
| // One element stack, and op will fail. |
| 0x26, |
| // Push another value. |
| 0x08, 0x03, 0x26, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x26, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(static_cast<TypeParam>(-2), this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_xor) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x27, |
| // Push a single value. |
| 0x08, 0x11, |
| // One element stack, and op will fail. |
| 0x27, |
| // Push another value. |
| 0x08, 0x41, 0x27, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(2U, this->op_->StackSize()); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x27, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x50U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_bra) { |
| std::vector<uint8_t> opcode_buffer = { |
| // No stack, and op will fail. |
| 0x28, |
| // Push on a non-zero value with a positive branch. |
| 0x08, 0x11, 0x28, 0x02, 0x01, |
| // Push on a zero value with a positive branch. |
| 0x08, 0x00, 0x28, 0x05, 0x00, |
| // Push on a non-zero value with a negative branch. |
| 0x08, 0x11, 0x28, 0xfc, 0xff, |
| // Push on a zero value with a negative branch. |
| 0x08, 0x00, 0x28, 0xf0, 0xff, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Decode()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| // Push on a non-zero value with a positive branch. |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| uint64_t offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x28, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset + 0x102, this->mem_->cur_offset()); |
| |
| // Push on a zero value with a positive branch. |
| this->mem_->set_cur_offset(offset); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x28, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset - 5, this->mem_->cur_offset()); |
| |
| // Push on a non-zero value with a negative branch. |
| this->mem_->set_cur_offset(offset); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x28, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset - 4, this->mem_->cur_offset()); |
| |
| // Push on a zero value with a negative branch. |
| this->mem_->set_cur_offset(offset); |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| |
| offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x28, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset + 16, this->mem_->cur_offset()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, compare_opcode_stack_error) { |
| // All of the ops require two stack elements. Loop through all of these |
| // ops with potential errors. |
| std::vector<uint8_t> opcode_buffer = { |
| 0xff, // Place holder for compare op. |
| 0x08, 0x11, |
| 0xff, // Place holder for compare op. |
| }; |
| |
| for (uint8_t opcode = 0x29; opcode <= 0x2e; opcode++) { |
| opcode_buffer[0] = opcode; |
| opcode_buffer[3] = opcode; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_FALSE(this->op_->Eval(0, 1)); |
| ASSERT_EQ(opcode, this->op_->cur_op()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| |
| ASSERT_FALSE(this->op_->Eval(1, 4)); |
| ASSERT_EQ(opcode, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, compare_opcodes) { |
| // Have three different checks for each compare op: |
| // - Both values the same. |
| // - The first value larger than the second. |
| // - The second value larger than the first. |
| std::vector<uint8_t> opcode_buffer = { |
| // Values the same. |
| 0x08, 0x11, 0x08, 0x11, |
| 0xff, // Placeholder. |
| // First value larger. |
| 0x08, 0x12, 0x08, 0x10, |
| 0xff, // Placeholder. |
| // Second value larger. |
| 0x08, 0x10, 0x08, 0x12, |
| 0xff, // Placeholder. |
| }; |
| |
| // Opcode followed by the expected values on the stack. |
| std::vector<uint8_t> expected = { |
| 0x29, 1, 0, 0, // eq |
| 0x2a, 1, 1, 0, // ge |
| 0x2b, 0, 1, 0, // gt |
| 0x2c, 1, 0, 1, // le |
| 0x2d, 0, 0, 1, // lt |
| 0x2e, 0, 1, 1, // ne |
| }; |
| for (size_t i = 0; i < expected.size(); i += 4) { |
| opcode_buffer[4] = expected[i]; |
| opcode_buffer[9] = expected[i]; |
| opcode_buffer[14] = expected[i]; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Eval(0, 15)) |
| << "Op: 0x" << std::hex << static_cast<uint32_t>(expected[i]) << " failed"; |
| |
| ASSERT_EQ(3U, this->op_->StackSize()); |
| ASSERT_EQ(expected[i + 1], this->op_->StackAt(2)); |
| ASSERT_EQ(expected[i + 2], this->op_->StackAt(1)); |
| ASSERT_EQ(expected[i + 3], this->op_->StackAt(0)); |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_skip) { |
| std::vector<uint8_t> opcode_buffer = { |
| // Positive value. |
| 0x2f, 0x10, 0x20, |
| // Negative value. |
| 0x2f, 0xfd, 0xff, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| uint64_t offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x2f, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset + 0x2010, this->mem_->cur_offset()); |
| |
| this->mem_->set_cur_offset(offset); |
| offset = this->mem_->cur_offset() + 3; |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x2f, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| ASSERT_EQ(offset - 3, this->mem_->cur_offset()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_lit) { |
| std::vector<uint8_t> opcode_buffer; |
| |
| // Verify every lit opcode. |
| for (uint8_t op = 0x30; op <= 0x4f; op++) { |
| opcode_buffer.push_back(op); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| for (size_t i = 0; i < opcode_buffer.size(); i++) { |
| uint32_t op = opcode_buffer[i]; |
| ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op - 0x30U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_reg) { |
| std::vector<uint8_t> opcode_buffer; |
| |
| // Verify every reg opcode. |
| for (uint8_t op = 0x50; op <= 0x6f; op++) { |
| opcode_buffer.push_back(op); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| for (size_t i = 0; i < opcode_buffer.size(); i++) { |
| uint32_t op = opcode_buffer[i]; |
| ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op, this->op_->cur_op()); |
| ASSERT_TRUE(this->op_->is_register()) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op - 0x50U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_regx) { |
| std::vector<uint8_t> opcode_buffer = { |
| 0x90, 0x02, 0x90, 0x80, 0x15, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| ASSERT_TRUE(this->op_->Eval(0, 2)); |
| ASSERT_EQ(0x90, this->op_->cur_op()); |
| ASSERT_TRUE(this->op_->is_register()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x02U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Eval(2, 5)); |
| ASSERT_EQ(0x90, this->op_->cur_op()); |
| ASSERT_TRUE(this->op_->is_register()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0xa80U, this->op_->StackAt(0)); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_breg) { |
| std::vector<uint8_t> opcode_buffer; |
| |
| // Verify every reg opcode. |
| for (uint8_t op = 0x70; op <= 0x8f; op++) { |
| // Positive value added to register. |
| opcode_buffer.push_back(op); |
| opcode_buffer.push_back(0x12); |
| // Negative value added to register. |
| opcode_buffer.push_back(op); |
| opcode_buffer.push_back(0x7e); |
| } |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| RegsImplFake<TypeParam> regs(32); |
| for (size_t i = 0; i < 32; i++) { |
| regs[i] = i + 10; |
| } |
| RegsInfo<TypeParam> regs_info(®s); |
| this->op_->set_regs_info(®s_info); |
| |
| uint64_t offset = 0; |
| for (uint32_t op = 0x70; op <= 0x8f; op++) { |
| // Positive value added to register. |
| ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op - 0x70 + 10 + 0x12, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; |
| offset += 2; |
| |
| // Negative value added to register. |
| ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; |
| ASSERT_EQ(op - 0x70 + 10 - 2, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; |
| offset += 2; |
| } |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_breg_invalid_register) { |
| std::vector<uint8_t> opcode_buffer = { |
| 0x7f, 0x12, 0x80, 0x12, |
| }; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| RegsImplFake<TypeParam> regs(16); |
| for (size_t i = 0; i < 16; i++) { |
| regs[i] = i + 10; |
| } |
| RegsInfo<TypeParam> regs_info(®s); |
| this->op_->set_regs_info(®s_info); |
| |
| // Should pass since this references the last regsister. |
| ASSERT_TRUE(this->op_->Eval(0, 2)); |
| ASSERT_EQ(0x7fU, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x2bU, this->op_->StackAt(0)); |
| |
| // Should fail since this references a non-existent register. |
| ASSERT_FALSE(this->op_->Eval(2, 4)); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_bregx) { |
| std::vector<uint8_t> opcode_buffer = {// Positive value added to register. |
| 0x92, 0x05, 0x20, |
| // Negative value added to register. |
| 0x92, 0x06, 0x80, 0x7e, |
| // Illegal register. |
| 0x92, 0x80, 0x15, 0x80, 0x02}; |
| this->op_memory_.SetMemory(0, opcode_buffer); |
| |
| RegsImplFake<TypeParam> regs(10); |
| regs[5] = 0x45; |
| regs[6] = 0x190; |
| RegsInfo<TypeParam> regs_info(®s); |
| this->op_->set_regs_info(®s_info); |
| |
| ASSERT_TRUE(this->op_->Eval(0, 3)); |
| ASSERT_EQ(0x92, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x65U, this->op_->StackAt(0)); |
| |
| ASSERT_TRUE(this->op_->Eval(3, 7)); |
| ASSERT_EQ(0x92, this->op_->cur_op()); |
| ASSERT_EQ(1U, this->op_->StackSize()); |
| ASSERT_EQ(0x90U, this->op_->StackAt(0)); |
| |
| ASSERT_FALSE(this->op_->Eval(7, 12)); |
| ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, op_nop) { |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x96}); |
| |
| ASSERT_TRUE(this->op_->Decode()); |
| ASSERT_EQ(0x96, this->op_->cur_op()); |
| ASSERT_EQ(0U, this->op_->StackSize()); |
| } |
| |
| TYPED_TEST_P(DwarfOpTest, is_dex_pc) { |
| // Special sequence that indicates this is a dex pc. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0c, 'D', 'E', 'X', '1', 0x13}); |
| |
| ASSERT_TRUE(this->op_->Eval(0, 6)); |
| EXPECT_TRUE(this->op_->dex_pc_set()); |
| |
| // Try without the last op. |
| ASSERT_TRUE(this->op_->Eval(0, 5)); |
| EXPECT_FALSE(this->op_->dex_pc_set()); |
| |
| // Change the constant. |
| this->op_memory_.SetMemory(0, std::vector<uint8_t>{0x0c, 'D', 'E', 'X', '2', 0x13}); |
| ASSERT_TRUE(this->op_->Eval(0, 6)); |
| EXPECT_FALSE(this->op_->dex_pc_set()); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(DwarfOpTest, decode, eval, illegal_opcode, not_implemented, op_addr, |
| op_deref, op_deref_size, const_unsigned, const_signed, const_uleb, |
| const_sleb, op_dup, op_drop, op_over, op_pick, op_swap, op_rot, op_abs, |
| op_and, op_div, op_minus, op_mod, op_mul, op_neg, op_not, op_or, |
| op_plus, op_plus_uconst, op_shl, op_shr, op_shra, op_xor, op_bra, |
| compare_opcode_stack_error, compare_opcodes, op_skip, op_lit, op_reg, |
| op_regx, op_breg, op_breg_invalid_register, op_bregx, op_nop, |
| is_dex_pc); |
| |
| typedef ::testing::Types<uint32_t, uint64_t> DwarfOpTestTypes; |
| INSTANTIATE_TYPED_TEST_SUITE_P(, DwarfOpTest, DwarfOpTestTypes); |
| |
| } // namespace unwindstack |