blob: a2dbb1052ca68a31fec3ad2c68422c946b71cfe8 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "images.h"
#include <limits.h>
#include <sys/stat.h>
#include <android-base/file.h>
#include "reader.h"
#include "utility.h"
#include "writer.h"
namespace android {
namespace fs_mgr {
using android::base::borrowed_fd;
using android::base::unique_fd;
#if defined(_WIN32)
static const int O_NOFOLLOW = 0;
#endif
static bool IsEmptySuperImage(borrowed_fd fd) {
struct stat s;
if (fstat(fd.get(), &s) < 0) {
PERROR << __PRETTY_FUNCTION__ << " fstat failed";
return false;
}
if (s.st_size < LP_METADATA_GEOMETRY_SIZE) {
return false;
}
// Rewind back to the start, read the geometry struct.
LpMetadataGeometry geometry = {};
if (SeekFile64(fd.get(), 0, SEEK_SET) < 0) {
PERROR << __PRETTY_FUNCTION__ << " lseek failed";
return false;
}
if (!android::base::ReadFully(fd, &geometry, sizeof(geometry))) {
PERROR << __PRETTY_FUNCTION__ << " read failed";
return false;
}
return geometry.magic == LP_METADATA_GEOMETRY_MAGIC;
}
bool IsEmptySuperImage(const std::string& file) {
unique_fd fd = GetControlFileOrOpen(file, O_RDONLY | O_CLOEXEC);
if (fd < 0) {
PERROR << __PRETTY_FUNCTION__ << " open failed";
return false;
}
return IsEmptySuperImage(fd);
}
std::unique_ptr<LpMetadata> ReadFromImageFile(int fd) {
std::unique_ptr<uint8_t[]> buffer = std::make_unique<uint8_t[]>(LP_METADATA_GEOMETRY_SIZE);
if (SeekFile64(fd, 0, SEEK_SET) < 0) {
PERROR << __PRETTY_FUNCTION__ << " lseek failed";
return nullptr;
}
if (!android::base::ReadFully(fd, buffer.get(), LP_METADATA_GEOMETRY_SIZE)) {
PERROR << __PRETTY_FUNCTION__ << " read failed";
return nullptr;
}
LpMetadataGeometry geometry;
if (!ParseGeometry(buffer.get(), &geometry)) {
return nullptr;
}
return ParseMetadata(geometry, fd);
}
std::unique_ptr<LpMetadata> ReadFromImageBlob(const void* data, size_t bytes) {
if (bytes < LP_METADATA_GEOMETRY_SIZE) {
LERROR << __PRETTY_FUNCTION__ << ": " << bytes << " is smaller than geometry header";
return nullptr;
}
LpMetadataGeometry geometry;
if (!ParseGeometry(data, &geometry)) {
return nullptr;
}
const uint8_t* metadata_buffer =
reinterpret_cast<const uint8_t*>(data) + LP_METADATA_GEOMETRY_SIZE;
size_t metadata_buffer_size = bytes - LP_METADATA_GEOMETRY_SIZE;
return ParseMetadata(geometry, metadata_buffer, metadata_buffer_size);
}
std::unique_ptr<LpMetadata> ReadFromImageFile(const std::string& image_file) {
unique_fd fd = GetControlFileOrOpen(image_file.c_str(), O_RDONLY | O_CLOEXEC);
if (fd < 0) {
PERROR << __PRETTY_FUNCTION__ << " open failed: " << image_file;
return nullptr;
}
return ReadFromImageFile(fd);
}
bool WriteToImageFile(borrowed_fd fd, const LpMetadata& input) {
std::string geometry = SerializeGeometry(input.geometry);
std::string metadata = SerializeMetadata(input);
std::string everything = geometry + metadata;
if (!android::base::WriteFully(fd, everything.data(), everything.size())) {
PERROR << __PRETTY_FUNCTION__ << " write " << everything.size() << " bytes failed";
return false;
}
return true;
}
#if !defined(_WIN32)
bool FsyncDirectory(const char* dirname) {
android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(dirname, O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
PLOG(ERROR) << "Failed to open " << dirname;
return false;
}
if (fsync(fd) == -1) {
if (errno == EROFS || errno == EINVAL) {
PLOG(WARNING) << "Skip fsync " << dirname
<< " on a file system does not support synchronization";
} else {
PLOG(ERROR) << "Failed to fsync " << dirname;
return false;
}
}
return true;
}
#endif
bool WriteToImageFile(const std::string& file, const LpMetadata& input) {
const auto parent_dir = base::Dirname(file);
TemporaryFile tmpfile(parent_dir);
if (!WriteToImageFile(tmpfile.fd, input)) {
PLOG(ERROR) << "Failed to write geometry data to tmpfile " << tmpfile.path;
return false;
}
#if !defined(_WIN32)
fsync(tmpfile.fd);
#endif
const auto err = rename(tmpfile.path, file.c_str());
if (err != 0) {
PLOG(ERROR) << "Failed to rename tmp geometry file " << tmpfile.path << " to " << file;
return false;
}
#if !defined(_WIN32)
FsyncDirectory(parent_dir.c_str());
#endif
return true;
}
ImageBuilder::ImageBuilder(const LpMetadata& metadata, uint32_t block_size,
const std::map<std::string, std::string>& images, bool sparsify)
: metadata_(metadata),
geometry_(metadata.geometry),
block_size_(block_size),
sparsify_(sparsify),
images_(images) {
uint64_t total_size = GetTotalSuperPartitionSize(metadata);
if (block_size % LP_SECTOR_SIZE != 0) {
LERROR << "Block size must be a multiple of the sector size, " << LP_SECTOR_SIZE;
return;
}
if (total_size % block_size != 0) {
LERROR << "Device size must be a multiple of the block size, " << block_size;
return;
}
if (metadata.geometry.metadata_max_size % block_size != 0) {
LERROR << "Metadata max size must be a multiple of the block size, " << block_size;
return;
}
if (LP_METADATA_GEOMETRY_SIZE % block_size != 0) {
LERROR << "Geometry size is not a multiple of the block size, " << block_size;
return;
}
if (LP_PARTITION_RESERVED_BYTES % block_size != 0) {
LERROR << "Reserved size is not a multiple of the block size, " << block_size;
return;
}
uint64_t num_blocks = total_size / block_size;
if (num_blocks >= UINT_MAX) {
// libsparse counts blocks in unsigned 32-bit integers, so we check to
// make sure we're not going to overflow.
LERROR << "Block device is too large to encode with libsparse.";
return;
}
for (const auto& block_device : metadata.block_devices) {
SparsePtr file(sparse_file_new(block_size_, block_device.size), sparse_file_destroy);
if (!file) {
LERROR << "Could not allocate sparse file of size " << block_device.size;
return;
}
device_images_.emplace_back(std::move(file));
}
}
bool ImageBuilder::IsValid() const {
return device_images_.size() == metadata_.block_devices.size();
}
bool ImageBuilder::Export(const std::string& file) {
unique_fd fd(open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC | O_CLOEXEC | O_BINARY, 0644));
if (fd < 0) {
PERROR << "open failed: " << file;
return false;
}
if (device_images_.size() > 1) {
LERROR << "Cannot export to a single image on retrofit builds.";
return false;
}
// No gzip compression; no checksum.
int ret = sparse_file_write(device_images_[0].get(), fd, false, sparsify_, false);
if (ret != 0) {
LERROR << "sparse_file_write failed (error code " << ret << ")";
return false;
}
return true;
}
bool ImageBuilder::ExportFiles(const std::string& output_dir) {
for (size_t i = 0; i < device_images_.size(); i++) {
std::string name = GetBlockDevicePartitionName(metadata_.block_devices[i]);
std::string file_name = "super_" + name + ".img";
std::string file_path = output_dir + "/" + file_name;
static const int kOpenFlags =
O_CREAT | O_RDWR | O_TRUNC | O_CLOEXEC | O_NOFOLLOW | O_BINARY;
unique_fd fd(open(file_path.c_str(), kOpenFlags, 0644));
if (fd < 0) {
PERROR << "open failed: " << file_path;
return false;
}
// No gzip compression; no checksum.
int ret = sparse_file_write(device_images_[i].get(), fd, false, sparsify_, false);
if (ret != 0) {
LERROR << "sparse_file_write failed (error code " << ret << ")";
return false;
}
}
return true;
}
bool ImageBuilder::AddData(sparse_file* file, const std::string& blob, uint64_t sector) {
uint32_t block;
if (!SectorToBlock(sector, &block)) {
return false;
}
void* data = const_cast<char*>(blob.data());
int ret = sparse_file_add_data(file, data, blob.size(), block);
if (ret != 0) {
LERROR << "sparse_file_add_data failed (error code " << ret << ")";
return false;
}
return true;
}
bool ImageBuilder::SectorToBlock(uint64_t sector, uint32_t* block) {
// The caller must ensure that the metadata has an alignment that is a
// multiple of the block size. liblp will take care of the rest, ensuring
// that all partitions are on an aligned boundary. Therefore all writes
// should be block-aligned, and if they are not, the table was misconfigured.
// Note that the default alignment is 1MiB, which is a multiple of the
// default block size (4096).
if ((sector * LP_SECTOR_SIZE) % block_size_ != 0) {
LERROR << "sector " << sector << " is not aligned to block size " << block_size_;
return false;
}
*block = (sector * LP_SECTOR_SIZE) / block_size_;
return true;
}
uint64_t ImageBuilder::BlockToSector(uint64_t block) const {
return (block * block_size_) / LP_SECTOR_SIZE;
}
bool ImageBuilder::Build() {
if (sparse_file_add_fill(device_images_[0].get(), 0, LP_PARTITION_RESERVED_BYTES, 0) < 0) {
LERROR << "Could not add initial sparse block for reserved zeroes";
return false;
}
std::string geometry_blob = SerializeGeometry(geometry_);
std::string metadata_blob = SerializeMetadata(metadata_);
metadata_blob.resize(geometry_.metadata_max_size);
// Two copies of geometry, then two copies of each metadata slot.
all_metadata_ += geometry_blob + geometry_blob;
for (size_t i = 0; i < geometry_.metadata_slot_count * 2; i++) {
all_metadata_ += metadata_blob;
}
uint64_t first_sector = LP_PARTITION_RESERVED_BYTES / LP_SECTOR_SIZE;
if (!AddData(device_images_[0].get(), all_metadata_, first_sector)) {
return false;
}
if (!CheckExtentOrdering()) {
return false;
}
for (const auto& partition : metadata_.partitions) {
auto iter = images_.find(GetPartitionName(partition));
if (iter == images_.end()) {
continue;
}
if (!AddPartitionImage(partition, iter->second)) {
return false;
}
images_.erase(iter);
}
if (!images_.empty()) {
LERROR << "Partition image was specified but no partition was found.";
return false;
}
return true;
}
static inline bool HasFillValue(uint32_t* buffer, size_t count) {
uint32_t fill_value = buffer[0];
for (size_t i = 1; i < count; i++) {
if (fill_value != buffer[i]) {
return false;
}
}
return true;
}
bool ImageBuilder::AddPartitionImage(const LpMetadataPartition& partition,
const std::string& file) {
if (partition.num_extents == 0) {
LERROR << "Partition size is zero: " << GetPartitionName(partition);
return false;
}
// Track which extent we're processing.
uint32_t extent_index = partition.first_extent_index;
const LpMetadataExtent& extent = metadata_.extents[extent_index];
if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
LERROR << "Partition should only have linear extents: " << GetPartitionName(partition);
return false;
}
int fd = OpenImageFile(file);
if (fd < 0) {
LERROR << "Could not open image for partition: " << GetPartitionName(partition);
return false;
}
// Make sure the image does not exceed the partition size.
uint64_t file_length;
if (!GetDescriptorSize(fd, &file_length)) {
LERROR << "Could not compute image size";
return false;
}
uint64_t partition_size = ComputePartitionSize(partition);
if (file_length > partition_size) {
LERROR << "Image for partition '" << GetPartitionName(partition)
<< "' is greater than its size (" << file_length << ", expected " << partition_size
<< ")";
return false;
}
if (SeekFile64(fd, 0, SEEK_SET)) {
PERROR << "lseek failed";
return false;
}
// We track the current logical sector and the position the current extent
// ends at.
uint64_t output_sector = 0;
uint64_t extent_last_sector = extent.num_sectors;
// We also track the output device and the current output block within that
// device.
uint32_t output_block;
if (!SectorToBlock(extent.target_data, &output_block)) {
return false;
}
sparse_file* output_device = device_images_[extent.target_source].get();
// Proceed to read the file and build sparse images.
uint64_t pos = 0;
uint64_t remaining = file_length;
while (remaining) {
// Check if we need to advance to the next extent.
if (output_sector == extent_last_sector) {
extent_index++;
if (extent_index >= partition.first_extent_index + partition.num_extents) {
LERROR << "image is larger than extent table";
return false;
}
const LpMetadataExtent& extent = metadata_.extents[extent_index];
extent_last_sector += extent.num_sectors;
output_device = device_images_[extent.target_source].get();
if (!SectorToBlock(extent.target_data, &output_block)) {
return false;
}
}
uint32_t buffer[block_size_ / sizeof(uint32_t)];
size_t read_size = remaining >= sizeof(buffer) ? sizeof(buffer) : size_t(remaining);
if (!android::base::ReadFully(fd, buffer, sizeof(buffer))) {
PERROR << "read failed";
return false;
}
if (read_size != sizeof(buffer) || !HasFillValue(buffer, read_size / sizeof(uint32_t))) {
int rv = sparse_file_add_fd(output_device, fd, pos, read_size, output_block);
if (rv) {
LERROR << "sparse_file_add_fd failed with code: " << rv;
return false;
}
} else {
int rv = sparse_file_add_fill(output_device, buffer[0], read_size, output_block);
if (rv) {
LERROR << "sparse_file_add_fill failed with code: " << rv;
return false;
}
}
pos += read_size;
remaining -= read_size;
output_sector += block_size_ / LP_SECTOR_SIZE;
output_block++;
}
return true;
}
uint64_t ImageBuilder::ComputePartitionSize(const LpMetadataPartition& partition) const {
uint64_t sectors = 0;
for (size_t i = 0; i < partition.num_extents; i++) {
sectors += metadata_.extents[partition.first_extent_index + i].num_sectors;
}
return sectors * LP_SECTOR_SIZE;
}
// For simplicity, we don't allow serializing any configuration: extents must
// be ordered, such that any extent at position I in the table occurs *before*
// any extent after position I, for the same block device. We validate that
// here.
//
// Without this, it would be more difficult to find the appropriate extent for
// an output block. With this guarantee it is a linear walk.
bool ImageBuilder::CheckExtentOrdering() {
std::vector<uint64_t> last_sectors(metadata_.block_devices.size());
for (const auto& extent : metadata_.extents) {
if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
LERROR << "Extents must all be type linear.";
return false;
}
if (extent.target_data <= last_sectors[extent.target_source]) {
LERROR << "Extents must appear in increasing order.";
return false;
}
if ((extent.num_sectors * LP_SECTOR_SIZE) % block_size_ != 0) {
LERROR << "Extents must be aligned to the block size.";
return false;
}
last_sectors[extent.target_source] = extent.target_data;
}
return true;
}
int ImageBuilder::OpenImageFile(const std::string& file) {
unique_fd source_fd = GetControlFileOrOpen(file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY);
if (source_fd < 0) {
PERROR << "open image file failed: " << file;
return -1;
}
SparsePtr source(sparse_file_import(source_fd, true, true), sparse_file_destroy);
if (!source) {
int fd = source_fd.get();
temp_fds_.push_back(std::move(source_fd));
return fd;
}
TemporaryFile tf;
if (tf.fd < 0) {
PERROR << "make temporary file failed";
return -1;
}
// We temporarily unsparse the file, rather than try to merge its chunks.
int rv = sparse_file_write(source.get(), tf.fd, false, false, false);
if (rv) {
LERROR << "sparse_file_write failed with code: " << rv;
return -1;
}
temp_fds_.push_back(android::base::unique_fd(tf.release()));
return temp_fds_.back().get();
}
bool WriteToImageFile(const std::string& file, const LpMetadata& metadata, uint32_t block_size,
const std::map<std::string, std::string>& images, bool sparsify) {
ImageBuilder builder(metadata, block_size, images, sparsify);
return builder.IsValid() && builder.Build() && builder.Export(file);
}
bool WriteSplitImageFiles(const std::string& output_dir, const LpMetadata& metadata,
uint32_t block_size, const std::map<std::string, std::string>& images,
bool sparsify) {
ImageBuilder builder(metadata, block_size, images, sparsify);
return builder.IsValid() && builder.Build() && builder.ExportFiles(output_dir);
}
} // namespace fs_mgr
} // namespace android