| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "fs_mgr.h" |
| |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <libgen.h> |
| #include <selinux/selinux.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mount.h> |
| #include <sys/stat.h> |
| #include <sys/swap.h> |
| #include <sys/types.h> |
| #include <sys/utsname.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <array> |
| #include <chrono> |
| #include <functional> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <string_view> |
| #include <thread> |
| #include <utility> |
| #include <vector> |
| |
| #include <android-base/chrono_utils.h> |
| #include <android-base/file.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <cutils/android_filesystem_config.h> |
| #include <cutils/android_reboot.h> |
| #include <cutils/partition_utils.h> |
| #include <cutils/properties.h> |
| #include <ext4_utils/ext4.h> |
| #include <ext4_utils/ext4_sb.h> |
| #include <ext4_utils/ext4_utils.h> |
| #include <ext4_utils/wipe.h> |
| #include <fs_avb/fs_avb.h> |
| #include <fs_mgr/file_wait.h> |
| #include <fs_mgr_overlayfs.h> |
| #include <fscrypt/fscrypt.h> |
| #include <libdm/dm.h> |
| #include <libdm/loop_control.h> |
| #include <liblp/metadata_format.h> |
| #include <linux/fs.h> |
| #include <linux/loop.h> |
| #include <linux/magic.h> |
| #include <log/log_properties.h> |
| #include <logwrap/logwrap.h> |
| |
| #include "blockdev.h" |
| #include "fs_mgr_priv.h" |
| |
| #define E2FSCK_BIN "/system/bin/e2fsck" |
| #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs" |
| #define MKSWAP_BIN "/system/bin/mkswap" |
| #define TUNE2FS_BIN "/system/bin/tune2fs" |
| #define RESIZE2FS_BIN "/system/bin/resize2fs" |
| |
| #define FSCK_LOG_FILE "/dev/fscklogs/log" |
| |
| #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" |
| #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams" |
| #define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev" |
| |
| #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity" |
| #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold" |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) |
| |
| using android::base::Basename; |
| using android::base::GetBoolProperty; |
| using android::base::GetUintProperty; |
| using android::base::Realpath; |
| using android::base::SetProperty; |
| using android::base::StartsWith; |
| using android::base::StringPrintf; |
| using android::base::Timer; |
| using android::base::unique_fd; |
| using android::dm::DeviceMapper; |
| using android::dm::DmDeviceState; |
| using android::dm::DmTargetLinear; |
| using android::dm::LoopControl; |
| |
| // Realistically, this file should be part of the android::fs_mgr namespace; |
| using namespace android::fs_mgr; |
| |
| using namespace std::literals; |
| |
| // record fs stat |
| enum FsStatFlags { |
| FS_STAT_IS_EXT4 = 0x0001, |
| FS_STAT_NEW_IMAGE_VERSION = 0x0002, |
| FS_STAT_E2FSCK_F_ALWAYS = 0x0004, |
| FS_STAT_UNCLEAN_SHUTDOWN = 0x0008, |
| FS_STAT_QUOTA_ENABLED = 0x0010, |
| FS_STAT_RO_MOUNT_FAILED = 0x0040, |
| FS_STAT_RO_UNMOUNT_FAILED = 0x0080, |
| FS_STAT_FULL_MOUNT_FAILED = 0x0100, |
| FS_STAT_FSCK_FAILED = 0x0200, |
| FS_STAT_FSCK_FS_FIXED = 0x0400, |
| FS_STAT_INVALID_MAGIC = 0x0800, |
| FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000, |
| FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000, |
| FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000, |
| FS_STAT_ENABLE_VERITY_FAILED = 0x80000, |
| FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000, |
| FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000, |
| }; |
| |
| static void log_fs_stat(const std::string& blk_device, int fs_stat) { |
| std::string msg = |
| android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat); |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | |
| O_APPEND | O_CREAT, 0664))); |
| if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) { |
| LWARNING << __FUNCTION__ << "() cannot log " << msg; |
| } |
| } |
| |
| static bool is_extfs(const std::string& fs_type) { |
| return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2"; |
| } |
| |
| static bool is_f2fs(const std::string& fs_type) { |
| return fs_type == "f2fs"; |
| } |
| |
| static std::string realpath(const std::string& blk_device) { |
| std::string real_path; |
| if (!Realpath(blk_device, &real_path)) { |
| real_path = blk_device; |
| } |
| return real_path; |
| } |
| |
| static bool should_force_check(int fs_stat) { |
| return fs_stat & |
| (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED | |
| FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED | |
| FS_STAT_FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED | |
| FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED); |
| } |
| |
| static bool umount_retry(const std::string& mount_point) { |
| int retry_count = 5; |
| bool umounted = false; |
| |
| while (retry_count-- > 0) { |
| umounted = umount(mount_point.c_str()) == 0; |
| if (umounted) { |
| LINFO << __FUNCTION__ << "(): unmount(" << mount_point << ") succeeded"; |
| break; |
| } |
| PERROR << __FUNCTION__ << "(): umount(" << mount_point << ") failed"; |
| if (retry_count) sleep(1); |
| } |
| return umounted; |
| } |
| |
| static void check_fs(const std::string& blk_device, const std::string& fs_type, |
| const std::string& target, int* fs_stat) { |
| int status; |
| int ret; |
| long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; |
| auto tmpmnt_opts = "errors=remount-ro"s; |
| const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()}; |
| const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()}; |
| |
| if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try |
| return; |
| } |
| |
| Timer t; |
| /* Check for the types of filesystems we know how to check */ |
| if (is_extfs(fs_type)) { |
| /* |
| * First try to mount and unmount the filesystem. We do this because |
| * the kernel is more efficient than e2fsck in running the journal and |
| * processing orphaned inodes, and on at least one device with a |
| * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes |
| * to do what the kernel does in about a second. |
| * |
| * After mounting and unmounting the filesystem, run e2fsck, and if an |
| * error is recorded in the filesystem superblock, e2fsck will do a full |
| * check. Otherwise, it does nothing. If the kernel cannot mount the |
| * filesytsem due to an error, e2fsck is still run to do a full check |
| * fix the filesystem. |
| */ |
| if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed |
| errno = 0; |
| if (fs_type == "ext4") { |
| // This option is only valid with ext4 |
| tmpmnt_opts += ",nomblk_io_submit"; |
| } |
| ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags, |
| tmpmnt_opts.c_str()); |
| PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type |
| << ")=" << ret; |
| if (ret) { |
| *fs_stat |= FS_STAT_RO_MOUNT_FAILED; |
| } else if (!umount_retry(target)) { |
| // boot may fail but continue and leave it to later stage for now. |
| PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out"; |
| *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED; |
| } |
| } |
| |
| /* |
| * Some system images do not have e2fsck for licensing reasons |
| * (e.g. recent SDK system images). Detect these and skip the check. |
| */ |
| if (access(E2FSCK_BIN, X_OK)) { |
| LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device) |
| << " (executable not in system image)"; |
| } else { |
| LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device); |
| if (should_force_check(*fs_stat)) { |
| ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv, |
| &status, false, LOG_KLOG | LOG_FILE, false, |
| FSCK_LOG_FILE); |
| } else { |
| ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false, |
| LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE); |
| } |
| |
| if (ret < 0) { |
| /* No need to check for error in fork, we can't really handle it now */ |
| LERROR << "Failed trying to run " << E2FSCK_BIN; |
| *fs_stat |= FS_STAT_FSCK_FAILED; |
| } else if (status != 0) { |
| LINFO << "e2fsck returned status 0x" << std::hex << status; |
| *fs_stat |= FS_STAT_FSCK_FS_FIXED; |
| } |
| } |
| } else if (is_f2fs(fs_type)) { |
| const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", "-c", "10000", "--debug-cache", |
| blk_device.c_str()}; |
| const char* f2fs_fsck_forced_argv[] = { |
| F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()}; |
| |
| if (access(F2FS_FSCK_BIN, X_OK)) { |
| LINFO << "Not running " << F2FS_FSCK_BIN << " on " << realpath(blk_device) |
| << " (executable not in system image)"; |
| } else { |
| if (should_force_check(*fs_stat)) { |
| LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache " |
| << realpath(blk_device); |
| ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv, |
| &status, false, LOG_KLOG | LOG_FILE, false, |
| FSCK_LOG_FILE); |
| } else { |
| LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache " |
| << realpath(blk_device); |
| ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status, |
| false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE); |
| } |
| if (ret < 0) { |
| /* No need to check for error in fork, we can't really handle it now */ |
| LERROR << "Failed trying to run " << F2FS_FSCK_BIN; |
| *fs_stat |= FS_STAT_FSCK_FAILED; |
| } else if (status != 0) { |
| LINFO << F2FS_FSCK_BIN << " returned status 0x" << std::hex << status; |
| *fs_stat |= FS_STAT_FSCK_FS_FIXED; |
| } |
| } |
| } |
| android::base::SetProperty("ro.boottime.init.fsck." + Basename(target), |
| std::to_string(t.duration().count())); |
| return; |
| } |
| |
| static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) { |
| return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) | |
| le32_to_cpu(es->s_blocks_count_lo); |
| } |
| |
| static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) { |
| return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) | |
| le32_to_cpu(es->s_r_blocks_count_lo); |
| } |
| |
| static bool is_ext4_superblock_valid(const struct ext4_super_block* es) { |
| if (es->s_magic != EXT4_SUPER_MAGIC) return false; |
| if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false; |
| if (EXT4_INODES_PER_GROUP(es) == 0) return false; |
| return true; |
| } |
| |
| // Read the primary superblock from an ext4 filesystem. On failure return |
| // false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC. |
| static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb, |
| int* fs_stat) { |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| |
| if (fd < 0) { |
| PERROR << "Failed to open '" << blk_device << "'"; |
| return false; |
| } |
| |
| if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) { |
| PERROR << "Can't read '" << blk_device << "' superblock"; |
| return false; |
| } |
| |
| if (!is_ext4_superblock_valid(sb)) { |
| LINFO << "Invalid ext4 superblock on '" << blk_device << "'"; |
| // not a valid fs, tune2fs, fsck, and mount will all fail. |
| *fs_stat |= FS_STAT_INVALID_MAGIC; |
| return false; |
| } |
| *fs_stat |= FS_STAT_IS_EXT4; |
| LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device; |
| if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4 |
| *fs_stat |= FS_STAT_NEW_IMAGE_VERSION; |
| } |
| return true; |
| } |
| |
| // exported silent version of the above that just answer the question is_ext4 |
| bool fs_mgr_is_ext4(const std::string& blk_device) { |
| android::base::ErrnoRestorer restore; |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) return false; |
| ext4_super_block sb; |
| if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false; |
| if (!is_ext4_superblock_valid(&sb)) return false; |
| return true; |
| } |
| |
| // Some system images do not have tune2fs for licensing reasons. |
| // Detect these and skip running it. |
| static bool tune2fs_available(void) { |
| return access(TUNE2FS_BIN, X_OK) == 0; |
| } |
| |
| static bool run_command(const char* argv[], int argc) { |
| int ret; |
| |
| ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr); |
| return ret == 0; |
| } |
| |
| // Enable/disable quota support on the filesystem if needed. |
| static void tune_quota(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0; |
| bool want_quota = entry.fs_mgr_flags.quota; |
| // Enable projid support by default |
| bool want_projid = true; |
| if (has_quota == want_quota) { |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()}; |
| |
| if (want_quota) { |
| LINFO << "Enabling quotas on " << blk_device; |
| argv[1] = "-Oquota"; |
| // Once usr/grp unneeded, make just prjquota to save overhead |
| if (want_projid) |
| argv[2] = "-Qusrquota,grpquota,prjquota"; |
| else |
| argv[2] = "-Qusrquota,grpquota"; |
| *fs_stat |= FS_STAT_QUOTA_ENABLED; |
| } else { |
| LINFO << "Disabling quotas on " << blk_device; |
| argv[1] = "-O^quota"; |
| argv[2] = "-Q^usrquota,^grpquota,^prjquota"; |
| } |
| |
| if (!run_command(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable") |
| << " quotas on " << blk_device; |
| *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED; |
| } |
| } |
| |
| // Set the number of reserved filesystem blocks if needed. |
| static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| if (entry.reserved_size == 0) { |
| return; |
| } |
| |
| // The size to reserve is given in the fstab, but we won't reserve more |
| // than 2% of the filesystem. |
| const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02; |
| uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb); |
| |
| if (reserved_blocks > max_reserved_blocks) { |
| LWARNING << "Reserved blocks " << reserved_blocks << " is too large; " |
| << "capping to " << max_reserved_blocks; |
| reserved_blocks = max_reserved_blocks; |
| } |
| |
| if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) { |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to set the number of reserved blocks on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks; |
| |
| auto reserved_blocks_str = std::to_string(reserved_blocks); |
| auto reserved_gid_str = std::to_string(AID_RESERVED_DISK); |
| const char* argv[] = { |
| TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(), |
| blk_device.c_str()}; |
| if (!run_command(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on " |
| << blk_device; |
| *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED; |
| } |
| } |
| |
| // Enable file-based encryption if needed. |
| static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| if (!entry.fs_mgr_flags.file_encryption) { |
| return; // Nothing needs done. |
| } |
| std::vector<std::string> features_needed; |
| if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) { |
| features_needed.emplace_back("encrypt"); |
| } |
| android::fscrypt::EncryptionOptions options; |
| if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) { |
| LERROR << "Unable to parse encryption options on " << blk_device << ": " |
| << entry.encryption_options; |
| return; |
| } |
| if ((options.flags & |
| (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) { |
| // We can only use this policy on ext4 if the "stable_inodes" feature |
| // is set on the filesystem, otherwise shrinking will break encrypted files. |
| if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) { |
| features_needed.emplace_back("stable_inodes"); |
| } |
| } |
| if (features_needed.size() == 0) { |
| return; |
| } |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable ext4 encryption on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| auto flags = android::base::Join(features_needed, ','); |
| auto flag_arg = "-O"s + flags; |
| const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()}; |
| |
| LINFO << "Enabling ext4 flags " << flags << " on " << blk_device; |
| if (!run_command(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 flags " << flags << " on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED; |
| } |
| } |
| |
| // Enable fs-verity if needed. |
| static void tune_verity(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0; |
| bool want_verity = entry.fs_mgr_flags.fs_verity; |
| |
| if (has_verity || !want_verity) { |
| return; |
| } |
| |
| std::string verity_support; |
| if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) { |
| LERROR << "Failed to open " << SYSFS_EXT4_VERITY; |
| return; |
| } |
| |
| if (!(android::base::Trim(verity_support) == "supported")) { |
| LERROR << "Current ext4 verity not supported by kernel"; |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable ext4 verity on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Enabling ext4 verity on " << blk_device; |
| |
| const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()}; |
| if (!run_command(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 verity on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED; |
| } |
| } |
| |
| // Enable casefold if needed. |
| static void tune_casefold(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0; |
| bool wants_casefold = |
| android::base::GetBoolProperty("external_storage.casefold.enabled", false); |
| |
| if (entry.mount_point != "/data" || !wants_casefold || has_casefold) return; |
| |
| std::string casefold_support; |
| if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) { |
| LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD; |
| return; |
| } |
| |
| if (!(android::base::Trim(casefold_support) == "supported")) { |
| LERROR << "Current ext4 casefolding not supported by kernel"; |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable ext4 casefold on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Enabling ext4 casefold on " << blk_device; |
| |
| const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()}; |
| if (!run_command(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 casefold on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED; |
| } |
| } |
| |
| static bool resize2fs_available(void) { |
| return access(RESIZE2FS_BIN, X_OK) == 0; |
| } |
| |
| // Enable metadata_csum |
| static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_meta_csum = |
| (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0; |
| bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum; |
| |
| if (has_meta_csum || !want_meta_csum) return; |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable metadata_csum on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| if (!resize2fs_available()) { |
| LERROR << "Unable to enable metadata_csum on " << blk_device |
| << " because " RESIZE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Enabling ext4 metadata_csum on " << blk_device; |
| |
| // Must give `-T now` to prevent last_fsck_time from growing too large, |
| // otherwise, tune2fs won't enable metadata_csum. |
| const char* tune2fs_args[] = {TUNE2FS_BIN, "-O", "metadata_csum,64bit,extent", |
| "-T", "now", blk_device.c_str()}; |
| const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()}; |
| |
| if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 metadata_csum on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED; |
| } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) { |
| LERROR << "Failed to run " RESIZE2FS_BIN " to enable " |
| << "ext4 metadata_csum on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED; |
| } |
| } |
| |
| // Read the primary superblock from an f2fs filesystem. On failure return |
| // false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC. |
| #define F2FS_SUPER_OFFSET 1024 |
| static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) { |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| __le32 sb1, sb2; |
| |
| if (fd < 0) { |
| PERROR << "Failed to open '" << blk_device << "'"; |
| return false; |
| } |
| |
| if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) { |
| PERROR << "Can't read '" << blk_device << "' superblock1"; |
| return false; |
| } |
| // F2FS only supports block_size=page_size case. So, it is safe to call |
| // `getpagesize()` and use that as size of super block. |
| if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), getpagesize() + F2FS_SUPER_OFFSET)) != |
| sizeof(sb2)) { |
| PERROR << "Can't read '" << blk_device << "' superblock2"; |
| return false; |
| } |
| |
| if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) { |
| LINFO << "Invalid f2fs superblock on '" << blk_device << "'"; |
| *fs_stat |= FS_STAT_INVALID_MAGIC; |
| return false; |
| } |
| return true; |
| } |
| |
| // exported silent version of the above that just answer the question is_f2fs |
| bool fs_mgr_is_f2fs(const std::string& blk_device) { |
| android::base::ErrnoRestorer restore; |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) return false; |
| __le32 sb; |
| if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) { |
| return false; |
| } |
| if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true; |
| if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), getpagesize() + F2FS_SUPER_OFFSET)) != |
| sizeof(sb)) { |
| return false; |
| } |
| return sb == cpu_to_le32(F2FS_SUPER_MAGIC); |
| } |
| |
| static void SetReadAheadSize(const std::string& entry_block_device, off64_t size_kb) { |
| std::string block_device; |
| if (!Realpath(entry_block_device, &block_device)) { |
| PERROR << "Failed to realpath " << entry_block_device; |
| return; |
| } |
| |
| static constexpr std::string_view kDevBlockPrefix("/dev/block/"); |
| if (!android::base::StartsWith(block_device, kDevBlockPrefix)) { |
| LWARNING << block_device << " is not a block device"; |
| return; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| while (true) { |
| std::string block_name = block_device; |
| if (android::base::StartsWith(block_device, kDevBlockPrefix)) { |
| block_name = block_device.substr(kDevBlockPrefix.length()); |
| } |
| std::string sys_partition = |
| android::base::StringPrintf("/sys/class/block/%s/partition", block_name.c_str()); |
| struct stat info; |
| if (lstat(sys_partition.c_str(), &info) == 0) { |
| // it has a partition like "sda12". |
| block_name += "/.."; |
| } |
| std::string sys_ra = android::base::StringPrintf("/sys/class/block/%s/queue/read_ahead_kb", |
| block_name.c_str()); |
| std::string size = android::base::StringPrintf("%llu", (long long)size_kb); |
| android::base::WriteStringToFile(size, sys_ra.c_str()); |
| LINFO << "Set readahead_kb: " << size << " on " << sys_ra; |
| |
| auto parent = dm.GetParentBlockDeviceByPath(block_device); |
| if (!parent) { |
| return; |
| } |
| block_device = *parent; |
| } |
| } |
| |
| // |
| // Mechanism to allow fsck to be triggered by setting ro.preventative_fsck |
| // Introduced to address b/305658663 |
| // If the property value is not equal to the flag file contents, trigger |
| // fsck and store the property value in the flag file |
| // If we want to trigger again, simply change the property value |
| // |
| static bool check_if_preventative_fsck_needed(const FstabEntry& entry) { |
| const char* flag_file = "/metadata/vold/preventative_fsck"; |
| if (entry.mount_point != "/data") return false; |
| |
| // Don't error check - both default to empty string, which is OK |
| std::string prop = android::base::GetProperty("ro.preventative_fsck", ""); |
| std::string flag; |
| android::base::ReadFileToString(flag_file, &flag); |
| if (prop == flag) return false; |
| // fsck is run immediately, so assume it runs or there is some deeper problem |
| if (!android::base::WriteStringToFile(prop, flag_file)) |
| PERROR << "Failed to write file " << flag_file; |
| LINFO << "Run preventative fsck on /data"; |
| return true; |
| } |
| |
| // |
| // Prepare the filesystem on the given block device to be mounted. |
| // |
| // If the "check" option was given in the fstab record, or it seems that the |
| // filesystem was uncleanly shut down, we'll run fsck on the filesystem. |
| // |
| // If needed, we'll also enable (or disable) filesystem features as specified by |
| // the fstab record. |
| // |
| static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry, |
| const std::string& alt_mount_point = "") { |
| auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point; |
| // We need this because sometimes we have legacy symlinks that are |
| // lingering around and need cleaning up. |
| struct stat info; |
| if (lstat(mount_point.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) { |
| unlink(mount_point.c_str()); |
| } |
| mkdir(mount_point.c_str(), 0755); |
| |
| // Don't need to return error, since it's a salt |
| if (entry.readahead_size_kb != -1) { |
| SetReadAheadSize(blk_device, entry.readahead_size_kb); |
| } |
| |
| int fs_stat = 0; |
| |
| if (is_extfs(entry.fs_type)) { |
| struct ext4_super_block sb; |
| |
| if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { |
| if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 || |
| (sb.s_state & EXT4_VALID_FS) == 0) { |
| LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; " |
| << "state flags: 0x" << std::hex << sb.s_state << ", " |
| << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat; |
| fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN; |
| } |
| |
| // Note: quotas should be enabled before running fsck. |
| tune_quota(blk_device, entry, &sb, &fs_stat); |
| } else { |
| return fs_stat; |
| } |
| } else if (is_f2fs(entry.fs_type)) { |
| if (!read_f2fs_superblock(blk_device, &fs_stat)) { |
| return fs_stat; |
| } |
| } |
| |
| if (check_if_preventative_fsck_needed(entry) || entry.fs_mgr_flags.check || |
| (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) { |
| check_fs(blk_device, entry.fs_type, mount_point, &fs_stat); |
| } |
| |
| if (is_extfs(entry.fs_type) && |
| (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption || |
| entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) { |
| struct ext4_super_block sb; |
| |
| if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { |
| tune_reserved_size(blk_device, entry, &sb, &fs_stat); |
| tune_encrypt(blk_device, entry, &sb, &fs_stat); |
| tune_verity(blk_device, entry, &sb, &fs_stat); |
| tune_casefold(blk_device, entry, &sb, &fs_stat); |
| tune_metadata_csum(blk_device, entry, &sb, &fs_stat); |
| } |
| } |
| |
| return fs_stat; |
| } |
| |
| // Mark the given block device as read-only, using the BLKROSET ioctl. |
| bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) { |
| unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| return false; |
| } |
| |
| int ON = readonly; |
| return ioctl(fd, BLKROSET, &ON) == 0; |
| } |
| |
| // Orange state means the device is unlocked, see the following link for details. |
| // https://source.android.com/security/verifiedboot/verified-boot#device_state |
| bool fs_mgr_is_device_unlocked() { |
| std::string verified_boot_state; |
| if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) { |
| return verified_boot_state == "orange"; |
| } |
| return false; |
| } |
| |
| // __mount(): wrapper around the mount() system call which also |
| // sets the underlying block device to read-only if the mount is read-only. |
| // See "man 2 mount" for return values. |
| static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry, |
| bool read_only = false) { |
| errno = 0; |
| unsigned long mountflags = entry.flags; |
| if (read_only) { |
| mountflags |= MS_RDONLY; |
| } |
| int ret = 0; |
| int save_errno = 0; |
| int gc_allowance = 0; |
| std::string opts; |
| std::string checkpoint_opts; |
| bool try_f2fs_gc_allowance = is_f2fs(entry.fs_type) && entry.fs_checkpoint_opts.length() > 0; |
| bool try_f2fs_fallback = false; |
| Timer t; |
| |
| do { |
| if (save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback)) { |
| PINFO << "Kernel does not support " << checkpoint_opts << ", trying without."; |
| try_f2fs_gc_allowance = false; |
| // Attempt without gc allowance before dropping. |
| try_f2fs_fallback = !try_f2fs_fallback; |
| } |
| if (try_f2fs_gc_allowance) { |
| checkpoint_opts = entry.fs_checkpoint_opts + ":" + std::to_string(gc_allowance) + "%"; |
| } else if (try_f2fs_fallback) { |
| checkpoint_opts = entry.fs_checkpoint_opts; |
| } else { |
| checkpoint_opts = ""; |
| } |
| opts = entry.fs_options + checkpoint_opts; |
| if (save_errno == EAGAIN) { |
| PINFO << "Retrying mount (source=" << source << ",target=" << target |
| << ",type=" << entry.fs_type << ", gc_allowance=" << gc_allowance << "%)=" << ret |
| << "(" << save_errno << ")"; |
| } |
| |
| // Let's get the raw dm target, if it's a symlink, since some existing applications |
| // rely on /proc/mounts to find the userdata's dm target path. Don't break that assumption. |
| std::string real_source; |
| if (!android::base::Realpath(source, &real_source)) { |
| real_source = source; |
| } |
| ret = mount(real_source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags, |
| opts.c_str()); |
| save_errno = errno; |
| if (try_f2fs_gc_allowance) gc_allowance += 10; |
| } while ((ret && save_errno == EAGAIN && gc_allowance <= 100) || |
| (ret && save_errno == EINVAL && (try_f2fs_gc_allowance || try_f2fs_fallback))); |
| const char* target_missing = ""; |
| const char* source_missing = ""; |
| if (save_errno == ENOENT) { |
| if (access(target.c_str(), F_OK)) { |
| target_missing = "(missing)"; |
| } else if (access(source.c_str(), F_OK)) { |
| source_missing = "(missing)"; |
| } |
| errno = save_errno; |
| } |
| PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target |
| << target_missing << ",type=" << entry.fs_type << ")=" << ret; |
| if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { |
| fs_mgr_set_blk_ro(source); |
| } |
| if (ret == 0) { |
| android::base::SetProperty("ro.boottime.init.mount." + Basename(target), |
| std::to_string(t.duration().count())); |
| } |
| errno = save_errno; |
| return ret; |
| } |
| |
| static bool fs_match(const std::string& in1, const std::string& in2) { |
| if (in1.empty() || in2.empty()) { |
| return false; |
| } |
| |
| auto in1_end = in1.size() - 1; |
| while (in1_end > 0 && in1[in1_end] == '/') { |
| in1_end--; |
| } |
| |
| auto in2_end = in2.size() - 1; |
| while (in2_end > 0 && in2[in2_end] == '/') { |
| in2_end--; |
| } |
| |
| if (in1_end != in2_end) { |
| return false; |
| } |
| |
| for (size_t i = 0; i <= in1_end; ++i) { |
| if (in1[i] != in2[i]) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool should_use_metadata_encryption(const FstabEntry& entry) { |
| return !entry.metadata_key_dir.empty() && entry.fs_mgr_flags.file_encryption; |
| } |
| |
| // Tries to mount any of the consecutive fstab entries that match |
| // the mountpoint of the one given by fstab[start_idx]. |
| // |
| // end_idx: On return, will be the last entry that was looked at. |
| // attempted_idx: On return, will indicate which fstab entry |
| // succeeded. In case of failure, it will be the start_idx. |
| // Sets errno to match the 1st mount failure on failure. |
| static bool mount_with_alternatives(Fstab& fstab, int start_idx, int* end_idx, int* attempted_idx) { |
| unsigned long i; |
| int mount_errno = 0; |
| bool mounted = false; |
| |
| // Hunt down an fstab entry for the same mount point that might succeed. |
| for (i = start_idx; |
| // We required that fstab entries for the same mountpoint be consecutive. |
| i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) { |
| // Don't try to mount/encrypt the same mount point again. |
| // Deal with alternate entries for the same point which are required to be all following |
| // each other. |
| if (mounted) { |
| LINFO << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point |
| << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as " |
| << fstab[*attempted_idx].fs_type; |
| continue; |
| } |
| |
| // fstab[start_idx].blk_device is already updated to /dev/dm-<N> by |
| // AVB related functions. Copy it from start_idx to the current index i. |
| if ((i != start_idx) && fstab[i].fs_mgr_flags.logical && |
| fstab[start_idx].fs_mgr_flags.logical && |
| (fstab[i].logical_partition_name == fstab[start_idx].logical_partition_name)) { |
| fstab[i].blk_device = fstab[start_idx].blk_device; |
| } |
| |
| int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]); |
| if (fs_stat & FS_STAT_INVALID_MAGIC) { |
| LERROR << __FUNCTION__ |
| << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point |
| << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i |
| << "].fs_type=" << fstab[i].fs_type; |
| mount_errno = EINVAL; // continue bootup for metadata encryption |
| continue; |
| } |
| |
| int retry_count = 2; |
| const auto read_only = should_use_metadata_encryption(fstab[i]); |
| if (read_only) { |
| LOG(INFO) << "Mount point " << fstab[i].blk_device << " @ " << fstab[i].mount_point |
| << " uses metadata encryption, which means we need to unmount it later and " |
| "call encryptFstab/encrypt_inplace. To avoid file operations before " |
| "encryption, we will mount it as read-only first"; |
| } |
| while (retry_count-- > 0) { |
| if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i], read_only)) { |
| *attempted_idx = i; |
| mounted = true; |
| if (i != start_idx) { |
| LINFO << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on " |
| << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type |
| << " instead of " << fstab[start_idx].fs_type; |
| } |
| fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; |
| mount_errno = 0; |
| break; |
| } else { |
| if (retry_count <= 0) break; // run check_fs only once |
| fs_stat |= FS_STAT_FULL_MOUNT_FAILED; |
| // back up the first errno for crypto decisions. |
| if (mount_errno == 0) { |
| mount_errno = errno; |
| } |
| // retry after fsck |
| check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat); |
| } |
| } |
| log_fs_stat(fstab[i].blk_device, fs_stat); |
| } |
| |
| /* Adjust i for the case where it was still withing the recs[] */ |
| if (i < fstab.size()) --i; |
| |
| *end_idx = i; |
| if (!mounted) { |
| *attempted_idx = start_idx; |
| errno = mount_errno; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool TranslateExtLabels(FstabEntry* entry) { |
| if (!StartsWith(entry->blk_device, "LABEL=")) { |
| return true; |
| } |
| |
| std::string label = entry->blk_device.substr(6); |
| if (label.size() > 16) { |
| LERROR << "FS label is longer than allowed by filesystem"; |
| return false; |
| } |
| |
| auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir}; |
| if (!blockdir) { |
| LERROR << "couldn't open /dev/block"; |
| return false; |
| } |
| |
| struct dirent* ent; |
| while ((ent = readdir(blockdir.get()))) { |
| if (ent->d_type != DT_BLK) |
| continue; |
| |
| unique_fd fd(TEMP_FAILURE_RETRY( |
| openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| LERROR << "Cannot open block device /dev/block/" << ent->d_name; |
| return false; |
| } |
| |
| ext4_super_block super_block; |
| if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 || |
| TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) != |
| sizeof(super_block)) { |
| // Probably a loopback device or something else without a readable superblock. |
| continue; |
| } |
| |
| if (super_block.s_magic != EXT4_SUPER_MAGIC) { |
| LINFO << "/dev/block/" << ent->d_name << " not ext{234}"; |
| continue; |
| } |
| |
| if (label == super_block.s_volume_name) { |
| std::string new_blk_device = "/dev/block/"s + ent->d_name; |
| |
| LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device; |
| |
| entry->blk_device = new_blk_device; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Check to see if a mountable volume has encryption requirements |
| static int handle_encryptable(const FstabEntry& entry) { |
| if (should_use_metadata_encryption(entry)) { |
| if (umount_retry(entry.mount_point)) { |
| return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION; |
| } |
| PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt"; |
| return FS_MGR_MNTALL_FAIL; |
| } else if (entry.fs_mgr_flags.file_encryption) { |
| LINFO << entry.mount_point << " is file encrypted"; |
| return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED; |
| } else { |
| return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; |
| } |
| } |
| |
| static void set_type_property(int status) { |
| switch (status) { |
| case FS_MGR_MNTALL_DEV_FILE_ENCRYPTED: |
| case FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED: |
| case FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION: |
| SetProperty("ro.crypto.type", "file"); |
| break; |
| } |
| } |
| |
| static bool call_vdc(const std::vector<std::string>& args, int* ret) { |
| std::vector<char const*> argv; |
| argv.emplace_back("/system/bin/vdc"); |
| for (auto& arg : args) { |
| argv.emplace_back(arg.c_str()); |
| } |
| LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); |
| int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr); |
| if (err != 0) { |
| LOG(ERROR) << "vdc call failed with error code: " << err; |
| return false; |
| } |
| LOG(DEBUG) << "vdc finished successfully"; |
| if (ret != nullptr) { |
| *ret = WEXITSTATUS(*ret); |
| } |
| return true; |
| } |
| |
| bool fs_mgr_update_logical_partition(FstabEntry* entry) { |
| // Logical partitions are specified with a named partition rather than a |
| // block device, so if the block device is a path, then it has already |
| // been updated. |
| if (entry->blk_device[0] == '/') { |
| return true; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| std::string device_name; |
| if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) { |
| return false; |
| } |
| |
| entry->blk_device = device_name; |
| return true; |
| } |
| |
| static bool SupportsCheckpoint(FstabEntry* entry) { |
| return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs; |
| } |
| |
| class CheckpointManager { |
| public: |
| CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false, |
| bool needs_encrypt = false) |
| : needs_checkpoint_(needs_checkpoint), |
| metadata_encrypted_(metadata_encrypted), |
| needs_encrypt_(needs_encrypt) {} |
| |
| bool NeedsCheckpoint() { |
| if (needs_checkpoint_ != UNKNOWN) { |
| return needs_checkpoint_ == YES; |
| } |
| if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) { |
| LERROR << "Failed to find if checkpointing is needed. Assuming no."; |
| needs_checkpoint_ = NO; |
| } |
| return needs_checkpoint_ == YES; |
| } |
| |
| bool Update(FstabEntry* entry, const std::string& block_device = std::string()) { |
| if (!SupportsCheckpoint(entry)) { |
| return true; |
| } |
| |
| if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) { |
| call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr); |
| } |
| |
| if (!NeedsCheckpoint()) { |
| return true; |
| } |
| |
| if (!UpdateCheckpointPartition(entry, block_device)) { |
| LERROR << "Could not set up checkpoint partition, skipping!"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Revert(FstabEntry* entry) { |
| if (!SupportsCheckpoint(entry)) { |
| return true; |
| } |
| |
| if (device_map_.find(entry->blk_device) == device_map_.end()) { |
| return true; |
| } |
| |
| std::string bow_device = entry->blk_device; |
| entry->blk_device = device_map_[bow_device]; |
| device_map_.erase(bow_device); |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| if (!dm.DeleteDevice("bow")) { |
| PERROR << "Failed to remove bow device"; |
| } |
| |
| return true; |
| } |
| |
| private: |
| bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) { |
| if (entry->fs_mgr_flags.checkpoint_fs) { |
| if (is_f2fs(entry->fs_type)) { |
| entry->fs_checkpoint_opts = ",checkpoint=disable"; |
| } else { |
| LERROR << entry->fs_type << " does not implement checkpoints."; |
| } |
| } else if (entry->fs_mgr_flags.checkpoint_blk && !needs_encrypt_) { |
| auto actual_block_device = block_device.empty() ? entry->blk_device : block_device; |
| if (fs_mgr_find_bow_device(actual_block_device).empty()) { |
| unique_fd fd( |
| TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| PERROR << "Cannot open device " << entry->blk_device; |
| return false; |
| } |
| |
| uint64_t size = get_block_device_size(fd) / 512; |
| if (!size) { |
| PERROR << "Cannot get device size"; |
| return false; |
| } |
| |
| // dm-bow will not load if size is not a multiple of 4096 |
| // rounding down does not hurt, since ext4 will only use full blocks |
| size &= ~7; |
| |
| android::dm::DmTable table; |
| auto bowTarget = |
| std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device); |
| |
| // dm-bow uses the first block as a log record, and relocates the real first block |
| // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and |
| // for post Android Q devices dm-default-key uses a block size of 4096 always. |
| // So if dm-bow's block size, which by default is the block size of the underlying |
| // hardware, is less than dm-default-key's, blocks will get broken up and I/O will |
| // fail as it won't be data_unit_size aligned. |
| // However, since it is possible there is an already shipping non |
| // metadata-encrypted device with smaller blocks, we must not change this for |
| // devices shipped with Q or earlier unless they explicitly selected dm-default-key |
| // v2 |
| unsigned int options_format_version = android::base::GetUintProperty<unsigned int>( |
| "ro.crypto.dm_default_key.options_format.version", |
| (android::fscrypt::GetFirstApiLevel() <= __ANDROID_API_Q__ ? 1 : 2)); |
| if (options_format_version > 1) { |
| bowTarget->SetBlockSize(4096); |
| } |
| |
| if (!table.AddTarget(std::move(bowTarget))) { |
| LERROR << "Failed to add bow target"; |
| return false; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| if (!dm.CreateDevice("bow", table)) { |
| PERROR << "Failed to create bow device"; |
| return false; |
| } |
| |
| std::string name; |
| if (!dm.GetDmDevicePathByName("bow", &name)) { |
| PERROR << "Failed to get bow device name"; |
| return false; |
| } |
| |
| device_map_[name] = entry->blk_device; |
| entry->blk_device = name; |
| } |
| } |
| return true; |
| } |
| |
| enum { UNKNOWN = -1, NO = 0, YES = 1 }; |
| int needs_checkpoint_; |
| bool metadata_encrypted_; |
| bool needs_encrypt_; |
| std::map<std::string, std::string> device_map_; |
| }; |
| |
| std::string fs_mgr_find_bow_device(const std::string& block_device) { |
| // handle symlink such as "/dev/block/mapper/userdata" |
| std::string real_path; |
| if (!android::base::Realpath(block_device, &real_path)) { |
| real_path = block_device; |
| } |
| |
| struct stat st; |
| if (stat(real_path.c_str(), &st) < 0) { |
| PLOG(ERROR) << "stat failed: " << real_path; |
| return std::string(); |
| } |
| if (!S_ISBLK(st.st_mode)) { |
| PLOG(ERROR) << real_path << " is not block device"; |
| return std::string(); |
| } |
| std::string sys_dir = android::base::StringPrintf("/sys/dev/block/%u:%u", major(st.st_rdev), |
| minor(st.st_rdev)); |
| for (;;) { |
| std::string name; |
| if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) { |
| PLOG(ERROR) << real_path << " is not dm device"; |
| return std::string(); |
| } |
| |
| if (name == "bow\n") return sys_dir; |
| |
| std::string slaves = sys_dir + "/slaves"; |
| std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir); |
| if (!directory) { |
| PLOG(ERROR) << "Can't open slave directory " << slaves; |
| return std::string(); |
| } |
| |
| int count = 0; |
| for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) { |
| if (entry->d_type != DT_LNK) continue; |
| |
| if (count == 1) { |
| LOG(ERROR) << "Too many slaves in " << slaves; |
| return std::string(); |
| } |
| |
| ++count; |
| sys_dir = std::string("/sys/block/") + entry->d_name; |
| } |
| |
| if (count != 1) { |
| LOG(ERROR) << "No slave in " << slaves; |
| return std::string(); |
| } |
| } |
| } |
| |
| static constexpr const char* kUserdataWrapperName = "userdata-wrapper"; |
| |
| static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) { |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) { |
| // This will report failure for us. If we do fail to get the path, |
| // we leave the device unwrapped. |
| dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device); |
| return; |
| } |
| |
| unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC)); |
| if (fd < 0) { |
| PLOG(ERROR) << "open failed: " << entry->blk_device; |
| return; |
| } |
| |
| auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev)); |
| uint64_t sectors = get_block_device_size(fd) / 512; |
| |
| android::dm::DmTable table; |
| table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0); |
| |
| std::string dm_path; |
| if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) { |
| LOG(ERROR) << "Failed to create userdata wrapper device"; |
| return; |
| } |
| entry->blk_device = dm_path; |
| } |
| |
| // When using Virtual A/B, partitions can be backed by /data and mapped with |
| // device-mapper in first-stage init. This can happen when merging an OTA or |
| // when using adb remount to house "scratch". In this case, /data cannot be |
| // mounted directly off the userdata block device, and e2fsck will refuse to |
| // scan it, because the kernel reports the block device as in-use. |
| // |
| // As a workaround, when mounting /data, we create a trivial dm-linear wrapper |
| // if the underlying block device already has dependencies. Note that we make |
| // an exception for metadata-encrypted devices, since dm-default-key is already |
| // a wrapper. |
| static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) { |
| const auto& block_device = |
| actual_block_device.empty() ? entry->blk_device : actual_block_device; |
| if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() || |
| android::base::StartsWith(block_device, "/dev/block/dm-")) { |
| return; |
| } |
| |
| struct stat st; |
| if (stat(block_device.c_str(), &st) < 0) { |
| PLOG(ERROR) << "stat failed: " << block_device; |
| return; |
| } |
| |
| std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders", |
| major(st.st_rdev), minor(st.st_rdev)); |
| std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir); |
| if (!dir) { |
| PLOG(ERROR) << "opendir failed: " << path; |
| return; |
| } |
| |
| struct dirent* d; |
| bool has_holders = false; |
| while ((d = readdir(dir.get())) != nullptr) { |
| if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) { |
| has_holders = true; |
| break; |
| } |
| } |
| |
| if (has_holders) { |
| WrapUserdata(entry, st.st_rdev, block_device); |
| } |
| } |
| |
| static bool IsMountPointMounted(const std::string& mount_point) { |
| // Check if this is already mounted. |
| Fstab fstab; |
| if (!ReadFstabFromFile("/proc/mounts", &fstab)) { |
| return false; |
| } |
| return GetEntryForMountPoint(&fstab, mount_point) != nullptr; |
| } |
| |
| // When multiple fstab records share the same mount_point, it will try to mount each |
| // one in turn, and ignore any duplicates after a first successful mount. |
| // Returns -1 on error, and FS_MGR_MNTALL_* otherwise. |
| MountAllResult fs_mgr_mount_all(Fstab* fstab, int mount_mode) { |
| int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; |
| int error_count = 0; |
| CheckpointManager checkpoint_manager; |
| AvbUniquePtr avb_handle(nullptr); |
| bool wiped = false; |
| |
| bool userdata_mounted = false; |
| if (fstab->empty()) { |
| return {FS_MGR_MNTALL_FAIL, userdata_mounted}; |
| } |
| |
| bool scratch_can_be_mounted = true; |
| |
| // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1), |
| // where top_idx is 0. It will give SIGABRT |
| for (int i = 0; i < static_cast<int>(fstab->size()); i++) { |
| auto& current_entry = (*fstab)[i]; |
| |
| // If a filesystem should have been mounted in the first stage, we |
| // ignore it here. With one exception, if the filesystem is |
| // formattable, then it can only be formatted in the second stage, |
| // so we allow it to mount here. |
| if (current_entry.fs_mgr_flags.first_stage_mount && |
| (!current_entry.fs_mgr_flags.formattable || |
| IsMountPointMounted(current_entry.mount_point))) { |
| continue; |
| } |
| |
| // Don't mount entries that are managed by vold or not for the mount mode. |
| if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only || |
| ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) || |
| ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) { |
| continue; |
| } |
| |
| // Skip swap and raw partition entries such as boot, recovery, etc. |
| if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" || |
| current_entry.fs_type == "mtd") { |
| continue; |
| } |
| |
| // Skip mounting the root partition, as it will already have been mounted. |
| if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") { |
| if ((current_entry.flags & MS_RDONLY) != 0) { |
| fs_mgr_set_blk_ro(current_entry.blk_device); |
| } |
| continue; |
| } |
| |
| // Terrible hack to make it possible to remount /data. |
| // TODO: refactor fs_mgr_mount_all and get rid of this. |
| if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") { |
| continue; |
| } |
| |
| // Translate LABEL= file system labels into block devices. |
| if (is_extfs(current_entry.fs_type)) { |
| if (!TranslateExtLabels(¤t_entry)) { |
| LERROR << "Could not translate label to block device"; |
| continue; |
| } |
| } |
| |
| if (current_entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(¤t_entry)) { |
| LERROR << "Could not set up logical partition, skipping!"; |
| continue; |
| } |
| } |
| |
| WrapUserdataIfNeeded(¤t_entry); |
| |
| if (!checkpoint_manager.Update(¤t_entry)) { |
| continue; |
| } |
| |
| if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) { |
| LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all"; |
| continue; |
| } |
| |
| if (current_entry.fs_mgr_flags.avb) { |
| if (!avb_handle) { |
| avb_handle = AvbHandle::Open(); |
| if (!avb_handle) { |
| LERROR << "Failed to open AvbHandle"; |
| set_type_property(encryptable); |
| return {FS_MGR_MNTALL_FAIL, userdata_mounted}; |
| } |
| } |
| if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) == |
| AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point |
| << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if (!current_entry.avb_keys.empty()) { |
| if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on standalone partition: " |
| << current_entry.mount_point << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } |
| |
| int last_idx_inspected; |
| int top_idx = i; |
| int attempted_idx = -1; |
| |
| bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx); |
| auto& attempted_entry = (*fstab)[attempted_idx]; |
| i = last_idx_inspected; |
| int mount_errno = errno; |
| |
| // Handle success and deal with encryptability. |
| if (mret) { |
| int status = handle_encryptable(attempted_entry); |
| |
| if (status == FS_MGR_MNTALL_FAIL) { |
| // Fatal error - no point continuing. |
| return {status, userdata_mounted}; |
| } |
| |
| if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { |
| if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { |
| // Log and continue |
| LERROR << "Only one encryptable/encrypted partition supported"; |
| } |
| encryptable = status; |
| if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) { |
| fs_mgr_set_blk_ro(attempted_entry.blk_device, false); |
| if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device, |
| attempted_entry.mount_point, wiped ? "true" : "false", |
| attempted_entry.fs_type, attempted_entry.zoned_device}, |
| nullptr)) { |
| LERROR << "Encryption failed"; |
| set_type_property(encryptable); |
| return {FS_MGR_MNTALL_FAIL, userdata_mounted}; |
| } |
| } |
| } |
| |
| if (current_entry.mount_point == "/data") { |
| userdata_mounted = true; |
| } |
| |
| MountOverlayfs(attempted_entry, &scratch_can_be_mounted); |
| |
| // Success! Go get the next one. |
| continue; |
| } |
| |
| // Mounting failed, understand why and retry. |
| wiped = partition_wiped(current_entry.blk_device.c_str()); |
| if (mount_errno != EBUSY && mount_errno != EACCES && |
| current_entry.fs_mgr_flags.formattable && wiped) { |
| // current_entry and attempted_entry point at the same partition, but sometimes |
| // at two different lines in the fstab. Use current_entry for formatting |
| // as that is the preferred one. |
| LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device) |
| << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type |
| << " is formattable. Format it."; |
| |
| checkpoint_manager.Revert(¤t_entry); |
| |
| // EncryptInplace will be used when vdc gives an error or needs to format partitions |
| // other than /data |
| if (should_use_metadata_encryption(current_entry) && |
| current_entry.mount_point == "/data") { |
| |
| // vdc->Format requires "ro.crypto.type" to set an encryption flag |
| encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; |
| set_type_property(encryptable); |
| |
| if (!call_vdc({"cryptfs", "encryptFstab", current_entry.blk_device, |
| current_entry.mount_point, "true" /* shouldFormat */, |
| current_entry.fs_type, current_entry.zoned_device}, |
| nullptr)) { |
| LERROR << "Encryption failed"; |
| } else { |
| userdata_mounted = true; |
| continue; |
| } |
| } |
| |
| if (fs_mgr_do_format(current_entry) == 0) { |
| // Let's replay the mount actions. |
| i = top_idx - 1; |
| continue; |
| } else { |
| LERROR << __FUNCTION__ << "(): Format failed. " |
| << "Suggest recovery..."; |
| encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; |
| continue; |
| } |
| } |
| |
| // mount(2) returned an error, handle the encryptable/formattable case. |
| if (mount_errno != EBUSY && mount_errno != EACCES && |
| should_use_metadata_encryption(attempted_entry)) { |
| if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device, |
| attempted_entry.mount_point, attempted_entry.zoned_device}, |
| nullptr)) { |
| ++error_count; |
| } else if (current_entry.mount_point == "/data") { |
| userdata_mounted = true; |
| } |
| encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; |
| continue; |
| } else { |
| // fs_options might be null so we cannot use PERROR << directly. |
| // Use StringPrintf to output "(null)" instead. |
| if (attempted_entry.fs_mgr_flags.no_fail) { |
| PERROR << android::base::StringPrintf( |
| "Ignoring failure to mount an un-encryptable or wiped " |
| "partition on %s at %s options: %s", |
| attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), |
| attempted_entry.fs_options.c_str()); |
| } else { |
| PERROR << android::base::StringPrintf( |
| "Failed to mount an un-encryptable or wiped partition " |
| "on %s at %s options: %s", |
| attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), |
| attempted_entry.fs_options.c_str()); |
| ++error_count; |
| } |
| continue; |
| } |
| } |
| |
| set_type_property(encryptable); |
| |
| if (error_count) { |
| return {FS_MGR_MNTALL_FAIL, userdata_mounted}; |
| } else { |
| return {encryptable, userdata_mounted}; |
| } |
| } |
| |
| int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) { |
| AvbUniquePtr avb_handle(nullptr); |
| int ret = FsMgrUmountStatus::SUCCESS; |
| for (auto& current_entry : *fstab) { |
| if (!IsMountPointMounted(current_entry.mount_point)) { |
| continue; |
| } |
| |
| if (umount(current_entry.mount_point.c_str()) == -1) { |
| PERROR << "Failed to umount " << current_entry.mount_point; |
| ret |= FsMgrUmountStatus::ERROR_UMOUNT; |
| continue; |
| } |
| |
| if (current_entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(¤t_entry)) { |
| LERROR << "Could not get logical partition blk_device, skipping!"; |
| ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER; |
| continue; |
| } |
| } |
| |
| if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) { |
| if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) { |
| LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point; |
| ret |= FsMgrUmountStatus::ERROR_VERITY; |
| continue; |
| } |
| } |
| } |
| return ret; |
| } |
| |
| static std::chrono::milliseconds GetMillisProperty(const std::string& name, |
| std::chrono::milliseconds default_value) { |
| auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count())); |
| return std::chrono::milliseconds(std::move(value)); |
| } |
| |
| static bool fs_mgr_unmount_all_data_mounts(const std::string& data_block_device) { |
| LINFO << __FUNCTION__ << "(): about to umount everything on top of " << data_block_device; |
| Timer t; |
| auto timeout = GetMillisProperty("init.userspace_reboot.userdata_remount.timeoutmillis", 5s); |
| while (true) { |
| bool umount_done = true; |
| Fstab proc_mounts; |
| if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) { |
| LERROR << __FUNCTION__ << "(): Can't read /proc/mounts"; |
| return false; |
| } |
| // Now proceed with other bind mounts on top of /data. |
| for (const auto& entry : proc_mounts) { |
| std::string block_device; |
| if (StartsWith(entry.blk_device, "/dev/block") && |
| !Realpath(entry.blk_device, &block_device)) { |
| PWARNING << __FUNCTION__ << "(): failed to realpath " << entry.blk_device; |
| block_device = entry.blk_device; |
| } |
| if (data_block_device == block_device) { |
| if (umount2(entry.mount_point.c_str(), 0) != 0) { |
| PERROR << __FUNCTION__ << "(): Failed to umount " << entry.mount_point; |
| umount_done = false; |
| } |
| } |
| } |
| if (umount_done) { |
| LINFO << __FUNCTION__ << "(): Unmounting /data took " << t; |
| return true; |
| } |
| if (t.duration() > timeout) { |
| LERROR << __FUNCTION__ << "(): Timed out unmounting all mounts on " |
| << data_block_device; |
| Fstab remaining_mounts; |
| if (!ReadFstabFromFile("/proc/mounts", &remaining_mounts)) { |
| LERROR << __FUNCTION__ << "(): Can't read /proc/mounts"; |
| } else { |
| LERROR << __FUNCTION__ << "(): Following mounts remaining"; |
| for (const auto& e : remaining_mounts) { |
| LERROR << __FUNCTION__ << "(): mount point: " << e.mount_point |
| << " block device: " << e.blk_device; |
| } |
| } |
| return false; |
| } |
| std::this_thread::sleep_for(50ms); |
| } |
| } |
| |
| static bool UnwindDmDeviceStack(const std::string& block_device, |
| std::vector<std::string>* dm_stack) { |
| if (!StartsWith(block_device, "/dev/block/")) { |
| LWARNING << block_device << " is not a block device"; |
| return false; |
| } |
| std::string current = block_device; |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| while (true) { |
| dm_stack->push_back(current); |
| if (!dm.IsDmBlockDevice(current)) { |
| break; |
| } |
| auto parent = dm.GetParentBlockDeviceByPath(current); |
| if (!parent) { |
| return false; |
| } |
| current = *parent; |
| } |
| return true; |
| } |
| |
| FstabEntry* fs_mgr_get_mounted_entry_for_userdata(Fstab* fstab, |
| const std::string& data_block_device) { |
| std::vector<std::string> dm_stack; |
| if (!UnwindDmDeviceStack(data_block_device, &dm_stack)) { |
| LERROR << "Failed to unwind dm-device stack for " << data_block_device; |
| return nullptr; |
| } |
| for (auto& entry : *fstab) { |
| if (entry.mount_point != "/data") { |
| continue; |
| } |
| std::string block_device; |
| if (entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(&entry)) { |
| LERROR << "Failed to update logic partition " << entry.blk_device; |
| continue; |
| } |
| block_device = entry.blk_device; |
| } else if (!Realpath(entry.blk_device, &block_device)) { |
| PWARNING << "Failed to realpath " << entry.blk_device; |
| block_device = entry.blk_device; |
| } |
| if (std::find(dm_stack.begin(), dm_stack.end(), block_device) != dm_stack.end()) { |
| return &entry; |
| } |
| } |
| LERROR << "Didn't find entry that was used to mount /data onto " << data_block_device; |
| return nullptr; |
| } |
| |
| // TODO(b/143970043): return different error codes based on which step failed. |
| int fs_mgr_remount_userdata_into_checkpointing(Fstab* fstab) { |
| Fstab proc_mounts; |
| if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) { |
| LERROR << "Can't read /proc/mounts"; |
| return -1; |
| } |
| auto mounted_entry = GetEntryForMountPoint(&proc_mounts, "/data"); |
| if (mounted_entry == nullptr) { |
| LERROR << "/data is not mounted"; |
| return -1; |
| } |
| std::string block_device; |
| if (!Realpath(mounted_entry->blk_device, &block_device)) { |
| PERROR << "Failed to realpath " << mounted_entry->blk_device; |
| return -1; |
| } |
| auto fstab_entry = fs_mgr_get_mounted_entry_for_userdata(fstab, block_device); |
| if (fstab_entry == nullptr) { |
| LERROR << "Can't find /data in fstab"; |
| return -1; |
| } |
| bool force_umount = GetBoolProperty("sys.init.userdata_remount.force_umount", false); |
| if (force_umount) { |
| LINFO << "Will force an umount of userdata even if it's not required"; |
| } |
| if (!force_umount && !SupportsCheckpoint(fstab_entry)) { |
| LINFO << "Userdata doesn't support checkpointing. Nothing to do"; |
| return 0; |
| } |
| CheckpointManager checkpoint_manager; |
| if (!force_umount && !checkpoint_manager.NeedsCheckpoint()) { |
| LINFO << "Checkpointing not needed. Don't remount"; |
| return 0; |
| } |
| if (!force_umount && fstab_entry->fs_mgr_flags.checkpoint_fs) { |
| // Userdata is f2fs, simply remount it. |
| if (!checkpoint_manager.Update(fstab_entry)) { |
| LERROR << "Failed to remount userdata in checkpointing mode"; |
| return -1; |
| } |
| if (mount(block_device.c_str(), fstab_entry->mount_point.c_str(), "none", |
| MS_REMOUNT | fstab_entry->flags, fstab_entry->fs_options.c_str()) != 0) { |
| PERROR << "Failed to remount userdata in checkpointing mode"; |
| return -1; |
| } |
| } else { |
| LINFO << "Unmounting /data before remounting into checkpointing mode"; |
| if (!fs_mgr_unmount_all_data_mounts(block_device)) { |
| LERROR << "Failed to umount /data"; |
| return -1; |
| } |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| while (dm.IsDmBlockDevice(block_device)) { |
| auto next_device = dm.GetParentBlockDeviceByPath(block_device); |
| auto name = dm.GetDmDeviceNameByPath(block_device); |
| if (!name) { |
| LERROR << "Failed to get dm-name for " << block_device; |
| return -1; |
| } |
| LINFO << "Deleting " << block_device << " named " << *name; |
| if (!dm.DeleteDevice(*name, 3s)) { |
| return -1; |
| } |
| if (!next_device) { |
| LERROR << "Failed to find parent device for " << block_device; |
| } |
| block_device = *next_device; |
| } |
| LINFO << "Remounting /data"; |
| // TODO(b/143970043): remove this hack after fs_mgr_mount_all is refactored. |
| auto result = fs_mgr_mount_all(fstab, MOUNT_MODE_ONLY_USERDATA); |
| return result.code == FS_MGR_MNTALL_FAIL ? -1 : 0; |
| } |
| return 0; |
| } |
| |
| // wrapper to __mount() and expects a fully prepared fstab_rec, |
| // unlike fs_mgr_do_mount which does more things with avb / verity etc. |
| int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& alt_mount_point) { |
| // First check the filesystem if requested. |
| if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) { |
| LERROR << "Skipping mounting '" << entry.blk_device << "'"; |
| } |
| |
| auto& mount_point = alt_mount_point.empty() ? entry.mount_point : alt_mount_point; |
| |
| // Run fsck if needed |
| int ret = prepare_fs_for_mount(entry.blk_device, entry, mount_point); |
| // Wiped case doesn't require to try __mount below. |
| if (ret & FS_STAT_INVALID_MAGIC) { |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| ret = __mount(entry.blk_device, mount_point, entry); |
| if (ret) { |
| ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED; |
| } |
| |
| return ret; |
| } |
| |
| // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one |
| // in turn, and stop on 1st success, or no more match. |
| int fs_mgr_do_mount(Fstab* fstab, const std::string& n_name, const std::string& n_blk_device, |
| int needs_checkpoint, bool needs_encrypt) { |
| int mount_errors = 0; |
| int first_mount_errno = 0; |
| std::string mount_point; |
| CheckpointManager checkpoint_manager(needs_checkpoint, true, needs_encrypt); |
| AvbUniquePtr avb_handle(nullptr); |
| |
| if (!fstab) { |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| for (auto& fstab_entry : *fstab) { |
| if (!fs_match(fstab_entry.mount_point, n_name)) { |
| continue; |
| } |
| |
| // We found our match. |
| // If this swap or a raw partition, report an error. |
| if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" || |
| fstab_entry.fs_type == "mtd") { |
| LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on " |
| << n_blk_device; |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| if (fstab_entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(&fstab_entry)) { |
| LERROR << "Could not set up logical partition, skipping!"; |
| continue; |
| } |
| } |
| |
| WrapUserdataIfNeeded(&fstab_entry, n_blk_device); |
| |
| if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) { |
| LERROR << "Could not set up checkpoint partition, skipping!"; |
| continue; |
| } |
| |
| // First check the filesystem if requested. |
| if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) { |
| LERROR << "Skipping mounting '" << n_blk_device << "'"; |
| continue; |
| } |
| |
| // Now mount it where requested */ |
| mount_point = fstab_entry.mount_point; |
| |
| int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry, mount_point); |
| |
| if (fstab_entry.fs_mgr_flags.avb) { |
| if (!avb_handle) { |
| avb_handle = AvbHandle::Open(); |
| if (!avb_handle) { |
| LERROR << "Failed to open AvbHandle"; |
| return FS_MGR_DOMNT_FAILED; |
| } |
| } |
| if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) == |
| AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point |
| << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if (!fstab_entry.avb_keys.empty()) { |
| if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on standalone partition: " |
| << fstab_entry.mount_point << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } |
| |
| int retry_count = 2; |
| while (retry_count-- > 0) { |
| if (!__mount(n_blk_device, mount_point, fstab_entry)) { |
| fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; |
| log_fs_stat(fstab_entry.blk_device, fs_stat); |
| return FS_MGR_DOMNT_SUCCESS; |
| } else { |
| if (retry_count <= 0) break; // run check_fs only once |
| if (!first_mount_errno) first_mount_errno = errno; |
| mount_errors++; |
| PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point |
| << " with fstype " << fstab_entry.fs_type; |
| fs_stat |= FS_STAT_FULL_MOUNT_FAILED; |
| // try again after fsck |
| check_fs(n_blk_device, fstab_entry.fs_type, mount_point, &fs_stat); |
| } |
| } |
| log_fs_stat(fstab_entry.blk_device, fs_stat); |
| } |
| |
| // Reach here means the mount attempt fails. |
| if (mount_errors) { |
| PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point; |
| if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY; |
| } else { |
| // We didn't find a match, say so and return an error. |
| LERROR << "Cannot find mount point " << n_name << " in fstab"; |
| } |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| static bool ConfigureIoScheduler(const std::string& device_path) { |
| if (!StartsWith(device_path, "/dev/")) { |
| LERROR << __func__ << ": invalid argument " << device_path; |
| return false; |
| } |
| |
| const std::string iosched_path = |
| StringPrintf("/sys/block/%s/queue/scheduler", Basename(device_path).c_str()); |
| unique_fd iosched_fd(open(iosched_path.c_str(), O_RDWR | O_CLOEXEC)); |
| if (iosched_fd.get() == -1) { |
| PERROR << __func__ << ": failed to open " << iosched_path; |
| return false; |
| } |
| |
| // Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support |
| // 'noop' and 'none'. Kernels v5.0 and later only support 'none'. |
| static constexpr const std::array<std::string_view, 2> kNoScheduler = {"none", "noop"}; |
| |
| for (const std::string_view& scheduler : kNoScheduler) { |
| int ret = write(iosched_fd.get(), scheduler.data(), scheduler.size()); |
| if (ret > 0) { |
| return true; |
| } |
| } |
| |
| PERROR << __func__ << ": failed to write to " << iosched_path; |
| return false; |
| } |
| |
| static bool InstallZramDevice(const std::string& device) { |
| if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) { |
| PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV; |
| return false; |
| } |
| LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV; |
| return true; |
| } |
| |
| static bool PrepareZramBackingDevice(off64_t size) { |
| |
| constexpr const char* file_path = "/data/per_boot/zram_swap"; |
| if (size == 0) return true; |
| |
| // Prepare target path |
| unique_fd target_fd(TEMP_FAILURE_RETRY(open(file_path, O_RDWR | O_CREAT | O_CLOEXEC, 0600))); |
| if (target_fd.get() == -1) { |
| PERROR << "Cannot open target path: " << file_path; |
| return false; |
| } |
| if (fallocate(target_fd.get(), 0, 0, size) < 0) { |
| PERROR << "Cannot truncate target path: " << file_path; |
| return false; |
| } |
| |
| // Allocate loop device and attach it to file_path. |
| LoopControl loop_control; |
| std::string loop_device; |
| if (!loop_control.Attach(target_fd.get(), 5s, &loop_device)) { |
| return false; |
| } |
| |
| ConfigureIoScheduler(loop_device); |
| |
| if (auto ret = ConfigureQueueDepth(loop_device, "/"); !ret.ok()) { |
| LOG(DEBUG) << "Failed to config queue depth: " << ret.error().message(); |
| } |
| |
| // set block size & direct IO |
| unique_fd loop_fd(TEMP_FAILURE_RETRY(open(loop_device.c_str(), O_RDWR | O_CLOEXEC))); |
| if (loop_fd.get() == -1) { |
| PERROR << "Cannot open " << loop_device; |
| return false; |
| } |
| if (!LoopControl::SetAutoClearStatus(loop_fd.get())) { |
| PERROR << "Failed set LO_FLAGS_AUTOCLEAR for " << loop_device; |
| } |
| if (!LoopControl::EnableDirectIo(loop_fd.get())) { |
| return false; |
| } |
| |
| return InstallZramDevice(loop_device); |
| } |
| |
| bool fs_mgr_swapon_all(const Fstab& fstab) { |
| bool ret = true; |
| for (const auto& entry : fstab) { |
| // Skip non-swap entries. |
| if (entry.fs_type != "swap") { |
| continue; |
| } |
| |
| if (entry.zram_size > 0) { |
| if (!PrepareZramBackingDevice(entry.zram_backingdev_size)) { |
| LERROR << "Failure of zram backing device file for '" << entry.blk_device << "'"; |
| } |
| // A zram_size was specified, so we need to configure the |
| // device. There is no point in having multiple zram devices |
| // on a system (all the memory comes from the same pool) so |
| // we can assume the device number is 0. |
| if (entry.max_comp_streams >= 0) { |
| auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{ |
| fopen(ZRAM_CONF_MCS, "re"), fclose}; |
| if (zram_mcs_fp == nullptr) { |
| LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS; |
| ret = false; |
| continue; |
| } |
| fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams); |
| } |
| |
| auto zram_fp = |
| std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose}; |
| if (zram_fp == nullptr) { |
| LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV; |
| ret = false; |
| continue; |
| } |
| fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size); |
| } |
| |
| if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) { |
| LERROR << "Skipping mkswap for '" << entry.blk_device << "'"; |
| ret = false; |
| continue; |
| } |
| |
| // Initialize the swap area. |
| const char* mkswap_argv[2] = { |
| MKSWAP_BIN, |
| entry.blk_device.c_str(), |
| }; |
| int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false, |
| LOG_KLOG, false, nullptr); |
| if (err) { |
| LERROR << "mkswap failed for " << entry.blk_device; |
| ret = false; |
| continue; |
| } |
| |
| /* If -1, then no priority was specified in fstab, so don't set |
| * SWAP_FLAG_PREFER or encode the priority */ |
| int flags = 0; |
| if (entry.swap_prio >= 0) { |
| flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK; |
| flags |= SWAP_FLAG_PREFER; |
| } else { |
| flags = 0; |
| } |
| err = swapon(entry.blk_device.c_str(), flags); |
| if (err) { |
| LERROR << "swapon failed for " << entry.blk_device; |
| ret = false; |
| } |
| } |
| |
| return ret; |
| } |
| |
| bool fs_mgr_is_verity_enabled(const FstabEntry& entry) { |
| if (!entry.fs_mgr_flags.avb) { |
| return false; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| |
| std::string mount_point = GetVerityDeviceName(entry); |
| if (dm.GetState(mount_point) == DmDeviceState::INVALID) { |
| return false; |
| } |
| |
| std::vector<DeviceMapper::TargetInfo> table; |
| if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) { |
| return false; |
| } |
| |
| auto status = table[0].data.c_str(); |
| if (*status == 'C' || *status == 'V') { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| std::optional<HashtreeInfo> fs_mgr_get_hashtree_info(const android::fs_mgr::FstabEntry& entry) { |
| if (!entry.fs_mgr_flags.avb) { |
| return {}; |
| } |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| std::string device = GetVerityDeviceName(entry); |
| |
| std::vector<DeviceMapper::TargetInfo> table; |
| if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) { |
| return {}; |
| } |
| for (const auto& target : table) { |
| if (strcmp(target.spec.target_type, "verity") != 0) { |
| continue; |
| } |
| |
| // The format is stable for dm-verity version 0 & 1. And the data is expected to have |
| // the fixed format: |
| // <version> <dev> <hash_dev> <data_block_size> <hash_block_size> <num_data_blocks> |
| // <hash_start_block> <algorithm> <digest> <salt> |
| // Details in https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html |
| |
| std::vector<std::string> tokens = android::base::Split(target.data, " \t\r\n"); |
| if (tokens[0] != "0" && tokens[0] != "1") { |
| LOG(WARNING) << "Unrecognized device mapper version in " << target.data; |
| } |
| |
| // Hashtree algorithm & root digest are the 8th & 9th token in the output. |
| return HashtreeInfo{ |
| .algorithm = android::base::Trim(tokens[7]), |
| .root_digest = android::base::Trim(tokens[8]), |
| .check_at_most_once = target.data.find("check_at_most_once") != std::string::npos}; |
| } |
| |
| return {}; |
| } |
| |
| bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) { |
| auto hashtree_info = fs_mgr_get_hashtree_info(entry); |
| if (!hashtree_info) return false; |
| return hashtree_info->check_at_most_once; |
| } |
| |
| std::string fs_mgr_get_super_partition_name(int slot) { |
| // Devices upgrading to dynamic partitions are allowed to specify a super |
| // partition name. This includes cuttlefish, which is a non-A/B device. |
| std::string super_partition; |
| if (fs_mgr_get_boot_config("force_super_partition", &super_partition)) { |
| return super_partition; |
| } |
| if (fs_mgr_get_boot_config("super_partition", &super_partition)) { |
| if (fs_mgr_get_slot_suffix().empty()) { |
| return super_partition; |
| } |
| std::string suffix; |
| if (slot == 0) { |
| suffix = "_a"; |
| } else if (slot == 1) { |
| suffix = "_b"; |
| } else if (slot == -1) { |
| suffix = fs_mgr_get_slot_suffix(); |
| } |
| return super_partition + suffix; |
| } |
| return LP_METADATA_DEFAULT_PARTITION_NAME; |
| } |
| |
| bool fs_mgr_create_canonical_mount_point(const std::string& mount_point) { |
| auto saved_errno = errno; |
| auto ok = true; |
| auto created_mount_point = !mkdir(mount_point.c_str(), 0755); |
| std::string real_mount_point; |
| if (!Realpath(mount_point, &real_mount_point)) { |
| ok = false; |
| PERROR << "failed to realpath(" << mount_point << ")"; |
| } else if (mount_point != real_mount_point) { |
| ok = false; |
| LERROR << "mount point is not canonical: realpath(" << mount_point << ") -> " |
| << real_mount_point; |
| } |
| if (!ok && created_mount_point) { |
| rmdir(mount_point.c_str()); |
| } |
| errno = saved_errno; |
| return ok; |
| } |
| |
| bool fs_mgr_mount_overlayfs_fstab_entry(const FstabEntry& entry) { |
| const auto overlayfs_check_result = android::fs_mgr::CheckOverlayfs(); |
| if (!overlayfs_check_result.supported) { |
| LERROR << __FUNCTION__ << "(): kernel does not support overlayfs"; |
| return false; |
| } |
| |
| #if ALLOW_ADBD_DISABLE_VERITY == 0 |
| // Allowlist the mount point if user build. |
| static const std::vector<const std::string> kAllowedPaths = { |
| "/odm", "/odm_dlkm", "/oem", "/product", |
| "/system_dlkm", "/system_ext", "/vendor", "/vendor_dlkm", |
| }; |
| static const std::vector<const std::string> kAllowedPrefixes = { |
| "/mnt/product/", |
| "/mnt/vendor/", |
| }; |
| if (std::none_of(kAllowedPaths.begin(), kAllowedPaths.end(), |
| [&entry](const auto& path) -> bool { |
| return entry.mount_point == path || |
| StartsWith(entry.mount_point, path + "/"); |
| }) && |
| std::none_of(kAllowedPrefixes.begin(), kAllowedPrefixes.end(), |
| [&entry](const auto& prefix) -> bool { |
| return entry.mount_point != prefix && |
| StartsWith(entry.mount_point, prefix); |
| })) { |
| LERROR << __FUNCTION__ |
| << "(): mount point is forbidden on user build: " << entry.mount_point; |
| return false; |
| } |
| #endif // ALLOW_ADBD_DISABLE_VERITY == 0 |
| |
| if (!fs_mgr_create_canonical_mount_point(entry.mount_point)) { |
| return false; |
| } |
| |
| auto lowerdir = entry.lowerdir; |
| if (entry.fs_mgr_flags.overlayfs_remove_missing_lowerdir) { |
| bool removed_any = false; |
| std::vector<std::string> lowerdirs; |
| for (const auto& dir : android::base::Split(entry.lowerdir, ":")) { |
| if (access(dir.c_str(), F_OK)) { |
| PWARNING << __FUNCTION__ << "(): remove missing lowerdir '" << dir << "'"; |
| removed_any = true; |
| } else { |
| lowerdirs.push_back(dir); |
| } |
| } |
| if (removed_any) { |
| lowerdir = android::base::Join(lowerdirs, ":"); |
| } |
| } |
| |
| const auto options = "lowerdir=" + lowerdir + overlayfs_check_result.mount_flags; |
| |
| // Use "overlay-" + entry.blk_device as the mount() source, so that adb-remout-test don't |
| // confuse this with adb remount overlay, whose device name is "overlay". |
| // Overlayfs is a pseudo filesystem, so the source device is a symbolic value and isn't used to |
| // back the filesystem. However the device name would be shown in /proc/mounts. |
| auto source = "overlay-" + entry.blk_device; |
| auto report = "__mount(source=" + source + ",target=" + entry.mount_point + ",type=overlay," + |
| options + ")="; |
| auto ret = mount(source.c_str(), entry.mount_point.c_str(), "overlay", MS_RDONLY | MS_NOATIME, |
| options.c_str()); |
| if (ret) { |
| PERROR << report << ret; |
| return false; |
| } |
| LINFO << report << ret; |
| return true; |
| } |
| |
| bool fs_mgr_load_verity_state(int* mode) { |
| // unless otherwise specified, use EIO mode. |
| *mode = VERITY_MODE_EIO; |
| |
| // The bootloader communicates verity mode via the kernel commandline |
| std::string verity_mode; |
| if (!fs_mgr_get_boot_config("veritymode", &verity_mode)) { |
| return false; |
| } |
| |
| if (verity_mode == "enforcing") { |
| *mode = VERITY_MODE_DEFAULT; |
| } else if (verity_mode == "logging") { |
| *mode = VERITY_MODE_LOGGING; |
| } |
| |
| return true; |
| } |
| |
| bool fs_mgr_filesystem_available(const std::string& filesystem) { |
| std::string filesystems; |
| if (!android::base::ReadFileToString("/proc/filesystems", &filesystems)) return false; |
| return filesystems.find("\t" + filesystem + "\n") != std::string::npos; |
| } |
| |
| std::string fs_mgr_get_context(const std::string& mount_point) { |
| char* ctx = nullptr; |
| if (getfilecon(mount_point.c_str(), &ctx) == -1) { |
| PERROR << "getfilecon " << mount_point; |
| return ""; |
| } |
| |
| std::string context(ctx); |
| free(ctx); |
| return context; |
| } |
| |
| namespace android { |
| namespace fs_mgr { |
| |
| OverlayfsCheckResult CheckOverlayfs() { |
| if (!fs_mgr_filesystem_available("overlay")) { |
| return {.supported = false}; |
| } |
| struct utsname uts; |
| if (uname(&uts) == -1) { |
| return {.supported = false}; |
| } |
| int major, minor; |
| if (sscanf(uts.release, "%d.%d", &major, &minor) != 2) { |
| return {.supported = false}; |
| } |
| // Overlayfs available in the kernel, and patched for override_creds? |
| if (access("/sys/module/overlay/parameters/override_creds", F_OK) == 0) { |
| auto mount_flags = ",override_creds=off"s; |
| if (major > 5 || (major == 5 && minor >= 15)) { |
| mount_flags += ",userxattr"s; |
| } |
| return {.supported = true, .mount_flags = mount_flags}; |
| } |
| if (major < 4 || (major == 4 && minor <= 3)) { |
| return {.supported = true}; |
| } |
| return {.supported = false}; |
| } |
| |
| } // namespace fs_mgr |
| } // namespace android |