blob: fd2c236918f798a8adaaa2c2bae03dd6be4bd083 [file] [log] [blame]
/*
* Copyright (C) 2012-2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// for manual checking of stale entries during ChattyLogBuffer::erase()
//#define DEBUG_CHECK_FOR_STALE_ENTRIES
#include "ChattyLogBuffer.h"
#include <ctype.h>
#include <endian.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/user.h>
#include <time.h>
#include <unistd.h>
#include <limits>
#include <unordered_map>
#include <utility>
#include <private/android_logger.h>
#include "LogUtils.h"
#ifndef __predict_false
#define __predict_false(exp) __builtin_expect((exp) != 0, 0)
#endif
// Default
#define log_buffer_size(id) mMaxSize[id]
void ChattyLogBuffer::Init() {
log_id_for_each(i) {
if (SetSize(i, __android_logger_get_buffer_size(i))) {
SetSize(i, LOG_BUFFER_MIN_SIZE);
}
}
// Release any sleeping reader threads to dump their current content.
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
for (const auto& reader_thread : reader_list_->reader_threads()) {
reader_thread->triggerReader_Locked();
}
}
ChattyLogBuffer::ChattyLogBuffer(LogReaderList* reader_list, LogTags* tags, PruneList* prune,
LogStatistics* stats)
: reader_list_(reader_list), tags_(tags), prune_(prune), stats_(stats) {
Init();
}
ChattyLogBuffer::~ChattyLogBuffer() {}
LogBufferElementCollection::iterator ChattyLogBuffer::GetOldest(log_id_t log_id) {
auto it = mLogElements.begin();
if (oldest_[log_id]) {
it = *oldest_[log_id];
}
while (it != mLogElements.end() && it->getLogId() != log_id) {
it++;
}
if (it != mLogElements.end()) {
oldest_[log_id] = it;
}
return it;
}
enum match_type { DIFFERENT, SAME, SAME_LIBLOG };
static enum match_type identical(LogBufferElement* elem, LogBufferElement* last) {
// is it mostly identical?
// if (!elem) return DIFFERENT;
ssize_t lenl = elem->getMsgLen();
if (lenl <= 0) return DIFFERENT; // value if this represents a chatty elem
// if (!last) return DIFFERENT;
ssize_t lenr = last->getMsgLen();
if (lenr <= 0) return DIFFERENT; // value if this represents a chatty elem
// if (elem->getLogId() != last->getLogId()) return DIFFERENT;
if (elem->getUid() != last->getUid()) return DIFFERENT;
if (elem->getPid() != last->getPid()) return DIFFERENT;
if (elem->getTid() != last->getTid()) return DIFFERENT;
// last is more than a minute old, stop squashing identical messages
if (elem->getRealTime().nsec() > (last->getRealTime().nsec() + 60 * NS_PER_SEC))
return DIFFERENT;
// Identical message
const char* msgl = elem->getMsg();
const char* msgr = last->getMsg();
if (lenl == lenr) {
if (!fastcmp<memcmp>(msgl, msgr, lenl)) return SAME;
// liblog tagged messages (content gets summed)
if (elem->getLogId() == LOG_ID_EVENTS && lenl == sizeof(android_log_event_int_t) &&
!fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_int_t) - sizeof(int32_t)) &&
elem->getTag() == LIBLOG_LOG_TAG) {
return SAME_LIBLOG;
}
}
// audit message (except sequence number) identical?
if (last->isBinary() && lenl > static_cast<ssize_t>(sizeof(android_log_event_string_t)) &&
lenr > static_cast<ssize_t>(sizeof(android_log_event_string_t))) {
if (fastcmp<memcmp>(msgl, msgr, sizeof(android_log_event_string_t) - sizeof(int32_t))) {
return DIFFERENT;
}
msgl += sizeof(android_log_event_string_t);
lenl -= sizeof(android_log_event_string_t);
msgr += sizeof(android_log_event_string_t);
lenr -= sizeof(android_log_event_string_t);
}
static const char avc[] = "): avc: ";
const char* avcl = android::strnstr(msgl, lenl, avc);
if (!avcl) return DIFFERENT;
lenl -= avcl - msgl;
const char* avcr = android::strnstr(msgr, lenr, avc);
if (!avcr) return DIFFERENT;
lenr -= avcr - msgr;
if (lenl != lenr) return DIFFERENT;
if (fastcmp<memcmp>(avcl + strlen(avc), avcr + strlen(avc), lenl - strlen(avc))) {
return DIFFERENT;
}
return SAME;
}
bool ChattyLogBuffer::ShouldLog(log_id_t log_id, const char* msg, uint16_t len) {
if (log_id == LOG_ID_SECURITY) {
return true;
}
int prio = ANDROID_LOG_INFO;
const char* tag = nullptr;
size_t tag_len = 0;
if (log_id == LOG_ID_EVENTS || log_id == LOG_ID_STATS) {
if (len < sizeof(android_event_header_t)) {
return false;
}
int32_t numeric_tag = reinterpret_cast<const android_event_header_t*>(msg)->tag;
tag = tags_->tagToName(numeric_tag);
if (tag) {
tag_len = strlen(tag);
}
} else {
prio = *msg;
tag = msg + 1;
tag_len = strnlen(tag, len - 1);
}
return __android_log_is_loggable_len(prio, tag, tag_len, ANDROID_LOG_VERBOSE);
}
int ChattyLogBuffer::Log(log_id_t log_id, log_time realtime, uid_t uid, pid_t pid, pid_t tid,
const char* msg, uint16_t len) {
if (log_id >= LOG_ID_MAX) {
return -EINVAL;
}
if (!ShouldLog(log_id, msg, len)) {
// Log traffic received to total
stats_->AddTotal(log_id, len);
return -EACCES;
}
// Slip the time by 1 nsec if the incoming lands on xxxxxx000 ns.
// This prevents any chance that an outside source can request an
// exact entry with time specified in ms or us precision.
if ((realtime.tv_nsec % 1000) == 0) ++realtime.tv_nsec;
LogBufferElement elem(log_id, realtime, uid, pid, tid, msg, len);
// b/137093665: don't coalesce security messages.
if (log_id == LOG_ID_SECURITY) {
auto lock = std::lock_guard{lock_};
Log(std::move(elem));
return len;
}
auto lock = std::lock_guard{lock_};
// Initialize last_logged_elements_ to a copy of elem if logging the first element for a log_id.
if (!last_logged_elements_[log_id]) {
last_logged_elements_[log_id].emplace(elem);
Log(std::move(elem));
return len;
}
LogBufferElement& current_last = *last_logged_elements_[log_id];
enum match_type match = identical(&elem, &current_last);
if (match == DIFFERENT) {
if (duplicate_elements_[log_id]) {
// If we previously had 3+ identical messages, log the chatty message.
if (duplicate_elements_[log_id]->getDropped() > 0) {
Log(std::move(*duplicate_elements_[log_id]));
}
duplicate_elements_[log_id].reset();
// Log the saved copy of the last identical message seen.
Log(std::move(current_last));
}
last_logged_elements_[log_id].emplace(elem);
Log(std::move(elem));
return len;
}
// 2 identical message: set duplicate_elements_ appropriately.
if (!duplicate_elements_[log_id]) {
duplicate_elements_[log_id].emplace(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
return len;
}
// 3+ identical LIBLOG event messages: coalesce them into last_logged_elements_.
if (match == SAME_LIBLOG) {
const android_log_event_int_t* current_last_event =
reinterpret_cast<const android_log_event_int_t*>(current_last.getMsg());
int64_t current_last_count = current_last_event->payload.data;
android_log_event_int_t* elem_event =
reinterpret_cast<android_log_event_int_t*>(const_cast<char*>(elem.getMsg()));
int64_t elem_count = elem_event->payload.data;
int64_t total = current_last_count + elem_count;
if (total > std::numeric_limits<int32_t>::max()) {
Log(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
return len;
}
stats_->AddTotal(current_last.getLogId(), current_last.getMsgLen());
elem_event->payload.data = total;
last_logged_elements_[log_id].emplace(std::move(elem));
return len;
}
// 3+ identical messages (not LIBLOG) messages: increase the drop count.
uint16_t dropped_count = duplicate_elements_[log_id]->getDropped();
if (dropped_count == std::numeric_limits<uint16_t>::max()) {
Log(std::move(*duplicate_elements_[log_id]));
dropped_count = 0;
}
// We're dropping the current_last log so add its stats to the total.
stats_->AddTotal(current_last.getLogId(), current_last.getMsgLen());
// Use current_last for tracking the dropped count to always use the latest timestamp.
current_last.setDropped(dropped_count + 1);
duplicate_elements_[log_id].emplace(std::move(current_last));
last_logged_elements_[log_id].emplace(std::move(elem));
return len;
}
void ChattyLogBuffer::Log(LogBufferElement&& elem) {
log_id_t log_id = elem.getLogId();
mLogElements.push_back(std::move(elem));
stats_->Add(&mLogElements.back());
maybePrune(log_id);
reader_list_->NotifyNewLog(1 << log_id);
}
void ChattyLogBuffer::maybePrune(log_id_t id) {
unsigned long prune_rows;
if (stats_->ShouldPrune(id, log_buffer_size(id), &prune_rows)) {
prune(id, prune_rows);
}
}
LogBufferElementCollection::iterator ChattyLogBuffer::erase(LogBufferElementCollection::iterator it,
bool coalesce) {
LogBufferElement& element = *it;
log_id_t id = element.getLogId();
// Remove iterator references in the various lists that will become stale
// after the element is erased from the main logging list.
{ // start of scope for found iterator
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.getTag()
: element.getUid();
LogBufferIteratorMap::iterator found = mLastWorst[id].find(key);
if ((found != mLastWorst[id].end()) && (it == found->second)) {
mLastWorst[id].erase(found);
}
}
{ // start of scope for pid found iterator
// element->getUid() may not be AID_SYSTEM for next-best-watermark.
// will not assume id != LOG_ID_EVENTS or LOG_ID_SECURITY for KISS and
// long term code stability, find() check should be fast for those ids.
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(element.getPid());
if (found != mLastWorstPidOfSystem[id].end() && it == found->second) {
mLastWorstPidOfSystem[id].erase(found);
}
}
bool setLast[LOG_ID_MAX];
bool doSetLast = false;
log_id_for_each(i) { doSetLast |= setLast[i] = oldest_[i] && it == *oldest_[i]; }
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
LogBufferElementCollection::iterator bad = it;
int key =
(id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element->getTag() : element->getUid();
#endif
if (coalesce) {
stats_->Erase(&element);
} else {
stats_->Subtract(&element);
}
it = mLogElements.erase(it);
if (doSetLast) {
log_id_for_each(i) {
if (setLast[i]) {
if (__predict_false(it == mLogElements.end())) {
oldest_[i] = std::nullopt;
} else {
oldest_[i] = it; // Store the next iterator even if it does not correspond to
// the same log_id, as a starting point for GetOldest().
}
}
}
}
#ifdef DEBUG_CHECK_FOR_STALE_ENTRIES
log_id_for_each(i) {
for (auto b : mLastWorst[i]) {
if (bad == b.second) {
android::prdebug("stale mLastWorst[%d] key=%d mykey=%d\n", i, b.first, key);
}
}
for (auto b : mLastWorstPidOfSystem[i]) {
if (bad == b.second) {
android::prdebug("stale mLastWorstPidOfSystem[%d] pid=%d\n", i, b.first);
}
}
}
#endif
return it;
}
// Define a temporary mechanism to report the last LogBufferElement pointer
// for the specified uid, pid and tid. Used below to help merge-sort when
// pruning for worst UID.
class LogBufferElementLast {
typedef std::unordered_map<uint64_t, LogBufferElement*> LogBufferElementMap;
LogBufferElementMap map;
public:
bool coalesce(LogBufferElement* element, uint16_t dropped) {
uint64_t key = LogBufferElementKey(element->getUid(), element->getPid(), element->getTid());
LogBufferElementMap::iterator it = map.find(key);
if (it != map.end()) {
LogBufferElement* found = it->second;
uint16_t moreDropped = found->getDropped();
if ((dropped + moreDropped) > USHRT_MAX) {
map.erase(it);
} else {
found->setDropped(dropped + moreDropped);
return true;
}
}
return false;
}
void add(LogBufferElement* element) {
uint64_t key = LogBufferElementKey(element->getUid(), element->getPid(), element->getTid());
map[key] = element;
}
void clear() { map.clear(); }
void clear(LogBufferElement* element) {
uint64_t current = element->getRealTime().nsec() - (EXPIRE_RATELIMIT * NS_PER_SEC);
for (LogBufferElementMap::iterator it = map.begin(); it != map.end();) {
LogBufferElement* mapElement = it->second;
if (mapElement->getDropped() >= EXPIRE_THRESHOLD &&
current > mapElement->getRealTime().nsec()) {
it = map.erase(it);
} else {
++it;
}
}
}
private:
uint64_t LogBufferElementKey(uid_t uid, pid_t pid, pid_t tid) {
return uint64_t(uid) << 32 | uint64_t(pid) << 16 | uint64_t(tid);
}
};
// If the selected reader is blocking our pruning progress, decide on
// what kind of mitigation is necessary to unblock the situation.
void ChattyLogBuffer::kickMe(LogReaderThread* me, log_id_t id, unsigned long pruneRows) {
if (stats_->Sizes(id) > (2 * log_buffer_size(id))) { // +100%
// A misbehaving or slow reader has its connection
// dropped if we hit too much memory pressure.
android::prdebug("Kicking blocked reader, %s, from ChattyLogBuffer::kickMe()\n",
me->name().c_str());
me->release_Locked();
} else if (me->deadline().time_since_epoch().count() != 0) {
// Allow a blocked WRAP deadline reader to trigger and start reporting the log data.
me->triggerReader_Locked();
} else {
// tell slow reader to skip entries to catch up
android::prdebug(
"Skipping %lu entries from slow reader, %s, from ChattyLogBuffer::kickMe()\n",
pruneRows, me->name().c_str());
me->triggerSkip_Locked(id, pruneRows);
}
}
// prune "pruneRows" of type "id" from the buffer.
//
// This garbage collection task is used to expire log entries. It is called to
// remove all logs (clear), all UID logs (unprivileged clear), or every
// 256 or 10% of the total logs (whichever is less) to prune the logs.
//
// First there is a prep phase where we discover the reader region lock that
// acts as a backstop to any pruning activity to stop there and go no further.
//
// There are three major pruning loops that follow. All expire from the oldest
// entries. Since there are multiple log buffers, the Android logging facility
// will appear to drop entries 'in the middle' when looking at multiple log
// sources and buffers. This effect is slightly more prominent when we prune
// the worst offender by logging source. Thus the logs slowly loose content
// and value as you move back in time. This is preferred since chatty sources
// invariably move the logs value down faster as less chatty sources would be
// expired in the noise.
//
// The first loop performs blacklisting and worst offender pruning. Falling
// through when there are no notable worst offenders and have not hit the
// region lock preventing further worst offender pruning. This loop also looks
// after managing the chatty log entries and merging to help provide
// statistical basis for blame. The chatty entries are not a notification of
// how much logs you may have, but instead represent how much logs you would
// have had in a virtual log buffer that is extended to cover all the in-memory
// logs without loss. They last much longer than the represented pruned logs
// since they get multiplied by the gains in the non-chatty log sources.
//
// The second loop get complicated because an algorithm of watermarks and
// history is maintained to reduce the order and keep processing time
// down to a minimum at scale. These algorithms can be costly in the face
// of larger log buffers, or severly limited processing time granted to a
// background task at lowest priority.
//
// This second loop does straight-up expiration from the end of the logs
// (again, remember for the specified log buffer id) but does some whitelist
// preservation. Thus whitelist is a Hail Mary low priority, blacklists and
// spam filtration all take priority. This second loop also checks if a region
// lock is causing us to buffer too much in the logs to help the reader(s),
// and will tell the slowest reader thread to skip log entries, and if
// persistent and hits a further threshold, kill the reader thread.
//
// The third thread is optional, and only gets hit if there was a whitelist
// and more needs to be pruned against the backstop of the region lock.
//
bool ChattyLogBuffer::prune(log_id_t id, unsigned long pruneRows, uid_t caller_uid) {
LogReaderThread* oldest = nullptr;
bool busy = false;
bool clearAll = pruneRows == ULONG_MAX;
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
// Region locked?
for (const auto& reader_thread : reader_list_->reader_threads()) {
if (!reader_thread->IsWatching(id)) {
continue;
}
if (!oldest || oldest->start() > reader_thread->start() ||
(oldest->start() == reader_thread->start() &&
reader_thread->deadline().time_since_epoch().count() != 0)) {
oldest = reader_thread.get();
}
}
LogBufferElementCollection::iterator it;
if (__predict_false(caller_uid != AID_ROOT)) { // unlikely
// Only here if clear all request from non system source, so chatty
// filter logistics is not required.
it = GetOldest(id);
while (it != mLogElements.end()) {
LogBufferElement& element = *it;
if (element.getLogId() != id || element.getUid() != caller_uid) {
++it;
continue;
}
if (oldest && oldest->start() <= element.getSequence()) {
busy = true;
kickMe(oldest, id, pruneRows);
break;
}
it = erase(it);
if (--pruneRows == 0) {
break;
}
}
return busy;
}
// prune by worst offenders; by blacklist, UID, and by PID of system UID
bool hasBlacklist = (id != LOG_ID_SECURITY) && prune_->naughty();
while (!clearAll && (pruneRows > 0)) {
// recalculate the worst offender on every batched pass
int worst = -1; // not valid for getUid() or getKey()
size_t worst_sizes = 0;
size_t second_worst_sizes = 0;
pid_t worstPid = 0; // POSIX guarantees PID != 0
if (worstUidEnabledForLogid(id) && prune_->worstUidEnabled()) {
// Calculate threshold as 12.5% of available storage
size_t threshold = log_buffer_size(id) / 8;
if (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) {
stats_->WorstTwoTags(threshold, &worst, &worst_sizes, &second_worst_sizes);
// per-pid filter for AID_SYSTEM sources is too complex
} else {
stats_->WorstTwoUids(id, threshold, &worst, &worst_sizes, &second_worst_sizes);
if (worst == AID_SYSTEM && prune_->worstPidOfSystemEnabled()) {
stats_->WorstTwoSystemPids(id, worst_sizes, &worstPid, &second_worst_sizes);
}
}
}
// skip if we have neither worst nor naughty filters
if ((worst == -1) && !hasBlacklist) {
break;
}
bool kick = false;
bool leading = true; // true if starting from the oldest log entry, false if starting from
// a specific chatty entry.
// Perform at least one mandatory garbage collection cycle in following
// - clear leading chatty tags
// - coalesce chatty tags
// - check age-out of preserved logs
bool gc = pruneRows <= 1;
if (!gc && (worst != -1)) {
{ // begin scope for worst found iterator
LogBufferIteratorMap::iterator found = mLastWorst[id].find(worst);
if (found != mLastWorst[id].end() && found->second != mLogElements.end()) {
leading = false;
it = found->second;
}
}
if (worstPid) { // begin scope for pid worst found iterator
// FYI: worstPid only set if !LOG_ID_EVENTS and
// !LOG_ID_SECURITY, not going to make that assumption ...
LogBufferPidIteratorMap::iterator found = mLastWorstPidOfSystem[id].find(worstPid);
if (found != mLastWorstPidOfSystem[id].end() &&
found->second != mLogElements.end()) {
leading = false;
it = found->second;
}
}
}
if (leading) {
it = GetOldest(id);
}
static const log_time too_old{EXPIRE_HOUR_THRESHOLD * 60 * 60, 0};
LogBufferElementCollection::iterator lastt;
lastt = mLogElements.end();
--lastt;
LogBufferElementLast last;
while (it != mLogElements.end()) {
LogBufferElement& element = *it;
if (oldest && oldest->start() <= element.getSequence()) {
busy = true;
// Do not let chatty eliding trigger any reader mitigation
break;
}
if (element.getLogId() != id) {
++it;
continue;
}
// below this point element->getLogId() == id
uint16_t dropped = element.getDropped();
// remove any leading drops
if (leading && dropped) {
it = erase(it);
continue;
}
if (dropped && last.coalesce(&element, dropped)) {
it = erase(it, true);
continue;
}
int key = (id == LOG_ID_EVENTS || id == LOG_ID_SECURITY) ? element.getTag()
: element.getUid();
if (hasBlacklist && prune_->naughty(&element)) {
last.clear(&element);
it = erase(it);
if (dropped) {
continue;
}
pruneRows--;
if (pruneRows == 0) {
break;
}
if (key == worst) {
kick = true;
if (worst_sizes < second_worst_sizes) {
break;
}
worst_sizes -= element.getMsgLen();
}
continue;
}
if (element.getRealTime() < (lastt->getRealTime() - too_old) ||
element.getRealTime() > lastt->getRealTime()) {
break;
}
if (dropped) {
last.add(&element);
if (worstPid && ((!gc && element.getPid() == worstPid) ||
mLastWorstPidOfSystem[id].find(element.getPid()) ==
mLastWorstPidOfSystem[id].end())) {
// element->getUid() may not be AID_SYSTEM, next best
// watermark if current one empty. id is not LOG_ID_EVENTS
// or LOG_ID_SECURITY because of worstPid check.
mLastWorstPidOfSystem[id][element.getPid()] = it;
}
if ((!gc && !worstPid && (key == worst)) ||
(mLastWorst[id].find(key) == mLastWorst[id].end())) {
mLastWorst[id][key] = it;
}
++it;
continue;
}
if (key != worst || (worstPid && element.getPid() != worstPid)) {
leading = false;
last.clear(&element);
++it;
continue;
}
// key == worst below here
// If worstPid set, then element->getPid() == worstPid below here
pruneRows--;
if (pruneRows == 0) {
break;
}
kick = true;
uint16_t len = element.getMsgLen();
// do not create any leading drops
if (leading) {
it = erase(it);
} else {
stats_->Drop(&element);
element.setDropped(1);
if (last.coalesce(&element, 1)) {
it = erase(it, true);
} else {
last.add(&element);
if (worstPid && (!gc || mLastWorstPidOfSystem[id].find(worstPid) ==
mLastWorstPidOfSystem[id].end())) {
// element->getUid() may not be AID_SYSTEM, next best
// watermark if current one empty. id is not
// LOG_ID_EVENTS or LOG_ID_SECURITY because of worstPid.
mLastWorstPidOfSystem[id][worstPid] = it;
}
if ((!gc && !worstPid) || mLastWorst[id].find(worst) == mLastWorst[id].end()) {
mLastWorst[id][worst] = it;
}
++it;
}
}
if (worst_sizes < second_worst_sizes) {
break;
}
worst_sizes -= len;
}
last.clear();
if (!kick || !prune_->worstUidEnabled()) {
break; // the following loop will ask bad clients to skip/drop
}
}
bool whitelist = false;
bool hasWhitelist = (id != LOG_ID_SECURITY) && prune_->nice() && !clearAll;
it = GetOldest(id);
while ((pruneRows > 0) && (it != mLogElements.end())) {
LogBufferElement& element = *it;
if (element.getLogId() != id) {
it++;
continue;
}
if (oldest && oldest->start() <= element.getSequence()) {
busy = true;
if (!whitelist) kickMe(oldest, id, pruneRows);
break;
}
if (hasWhitelist && !element.getDropped() && prune_->nice(&element)) {
// WhiteListed
whitelist = true;
it++;
continue;
}
it = erase(it);
pruneRows--;
}
// Do not save the whitelist if we are reader range limited
if (whitelist && (pruneRows > 0)) {
it = GetOldest(id);
while ((it != mLogElements.end()) && (pruneRows > 0)) {
LogBufferElement& element = *it;
if (element.getLogId() != id) {
++it;
continue;
}
if (oldest && oldest->start() <= element.getSequence()) {
busy = true;
kickMe(oldest, id, pruneRows);
break;
}
it = erase(it);
pruneRows--;
}
}
return (pruneRows > 0) && busy;
}
// clear all rows of type "id" from the buffer.
bool ChattyLogBuffer::Clear(log_id_t id, uid_t uid) {
bool busy = true;
// If it takes more than 4 tries (seconds) to clear, then kill reader(s)
for (int retry = 4;;) {
if (retry == 1) { // last pass
// Check if it is still busy after the sleep, we say prune
// one entry, not another clear run, so we are looking for
// the quick side effect of the return value to tell us if
// we have a _blocked_ reader.
{
auto lock = std::lock_guard{lock_};
busy = prune(id, 1, uid);
}
// It is still busy, blocked reader(s), lets kill them all!
// otherwise, lets be a good citizen and preserve the slow
// readers and let the clear run (below) deal with determining
// if we are still blocked and return an error code to caller.
if (busy) {
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
for (const auto& reader_thread : reader_list_->reader_threads()) {
if (reader_thread->IsWatching(id)) {
android::prdebug(
"Kicking blocked reader, %s, from ChattyLogBuffer::clear()\n",
reader_thread->name().c_str());
reader_thread->release_Locked();
}
}
}
}
{
auto lock = std::lock_guard{lock_};
busy = prune(id, ULONG_MAX, uid);
}
if (!busy || !--retry) {
break;
}
sleep(1); // Let reader(s) catch up after notification
}
return busy;
}
// set the total space allocated to "id"
int ChattyLogBuffer::SetSize(log_id_t id, unsigned long size) {
// Reasonable limits ...
if (!__android_logger_valid_buffer_size(size)) {
return -1;
}
auto lock = std::lock_guard{lock_};
log_buffer_size(id) = size;
return 0;
}
// get the total space allocated to "id"
unsigned long ChattyLogBuffer::GetSize(log_id_t id) {
auto shared_lock = SharedLock{lock_};
size_t retval = log_buffer_size(id);
return retval;
}
uint64_t ChattyLogBuffer::FlushTo(
LogWriter* writer, uint64_t start, pid_t* lastTid,
const std::function<FlushToResult(const LogBufferElement* element)>& filter) {
LogBufferElementCollection::iterator it;
uid_t uid = writer->uid();
auto shared_lock = SharedLock{lock_};
if (start <= 1) {
// client wants to start from the beginning
it = mLogElements.begin();
} else {
// Client wants to start from some specified time. Chances are
// we are better off starting from the end of the time sorted list.
for (it = mLogElements.end(); it != mLogElements.begin();
/* do nothing */) {
--it;
if (it->getSequence() <= start) {
it++;
break;
}
}
}
uint64_t curr = start;
for (; it != mLogElements.end(); ++it) {
LogBufferElement& element = *it;
if (!writer->privileged() && element.getUid() != uid) {
continue;
}
if (!writer->can_read_security_logs() && element.getLogId() == LOG_ID_SECURITY) {
continue;
}
// NB: calling out to another object with wrlock() held (safe)
if (filter) {
FlushToResult ret = filter(&element);
if (ret == FlushToResult::kSkip) {
continue;
}
if (ret == FlushToResult::kStop) {
break;
}
}
bool sameTid = false;
if (lastTid) {
sameTid = lastTid[element.getLogId()] == element.getTid();
// Dropped (chatty) immediately following a valid log from the
// same source in the same log buffer indicates we have a
// multiple identical squash. chatty that differs source
// is due to spam filter. chatty to chatty of different
// source is also due to spam filter.
lastTid[element.getLogId()] = (element.getDropped() && !sameTid) ? 0 : element.getTid();
}
shared_lock.unlock();
curr = element.getSequence();
// range locking in LastLogTimes looks after us
if (!element.FlushTo(writer, stats_, sameTid)) {
return FLUSH_ERROR;
}
shared_lock.lock_shared();
}
return curr;
}