blob: fee08577c7f12cc29e19dbd05eae265ac6755eb9 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "fastboot.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <functional>
#include <regex>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <build/version.h>
#include <liblp/liblp.h>
#include <platform_tools_version.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
#include "bootimg_utils.h"
#include "constants.h"
#include "diagnose_usb.h"
#include "fastboot_driver.h"
#include "fs.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"
#include "util.h"
using android::base::ReadFully;
using android::base::Split;
using android::base::Trim;
using android::base::unique_fd;
using namespace std::string_literals;
static const char* serial = nullptr;
static bool g_long_listing = false;
// Don't resparse files in too-big chunks.
// libsparse will support INT_MAX, but this results in large allocations, so
// let's keep it at 1GB to avoid memory pressure on the host.
static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024;
static uint64_t sparse_limit = 0;
static int64_t target_sparse_limit = -1;
static unsigned g_base_addr = 0x10000000;
static boot_img_hdr_v1 g_boot_img_hdr = {};
static std::string g_cmdline;
static bool g_disable_verity = false;
static bool g_disable_verification = false;
static const std::string convert_fbe_marker_filename("convert_fbe");
fastboot::FastBootDriver* fb = nullptr;
enum fb_buffer_type {
FB_BUFFER_FD,
FB_BUFFER_SPARSE,
};
struct fastboot_buffer {
enum fb_buffer_type type;
void* data;
int64_t sz;
int fd;
int64_t image_size;
};
enum class ImageType {
// Must be flashed for device to boot into the kernel.
BootCritical,
// Normal partition to be flashed during "flashall".
Normal,
// Partition that is never flashed during "flashall".
Extra
};
struct Image {
const char* nickname;
const char* img_name;
const char* sig_name;
const char* part_name;
bool optional_if_no_image;
ImageType type;
bool IsSecondary() const { return nickname == nullptr; }
};
static Image images[] = {
// clang-format off
{ "boot", "boot.img", "boot.sig", "boot", false, ImageType::BootCritical },
{ nullptr, "boot_other.img", "boot.sig", "boot", true, ImageType::Normal },
{ "cache", "cache.img", "cache.sig", "cache", true, ImageType::Extra },
{ "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, ImageType::BootCritical },
{ "dts", "dt.img", "dt.sig", "dts", true, ImageType::BootCritical },
{ "odm", "odm.img", "odm.sig", "odm", true, ImageType::Normal },
{ "product", "product.img", "product.sig", "product", true, ImageType::Normal },
{ "product_services",
"product_services.img",
"product_services.sig",
"product_services",
true, ImageType::Normal },
{ "recovery", "recovery.img", "recovery.sig", "recovery", true, ImageType::BootCritical },
{ "super", "super.img", "super.sig", "super", true, ImageType::Extra },
{ "system", "system.img", "system.sig", "system", false, ImageType::Normal },
{ nullptr, "system_other.img", "system.sig", "system", true, ImageType::Normal },
{ "userdata", "userdata.img", "userdata.sig", "userdata", true, ImageType::Extra },
{ "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, ImageType::BootCritical },
{ "vbmeta_system",
"vbmeta_system.img",
"vbmeta_system.sig",
"vbmeta_system",
true, ImageType::BootCritical },
{ "vendor", "vendor.img", "vendor.sig", "vendor", true, ImageType::Normal },
{ nullptr, "vendor_other.img", "vendor.sig", "vendor", true, ImageType::Normal },
// clang-format on
};
static char* get_android_product_out() {
char* dir = getenv("ANDROID_PRODUCT_OUT");
if (dir == nullptr || dir[0] == '\0') {
return nullptr;
}
return dir;
}
static std::string find_item_given_name(const std::string& img_name) {
char* dir = get_android_product_out();
if (!dir) {
die("ANDROID_PRODUCT_OUT not set");
}
return std::string(dir) + "/" + img_name;
}
static std::string find_item(const std::string& item) {
for (size_t i = 0; i < arraysize(images); ++i) {
if (images[i].nickname && item == images[i].nickname) {
return find_item_given_name(images[i].img_name);
}
}
fprintf(stderr, "unknown partition '%s'\n", item.c_str());
return "";
}
double last_start_time;
static void Status(const std::string& message) {
static constexpr char kStatusFormat[] = "%-50s ";
fprintf(stderr, kStatusFormat, message.c_str());
last_start_time = now();
}
static void Epilog(int status) {
if (status) {
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
die("Command failed");
} else {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - last_start_time));
}
}
static void InfoMessage(const std::string& info) {
fprintf(stderr, "(bootloader) %s\n", info.c_str());
}
static int64_t get_file_size(int fd) {
struct stat sb;
if (fstat(fd, &sb) == -1) {
die("could not get file size");
}
return sb.st_size;
}
bool ReadFileToVector(const std::string& file, std::vector<char>* out) {
out->clear();
unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)));
if (fd == -1) {
return false;
}
out->resize(get_file_size(fd));
return ReadFully(fd, out->data(), out->size());
}
static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
return -1;
}
// require matching serial number or device path if requested
// at the command line with the -s option.
if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
strcmp(local_serial, info->device_path) != 0)) return -1;
return 0;
}
static int match_fastboot(usb_ifc_info* info) {
return match_fastboot_with_serial(info, serial);
}
static int list_devices_callback(usb_ifc_info* info) {
if (match_fastboot_with_serial(info, nullptr) == 0) {
std::string serial = info->serial_number;
if (!info->writable) {
serial = UsbNoPermissionsShortHelpText();
}
if (!serial[0]) {
serial = "????????????";
}
// output compatible with "adb devices"
if (!g_long_listing) {
printf("%s\tfastboot", serial.c_str());
} else {
printf("%-22s fastboot", serial.c_str());
if (strlen(info->device_path) > 0) printf(" %s", info->device_path);
}
putchar('\n');
}
return -1;
}
// Opens a new Transport connected to a device. If |serial| is non-null it will be used to identify
// a specific device, otherwise the first USB device found will be used.
//
// If |serial| is non-null but invalid, this exits.
// Otherwise it blocks until the target is available.
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static Transport* open_device() {
bool announce = true;
Socket::Protocol protocol = Socket::Protocol::kTcp;
std::string host;
int port = 0;
if (serial != nullptr) {
const char* net_address = nullptr;
if (android::base::StartsWith(serial, "tcp:")) {
protocol = Socket::Protocol::kTcp;
port = tcp::kDefaultPort;
net_address = serial + strlen("tcp:");
} else if (android::base::StartsWith(serial, "udp:")) {
protocol = Socket::Protocol::kUdp;
port = udp::kDefaultPort;
net_address = serial + strlen("udp:");
}
if (net_address != nullptr) {
std::string error;
if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
die("invalid network address '%s': %s\n", net_address, error.c_str());
}
}
}
Transport* transport = nullptr;
while (true) {
if (!host.empty()) {
std::string error;
if (protocol == Socket::Protocol::kTcp) {
transport = tcp::Connect(host, port, &error).release();
} else if (protocol == Socket::Protocol::kUdp) {
transport = udp::Connect(host, port, &error).release();
}
if (transport == nullptr && announce) {
fprintf(stderr, "error: %s\n", error.c_str());
}
} else {
transport = usb_open(match_fastboot);
}
if (transport != nullptr) {
return transport;
}
if (announce) {
announce = false;
fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device");
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
static void list_devices() {
// We don't actually open a USB device here,
// just getting our callback called so we can
// list all the connected devices.
usb_open(list_devices_callback);
}
static void syntax_error(const char* fmt, ...) {
fprintf(stderr, "fastboot: usage: ");
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
static int show_help() {
// clang-format off
fprintf(stdout,
// 1 2 3 4 5 6 7 8
// 12345678901234567890123456789012345678901234567890123456789012345678901234567890
"usage: fastboot [OPTION...] COMMAND...\n"
"\n"
"flashing:\n"
" update ZIP Flash all partitions from an update.zip package.\n"
" flashall Flash all partitions from $ANDROID_PRODUCT_OUT.\n"
" On A/B devices, flashed slot is set as active.\n"
" Secondary images may be flashed to inactive slot.\n"
" flash PARTITION [FILENAME] Flash given partition, using the image from\n"
" $ANDROID_PRODUCT_OUT if no filename is given.\n"
"\n"
"basics:\n"
" devices [-l] List devices in bootloader (-l: with device paths).\n"
" getvar NAME Display given bootloader variable.\n"
" reboot [bootloader] Reboot device.\n"
"\n"
"locking/unlocking:\n"
" flashing lock|unlock Lock/unlock partitions for flashing\n"
" flashing lock_critical|unlock_critical\n"
" Lock/unlock 'critical' bootloader partitions.\n"
" flashing get_unlock_ability\n"
" Check whether unlocking is allowed (1) or not(0).\n"
"\n"
"advanced:\n"
" erase PARTITION Erase a flash partition.\n"
" format[:FS_TYPE[:SIZE]] PARTITION\n"
" Format a flash partition.\n"
" set_active SLOT Set the active slot.\n"
" oem [COMMAND...] Execute OEM-specific command.\n"
"\n"
"boot image:\n"
" boot KERNEL [RAMDISK [SECOND]]\n"
" Download and boot kernel from RAM.\n"
" flash:raw PARTITION KERNEL [RAMDISK [SECOND]]\n"
" Create boot image and flash it.\n"
" --cmdline CMDLINE Override kernel command line.\n"
" --base ADDRESS Set kernel base address (default: 0x10000000).\n"
" --kernel-offset Set kernel offset (default: 0x00008000).\n"
" --ramdisk-offset Set ramdisk offset (default: 0x01000000).\n"
" --tags-offset Set tags offset (default: 0x00000100).\n"
" --page-size BYTES Set flash page size (default: 2048).\n"
" --header-version VERSION Set boot image header version.\n"
" --os-version MAJOR[.MINOR[.PATCH]]\n"
" Set boot image OS version (default: 0.0.0).\n"
" --os-patch-level YYYY-MM-DD\n"
" Set boot image OS security patch level.\n"
// TODO: still missing: `second_addr`, `name`, `id`, `recovery_dtbo_*`.
"\n"
// TODO: what device(s) used this? is there any documentation?
//" continue Continue with autoboot.\n"
//"\n"
"Android Things:\n"
" stage IN_FILE Sends given file to stage for the next command.\n"
" get_staged OUT_FILE Writes data staged by the last command to a file.\n"
"\n"
"options:\n"
" -w Wipe userdata.\n"
" -s SERIAL Specify a USB device.\n"
" -s tcp|udp:HOST[:PORT] Specify a network device.\n"
" -S SIZE[K|M|G] Break into sparse files no larger than SIZE.\n"
" --force Force a flash operation that may be unsafe.\n"
" --slot SLOT Use SLOT; 'all' for both slots, 'other' for\n"
" non-current slot (default: current active slot).\n"
" --set-active[=SLOT] Sets the active slot before rebooting.\n"
" --skip-secondary Don't flash secondary slots in flashall/update.\n"
" --skip-reboot Don't reboot device after flashing.\n"
" --disable-verity Sets disable-verity when flashing vbmeta.\n"
" --disable-verification Sets disable-verification when flashing vbmeta.\n"
#if !defined(_WIN32)
" --wipe-and-use-fbe Enable file-based encryption, wiping userdata.\n"
#endif
// TODO: remove --unbuffered?
" --unbuffered Don't buffer input or output.\n"
" --verbose, -v Verbose output.\n"
" --version Display version.\n"
" --help, -h Show this message.\n"
);
// clang-format off
return 0;
}
static std::vector<char> LoadBootableImage(const std::string& kernel, const std::string& ramdisk,
const std::string& second_stage) {
std::vector<char> kernel_data;
if (!ReadFileToVector(kernel, &kernel_data)) {
die("cannot load '%s': %s", kernel.c_str(), strerror(errno));
}
// Is this actually a boot image?
if (kernel_data.size() < sizeof(boot_img_hdr_v1)) {
die("cannot load '%s': too short", kernel.c_str());
}
if (!memcmp(kernel_data.data(), BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
if (!g_cmdline.empty()) {
bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v1*>(kernel_data.data()), g_cmdline);
}
if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk");
return kernel_data;
}
std::vector<char> ramdisk_data;
if (!ramdisk.empty()) {
if (!ReadFileToVector(ramdisk, &ramdisk_data)) {
die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno));
}
}
std::vector<char> second_stage_data;
if (!second_stage.empty()) {
if (!ReadFileToVector(second_stage, &second_stage_data)) {
die("cannot load '%s': %s", second_stage.c_str(), strerror(errno));
}
}
fprintf(stderr,"creating boot image...\n");
std::vector<char> out;
boot_img_hdr_v1* boot_image_data = mkbootimg(kernel_data, ramdisk_data, second_stage_data,
g_base_addr, g_boot_img_hdr, &out);
if (!g_cmdline.empty()) bootimg_set_cmdline(boot_image_data, g_cmdline);
fprintf(stderr, "creating boot image - %zu bytes\n", out.size());
return out;
}
static bool UnzipToMemory(ZipArchiveHandle zip, const std::string& entry_name,
std::vector<char>* out) {
ZipString zip_entry_name(entry_name.c_str());
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name.c_str());
return false;
}
out->resize(zip_entry.uncompressed_length);
fprintf(stderr, "extracting %s (%zu MB) to RAM...\n", entry_name.c_str(),
out->size() / 1024 / 1024);
int error = ExtractToMemory(zip, &zip_entry, reinterpret_cast<uint8_t*>(out->data()),
out->size());
if (error != 0) die("failed to extract '%s': %s", entry_name.c_str(), ErrorCodeString(error));
return true;
}
#if defined(_WIN32)
// TODO: move this to somewhere it can be shared.
#include <windows.h>
// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
char temp_path[PATH_MAX];
DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
if (nchars == 0 || nchars >= sizeof(temp_path)) {
die("GetTempPath failed, error %ld", GetLastError());
}
char filename[PATH_MAX];
if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
die("GetTempFileName failed, error %ld", GetLastError());
}
return fopen(filename, "w+bTD");
}
#define tmpfile win32_tmpfile
static std::string make_temporary_directory() {
die("make_temporary_directory not supported under Windows, sorry!");
}
static int make_temporary_fd(const char* /*what*/) {
// TODO: reimplement to avoid leaking a FILE*.
return fileno(tmpfile());
}
#else
static std::string make_temporary_template() {
const char* tmpdir = getenv("TMPDIR");
if (tmpdir == nullptr) tmpdir = P_tmpdir;
return std::string(tmpdir) + "/fastboot_userdata_XXXXXX";
}
static std::string make_temporary_directory() {
std::string result(make_temporary_template());
if (mkdtemp(&result[0]) == nullptr) {
die("unable to create temporary directory with template %s: %s",
result.c_str(), strerror(errno));
}
return result;
}
static int make_temporary_fd(const char* what) {
std::string path_template(make_temporary_template());
int fd = mkstemp(&path_template[0]);
if (fd == -1) {
die("failed to create temporary file for %s with template %s: %s\n",
path_template.c_str(), what, strerror(errno));
}
unlink(path_template.c_str());
return fd;
}
#endif
static std::string create_fbemarker_tmpdir() {
std::string dir = make_temporary_directory();
std::string marker_file = dir + "/" + convert_fbe_marker_filename;
int fd = open(marker_file.c_str(), O_CREAT | O_WRONLY | O_CLOEXEC, 0666);
if (fd == -1) {
die("unable to create FBE marker file %s locally: %s",
marker_file.c_str(), strerror(errno));
}
close(fd);
return dir;
}
static void delete_fbemarker_tmpdir(const std::string& dir) {
std::string marker_file = dir + "/" + convert_fbe_marker_filename;
if (unlink(marker_file.c_str()) == -1) {
fprintf(stderr, "Unable to delete FBE marker file %s locally: %d, %s\n",
marker_file.c_str(), errno, strerror(errno));
return;
}
if (rmdir(dir.c_str()) == -1) {
fprintf(stderr, "Unable to delete FBE marker directory %s locally: %d, %s\n",
dir.c_str(), errno, strerror(errno));
return;
}
}
static int unzip_to_file(ZipArchiveHandle zip, const char* entry_name) {
unique_fd fd(make_temporary_fd(entry_name));
ZipString zip_entry_name(entry_name);
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
errno = ENOENT;
return -1;
}
fprintf(stderr, "extracting %s (%" PRIu32 " MB) to disk...", entry_name,
zip_entry.uncompressed_length / 1024 / 1024);
double start = now();
int error = ExtractEntryToFile(zip, &zip_entry, fd);
if (error != 0) {
die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error));
}
if (lseek(fd, 0, SEEK_SET) != 0) {
die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno));
}
fprintf(stderr, " took %.3fs\n", now() - start);
return fd.release();
}
static void CheckRequirement(const std::string& cur_product, const std::string& var,
const std::string& product, bool invert,
const std::vector<std::string>& options) {
Status("Checking '" + var + "'");
double start = now();
if (!product.empty()) {
if (product != cur_product) {
double split = now();
fprintf(stderr, "IGNORE, product is %s required only for %s [%7.3fs]\n",
cur_product.c_str(), product.c_str(), (split - start));
return;
}
}
std::string var_value;
if (fb->GetVar(var, &var_value) != fastboot::SUCCESS) {
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Could not getvar for '%s' (%s)\n\n", var.c_str(),
fb->Error().c_str());
die("requirements not met!");
}
bool match = false;
for (const auto& option : options) {
if (option == var_value || (option.back() == '*' &&
!var_value.compare(0, option.length() - 1, option, 0,
option.length() - 1))) {
match = true;
break;
}
}
if (invert) {
match = !match;
}
if (match) {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - start));
return;
}
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Device %s is '%s'.\n", var.c_str(), var_value.c_str());
fprintf(stderr, "Update %s '%s'", invert ? "rejects" : "requires", options[0].c_str());
for (auto it = std::next(options.begin()); it != options.end(); ++it) {
fprintf(stderr, " or '%s'", it->c_str());
}
fprintf(stderr, ".\n\n");
die("requirements not met!");
}
bool ParseRequirementLine(const std::string& line, std::string* name, std::string* product,
bool* invert, std::vector<std::string>* options) {
// "require product=alpha|beta|gamma"
// "require version-bootloader=1234"
// "require-for-product:gamma version-bootloader=istanbul|constantinople"
// "require partition-exists=vendor"
*product = "";
*invert = false;
auto require_reject_regex = std::regex{"(require\\s+|reject\\s+)?\\s*(\\S+)\\s*=\\s*(.*)"};
auto require_product_regex =
std::regex{"require-for-product:\\s*(\\S+)\\s+(\\S+)\\s*=\\s*(.*)"};
std::smatch match_results;
if (std::regex_match(line, match_results, require_reject_regex)) {
*invert = Trim(match_results[1]) == "reject";
} else if (std::regex_match(line, match_results, require_product_regex)) {
*product = match_results[1];
} else {
return false;
}
*name = match_results[2];
// Work around an unfortunate name mismatch.
if (*name == "board") {
*name = "product";
}
auto raw_options = Split(match_results[3], "|");
for (const auto& option : raw_options) {
auto trimmed_option = Trim(option);
options->emplace_back(trimmed_option);
}
return true;
}
// "require partition-exists=x" is a special case, added because of the trouble we had when
// Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them,
// missing out new partitions. A device with new partitions can use "partition-exists" to
// override the fields `optional_if_no_image` in the `images` array.
static void HandlePartitionExists(const std::vector<std::string>& options) {
const std::string& partition_name = options[0];
std::string has_slot;
if (fb->GetVar("has-slot:" + partition_name, &has_slot) != fastboot::SUCCESS ||
(has_slot != "yes" && has_slot != "no")) {
die("device doesn't have required partition %s!", partition_name.c_str());
}
bool known_partition = false;
for (size_t i = 0; i < arraysize(images); ++i) {
if (images[i].nickname && images[i].nickname == partition_name) {
images[i].optional_if_no_image = false;
known_partition = true;
}
}
if (!known_partition) {
die("device requires partition %s which is not known to this version of fastboot",
partition_name.c_str());
}
}
static void CheckRequirements(const std::string& data) {
std::string cur_product;
if (fb->GetVar("product", &cur_product) != fastboot::SUCCESS) {
fprintf(stderr, "getvar:product FAILED (%s)\n", fb->Error().c_str());
}
auto lines = Split(data, "\n");
for (const auto& line : lines) {
if (line.empty()) {
continue;
}
std::string name;
std::string product;
bool invert;
std::vector<std::string> options;
if (!ParseRequirementLine(line, &name, &product, &invert, &options)) {
fprintf(stderr, "android-info.txt syntax error: %s\n", line.c_str());
continue;
}
if (name == "partition-exists") {
HandlePartitionExists(options);
} else {
CheckRequirement(cur_product, name, product, invert, options);
}
}
}
static void DisplayVarOrError(const std::string& label, const std::string& var) {
std::string value;
if (fb->GetVar(var, &value) != fastboot::SUCCESS) {
Status("getvar:" + var);
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
return;
}
fprintf(stderr, "%s: %s\n", label.c_str(), value.c_str());
}
static void DumpInfo() {
fprintf(stderr, "--------------------------------------------\n");
DisplayVarOrError("Bootloader Version...", "version-bootloader");
DisplayVarOrError("Baseband Version.....", "version-baseband");
DisplayVarOrError("Serial Number........", "serialno");
fprintf(stderr, "--------------------------------------------\n");
}
static struct sparse_file** load_sparse_files(int fd, int64_t max_size) {
struct sparse_file* s = sparse_file_import_auto(fd, false, true);
if (!s) die("cannot sparse read file");
if (max_size <= 0 || max_size > std::numeric_limits<uint32_t>::max()) {
die("invalid max size %" PRId64, max_size);
}
int files = sparse_file_resparse(s, max_size, nullptr, 0);
if (files < 0) die("Failed to resparse");
sparse_file** out_s = reinterpret_cast<sparse_file**>(calloc(sizeof(struct sparse_file *), files + 1));
if (!out_s) die("Failed to allocate sparse file array");
files = sparse_file_resparse(s, max_size, out_s, files);
if (files < 0) die("Failed to resparse");
return out_s;
}
static int64_t get_target_sparse_limit() {
std::string max_download_size;
if (fb->GetVar("max-download-size", &max_download_size) != fastboot::SUCCESS ||
max_download_size.empty()) {
verbose("target didn't report max-download-size");
return 0;
}
// Some bootloaders (angler, for example) send spurious whitespace too.
max_download_size = android::base::Trim(max_download_size);
uint64_t limit;
if (!android::base::ParseUint(max_download_size, &limit)) {
fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str());
return 0;
}
if (limit > 0) verbose("target reported max download size of %" PRId64 " bytes", limit);
return limit;
}
static int64_t get_sparse_limit(int64_t size) {
int64_t limit = sparse_limit;
if (limit == 0) {
// Unlimited, so see what the target device's limit is.
// TODO: shouldn't we apply this limit even if you've used -S?
if (target_sparse_limit == -1) {
target_sparse_limit = get_target_sparse_limit();
}
if (target_sparse_limit > 0) {
limit = target_sparse_limit;
} else {
return 0;
}
}
if (size > limit) {
return std::min(limit, RESPARSE_LIMIT);
}
return 0;
}
static bool load_buf_fd(int fd, struct fastboot_buffer* buf) {
int64_t sz = get_file_size(fd);
if (sz == -1) {
return false;
}
if (sparse_file* s = sparse_file_import_auto(fd, false, false)) {
buf->image_size = sparse_file_len(s, false, false);
sparse_file_destroy(s);
} else {
buf->image_size = sz;
}
lseek(fd, 0, SEEK_SET);
int64_t limit = get_sparse_limit(sz);
if (limit) {
sparse_file** s = load_sparse_files(fd, limit);
if (s == nullptr) {
return false;
}
buf->type = FB_BUFFER_SPARSE;
buf->data = s;
} else {
buf->type = FB_BUFFER_FD;
buf->data = nullptr;
buf->fd = fd;
buf->sz = sz;
}
return true;
}
static bool load_buf(const char* fname, struct fastboot_buffer* buf) {
unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY)));
if (fd == -1) {
return false;
}
struct stat s;
if (fstat(fd, &s)) {
return false;
}
if (!S_ISREG(s.st_mode)) {
errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL;
return false;
}
return load_buf_fd(fd.release(), buf);
}
static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf) {
// Buffer needs to be at least the size of the VBMeta struct which
// is 256 bytes.
if (buf->sz < 256) {
return;
}
int fd = make_temporary_fd("vbmeta rewriting");
std::string data;
if (!android::base::ReadFdToString(buf->fd, &data)) {
die("Failed reading from vbmeta");
}
// There's a 32-bit big endian |flags| field at offset 120 where
// bit 0 corresponds to disable-verity and bit 1 corresponds to
// disable-verification.
//
// See external/avb/libavb/avb_vbmeta_image.h for the layout of
// the VBMeta struct.
if (g_disable_verity) {
data[123] |= 0x01;
}
if (g_disable_verification) {
data[123] |= 0x02;
}
if (!android::base::WriteStringToFd(data, fd)) {
die("Failed writing to modified vbmeta");
}
close(buf->fd);
buf->fd = fd;
lseek(fd, 0, SEEK_SET);
}
static void flash_buf(const std::string& partition, struct fastboot_buffer *buf)
{
sparse_file** s;
// Rewrite vbmeta if that's what we're flashing and modification has been requested.
if ((g_disable_verity || g_disable_verification) &&
(partition == "vbmeta" || partition == "vbmeta_a" || partition == "vbmeta_b")) {
rewrite_vbmeta_buffer(buf);
}
switch (buf->type) {
case FB_BUFFER_SPARSE: {
std::vector<std::pair<sparse_file*, int64_t>> sparse_files;
s = reinterpret_cast<sparse_file**>(buf->data);
while (*s) {
int64_t sz = sparse_file_len(*s, true, false);
sparse_files.emplace_back(*s, sz);
++s;
}
for (size_t i = 0; i < sparse_files.size(); ++i) {
const auto& pair = sparse_files[i];
fb->FlashPartition(partition, pair.first, pair.second, i + 1, sparse_files.size());
}
break;
}
case FB_BUFFER_FD:
fb->FlashPartition(partition, buf->fd, buf->sz);
break;
default:
die("unknown buffer type: %d", buf->type);
}
}
static std::string get_current_slot() {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) != fastboot::SUCCESS) return "";
return current_slot;
}
static int get_slot_count() {
std::string var;
int count = 0;
if (fb->GetVar("slot-count", &var) != fastboot::SUCCESS ||
!android::base::ParseInt(var, &count)) {
return 0;
}
return count;
}
static bool supports_AB() {
return get_slot_count() >= 2;
}
// Given a current slot, this returns what the 'other' slot is.
static std::string get_other_slot(const std::string& current_slot, int count) {
if (count == 0) return "";
char next = (current_slot[0] - 'a' + 1)%count + 'a';
return std::string(1, next);
}
static std::string get_other_slot(const std::string& current_slot) {
return get_other_slot(current_slot, get_slot_count());
}
static std::string get_other_slot(int count) {
return get_other_slot(get_current_slot(), count);
}
static std::string get_other_slot() {
return get_other_slot(get_current_slot(), get_slot_count());
}
static std::string verify_slot(const std::string& slot_name, bool allow_all) {
std::string slot = slot_name;
if (slot == "all") {
if (allow_all) {
return "all";
} else {
int count = get_slot_count();
if (count > 0) {
return "a";
} else {
die("No known slots");
}
}
}
int count = get_slot_count();
if (count == 0) die("Device does not support slots");
if (slot == "other") {
std::string other = get_other_slot( count);
if (other == "") {
die("No known slots");
}
return other;
}
if (slot.size() == 1 && (slot[0]-'a' >= 0 && slot[0]-'a' < count)) return slot;
fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str());
for (int i=0; i<count; i++) {
fprintf(stderr, "%c\n", (char)(i + 'a'));
}
exit(1);
}
static std::string verify_slot(const std::string& slot) {
return verify_slot(slot, true);
}
static void do_for_partition(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
std::string current_slot;
if (fb->GetVar("has-slot:" + part, &has_slot) != fastboot::SUCCESS) {
/* If has-slot is not supported, the answer is no. */
has_slot = "no";
}
if (has_slot == "yes") {
if (slot == "") {
current_slot = get_current_slot();
if (current_slot == "") {
die("Failed to identify current slot");
}
func(part + "_" + current_slot);
} else {
func(part + '_' + slot);
}
} else {
if (force_slot && slot != "") {
fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
part.c_str(), slot.c_str());
}
func(part);
}
}
/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
* empty, it will use the current slot. If slot is "all", it will return a list of all possible
* partition names. If force_slot is true, it will fail if a slot is specified, and the given
* partition does not support slots.
*/
static void do_for_partitions(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
if (slot == "all") {
if (fb->GetVar("has-slot:" + part, &has_slot) != fastboot::SUCCESS) {
die("Could not check if partition %s has slot %s", part.c_str(), slot.c_str());
}
if (has_slot == "yes") {
for (int i=0; i < get_slot_count(); i++) {
do_for_partition(part, std::string(1, (char)(i + 'a')), func, force_slot);
}
} else {
do_for_partition(part, "", func, force_slot);
}
} else {
do_for_partition(part, slot, func, force_slot);
}
}
static bool is_logical(const std::string& partition) {
std::string value;
return fb->GetVar("is-logical:" + partition, &value) == fastboot::SUCCESS && value == "yes";
}
static bool is_retrofit_device() {
std::string value;
if (fb->GetVar("super-partition-name", &value) != fastboot::SUCCESS) {
return false;
}
return android::base::StartsWith(value, "system_");
}
static void do_flash(const char* pname, const char* fname) {
struct fastboot_buffer buf;
if (!load_buf(fname, &buf)) {
die("cannot load '%s': %s", fname, strerror(errno));
}
if (is_logical(pname)) {
fb->ResizePartition(pname, std::to_string(buf.image_size));
}
flash_buf(pname, &buf);
}
// Sets slot_override as the active slot. If slot_override is blank,
// set current slot as active instead. This clears slot-unbootable.
static void set_active(const std::string& slot_override) {
if (!supports_AB()) return;
if (slot_override != "") {
fb->SetActive(slot_override);
} else {
std::string current_slot = get_current_slot();
if (current_slot != "") {
fb->SetActive(current_slot);
}
}
}
static bool is_userspace_fastboot() {
std::string value;
return fb->GetVar("is-userspace", &value) == fastboot::SUCCESS && value == "yes";
}
static void reboot_to_userspace_fastboot() {
fb->RebootTo("fastboot");
auto* old_transport = fb->set_transport(nullptr);
delete old_transport;
// Give the current connection time to close.
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
fb->set_transport(open_device());
}
class ImageSource {
public:
virtual bool ReadFile(const std::string& name, std::vector<char>* out) const = 0;
virtual int OpenFile(const std::string& name) const = 0;
};
class FlashAllTool {
public:
FlashAllTool(const ImageSource& source, const std::string& slot_override, bool skip_secondary, bool wipe);
void Flash();
private:
void CheckRequirements();
void DetermineSecondarySlot();
void CollectImages();
void FlashImages(const std::vector<std::pair<const Image*, std::string>>& images);
void FlashImage(const Image& image, const std::string& slot, fastboot_buffer* buf);
void UpdateSuperPartition();
const ImageSource& source_;
std::string slot_override_;
bool skip_secondary_;
bool wipe_;
std::string secondary_slot_;
std::vector<std::pair<const Image*, std::string>> boot_images_;
std::vector<std::pair<const Image*, std::string>> os_images_;
};
FlashAllTool::FlashAllTool(const ImageSource& source, const std::string& slot_override, bool skip_secondary, bool wipe)
: source_(source),
slot_override_(slot_override),
skip_secondary_(skip_secondary),
wipe_(wipe)
{
}
void FlashAllTool::Flash() {
DumpInfo();
CheckRequirements();
// Change the slot first, so we boot into the correct recovery image when
// using fastbootd.
if (slot_override_ == "all") {
set_active("a");
} else {
set_active(slot_override_);
}
DetermineSecondarySlot();
CollectImages();
// First flash boot partitions. We allow this to happen either in userspace
// or in bootloader fastboot.
FlashImages(boot_images_);
// Sync the super partition. This will reboot to userspace fastboot if needed.
UpdateSuperPartition();
// Resize any logical partition to 0, so each partition is reset to 0
// extents, and will achieve more optimal allocation.
for (const auto& [image, slot] : os_images_) {
auto resize_partition = [](const std::string& partition) -> void {
if (is_logical(partition)) {
fb->ResizePartition(partition, "0");
}
};
do_for_partitions(image->part_name, slot, resize_partition, false);
}
// Flash OS images, resizing logical partitions as needed.
FlashImages(os_images_);
}
void FlashAllTool::CheckRequirements() {
std::vector<char> contents;
if (!source_.ReadFile("android-info.txt", &contents)) {
die("could not read android-info.txt");
}
::CheckRequirements({contents.data(), contents.size()});
}
void FlashAllTool::DetermineSecondarySlot() {
if (skip_secondary_) {
return;
}
if (slot_override_ != "" && slot_override_ != "all") {
secondary_slot_ = get_other_slot(slot_override_);
} else {
secondary_slot_ = get_other_slot();
}
if (secondary_slot_ == "") {
if (supports_AB()) {
fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
}
skip_secondary_ = true;
}
}
void FlashAllTool::CollectImages() {
for (size_t i = 0; i < arraysize(images); ++i) {
std::string slot = slot_override_;
if (images[i].IsSecondary()) {
if (skip_secondary_) {
continue;
}
slot = secondary_slot_;
}
if (images[i].type == ImageType::BootCritical) {
boot_images_.emplace_back(&images[i], slot);
} else if (images[i].type == ImageType::Normal) {
os_images_.emplace_back(&images[i], slot);
}
}
}
void FlashAllTool::FlashImages(const std::vector<std::pair<const Image*, std::string>>& images) {
for (const auto& [image, slot] : images) {
fastboot_buffer buf;
int fd = source_.OpenFile(image->img_name);
if (fd < 0 || !load_buf_fd(fd, &buf)) {
if (image->optional_if_no_image) {
continue;
}
die("could not load '%s': %s", image->img_name, strerror(errno));
}
FlashImage(*image, slot, &buf);
}
}
void FlashAllTool::FlashImage(const Image& image, const std::string& slot, fastboot_buffer* buf) {
auto flash = [&, this](const std::string& partition_name) {
std::vector<char> signature_data;
if (source_.ReadFile(image.sig_name, &signature_data)) {
fb->Download("signature", signature_data);
fb->RawCommand("signature", "installing signature");
}
if (is_logical(partition_name)) {
fb->ResizePartition(partition_name, std::to_string(buf->image_size));
}
flash_buf(partition_name.c_str(), buf);
};
do_for_partitions(image.part_name, slot, flash, false);
}
void FlashAllTool::UpdateSuperPartition() {
int fd = source_.OpenFile("super_empty.img");
if (fd < 0) {
return;
}
if (!is_userspace_fastboot()) {
reboot_to_userspace_fastboot();
}
if (!is_userspace_fastboot()) {
die("Failed to boot into userspace; one or more components might be unbootable.");
}
std::string super_name;
if (fb->GetVar("super-partition-name", &super_name) != fastboot::RetCode::SUCCESS) {
super_name = "super";
}
fb->Download(super_name, fd, get_file_size(fd));
std::string command = "update-super:" + super_name;
if (wipe_) {
command += ":wipe";
}
fb->RawCommand(command, "Updating super partition");
// Retrofit devices have two super partitions, named super_a and super_b.
// On these devices, secondary slots must be flashed as physical
// partitions (otherwise they would not mount on first boot). To enforce
// this, we delete any logical partitions for the "other" slot.
if (is_retrofit_device()) {
for (const auto& [image, slot] : os_images_) {
std::string partition_name = image->part_name + "_"s + slot;
if (image->IsSecondary() && is_logical(partition_name)) {
fb->DeletePartition(partition_name);
}
}
}
}
class ZipImageSource final : public ImageSource {
public:
explicit ZipImageSource(ZipArchiveHandle zip) : zip_(zip) {}
bool ReadFile(const std::string& name, std::vector<char>* out) const override;
int OpenFile(const std::string& name) const override;
private:
ZipArchiveHandle zip_;
};
bool ZipImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
return UnzipToMemory(zip_, name, out);
}
int ZipImageSource::OpenFile(const std::string& name) const {
return unzip_to_file(zip_, name.c_str());
}
static void do_update(const char* filename, const std::string& slot_override, bool skip_secondary) {
ZipArchiveHandle zip;
int error = OpenArchive(filename, &zip);
if (error != 0) {
die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
}
FlashAllTool tool(ZipImageSource(zip), slot_override, skip_secondary, false);
tool.Flash();
CloseArchive(zip);
}
class LocalImageSource final : public ImageSource {
public:
bool ReadFile(const std::string& name, std::vector<char>* out) const override;
int OpenFile(const std::string& name) const override;
};
bool LocalImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
auto path = find_item_given_name(name);
if (path.empty()) {
return false;
}
return ReadFileToVector(path, out);
}
int LocalImageSource::OpenFile(const std::string& name) const {
auto path = find_item_given_name(name);
return open(path.c_str(), O_RDONLY);
}
static void do_flashall(const std::string& slot_override, bool skip_secondary, bool wipe) {
FlashAllTool tool(LocalImageSource(), slot_override, skip_secondary, wipe);
tool.Flash();
}
static std::string next_arg(std::vector<std::string>* args) {
if (args->empty()) syntax_error("expected argument");
std::string result = args->front();
args->erase(args->begin());
return result;
}
static void do_oem_command(const std::string& cmd, std::vector<std::string>* args) {
if (args->empty()) syntax_error("empty oem command");
std::string command(cmd);
while (!args->empty()) {
command += " " + next_arg(args);
}
fb->RawCommand(command, "");
}
static std::string fb_fix_numeric_var(std::string var) {
// Some bootloaders (angler, for example), send spurious leading whitespace.
var = android::base::Trim(var);
// Some bootloaders (hammerhead, for example) use implicit hex.
// This code used to use strtol with base 16.
if (!android::base::StartsWith(var, "0x")) var = "0x" + var;
return var;
}
static unsigned fb_get_flash_block_size(std::string name) {
std::string sizeString;
if (fb->GetVar(name, &sizeString) != fastboot::SUCCESS || sizeString.empty()) {
// This device does not report flash block sizes, so return 0.
return 0;
}
sizeString = fb_fix_numeric_var(sizeString);
unsigned size;
if (!android::base::ParseUint(sizeString, &size)) {
fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str());
return 0;
}
if ((size & (size - 1)) != 0) {
fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size);
return 0;
}
return size;
}
static void fb_perform_format(
const std::string& partition, int skip_if_not_supported,
const std::string& type_override, const std::string& size_override,
const std::string& initial_dir) {
std::string partition_type, partition_size;
struct fastboot_buffer buf;
const char* errMsg = nullptr;
const struct fs_generator* gen = nullptr;
TemporaryFile output;
unique_fd fd;
unsigned int limit = INT_MAX;
if (target_sparse_limit > 0 && target_sparse_limit < limit) {
limit = target_sparse_limit;
}
if (sparse_limit > 0 && sparse_limit < limit) {
limit = sparse_limit;
}
if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) {
errMsg = "Can't determine partition type.\n";
goto failed;
}
if (!type_override.empty()) {
if (partition_type != type_override) {
fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_type.c_str(), type_override.c_str());
}
partition_type = type_override;
}
if (fb->GetVar("partition-size:" + partition, &partition_size) != fastboot::SUCCESS) {
errMsg = "Unable to get partition size\n";
goto failed;
}
if (!size_override.empty()) {
if (partition_size != size_override) {
fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_size.c_str(), size_override.c_str());
}
partition_size = size_override;
}
partition_size = fb_fix_numeric_var(partition_size);
gen = fs_get_generator(partition_type);
if (!gen) {
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
return;
}
die("Formatting is not supported for file system with type '%s'.",
partition_type.c_str());
}
int64_t size;
if (!android::base::ParseInt(partition_size, &size)) {
die("Couldn't parse partition size '%s'.", partition_size.c_str());
}
unsigned eraseBlkSize, logicalBlkSize;
eraseBlkSize = fb_get_flash_block_size("erase-block-size");
logicalBlkSize = fb_get_flash_block_size("logical-block-size");
if (fs_generator_generate(gen, output.path, size, initial_dir,
eraseBlkSize, logicalBlkSize)) {
die("Cannot generate image for %s", partition.c_str());
}
fd.reset(open(output.path, O_RDONLY));
if (fd == -1) {
die("Cannot open generated image: %s", strerror(errno));
}
if (!load_buf_fd(fd.release(), &buf)) {
die("Cannot read image: %s", strerror(errno));
}
flash_buf(partition, &buf);
return;
failed:
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
if (errMsg) fprintf(stderr, "%s", errMsg);
}
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
if (!skip_if_not_supported) {
die("Command failed");
}
}
static bool should_flash_in_userspace(const std::string& partition_name) {
if (!get_android_product_out()) {
return false;
}
auto path = find_item_given_name("super_empty.img");
if (path.empty()) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageFile(path);
if (!metadata) {
return false;
}
for (const auto& partition : metadata->partitions) {
auto candidate = android::fs_mgr::GetPartitionName(partition);
if (partition.attributes & LP_PARTITION_ATTR_SLOT_SUFFIXED) {
// On retrofit devices, we don't know if, or whether, the A or B
// slot has been flashed for dynamic partitions. Instead we add
// both names to the list as a conservative guess.
if (candidate + "_a" == partition_name || candidate + "_b" == partition_name) {
return true;
}
} else if (candidate == partition_name) {
return true;
}
}
return false;
}
int FastBootTool::Main(int argc, char* argv[]) {
bool wants_wipe = false;
bool wants_reboot = false;
bool wants_reboot_bootloader = false;
bool wants_reboot_recovery = false;
bool wants_reboot_fastboot = false;
bool skip_reboot = false;
bool wants_set_active = false;
bool skip_secondary = false;
bool set_fbe_marker = false;
bool force_flash = false;
int longindex;
std::string slot_override;
std::string next_active;
g_boot_img_hdr.kernel_addr = 0x00008000;
g_boot_img_hdr.ramdisk_addr = 0x01000000;
g_boot_img_hdr.second_addr = 0x00f00000;
g_boot_img_hdr.tags_addr = 0x00000100;
g_boot_img_hdr.page_size = 2048;
const struct option longopts[] = {
{"base", required_argument, 0, 0},
{"cmdline", required_argument, 0, 0},
{"disable-verification", no_argument, 0, 0},
{"disable-verity", no_argument, 0, 0},
{"force", no_argument, 0, 0},
{"header-version", required_argument, 0, 0},
{"help", no_argument, 0, 'h'},
{"kernel-offset", required_argument, 0, 0},
{"os-patch-level", required_argument, 0, 0},
{"os-version", required_argument, 0, 0},
{"page-size", required_argument, 0, 0},
{"ramdisk-offset", required_argument, 0, 0},
{"set-active", optional_argument, 0, 'a'},
{"skip-reboot", no_argument, 0, 0},
{"skip-secondary", no_argument, 0, 0},
{"slot", required_argument, 0, 0},
{"tags-offset", required_argument, 0, 0},
{"unbuffered", no_argument, 0, 0},
{"verbose", no_argument, 0, 'v'},
{"version", no_argument, 0, 0},
#if !defined(_WIN32)
{"wipe-and-use-fbe", no_argument, 0, 0},
#endif
{0, 0, 0, 0}
};
serial = getenv("ANDROID_SERIAL");
int c;
while ((c = getopt_long(argc, argv, "a::hls:S:vw", longopts, &longindex)) != -1) {
if (c == 0) {
std::string name{longopts[longindex].name};
if (name == "base") {
g_base_addr = strtoul(optarg, 0, 16);
} else if (name == "cmdline") {
g_cmdline = optarg;
} else if (name == "disable-verification") {
g_disable_verification = true;
} else if (name == "disable-verity") {
g_disable_verity = true;
} else if (name == "force") {
force_flash = true;
} else if (name == "header-version") {
g_boot_img_hdr.header_version = strtoul(optarg, nullptr, 0);
} else if (name == "kernel-offset") {
g_boot_img_hdr.kernel_addr = strtoul(optarg, 0, 16);
} else if (name == "os-patch-level") {
ParseOsPatchLevel(&g_boot_img_hdr, optarg);
} else if (name == "os-version") {
ParseOsVersion(&g_boot_img_hdr, optarg);
} else if (name == "page-size") {
g_boot_img_hdr.page_size = strtoul(optarg, nullptr, 0);
if (g_boot_img_hdr.page_size == 0) die("invalid page size");
} else if (name == "ramdisk-offset") {
g_boot_img_hdr.ramdisk_addr = strtoul(optarg, 0, 16);
} else if (name == "skip-reboot") {
skip_reboot = true;
} else if (name == "skip-secondary") {
skip_secondary = true;
} else if (name == "slot") {
slot_override = optarg;
} else if (name == "tags-offset") {
g_boot_img_hdr.tags_addr = strtoul(optarg, 0, 16);
} else if (name == "unbuffered") {
setvbuf(stdout, nullptr, _IONBF, 0);
setvbuf(stderr, nullptr, _IONBF, 0);
} else if (name == "version") {
fprintf(stdout, "fastboot version %s-%s\n", PLATFORM_TOOLS_VERSION, android::build::GetBuildNumber().c_str());
fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str());
return 0;
#if !defined(_WIN32)
} else if (name == "wipe-and-use-fbe") {
wants_wipe = true;
set_fbe_marker = true;
#endif
} else {
die("unknown option %s", longopts[longindex].name);
}
} else {
switch (c) {
case 'a':
wants_set_active = true;
if (optarg) next_active = optarg;
break;
case 'h':
return show_help();
case 'l':
g_long_listing = true;
break;
case 's':
serial = optarg;
break;
case 'S':
if (!android::base::ParseByteCount(optarg, &sparse_limit)) {
die("invalid sparse limit %s", optarg);
}
break;
case 'v':
set_verbose();
break;
case 'w':
wants_wipe = true;
break;
case '?':
return 1;
default:
abort();
}
}
}
argc -= optind;
argv += optind;
if (argc == 0 && !wants_wipe && !wants_set_active) syntax_error("no command");
if (argc > 0 && !strcmp(*argv, "devices")) {
list_devices();
return 0;
}
if (argc > 0 && !strcmp(*argv, "help")) {
return show_help();
}
Transport* transport = open_device();
if (transport == nullptr) {
return 1;
}
fastboot::DriverCallbacks driver_callbacks = {
.prolog = Status,
.epilog = Epilog,
.info = InfoMessage,
};
fastboot::FastBootDriver fastboot_driver(transport, driver_callbacks, false);
fb = &fastboot_driver;
const double start = now();
if (slot_override != "") slot_override = verify_slot(slot_override);
if (next_active != "") next_active = verify_slot(next_active, false);
if (wants_set_active) {
if (next_active == "") {
if (slot_override == "") {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) == fastboot::SUCCESS) {
next_active = verify_slot(current_slot, false);
} else {
wants_set_active = false;
}
} else {
next_active = verify_slot(slot_override, false);
}
}
}
std::vector<std::string> args(argv, argv + argc);
while (!args.empty()) {
std::string command = next_arg(&args);
if (command == FB_CMD_GETVAR) {
std::string variable = next_arg(&args);
DisplayVarOrError(variable, variable);
} else if (command == FB_CMD_ERASE) {
std::string partition = next_arg(&args);
auto erase = [&](const std::string& partition) {
std::string partition_type;
if (fb->GetVar("partition-type:" + partition, &partition_type) == fastboot::SUCCESS &&
fs_get_generator(partition_type) != nullptr) {
fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
partition_type.c_str());
}
fb->Erase(partition);
};
do_for_partitions(partition, slot_override, erase, true);
} else if (android::base::StartsWith(command, "format")) {
// Parsing for: "format[:[type][:[size]]]"
// Some valid things:
// - select only the size, and leave default fs type:
// format::0x4000000 userdata
// - default fs type and size:
// format userdata
// format:: userdata
std::vector<std::string> pieces = android::base::Split(command, ":");
std::string type_override;
if (pieces.size() > 1) type_override = pieces[1].c_str();
std::string size_override;
if (pieces.size() > 2) size_override = pieces[2].c_str();
std::string partition = next_arg(&args);
auto format = [&](const std::string& partition) {
fb_perform_format(partition, 0, type_override, size_override, "");
};
do_for_partitions(partition.c_str(), slot_override, format, true);
} else if (command == "signature") {
std::string filename = next_arg(&args);
std::vector<char> data;
if (!ReadFileToVector(filename, &data)) {
die("could not load '%s': %s", filename.c_str(), strerror(errno));
}
if (data.size() != 256) die("signature must be 256 bytes (got %zu)", data.size());
fb->Download("signature", data);
fb->RawCommand("signature", "installing signature");
} else if (command == FB_CMD_REBOOT) {
wants_reboot = true;
if (args.size() == 1) {
std::string what = next_arg(&args);
if (what == "bootloader") {
wants_reboot = false;
wants_reboot_bootloader = true;
} else if (what == "recovery") {
wants_reboot = false;
wants_reboot_recovery = true;
} else if (what == "fastboot") {
wants_reboot = false;
wants_reboot_fastboot = true;
} else {
syntax_error("unknown reboot target %s", what.c_str());
}
}
if (!args.empty()) syntax_error("junk after reboot command");
} else if (command == FB_CMD_REBOOT_BOOTLOADER) {
wants_reboot_bootloader = true;
} else if (command == FB_CMD_REBOOT_RECOVERY) {
wants_reboot_recovery = true;
} else if (command == FB_CMD_REBOOT_FASTBOOT) {
wants_reboot_fastboot = true;
} else if (command == FB_CMD_CONTINUE) {
fb->Continue();
} else if (command == FB_CMD_BOOT) {
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
fb->Download("boot.img", data);
fb->Boot();
} else if (command == FB_CMD_FLASH) {
std::string pname = next_arg(&args);
std::string fname;
if (!args.empty()) {
fname = next_arg(&args);
} else {
fname = find_item(pname);
}
if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str());
auto flash = [&](const std::string &partition) {
if (should_flash_in_userspace(partition) && !is_userspace_fastboot() &&
!force_flash) {
die("The partition you are trying to flash is dynamic, and "
"should be flashed via fastbootd. Please run:\n"
"\n"
" fastboot reboot fastboot\n"
"\n"
"And try again. If you are intentionally trying to "
"overwrite a fixed partition, use --force.");
}
do_flash(partition.c_str(), fname.c_str());
};
do_for_partitions(pname.c_str(), slot_override, flash, true);
} else if (command == "flash:raw") {
std::string partition = next_arg(&args);
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
auto flashraw = [&data](const std::string& partition) {
fb->FlashPartition(partition, data);
};
do_for_partitions(partition, slot_override, flashraw, true);
} else if (command == "flashall") {
if (slot_override == "all") {
fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
do_flashall(slot_override, true, wants_wipe);
} else {
do_flashall(slot_override, skip_secondary, wants_wipe);
}
wants_reboot = true;
} else if (command == "update") {
bool slot_all = (slot_override == "all");
if (slot_all) {
fprintf(stderr, "Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
}
std::string filename = "update.zip";
if (!args.empty()) {
filename = next_arg(&args);
}
do_update(filename.c_str(), slot_override, skip_secondary || slot_all);
wants_reboot = true;
} else if (command == FB_CMD_SET_ACTIVE) {
std::string slot = verify_slot(next_arg(&args), false);
fb->SetActive(slot);
} else if (command == "stage") {
std::string filename = next_arg(&args);
struct fastboot_buffer buf;
if (!load_buf(filename.c_str(), &buf) || buf.type != FB_BUFFER_FD) {
die("cannot load '%s'", filename.c_str());
}
fb->Download(filename, buf.fd, buf.sz);
} else if (command == "get_staged") {
std::string filename = next_arg(&args);
fb->Upload(filename);
} else if (command == FB_CMD_OEM) {
do_oem_command(FB_CMD_OEM, &args);
} else if (command == "flashing") {
if (args.empty()) {
syntax_error("missing 'flashing' command");
} else if (args.size() == 1 && (args[0] == "unlock" || args[0] == "lock" ||
args[0] == "unlock_critical" ||
args[0] == "lock_critical" ||
args[0] == "get_unlock_ability")) {
do_oem_command("flashing", &args);
} else {
syntax_error("unknown 'flashing' command %s", args[0].c_str());
}
} else if (command == FB_CMD_CREATE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
fb->CreatePartition(partition, size);
} else if (command == FB_CMD_DELETE_PARTITION) {
std::string partition = next_arg(&args);
fb->DeletePartition(partition);
} else if (command == FB_CMD_RESIZE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
fb->ResizePartition(partition, size);
} else {
syntax_error("unknown command %s", command.c_str());
}
}
if (wants_wipe) {
std::vector<std::string> partitions = { "userdata", "cache", "metadata" };
for (const auto& partition : partitions) {
std::string partition_type;
if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) {
continue;
}
if (partition_type.empty()) continue;
fb->Erase(partition);
if (partition == "userdata" && set_fbe_marker) {
fprintf(stderr, "setting FBE marker on initial userdata...\n");
std::string initial_userdata_dir = create_fbemarker_tmpdir();
fb_perform_format(partition, 1, "", "", initial_userdata_dir);
delete_fbemarker_tmpdir(initial_userdata_dir);
} else {
fb_perform_format(partition, 1, "", "", "");
}
}
}
if (wants_set_active) {
fb->SetActive(next_active);
}
if (wants_reboot && !skip_reboot) {
fb->Reboot();
fb->WaitForDisconnect();
} else if (wants_reboot_bootloader) {
fb->RebootTo("bootloader");
fb->WaitForDisconnect();
} else if (wants_reboot_recovery) {
fb->RebootTo("recovery");
fb->WaitForDisconnect();
} else if (wants_reboot_fastboot) {
fb->RebootTo("fastboot");
fb->WaitForDisconnect();
}
fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start));
auto* old_transport = fb->set_transport(nullptr);
delete old_transport;
return 0;
}
void FastBootTool::ParseOsPatchLevel(boot_img_hdr_v1* hdr, const char* arg) {
unsigned year, month, day;
if (sscanf(arg, "%u-%u-%u", &year, &month, &day) != 3) {
syntax_error("OS patch level should be YYYY-MM-DD: %s", arg);
}
if (year < 2000 || year >= 2128) syntax_error("year out of range: %d", year);
if (month < 1 || month > 12) syntax_error("month out of range: %d", month);
hdr->SetOsPatchLevel(year, month);
}
void FastBootTool::ParseOsVersion(boot_img_hdr_v1* hdr, const char* arg) {
unsigned major = 0, minor = 0, patch = 0;
std::vector<std::string> versions = android::base::Split(arg, ".");
if (versions.size() < 1 || versions.size() > 3 ||
(versions.size() >= 1 && !android::base::ParseUint(versions[0], &major)) ||
(versions.size() >= 2 && !android::base::ParseUint(versions[1], &minor)) ||
(versions.size() == 3 && !android::base::ParseUint(versions[2], &patch)) ||
(major > 0x7f || minor > 0x7f || patch > 0x7f)) {
syntax_error("bad OS version: %s", arg);
}
hdr->SetOsVersion(major, minor, patch);
}