blob: 1bc7b7513aedd3b7b9988d63248b6d2d341422eb [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "fastboot.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <functional>
#include <iostream>
#include <memory>
#include <regex>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <android-base/endian.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/parsenetaddress.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <build/version.h>
#include <libavb/libavb.h>
#include <liblp/liblp.h>
#include <liblp/super_layout_builder.h>
#include <platform_tools_version.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
#include "bootimg_utils.h"
#include "constants.h"
#include "diagnose_usb.h"
#include "fastboot_driver.h"
#include "fastboot_driver_interface.h"
#include "fs.h"
#include "storage.h"
#include "task.h"
#include "tcp.h"
#include "transport.h"
#include "udp.h"
#include "usb.h"
#include "util.h"
#include "vendor_boot_img_utils.h"
using android::base::borrowed_fd;
using android::base::ReadFully;
using android::base::Split;
using android::base::Trim;
using android::base::unique_fd;
using namespace std::placeholders;
#define FASTBOOT_INFO_VERSION 1
static const char* serial = nullptr;
static bool g_long_listing = false;
// Don't resparse files in too-big chunks.
// libsparse will support INT_MAX, but this results in large allocations, so
// let's keep it at 1GB to avoid memory pressure on the host.
static constexpr int64_t RESPARSE_LIMIT = 1 * 1024 * 1024 * 1024;
static int64_t target_sparse_limit = -1;
static unsigned g_base_addr = 0x10000000;
static boot_img_hdr_v2 g_boot_img_hdr = {};
static std::string g_cmdline;
static std::string g_dtb_path;
static bool g_disable_verity = false;
static bool g_disable_verification = false;
fastboot::FastBootDriver* fb = nullptr;
static std::vector<Image> images = {
// clang-format off
{ "boot", "boot.img", "boot.sig", "boot", false, ImageType::BootCritical },
{ "bootloader",
"bootloader.img", "", "bootloader",
true, ImageType::Extra },
{ "init_boot",
"init_boot.img", "init_boot.sig",
"init_boot",
true, ImageType::BootCritical },
{ "", "boot_other.img", "boot.sig", "boot", true, ImageType::Normal },
{ "cache", "cache.img", "cache.sig", "cache", true, ImageType::Extra },
{ "dtbo", "dtbo.img", "dtbo.sig", "dtbo", true, ImageType::BootCritical },
{ "dts", "dt.img", "dt.sig", "dts", true, ImageType::BootCritical },
{ "odm", "odm.img", "odm.sig", "odm", true, ImageType::Normal },
{ "odm_dlkm", "odm_dlkm.img", "odm_dlkm.sig", "odm_dlkm", true, ImageType::Normal },
{ "product", "product.img", "product.sig", "product", true, ImageType::Normal },
{ "pvmfw", "pvmfw.img", "pvmfw.sig", "pvmfw", true, ImageType::BootCritical },
{ "radio", "radio.img", "", "radio", true, ImageType::Extra },
{ "recovery", "recovery.img", "recovery.sig", "recovery", true, ImageType::BootCritical },
{ "super", "super.img", "super.sig", "super", true, ImageType::Extra },
{ "system", "system.img", "system.sig", "system", false, ImageType::Normal },
{ "system_dlkm",
"system_dlkm.img", "system_dlkm.sig",
"system_dlkm",
true, ImageType::Normal },
{ "system_ext",
"system_ext.img", "system_ext.sig",
"system_ext",
true, ImageType::Normal },
{ "", "system_other.img", "system.sig", "system", true, ImageType::Normal },
{ "userdata", "userdata.img", "userdata.sig", "userdata", true, ImageType::Extra },
{ "vbmeta", "vbmeta.img", "vbmeta.sig", "vbmeta", true, ImageType::BootCritical },
{ "vbmeta_system",
"vbmeta_system.img",
"vbmeta_system.sig",
"vbmeta_system",
true, ImageType::BootCritical },
{ "vbmeta_vendor",
"vbmeta_vendor.img",
"vbmeta_vendor.sig",
"vbmeta_vendor",
true, ImageType::BootCritical },
{ "vendor", "vendor.img", "vendor.sig", "vendor", true, ImageType::Normal },
{ "vendor_boot",
"vendor_boot.img", "vendor_boot.sig",
"vendor_boot",
true, ImageType::BootCritical },
{ "vendor_dlkm",
"vendor_dlkm.img", "vendor_dlkm.sig",
"vendor_dlkm",
true, ImageType::Normal },
{ "vendor_kernel_boot",
"vendor_kernel_boot.img",
"vendor_kernel_boot.sig",
"vendor_kernel_boot",
true, ImageType::BootCritical },
{ "", "vendor_other.img", "vendor.sig", "vendor", true, ImageType::Normal },
// clang-format on
};
char* get_android_product_out() {
char* dir = getenv("ANDROID_PRODUCT_OUT");
if (dir == nullptr || dir[0] == '\0') {
return nullptr;
}
return dir;
}
static std::string find_item_given_name(const std::string& img_name) {
char* dir = get_android_product_out();
if (!dir) {
die("ANDROID_PRODUCT_OUT not set");
}
return std::string(dir) + "/" + img_name;
}
std::string find_item(const std::string& item) {
for (size_t i = 0; i < images.size(); ++i) {
if (!images[i].nickname.empty() && item == images[i].nickname) {
return find_item_given_name(images[i].img_name);
}
}
fprintf(stderr, "unknown partition '%s'\n", item.c_str());
return "";
}
double last_start_time;
static void Status(const std::string& message) {
if (!message.empty()) {
static constexpr char kStatusFormat[] = "%-50s ";
fprintf(stderr, kStatusFormat, message.c_str());
}
last_start_time = now();
}
static void Epilog(int status) {
if (status) {
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
die("Command failed");
} else {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - last_start_time));
}
}
static void InfoMessage(const std::string& info) {
fprintf(stderr, "(bootloader) %s\n", info.c_str());
}
static void TextMessage(const std::string& text) {
fprintf(stderr, "%s", text.c_str());
}
bool ReadFileToVector(const std::string& file, std::vector<char>* out) {
out->clear();
unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY)));
if (fd == -1) {
return false;
}
out->resize(get_file_size(fd));
return ReadFully(fd, out->data(), out->size());
}
static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
return -1;
}
// require matching serial number or device path if requested
// at the command line with the -s option.
if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
strcmp(local_serial, info->device_path) != 0))
return -1;
return 0;
}
static ifc_match_func match_fastboot(const char* local_serial = serial) {
return [local_serial](usb_ifc_info* info) -> int {
return match_fastboot_with_serial(info, local_serial);
};
}
// output compatible with "adb devices"
static void PrintDevice(const char* local_serial, const char* status = nullptr,
const char* details = nullptr) {
if (local_serial == nullptr || strlen(local_serial) == 0) {
return;
}
if (g_long_listing) {
printf("%-22s", local_serial);
} else {
printf("%s\t", local_serial);
}
if (status != nullptr && strlen(status) > 0) {
printf(" %s", status);
}
if (g_long_listing) {
if (details != nullptr && strlen(details) > 0) {
printf(" %s", details);
}
}
putchar('\n');
}
static int list_devices_callback(usb_ifc_info* info) {
if (match_fastboot_with_serial(info, nullptr) == 0) {
std::string serial = info->serial_number;
std::string interface = info->interface;
if (interface.empty()) {
interface = "fastboot";
}
if (!info->writable) {
serial = UsbNoPermissionsShortHelpText();
}
if (!serial[0]) {
serial = "????????????";
}
PrintDevice(serial.c_str(), interface.c_str(), info->device_path);
}
return -1;
}
Result<NetworkSerial, FastbootError> ParseNetworkSerial(const std::string& serial) {
Socket::Protocol protocol;
const char* net_address = nullptr;
int port = 0;
if (android::base::StartsWith(serial, "tcp:")) {
protocol = Socket::Protocol::kTcp;
net_address = serial.c_str() + strlen("tcp:");
port = tcp::kDefaultPort;
} else if (android::base::StartsWith(serial, "udp:")) {
protocol = Socket::Protocol::kUdp;
net_address = serial.c_str() + strlen("udp:");
port = udp::kDefaultPort;
} else {
return Error<FastbootError>(FastbootError::Type::NETWORK_SERIAL_WRONG_PREFIX)
<< "protocol prefix ('tcp:' or 'udp:') is missed: " << serial << ". "
<< "Expected address format:\n"
<< "<protocol>:<address>:<port> (tcp:localhost:5554)";
}
std::string error;
std::string host;
if (!android::base::ParseNetAddress(net_address, &host, &port, nullptr, &error)) {
return Error<FastbootError>(FastbootError::Type::NETWORK_SERIAL_WRONG_ADDRESS)
<< "invalid network address '" << net_address << "': " << error;
}
return NetworkSerial{protocol, host, port};
}
// Opens a new Transport connected to the particular device.
// arguments:
//
// local_serial - device to connect (can be a network or usb serial name)
// wait_for_device - flag indicates whether we need to wait for device
// announce - flag indicates whether we need to print error to stdout in case
// we cannot connect to the device
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static std::unique_ptr<Transport> open_device(const char* local_serial, bool wait_for_device = true,
bool announce = true) {
const Result<NetworkSerial, FastbootError> network_serial = ParseNetworkSerial(local_serial);
std::unique_ptr<Transport> transport;
while (true) {
if (network_serial.ok()) {
std::string error;
if (network_serial->protocol == Socket::Protocol::kTcp) {
transport = tcp::Connect(network_serial->address, network_serial->port, &error);
} else if (network_serial->protocol == Socket::Protocol::kUdp) {
transport = udp::Connect(network_serial->address, network_serial->port, &error);
}
if (!transport && announce) {
LOG(ERROR) << "error: " << error;
}
} else if (network_serial.error().code() ==
FastbootError::Type::NETWORK_SERIAL_WRONG_PREFIX) {
// WRONG_PREFIX is special because it happens when user wants to communicate with USB
// device
transport = usb_open(match_fastboot(local_serial));
} else {
Expect(network_serial);
}
if (transport) {
return transport;
}
if (!wait_for_device) {
return transport;
}
if (announce) {
announce = false;
LOG(ERROR) << "< waiting for " << local_serial << ">";
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
static std::unique_ptr<Transport> NetworkDeviceConnected(bool print = false) {
std::unique_ptr<Transport> transport;
std::unique_ptr<Transport> result;
ConnectedDevicesStorage storage;
std::set<std::string> devices;
if (storage.Exists()) {
FileLock lock = storage.Lock();
devices = storage.ReadDevices(lock);
}
for (const std::string& device : devices) {
transport = open_device(device.c_str(), false, false);
if (print) {
PrintDevice(device.c_str(), transport ? "fastboot" : "offline");
}
if (transport) {
result = std::move(transport);
}
}
return result;
}
// Detects the fastboot connected device to open a new Transport.
// Detecting logic:
//
// if serial is provided - try to connect to this particular usb/network device
// othervise:
// 1. Check connected usb devices and return the last connected one
// 2. Check connected network devices and return the last connected one
// 2. If nothing is connected - wait for any device by repeating p. 1 and 2
//
// The returned Transport is a singleton, so multiple calls to this function will return the same
// object, and the caller should not attempt to delete the returned Transport.
static std::unique_ptr<Transport> open_device() {
if (serial != nullptr) {
return open_device(serial);
}
bool announce = true;
std::unique_ptr<Transport> transport;
while (true) {
transport = usb_open(match_fastboot(nullptr));
if (transport) {
return transport;
}
transport = NetworkDeviceConnected();
if (transport) {
return transport;
}
if (announce) {
announce = false;
LOG(ERROR) << "< waiting for any device >";
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
return transport;
}
static int Connect(int argc, char* argv[]) {
if (argc != 1) {
LOG(FATAL) << "connect command requires to receive only 1 argument. Usage:" << std::endl
<< "fastboot connect [tcp:|udp:host:port]";
}
const char* local_serial = *argv;
Expect(ParseNetworkSerial(local_serial));
if (!open_device(local_serial, false)) {
return 1;
}
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
std::set<std::string> devices = storage.ReadDevices(lock);
devices.insert(local_serial);
storage.WriteDevices(lock, devices);
}
return 0;
}
static int Disconnect(const char* local_serial) {
Expect(ParseNetworkSerial(local_serial));
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
std::set<std::string> devices = storage.ReadDevices(lock);
devices.erase(local_serial);
storage.WriteDevices(lock, devices);
}
return 0;
}
static int Disconnect() {
ConnectedDevicesStorage storage;
{
FileLock lock = storage.Lock();
storage.Clear(lock);
}
return 0;
}
static int Disconnect(int argc, char* argv[]) {
switch (argc) {
case 0: {
return Disconnect();
}
case 1: {
return Disconnect(*argv);
}
default:
LOG(FATAL) << "disconnect command can receive only 0 or 1 arguments. Usage:"
<< std::endl
<< "fastboot disconnect # disconnect all devices" << std::endl
<< "fastboot disconnect [tcp:|udp:host:port] # disconnect device";
}
return 0;
}
static void list_devices() {
// We don't actually open a USB device here,
// just getting our callback called so we can
// list all the connected devices.
usb_open(list_devices_callback);
NetworkDeviceConnected(/* print */ true);
}
void syntax_error(const char* fmt, ...) {
fprintf(stderr, "fastboot: usage: ");
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
static int show_help() {
// clang-format off
fprintf(stdout,
// 1 2 3 4 5 6 7 8
// 12345678901234567890123456789012345678901234567890123456789012345678901234567890
"usage: fastboot [OPTION...] COMMAND...\n"
"\n"
"flashing:\n"
" update ZIP Flash all partitions from an update.zip package.\n"
" flashall Flash all partitions from $ANDROID_PRODUCT_OUT.\n"
" On A/B devices, flashed slot is set as active.\n"
" Secondary images may be flashed to inactive slot.\n"
" flash PARTITION [FILENAME] Flash given partition, using the image from\n"
" $ANDROID_PRODUCT_OUT if no filename is given.\n"
"\n"
"basics:\n"
" devices [-l] List devices in bootloader (-l: with device paths).\n"
" getvar NAME Display given bootloader variable.\n"
" reboot [bootloader] Reboot device.\n"
"\n"
"locking/unlocking:\n"
" flashing lock|unlock Lock/unlock partitions for flashing\n"
" flashing lock_critical|unlock_critical\n"
" Lock/unlock 'critical' bootloader partitions.\n"
" flashing get_unlock_ability\n"
" Check whether unlocking is allowed (1) or not(0).\n"
"\n"
"advanced:\n"
" erase PARTITION Erase a flash partition.\n"
" format[:FS_TYPE[:SIZE]] PARTITION\n"
" Format a flash partition.\n"
" set_active SLOT Set the active slot.\n"
" oem [COMMAND...] Execute OEM-specific command.\n"
" gsi wipe|disable Wipe or disable a GSI installation (fastbootd only).\n"
" wipe-super [SUPER_EMPTY] Wipe the super partition. This will reset it to\n"
" contain an empty set of default dynamic partitions.\n"
" create-logical-partition NAME SIZE\n"
" Create a logical partition with the given name and\n"
" size, in the super partition.\n"
" delete-logical-partition NAME\n"
" Delete a logical partition with the given name.\n"
" resize-logical-partition NAME SIZE\n"
" Change the size of the named logical partition.\n"
" snapshot-update cancel On devices that support snapshot-based updates, cancel\n"
" an in-progress update. This may make the device\n"
" unbootable until it is reflashed.\n"
" snapshot-update merge On devices that support snapshot-based updates, finish\n"
" an in-progress update if it is in the \"merging\"\n"
" phase.\n"
" fetch PARTITION OUT_FILE Fetch a partition image from the device."
"\n"
"boot image:\n"
" boot KERNEL [RAMDISK [SECOND]]\n"
" Download and boot kernel from RAM.\n"
" flash:raw PARTITION KERNEL [RAMDISK [SECOND]]\n"
" Create boot image and flash it.\n"
" --dtb DTB Specify path to DTB for boot image header version 2.\n"
" --cmdline CMDLINE Override kernel command line.\n"
" --base ADDRESS Set kernel base address (default: 0x10000000).\n"
" --kernel-offset Set kernel offset (default: 0x00008000).\n"
" --ramdisk-offset Set ramdisk offset (default: 0x01000000).\n"
" --tags-offset Set tags offset (default: 0x00000100).\n"
" --dtb-offset Set dtb offset (default: 0x01100000).\n"
" --page-size BYTES Set flash page size (default: 2048).\n"
" --header-version VERSION Set boot image header version.\n"
" --os-version MAJOR[.MINOR[.PATCH]]\n"
" Set boot image OS version (default: 0.0.0).\n"
" --os-patch-level YYYY-MM-DD\n"
" Set boot image OS security patch level.\n"
// TODO: still missing: `second_addr`, `name`, `id`, `recovery_dtbo_*`.
"\n"
// TODO: what device(s) used this? is there any documentation?
//" continue Continue with autoboot.\n"
//"\n"
"Android Things:\n"
" stage IN_FILE Sends given file to stage for the next command.\n"
" get_staged OUT_FILE Writes data staged by the last command to a file.\n"
"\n"
"options:\n"
" -w Wipe userdata.\n"
" -s SERIAL Specify a USB device.\n"
" -s tcp|udp:HOST[:PORT] Specify a network device.\n"
" -S SIZE[K|M|G] Break into sparse files no larger than SIZE.\n"
" --force Force a flash operation that may be unsafe.\n"
" --slot SLOT Use SLOT; 'all' for both slots, 'other' for\n"
" non-current slot (default: current active slot).\n"
" --set-active[=SLOT] Sets the active slot before rebooting.\n"
" --skip-secondary Don't flash secondary slots in flashall/update.\n"
" --skip-reboot Don't reboot device after flashing.\n"
" --disable-verity Sets disable-verity when flashing vbmeta.\n"
" --disable-verification Sets disable-verification when flashing vbmeta.\n"
" --disable-super-optimization\n"
" Disables optimizations on flashing super partition.\n"
" --disable-fastboot-info Will collects tasks from image list rather than $OUT/fastboot-info.txt.\n"
" --fs-options=OPTION[,OPTION]\n"
" Enable filesystem features. OPTION supports casefold, projid, compress\n"
// TODO: remove --unbuffered?
" --unbuffered Don't buffer input or output.\n"
" --verbose, -v Verbose output.\n"
" --version Display version.\n"
" --help, -h Show this message.\n"
);
// clang-format on
return 0;
}
static std::vector<char> LoadBootableImage(const std::string& kernel, const std::string& ramdisk,
const std::string& second_stage) {
std::vector<char> kernel_data;
if (!ReadFileToVector(kernel, &kernel_data)) {
die("cannot load '%s': %s", kernel.c_str(), strerror(errno));
}
// Is this actually a boot image?
if (kernel_data.size() < sizeof(boot_img_hdr_v3)) {
die("cannot load '%s': too short", kernel.c_str());
}
if (!memcmp(kernel_data.data(), BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
if (!g_cmdline.empty()) {
bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v2*>(kernel_data.data()), g_cmdline);
}
if (!ramdisk.empty()) die("cannot boot a boot.img *and* ramdisk");
return kernel_data;
}
std::vector<char> ramdisk_data;
if (!ramdisk.empty()) {
if (!ReadFileToVector(ramdisk, &ramdisk_data)) {
die("cannot load '%s': %s", ramdisk.c_str(), strerror(errno));
}
}
std::vector<char> second_stage_data;
if (!second_stage.empty()) {
if (!ReadFileToVector(second_stage, &second_stage_data)) {
die("cannot load '%s': %s", second_stage.c_str(), strerror(errno));
}
}
std::vector<char> dtb_data;
if (!g_dtb_path.empty()) {
if (g_boot_img_hdr.header_version != 2) {
die("Argument dtb not supported for boot image header version %d\n",
g_boot_img_hdr.header_version);
}
if (!ReadFileToVector(g_dtb_path, &dtb_data)) {
die("cannot load '%s': %s", g_dtb_path.c_str(), strerror(errno));
}
}
fprintf(stderr, "creating boot image...\n");
std::vector<char> out;
mkbootimg(kernel_data, ramdisk_data, second_stage_data, dtb_data, g_base_addr, g_boot_img_hdr,
&out);
if (!g_cmdline.empty()) {
bootimg_set_cmdline(reinterpret_cast<boot_img_hdr_v2*>(out.data()), g_cmdline);
}
fprintf(stderr, "creating boot image - %zu bytes\n", out.size());
return out;
}
static bool UnzipToMemory(ZipArchiveHandle zip, const std::string& entry_name,
std::vector<char>* out) {
ZipEntry64 zip_entry;
if (FindEntry(zip, entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name.c_str());
return false;
}
if (zip_entry.uncompressed_length > std::numeric_limits<size_t>::max()) {
die("entry '%s' is too large: %" PRIu64, entry_name.c_str(), zip_entry.uncompressed_length);
}
out->resize(zip_entry.uncompressed_length);
fprintf(stderr, "extracting %s (%zu MB) to RAM...\n", entry_name.c_str(),
out->size() / 1024 / 1024);
int error =
ExtractToMemory(zip, &zip_entry, reinterpret_cast<uint8_t*>(out->data()), out->size());
if (error != 0) die("failed to extract '%s': %s", entry_name.c_str(), ErrorCodeString(error));
return true;
}
#if defined(_WIN32)
// TODO: move this to somewhere it can be shared.
#include <windows.h>
// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
char temp_path[PATH_MAX];
DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
if (nchars == 0 || nchars >= sizeof(temp_path)) {
die("GetTempPath failed, error %ld", GetLastError());
}
char filename[PATH_MAX];
if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
die("GetTempFileName failed, error %ld", GetLastError());
}
return fopen(filename, "w+bTD");
}
#define tmpfile win32_tmpfile
static int make_temporary_fd(const char* /*what*/) {
// TODO: reimplement to avoid leaking a FILE*.
return fileno(tmpfile());
}
#else
static std::string make_temporary_template() {
const char* tmpdir = getenv("TMPDIR");
if (tmpdir == nullptr) tmpdir = P_tmpdir;
return std::string(tmpdir) + "/fastboot_userdata_XXXXXX";
}
static int make_temporary_fd(const char* what) {
std::string path_template(make_temporary_template());
int fd = mkstemp(&path_template[0]);
if (fd == -1) {
die("failed to create temporary file for %s with template %s: %s\n", path_template.c_str(),
what, strerror(errno));
}
unlink(path_template.c_str());
return fd;
}
#endif
static unique_fd UnzipToFile(ZipArchiveHandle zip, const char* entry_name) {
unique_fd fd(make_temporary_fd(entry_name));
ZipEntry64 zip_entry;
if (FindEntry(zip, entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
errno = ENOENT;
return unique_fd();
}
fprintf(stderr, "extracting %s (%" PRIu64 " MB) to disk...", entry_name,
zip_entry.uncompressed_length / 1024 / 1024);
double start = now();
int error = ExtractEntryToFile(zip, &zip_entry, fd.get());
if (error != 0) {
die("\nfailed to extract '%s': %s", entry_name, ErrorCodeString(error));
}
if (lseek(fd.get(), 0, SEEK_SET) != 0) {
die("\nlseek on extracted file '%s' failed: %s", entry_name, strerror(errno));
}
fprintf(stderr, " took %.3fs\n", now() - start);
return fd;
}
static bool CheckRequirement(const std::string& cur_product, const std::string& var,
const std::string& product, bool invert,
const std::vector<std::string>& options) {
Status("Checking '" + var + "'");
double start = now();
if (!product.empty()) {
if (product != cur_product) {
double split = now();
fprintf(stderr, "IGNORE, product is %s required only for %s [%7.3fs]\n",
cur_product.c_str(), product.c_str(), (split - start));
return true;
}
}
std::string var_value;
if (fb->GetVar(var, &var_value) != fastboot::SUCCESS) {
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Could not getvar for '%s' (%s)\n\n", var.c_str(), fb->Error().c_str());
return false;
}
bool match = false;
for (const auto& option : options) {
if (option == var_value ||
(option.back() == '*' &&
!var_value.compare(0, option.length() - 1, option, 0, option.length() - 1))) {
match = true;
break;
}
}
if (invert) {
match = !match;
}
if (match) {
double split = now();
fprintf(stderr, "OKAY [%7.3fs]\n", (split - start));
return true;
}
fprintf(stderr, "FAILED\n\n");
fprintf(stderr, "Device %s is '%s'.\n", var.c_str(), var_value.c_str());
fprintf(stderr, "Update %s '%s'", invert ? "rejects" : "requires", options[0].c_str());
for (auto it = std::next(options.begin()); it != options.end(); ++it) {
fprintf(stderr, " or '%s'", it->c_str());
}
fprintf(stderr, ".\n\n");
return false;
}
bool ParseRequirementLine(const std::string& line, std::string* name, std::string* product,
bool* invert, std::vector<std::string>* options) {
// "require product=alpha|beta|gamma"
// "require version-bootloader=1234"
// "require-for-product:gamma version-bootloader=istanbul|constantinople"
// "require partition-exists=vendor"
*product = "";
*invert = false;
auto require_reject_regex = std::regex{"(require\\s+|reject\\s+)?\\s*(\\S+)\\s*=\\s*(.*)"};
auto require_product_regex =
std::regex{"require-for-product:\\s*(\\S+)\\s+(\\S+)\\s*=\\s*(.*)"};
std::smatch match_results;
if (std::regex_match(line, match_results, require_reject_regex)) {
*invert = Trim(match_results[1]) == "reject";
} else if (std::regex_match(line, match_results, require_product_regex)) {
*product = match_results[1];
} else {
return false;
}
*name = match_results[2];
// Work around an unfortunate name mismatch.
if (*name == "board") {
*name = "product";
}
auto raw_options = Split(match_results[3], "|");
for (const auto& option : raw_options) {
auto trimmed_option = Trim(option);
options->emplace_back(trimmed_option);
}
return true;
}
// "require partition-exists=x" is a special case, added because of the trouble we had when
// Pixel 2 shipped with new partitions and users used old versions of fastboot to flash them,
// missing out new partitions. A device with new partitions can use "partition-exists" to
// override the fields `optional_if_no_image` in the `images` array.
static void HandlePartitionExists(const std::vector<std::string>& options) {
const std::string& partition_name = options[0];
std::string has_slot;
if (fb->GetVar("has-slot:" + partition_name, &has_slot) != fastboot::SUCCESS ||
(has_slot != "yes" && has_slot != "no")) {
die("device doesn't have required partition %s!", partition_name.c_str());
}
bool known_partition = false;
for (size_t i = 0; i < images.size(); ++i) {
if (!images[i].nickname.empty() && images[i].nickname == partition_name) {
images[i].optional_if_no_image = false;
known_partition = true;
}
}
if (!known_partition) {
die("device requires partition %s which is not known to this version of fastboot",
partition_name.c_str());
}
}
static void CheckRequirements(const std::string& data, bool force_flash) {
std::string cur_product;
if (fb->GetVar("product", &cur_product) != fastboot::SUCCESS) {
fprintf(stderr, "getvar:product FAILED (%s)\n", fb->Error().c_str());
}
auto lines = Split(data, "\n");
for (const auto& line : lines) {
if (line.empty()) {
continue;
}
std::string name;
std::string product;
bool invert;
std::vector<std::string> options;
if (!ParseRequirementLine(line, &name, &product, &invert, &options)) {
fprintf(stderr, "android-info.txt syntax error: %s\n", line.c_str());
continue;
}
if (name == "partition-exists") {
HandlePartitionExists(options);
} else {
bool met = CheckRequirement(cur_product, name, product, invert, options);
if (!met) {
if (!force_flash) {
die("requirements not met!");
} else {
fprintf(stderr, "requirements not met! but proceeding due to --force\n");
}
}
}
}
}
static void DisplayVarOrError(const std::string& label, const std::string& var) {
std::string value;
if (fb->GetVar(var, &value) != fastboot::SUCCESS) {
Status("getvar:" + var);
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
return;
}
fprintf(stderr, "%s: %s\n", label.c_str(), value.c_str());
}
static void DumpInfo() {
fprintf(stderr, "--------------------------------------------\n");
DisplayVarOrError("Bootloader Version...", "version-bootloader");
DisplayVarOrError("Baseband Version.....", "version-baseband");
DisplayVarOrError("Serial Number........", "serialno");
fprintf(stderr, "--------------------------------------------\n");
}
std::vector<SparsePtr> resparse_file(sparse_file* s, int64_t max_size) {
if (max_size <= 0 || max_size > std::numeric_limits<uint32_t>::max()) {
die("invalid max size %" PRId64, max_size);
}
const int files = sparse_file_resparse(s, max_size, nullptr, 0);
if (files < 0) die("Failed to compute resparse boundaries");
auto temp = std::make_unique<sparse_file*[]>(files);
const int rv = sparse_file_resparse(s, max_size, temp.get(), files);
if (rv < 0) die("Failed to resparse");
std::vector<SparsePtr> out_s;
for (int i = 0; i < files; i++) {
out_s.emplace_back(temp[i], sparse_file_destroy);
}
return out_s;
}
static std::vector<SparsePtr> load_sparse_files(int fd, int64_t max_size) {
SparsePtr s(sparse_file_import_auto(fd, false, true), sparse_file_destroy);
if (!s) die("cannot sparse read file");
return resparse_file(s.get(), max_size);
}
static uint64_t get_uint_var(const char* var_name, fastboot::IFastBootDriver* fb) {
std::string value_str;
if (fb->GetVar(var_name, &value_str) != fastboot::SUCCESS || value_str.empty()) {
verbose("target didn't report %s", var_name);
return 0;
}
// Some bootloaders (angler, for example) send spurious whitespace too.
value_str = android::base::Trim(value_str);
uint64_t value;
if (!android::base::ParseUint(value_str, &value)) {
fprintf(stderr, "couldn't parse %s '%s'\n", var_name, value_str.c_str());
return 0;
}
if (value > 0) verbose("target reported %s of %" PRId64 " bytes", var_name, value);
return value;
}
int64_t get_sparse_limit(int64_t size, const FlashingPlan* fp) {
int64_t limit = int64_t(fp->sparse_limit);
if (limit == 0) {
// Unlimited, so see what the target device's limit is.
// TODO: shouldn't we apply this limit even if you've used -S?
if (target_sparse_limit == -1) {
target_sparse_limit = static_cast<int64_t>(get_uint_var("max-download-size", fp->fb));
}
if (target_sparse_limit > 0) {
limit = target_sparse_limit;
} else {
return 0;
}
}
if (size > limit) {
return std::min(limit, RESPARSE_LIMIT);
}
return 0;
}
static bool load_buf_fd(unique_fd fd, struct fastboot_buffer* buf, const FlashingPlan* fp) {
int64_t sz = get_file_size(fd);
if (sz == -1) {
return false;
}
if (sparse_file* s = sparse_file_import(fd.get(), false, false)) {
buf->image_size = sparse_file_len(s, false, false);
if (buf->image_size < 0) {
LOG(ERROR) << "Could not compute length of sparse file";
return false;
}
sparse_file_destroy(s);
buf->file_type = FB_BUFFER_SPARSE;
} else {
buf->image_size = sz;
buf->file_type = FB_BUFFER_FD;
}
lseek(fd.get(), 0, SEEK_SET);
int64_t limit = get_sparse_limit(sz, fp);
buf->fd = std::move(fd);
if (limit) {
buf->files = load_sparse_files(buf->fd.get(), limit);
if (buf->files.empty()) {
return false;
}
buf->type = FB_BUFFER_SPARSE;
} else {
buf->type = FB_BUFFER_FD;
buf->sz = sz;
}
return true;
}
static bool load_buf(const char* fname, struct fastboot_buffer* buf, const FlashingPlan* fp) {
unique_fd fd(TEMP_FAILURE_RETRY(open(fname, O_RDONLY | O_BINARY)));
if (fd == -1) {
return false;
}
struct stat s;
if (fstat(fd.get(), &s)) {
return false;
}
if (!S_ISREG(s.st_mode)) {
errno = S_ISDIR(s.st_mode) ? EISDIR : EINVAL;
return false;
}
return load_buf_fd(std::move(fd), buf, fp);
}
static void rewrite_vbmeta_buffer(struct fastboot_buffer* buf, bool vbmeta_in_boot) {
// Buffer needs to be at least the size of the VBMeta struct which
// is 256 bytes.
if (buf->sz < 256) {
return;
}
std::string data;
if (!android::base::ReadFdToString(buf->fd, &data)) {
die("Failed reading from vbmeta");
}
uint64_t vbmeta_offset = 0;
if (vbmeta_in_boot) {
// Tries to locate top-level vbmeta from boot.img footer.
uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE;
if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) {
die("Failed to find AVB_FOOTER at offset: %" PRId64 ", is BOARD_AVB_ENABLE true?",
footer_offset);
}
const AvbFooter* footer = reinterpret_cast<const AvbFooter*>(data.c_str() + footer_offset);
vbmeta_offset = be64toh(footer->vbmeta_offset);
}
// Ensures there is AVB_MAGIC at vbmeta_offset.
if (0 != data.compare(vbmeta_offset, AVB_MAGIC_LEN, AVB_MAGIC)) {
die("Failed to find AVB_MAGIC at offset: %" PRId64, vbmeta_offset);
}
fprintf(stderr, "Rewriting vbmeta struct at offset: %" PRId64 "\n", vbmeta_offset);
// There's a 32-bit big endian |flags| field at offset 120 where
// bit 0 corresponds to disable-verity and bit 1 corresponds to
// disable-verification.
//
// See external/avb/libavb/avb_vbmeta_image.h for the layout of
// the VBMeta struct.
uint64_t flags_offset = 123 + vbmeta_offset;
if (g_disable_verity) {
data[flags_offset] |= 0x01;
}
if (g_disable_verification) {
data[flags_offset] |= 0x02;
}
unique_fd fd(make_temporary_fd("vbmeta rewriting"));
if (!android::base::WriteStringToFd(data, fd)) {
die("Failed writing to modified vbmeta");
}
buf->fd = std::move(fd);
lseek(buf->fd.get(), 0, SEEK_SET);
}
static bool has_vbmeta_partition() {
std::string partition_type;
return fb->GetVar("partition-type:vbmeta", &partition_type) == fastboot::SUCCESS ||
fb->GetVar("partition-type:vbmeta_a", &partition_type) == fastboot::SUCCESS ||
fb->GetVar("partition-type:vbmeta_b", &partition_type) == fastboot::SUCCESS;
}
static bool is_vbmeta_partition(const std::string& partition) {
return android::base::EndsWith(partition, "vbmeta") ||
android::base::EndsWith(partition, "vbmeta_a") ||
android::base::EndsWith(partition, "vbmeta_b");
}
// Note: this only works in userspace fastboot. In the bootloader, use
// should_flash_in_userspace().
bool is_logical(const std::string& partition) {
std::string value;
return fb->GetVar("is-logical:" + partition, &value) == fastboot::SUCCESS && value == "yes";
}
static uint64_t get_partition_size(const std::string& partition) {
std::string partition_size_str;
if (fb->GetVar("partition-size:" + partition, &partition_size_str) != fastboot::SUCCESS) {
if (!is_logical(partition)) {
return 0;
}
die("cannot get partition size for %s", partition.c_str());
}
partition_size_str = fb_fix_numeric_var(partition_size_str);
uint64_t partition_size;
if (!android::base::ParseUint(partition_size_str, &partition_size)) {
if (!is_logical(partition)) {
return 0;
}
die("Couldn't parse partition size '%s'.", partition_size_str.c_str());
}
return partition_size;
}
static void copy_avb_footer(const ImageSource* source, const std::string& partition,
struct fastboot_buffer* buf) {
if (buf->sz < AVB_FOOTER_SIZE || is_logical(partition) ||
should_flash_in_userspace(source, partition)) {
return;
}
// If the image is sparse, moving the footer will simply corrupt the sparse
// format, so currently we don't support moving the footer on sparse files.
if (buf->file_type == FB_BUFFER_SPARSE) {
LOG(ERROR) << "Warning: skip copying " << partition << " image avb footer due to sparse "
<< "image.";
return;
}
// If overflows and negative, it should be < buf->sz.
int64_t partition_size = static_cast<int64_t>(get_partition_size(partition));
if (partition_size == buf->sz) {
return;
}
// Some device bootloaders might not implement `fastboot getvar partition-size:boot[_a|_b]`.
// In this case, partition_size will be zero.
if (partition_size < buf->sz) {
fprintf(stderr,
"Warning: skip copying %s image avb footer"
" (%s partition size: %" PRId64 ", %s image size: %" PRId64 ").\n",
partition.c_str(), partition.c_str(), partition_size, partition.c_str(), buf->sz);
return;
}
// IMPORTANT: after the following read, we need to reset buf->fd before return (if not die).
// Because buf->fd will still be used afterwards.
std::string data;
if (!android::base::ReadFdToString(buf->fd, &data)) {
die("Failed reading from %s", partition.c_str());
}
uint64_t footer_offset = buf->sz - AVB_FOOTER_SIZE;
if (0 != data.compare(footer_offset, AVB_FOOTER_MAGIC_LEN, AVB_FOOTER_MAGIC)) {
lseek(buf->fd.get(), 0, SEEK_SET); // IMPORTANT: resets buf->fd before return.
return;
}
const std::string tmp_fd_template = partition + " rewriting";
unique_fd fd(make_temporary_fd(tmp_fd_template.c_str()));
if (!android::base::WriteStringToFd(data, fd)) {
die("Failed writing to modified %s", partition.c_str());
}
lseek(fd.get(), partition_size - AVB_FOOTER_SIZE, SEEK_SET);
if (!android::base::WriteStringToFd(data.substr(footer_offset), fd)) {
die("Failed copying AVB footer in %s", partition.c_str());
}
buf->fd = std::move(fd);
buf->sz = partition_size;
lseek(buf->fd.get(), 0, SEEK_SET);
}
void flash_partition_files(const std::string& partition, const std::vector<SparsePtr>& files) {
for (size_t i = 0; i < files.size(); i++) {
sparse_file* s = files[i].get();
int64_t sz = sparse_file_len(s, true, false);
if (sz < 0) {
LOG(FATAL) << "Could not compute length of sparse image for " << partition;
}
fb->FlashPartition(partition, s, sz, i + 1, files.size());
}
}
static void flash_buf(const ImageSource* source, const std::string& partition,
struct fastboot_buffer* buf, const bool apply_vbmeta) {
copy_avb_footer(source, partition, buf);
// Rewrite vbmeta if that's what we're flashing and modification has been requested.
if (g_disable_verity || g_disable_verification) {
// The vbmeta partition might have additional prefix if running in virtual machine
// e.g., guest_vbmeta_a.
if (apply_vbmeta) {
rewrite_vbmeta_buffer(buf, false /* vbmeta_in_boot */);
} else if (!has_vbmeta_partition() &&
(partition == "boot" || partition == "boot_a" || partition == "boot_b")) {
rewrite_vbmeta_buffer(buf, true /* vbmeta_in_boot */);
}
}
switch (buf->type) {
case FB_BUFFER_SPARSE: {
flash_partition_files(partition, buf->files);
break;
}
case FB_BUFFER_FD:
fb->FlashPartition(partition, buf->fd, buf->sz);
break;
default:
die("unknown buffer type: %d", buf->type);
}
}
std::string get_current_slot() {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) != fastboot::SUCCESS) return "";
if (current_slot[0] == '_') current_slot.erase(0, 1);
return current_slot;
}
static int get_slot_count(fastboot::IFastBootDriver* fb) {
std::string var;
int count = 0;
if (fb->GetVar("slot-count", &var) != fastboot::SUCCESS ||
!android::base::ParseInt(var, &count)) {
return 0;
}
return count;
}
bool supports_AB(fastboot::IFastBootDriver* fb) {
return get_slot_count(fb) >= 2;
}
// Given a current slot, this returns what the 'other' slot is.
static std::string get_other_slot(const std::string& current_slot, int count) {
if (count == 0) return "";
char next = (current_slot[0] - 'a' + 1) % count + 'a';
return std::string(1, next);
}
static std::string get_other_slot(const std::string& current_slot) {
return get_other_slot(current_slot, get_slot_count(fb));
}
static std::string get_other_slot(int count) {
return get_other_slot(get_current_slot(), count);
}
static std::string get_other_slot() {
return get_other_slot(get_current_slot(), get_slot_count(fb));
}
static std::string verify_slot(const std::string& slot_name, bool allow_all) {
std::string slot = slot_name;
if (slot == "all") {
if (allow_all) {
return "all";
} else {
int count = get_slot_count(fb);
if (count > 0) {
return "a";
} else {
die("No known slots");
}
}
}
int count = get_slot_count(fb);
if (count == 0) die("Device does not support slots");
if (slot == "other") {
std::string other = get_other_slot(count);
if (other == "") {
die("No known slots");
}
return other;
}
if (slot.size() == 1 && (slot[0] - 'a' >= 0 && slot[0] - 'a' < count)) return slot;
fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot.c_str());
for (int i = 0; i < count; i++) {
fprintf(stderr, "%c\n", (char)(i + 'a'));
}
exit(1);
}
static std::string verify_slot(const std::string& slot) {
return verify_slot(slot, true);
}
static void do_for_partition(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
std::string current_slot;
// |part| can be vendor_boot:default. Append slot to the first token.
auto part_tokens = android::base::Split(part, ":");
if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) {
/* If has-slot is not supported, the answer is no. */
has_slot = "no";
}
if (has_slot == "yes") {
if (slot == "") {
current_slot = get_current_slot();
if (current_slot == "") {
die("Failed to identify current slot");
}
part_tokens[0] += "_" + current_slot;
} else {
part_tokens[0] += "_" + slot;
}
func(android::base::Join(part_tokens, ":"));
} else {
if (force_slot && slot != "") {
fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
part_tokens[0].c_str(), slot.c_str());
}
func(part);
}
}
/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
* empty, it will use the current slot. If slot is "all", it will return a list of all possible
* partition names. If force_slot is true, it will fail if a slot is specified, and the given
* partition does not support slots.
*/
void do_for_partitions(const std::string& part, const std::string& slot,
const std::function<void(const std::string&)>& func, bool force_slot) {
std::string has_slot;
// |part| can be vendor_boot:default. Query has-slot on the first token only.
auto part_tokens = android::base::Split(part, ":");
if (slot == "all") {
if (fb->GetVar("has-slot:" + part_tokens[0], &has_slot) != fastboot::SUCCESS) {
die("Could not check if partition %s has slot %s", part_tokens[0].c_str(),
slot.c_str());
}
if (has_slot == "yes") {
for (int i = 0; i < get_slot_count(fb); i++) {
do_for_partition(part, std::string(1, (char)(i + 'a')), func, force_slot);
}
} else {
do_for_partition(part, "", func, force_slot);
}
} else {
do_for_partition(part, slot, func, force_slot);
}
}
// Fetch a partition from the device to a given fd. This is a wrapper over FetchToFd to fetch
// the full image.
static uint64_t fetch_partition(const std::string& partition, borrowed_fd fd,
fastboot::IFastBootDriver* fb) {
uint64_t fetch_size = get_uint_var(FB_VAR_MAX_FETCH_SIZE, fb);
if (fetch_size == 0) {
die("Unable to get %s. Device does not support fetch command.", FB_VAR_MAX_FETCH_SIZE);
}
uint64_t partition_size = get_partition_size(partition);
if (partition_size <= 0) {
die("Invalid partition size for partition %s: %" PRId64, partition.c_str(), partition_size);
}
uint64_t offset = 0;
while (offset < partition_size) {
uint64_t chunk_size = std::min(fetch_size, partition_size - offset);
if (fb->FetchToFd(partition, fd, offset, chunk_size) != fastboot::RetCode::SUCCESS) {
die("Unable to fetch %s (offset=%" PRIx64 ", size=%" PRIx64 ")", partition.c_str(),
offset, chunk_size);
}
offset += chunk_size;
}
return partition_size;
}
static void do_fetch(const std::string& partition, const std::string& slot_override,
const std::string& outfile, fastboot::IFastBootDriver* fb) {
unique_fd fd(TEMP_FAILURE_RETRY(
open(outfile.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC | O_BINARY, 0644)));
auto fetch = std::bind(fetch_partition, _1, borrowed_fd(fd), fb);
do_for_partitions(partition, slot_override, fetch, false /* force slot */);
}
// Return immediately if not flashing a vendor boot image. If flashing a vendor boot image,
// repack vendor_boot image with an updated ramdisk. After execution, buf is set
// to the new image to flash, and return value is the real partition name to flash.
static std::string repack_ramdisk(const char* pname, struct fastboot_buffer* buf,
fastboot::IFastBootDriver* fb) {
std::string_view pname_sv{pname};
if (!android::base::StartsWith(pname_sv, "vendor_boot:") &&
!android::base::StartsWith(pname_sv, "vendor_boot_a:") &&
!android::base::StartsWith(pname_sv, "vendor_boot_b:")) {
return std::string(pname_sv);
}
if (buf->type != FB_BUFFER_FD) {
die("Flashing sparse vendor ramdisk image is not supported.");
}
if (buf->sz <= 0) {
die("repack_ramdisk() sees negative size: %" PRId64, buf->sz);
}
std::string partition(pname_sv.substr(0, pname_sv.find(':')));
std::string ramdisk(pname_sv.substr(pname_sv.find(':') + 1));
unique_fd vendor_boot(make_temporary_fd("vendor boot repack"));
uint64_t vendor_boot_size = fetch_partition(partition, vendor_boot, fb);
auto repack_res = replace_vendor_ramdisk(vendor_boot, vendor_boot_size, ramdisk, buf->fd,
static_cast<uint64_t>(buf->sz));
if (!repack_res.ok()) {
die("%s", repack_res.error().message().c_str());
}
buf->fd = std::move(vendor_boot);
buf->sz = vendor_boot_size;
buf->image_size = vendor_boot_size;
return partition;
}
void do_flash(const char* pname, const char* fname, const bool apply_vbmeta,
const FlashingPlan* fp) {
if (!fp) {
die("do flash was called without a valid flashing plan");
}
verbose("Do flash %s %s", pname, fname);
struct fastboot_buffer buf;
if (fp->source) {
unique_fd fd = fp->source->OpenFile(fname);
if (fd < 0 || !load_buf_fd(std::move(fd), &buf, fp)) {
die("could not load '%s': %s", fname, strerror(errno));
}
std::vector<char> signature_data;
std::string file_string(fname);
if (fp->source->ReadFile(file_string.substr(0, file_string.find('.')) + ".sig",
&signature_data)) {
fb->Download("signature", signature_data);
fb->RawCommand("signature", "installing signature");
}
} else if (!load_buf(fname, &buf, fp)) {
die("cannot load '%s': %s", fname, strerror(errno));
}
if (is_logical(pname)) {
fb->ResizePartition(pname, std::to_string(buf.image_size));
}
std::string flash_pname = repack_ramdisk(pname, &buf, fp->fb);
flash_buf(fp->source.get(), flash_pname, &buf, apply_vbmeta);
}
// Sets slot_override as the active slot. If slot_override is blank,
// set current slot as active instead. This clears slot-unbootable.
static void set_active(const std::string& slot_override) {
if (!supports_AB(fb)) return;
if (slot_override != "") {
fb->SetActive(slot_override);
} else {
std::string current_slot = get_current_slot();
if (current_slot != "") {
fb->SetActive(current_slot);
}
}
}
bool is_userspace_fastboot() {
std::string value;
return fb->GetVar("is-userspace", &value) == fastboot::SUCCESS && value == "yes";
}
void reboot_to_userspace_fastboot() {
fb->RebootTo("fastboot");
fb->set_transport(nullptr);
// Give the current connection time to close.
std::this_thread::sleep_for(std::chrono::seconds(1));
fb->set_transport(open_device());
if (!is_userspace_fastboot()) {
die("Failed to boot into userspace fastboot; one or more components might be unbootable.");
}
// Reset target_sparse_limit after reboot to userspace fastboot. Max
// download sizes may differ in bootloader and fastbootd.
target_sparse_limit = -1;
}
static void CancelSnapshotIfNeeded() {
std::string merge_status = "none";
if (fb->GetVar(FB_VAR_SNAPSHOT_UPDATE_STATUS, &merge_status) == fastboot::SUCCESS &&
!merge_status.empty() && merge_status != "none") {
fb->SnapshotUpdateCommand("cancel");
}
}
std::string GetPartitionName(const ImageEntry& entry, const std::string& current_slot) {
auto slot = entry.second;
if (slot.empty()) {
slot = current_slot;
}
if (slot.empty()) {
return entry.first->part_name;
}
if (slot == "all") {
LOG(FATAL) << "Cannot retrieve a singular name when using all slots";
}
return entry.first->part_name + "_" + slot;
}
std::unique_ptr<FlashTask> ParseFlashCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
bool apply_vbmeta = false;
std::string slot = fp->slot_override;
std::string partition;
std::string img_name;
for (auto& part : parts) {
if (part == "--apply-vbmeta") {
apply_vbmeta = true;
} else if (part == "--slot-other") {
slot = fp->secondary_slot;
} else if (partition.empty()) {
partition = part;
} else if (img_name.empty()) {
img_name = part;
} else {
LOG(ERROR) << "unknown argument" << part
<< " in fastboot-info.txt. parts: " << android::base::Join(parts, " ");
return nullptr;
}
}
if (partition.empty()) {
LOG(ERROR) << "partition name not found when parsing fastboot-info.txt. parts: "
<< android::base::Join(parts, " ");
return nullptr;
}
if (img_name.empty()) {
img_name = partition + ".img";
}
return std::make_unique<FlashTask>(slot, partition, img_name, apply_vbmeta, fp);
}
std::unique_ptr<RebootTask> ParseRebootCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
if (parts.empty()) return std::make_unique<RebootTask>(fp);
if (parts.size() > 1) {
LOG(ERROR) << "unknown arguments in reboot {target} in fastboot-info.txt: "
<< android::base::Join(parts, " ");
return nullptr;
}
return std::make_unique<RebootTask>(fp, parts[0]);
}
std::unique_ptr<WipeTask> ParseWipeCommand(const FlashingPlan* fp,
const std::vector<std::string>& parts) {
if (parts.size() != 1) {
LOG(ERROR) << "unknown arguments in erase {partition} in fastboot-info.txt: "
<< android::base::Join(parts, " ");
return nullptr;
}
return std::make_unique<WipeTask>(fp, parts[0]);
}
std::unique_ptr<Task> ParseFastbootInfoLine(const FlashingPlan* fp,
const std::vector<std::string>& command) {
if (command.size() == 0) {
return nullptr;
}
std::unique_ptr<Task> task;
if (command[0] == "flash") {
task = ParseFlashCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
} else if (command[0] == "reboot") {
task = ParseRebootCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
} else if (command[0] == "update-super" && command.size() == 1) {
task = std::make_unique<UpdateSuperTask>(fp);
} else if (command[0] == "erase" && command.size() == 2) {
task = ParseWipeCommand(fp, std::vector<std::string>{command.begin() + 1, command.end()});
}
if (!task) {
LOG(ERROR) << "unknown command parsing fastboot-info.txt line: "
<< android::base::Join(command, " ");
}
return task;
}
bool AddResizeTasks(const FlashingPlan* fp, std::vector<std::unique_ptr<Task>>* tasks) {
// expands "resize-partitions" into individual commands : resize {os_partition_1}, resize
// {os_partition_2}, etc.
std::vector<std::unique_ptr<Task>> resize_tasks;
std::optional<size_t> loc;
std::vector<char> contents;
if (!fp->source->ReadFile("super_empty.img", &contents)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageBlob(contents.data(), contents.size());
if (!metadata) {
return false;
}
for (size_t i = 0; i < tasks->size(); i++) {
if (auto flash_task = tasks->at(i)->AsFlashTask()) {
if (FlashTask::IsDynamicParitition(fp->source.get(), flash_task)) {
if (!loc) {
loc = i;
}
resize_tasks.emplace_back(std::make_unique<ResizeTask>(
fp, flash_task->GetPartition(), "0", fp->slot_override));
}
}
}
// if no logical partitions (although should never happen since system will always need to be
// flashed)
if (!loc) {
return false;
}
tasks->insert(tasks->begin() + loc.value(), std::make_move_iterator(resize_tasks.begin()),
std::make_move_iterator(resize_tasks.end()));
return true;
}
static bool IsIgnore(const std::vector<std::string>& command) {
if (command.size() == 0 || command[0][0] == '#') {
return true;
}
return false;
}
bool CheckFastbootInfoRequirements(const std::vector<std::string>& command,
uint32_t host_tool_version) {
if (command.size() != 2) {
LOG(ERROR) << "unknown characters in version info in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
if (command[0] != "version") {
LOG(ERROR) << "unknown characters in version info in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
uint32_t fastboot_info_version;
if (!android::base::ParseUint(command[1], &fastboot_info_version)) {
LOG(ERROR) << "version number contains non-numeric characters in fastboot-info.txt -> "
<< android::base::Join(command, " ");
return false;
}
LOG(VERBOSE) << "Checking 'fastboot-info.txt version'";
if (fastboot_info_version <= host_tool_version) {
return true;
}
LOG(ERROR) << "fasboot-info.txt version: " << command[1]
<< " not compatible with host tool version --> " << host_tool_version;
return false;
}
std::vector<std::unique_ptr<Task>> ParseFastbootInfo(const FlashingPlan* fp,
const std::vector<std::string>& file) {
std::vector<std::unique_ptr<Task>> tasks;
// Get os_partitions that need to be resized
for (auto& text : file) {
std::vector<std::string> command = android::base::Tokenize(text, " ");
if (IsIgnore(command)) {
continue;
}
if (command.size() > 1 && command[0] == "version") {
if (!CheckFastbootInfoRequirements(command, FASTBOOT_INFO_VERSION)) {
return {};
}
continue;
} else if (command.size() >= 2 && command[0] == "if-wipe") {
if (!fp->wants_wipe) {
continue;
}
command.erase(command.begin());
}
auto task = ParseFastbootInfoLine(fp, command);
if (!task) {
return {};
}
tasks.emplace_back(std::move(task));
}
if (auto flash_super_task = OptimizedFlashSuperTask::Initialize(fp, tasks)) {
tasks.emplace_back(std::move(flash_super_task));
} else {
if (!AddResizeTasks(fp, &tasks)) {
LOG(WARNING) << "Failed to add resize tasks";
}
}
return tasks;
}
FlashAllTool::FlashAllTool(FlashingPlan* fp) : fp_(fp) {}
void FlashAllTool::Flash() {
DumpInfo();
CheckRequirements();
// Change the slot first, so we boot into the correct recovery image when
// using fastbootd.
if (fp_->slot_override == "all") {
set_active("a");
} else {
set_active(fp_->slot_override);
}
DetermineSlot();
CancelSnapshotIfNeeded();
tasks_ = CollectTasks();
for (auto& task : tasks_) {
task->Run();
}
return;
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasks() {
std::vector<std::unique_ptr<Task>> tasks;
if (fp_->should_use_fastboot_info) {
tasks = CollectTasksFromFastbootInfo();
} else {
tasks = CollectTasksFromImageList();
}
if (fp_->exclude_dynamic_partitions) {
auto is_non_static_flash_task = [&](const auto& task) -> bool {
if (auto flash_task = task->AsFlashTask()) {
if (!should_flash_in_userspace(fp_->source.get(),
flash_task->GetPartitionAndSlot())) {
return false;
}
}
return true;
};
tasks.erase(std::remove_if(tasks.begin(), tasks.end(), is_non_static_flash_task),
tasks.end());
}
return tasks;
}
void FlashAllTool::CheckRequirements() {
std::vector<char> contents;
if (!fp_->source->ReadFile("android-info.txt", &contents)) {
die("could not read android-info.txt");
}
::CheckRequirements({contents.data(), contents.size()}, fp_->force_flash);
}
void FlashAllTool::DetermineSlot() {
if (fp_->slot_override.empty()) {
fp_->current_slot = get_current_slot();
} else {
fp_->current_slot = fp_->slot_override;
}
if (fp_->skip_secondary) {
return;
}
if (fp_->slot_override != "" && fp_->slot_override != "all") {
fp_->secondary_slot = get_other_slot(fp_->slot_override);
} else {
fp_->secondary_slot = get_other_slot();
}
if (fp_->secondary_slot == "") {
if (supports_AB(fb)) {
fprintf(stderr, "Warning: Could not determine slot for secondary images. Ignoring.\n");
}
fp_->skip_secondary = true;
}
}
void FlashAllTool::CollectImages() {
for (size_t i = 0; i < images.size(); ++i) {
std::string slot = fp_->slot_override;
if (images[i].IsSecondary()) {
if (fp_->skip_secondary) {
continue;
}
slot = fp_->secondary_slot;
}
if (images[i].type == ImageType::BootCritical) {
boot_images_.emplace_back(&images[i], slot);
} else if (images[i].type == ImageType::Normal) {
os_images_.emplace_back(&images[i], slot);
}
}
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasksFromImageList() {
CollectImages();
// First flash boot partitions. We allow this to happen either in userspace
// or in bootloader fastboot.
std::vector<std::unique_ptr<Task>> tasks;
AddFlashTasks(boot_images_, tasks);
// Sync the super partition. This will reboot to userspace fastboot if needed.
tasks.emplace_back(std::make_unique<UpdateSuperTask>(fp_));
AddFlashTasks(os_images_, tasks);
if (auto flash_super_task = OptimizedFlashSuperTask::Initialize(fp_, tasks)) {
tasks.emplace_back(std::move(flash_super_task));
} else {
// Resize any logical partition to 0, so each partition is reset to 0
// extents, and will achieve more optimal allocation.
if (!AddResizeTasks(fp_, &tasks)) {
LOG(WARNING) << "Failed to add resize tasks";
}
}
return tasks;
}
std::vector<std::unique_ptr<Task>> FlashAllTool::CollectTasksFromFastbootInfo() {
std::vector<std::unique_ptr<Task>> tasks;
std::vector<char> contents;
if (!fp_->source->ReadFile("fastboot-info.txt", &contents)) {
LOG(VERBOSE) << "Flashing from hardcoded images. fastboot-info.txt is empty or does not "
"exist";
return CollectTasksFromImageList();
}
tasks = ParseFastbootInfo(fp_, Split({contents.data(), contents.size()}, "\n"));
return tasks;
}
void FlashAllTool::AddFlashTasks(const std::vector<std::pair<const Image*, std::string>>& images,
std::vector<std::unique_ptr<Task>>& tasks) {
for (const auto& [image, slot] : images) {
fastboot_buffer buf;
unique_fd fd = fp_->source->OpenFile(image->img_name);
if (fd < 0 || !load_buf_fd(std::move(fd), &buf, fp_)) {
if (image->optional_if_no_image) {
continue;
}
die("could not load '%s': %s", image->img_name.c_str(), strerror(errno));
}
tasks.emplace_back(std::make_unique<FlashTask>(slot, image->part_name, image->img_name,
is_vbmeta_partition(image->part_name), fp_));
}
}
bool ZipImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
return UnzipToMemory(zip_, name, out);
}
unique_fd ZipImageSource::OpenFile(const std::string& name) const {
return UnzipToFile(zip_, name.c_str());
}
static void do_update(const char* filename, FlashingPlan* fp) {
ZipArchiveHandle zip;
int error = OpenArchive(filename, &zip);
if (error != 0) {
die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
}
fp->source.reset(new ZipImageSource(zip));
FlashAllTool tool(fp);
tool.Flash();
CloseArchive(zip);
}
bool LocalImageSource::ReadFile(const std::string& name, std::vector<char>* out) const {
auto path = find_item_given_name(name);
if (path.empty()) {
return false;
}
return ReadFileToVector(path, out);
}
unique_fd LocalImageSource::OpenFile(const std::string& name) const {
auto path = find_item_given_name(name);
return unique_fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_BINARY)));
}
static void do_flashall(FlashingPlan* fp) {
fp->source.reset(new LocalImageSource());
FlashAllTool tool(fp);
tool.Flash();
}
static std::string next_arg(std::vector<std::string>* args) {
if (args->empty()) syntax_error("expected argument");
std::string result = args->front();
args->erase(args->begin());
return result;
}
static void do_oem_command(const std::string& cmd, std::vector<std::string>* args) {
if (args->empty()) syntax_error("empty oem command");
std::string command(cmd);
while (!args->empty()) {
command += " " + next_arg(args);
}
fb->RawCommand(command, "");
}
static unsigned fb_get_flash_block_size(std::string name) {
std::string sizeString;
if (fb->GetVar(name, &sizeString) != fastboot::SUCCESS || sizeString.empty()) {
// This device does not report flash block sizes, so return 0.
return 0;
}
sizeString = fb_fix_numeric_var(sizeString);
unsigned size;
if (!android::base::ParseUint(sizeString, &size)) {
fprintf(stderr, "Couldn't parse %s '%s'.\n", name.c_str(), sizeString.c_str());
return 0;
}
if ((size & (size - 1)) != 0) {
fprintf(stderr, "Invalid %s %u: must be a power of 2.\n", name.c_str(), size);
return 0;
}
return size;
}
void fb_perform_format(const std::string& partition, int skip_if_not_supported,
const std::string& type_override, const std::string& size_override,
const unsigned fs_options, const FlashingPlan* fp) {
std::string partition_type, partition_size;
struct fastboot_buffer buf;
const char* errMsg = nullptr;
const struct fs_generator* gen = nullptr;
TemporaryFile output;
unique_fd fd;
unsigned int limit = INT_MAX;
if (target_sparse_limit > 0 && target_sparse_limit < limit) {
limit = target_sparse_limit;
}
if (fp->sparse_limit > 0 && fp->sparse_limit < limit) {
limit = fp->sparse_limit;
}
if (fb->GetVar("partition-type:" + partition, &partition_type) != fastboot::SUCCESS) {
errMsg = "Can't determine partition type.\n";
goto failed;
}
if (!type_override.empty()) {
if (partition_type != type_override) {
fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_type.c_str(), type_override.c_str());
}
partition_type = type_override;
}
if (fb->GetVar("partition-size:" + partition, &partition_size) != fastboot::SUCCESS) {
errMsg = "Unable to get partition size\n";
goto failed;
}
if (!size_override.empty()) {
if (partition_size != size_override) {
fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
partition.c_str(), partition_size.c_str(), size_override.c_str());
}
partition_size = size_override;
}
partition_size = fb_fix_numeric_var(partition_size);
gen = fs_get_generator(partition_type);
if (!gen) {
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
return;
}
die("Formatting is not supported for file system with type '%s'.", partition_type.c_str());
}
int64_t size;
if (!android::base::ParseInt(partition_size, &size)) {
die("Couldn't parse partition size '%s'.", partition_size.c_str());
}
unsigned eraseBlkSize, logicalBlkSize;
eraseBlkSize = fb_get_flash_block_size("erase-block-size");
logicalBlkSize = fb_get_flash_block_size("logical-block-size");
if (fs_generator_generate(gen, output.path, size, eraseBlkSize, logicalBlkSize, fs_options)) {
die("Cannot generate image for %s", partition.c_str());
}
fd.reset(open(output.path, O_RDONLY));
if (fd == -1) {
die("Cannot open generated image: %s", strerror(errno));
}
if (!load_buf_fd(std::move(fd), &buf, fp)) {
die("Cannot read image: %s", strerror(errno));
}
flash_buf(fp->source.get(), partition, &buf, is_vbmeta_partition(partition));
return;
failed:
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
if (errMsg) fprintf(stderr, "%s", errMsg);
}
fprintf(stderr, "FAILED (%s)\n", fb->Error().c_str());
if (!skip_if_not_supported) {
die("Command failed");
}
}
bool should_flash_in_userspace(const ImageSource* source, const std::string& partition_name) {
if (!source) {
if (!get_android_product_out()) {
return false;
}
auto path = find_item_given_name("super_empty.img");
if (path.empty() || access(path.c_str(), R_OK)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageFile(path);
if (!metadata) {
return false;
}
return should_flash_in_userspace(*metadata.get(), partition_name);
}
std::vector<char> contents;
if (!source->ReadFile("super_empty.img", &contents)) {
return false;
}
auto metadata = android::fs_mgr::ReadFromImageBlob(contents.data(), contents.size());
return should_flash_in_userspace(*metadata.get(), partition_name);
}
static bool wipe_super(const android::fs_mgr::LpMetadata& metadata, const std::string& slot,
std::string* message, const FlashingPlan* fp) {
auto super_device = GetMetadataSuperBlockDevice(metadata);
auto block_size = metadata.geometry.logical_block_size;
auto super_bdev_name = android::fs_mgr::GetBlockDevicePartitionName(*super_device);
if (super_bdev_name != "super") {
// retrofit devices do not allow flashing to the retrofit partitions,
// so enable it if we can.
fb->RawCommand("oem allow-flash-super");
}
// Note: do not use die() in here, since we want TemporaryDir's destructor
// to be called.
TemporaryDir temp_dir;
bool ok;
if (metadata.block_devices.size() > 1) {
ok = WriteSplitImageFiles(temp_dir.path, metadata, block_size, {}, true);
} else {
auto image_path = std::string(temp_dir.path) + "/" + std::string(super_bdev_name) + ".img";
ok = WriteToImageFile(image_path, metadata, block_size, {}, true);
}
if (!ok) {
*message = "Could not generate a flashable super image file";
return false;
}
for (const auto& block_device : metadata.block_devices) {
auto partition = android::fs_mgr::GetBlockDevicePartitionName(block_device);
bool force_slot = !!(block_device.flags & LP_BLOCK_DEVICE_SLOT_SUFFIXED);
std::string image_name;
if (metadata.block_devices.size() > 1) {
image_name = "super_" + partition + ".img";
} else {
image_name = partition + ".img";
}
auto image_path = std::string(temp_dir.path) + "/" + image_name;
auto flash = [&](const std::string& partition_name) {
do_flash(partition_name.c_str(), image_path.c_str(), false, fp);
};
do_for_partitions(partition, slot, flash, force_slot);
unlink(image_path.c_str());
}
return true;
}
static void do_wipe_super(const std::string& image, const std::string& slot_override,
const FlashingPlan* fp) {
if (access(image.c_str(), R_OK) != 0) {
die("Could not read image: %s", image.c_str());
}
auto metadata = android::fs_mgr::ReadFromImageFile(image);
if (!metadata) {
die("Could not parse image: %s", image.c_str());
}
auto slot = slot_override;
if (slot.empty()) {
slot = get_current_slot();
}
std::string message;
if (!wipe_super(*metadata.get(), slot, &message, fp)) {
die(message);
}
}
static void FastbootLogger(android::base::LogId /* id */, android::base::LogSeverity severity,
const char* /* tag */, const char* /* file */, unsigned int /* line */,
const char* message) {
switch (severity) {
case android::base::INFO:
fprintf(stdout, "%s\n", message);
break;
case android::base::ERROR:
fprintf(stderr, "%s\n", message);
break;
default:
verbose("%s\n", message);
}
}
static void FastbootAborter(const char* message) {
die("%s", message);
}
int FastBootTool::Main(int argc, char* argv[]) {
android::base::InitLogging(argv, FastbootLogger, FastbootAborter);
std::unique_ptr<FlashingPlan> fp = std::make_unique<FlashingPlan>();
int longindex;
std::string next_active;
g_boot_img_hdr.kernel_addr = 0x00008000;
g_boot_img_hdr.ramdisk_addr = 0x01000000;
g_boot_img_hdr.second_addr = 0x00f00000;
g_boot_img_hdr.tags_addr = 0x00000100;
g_boot_img_hdr.page_size = 2048;
g_boot_img_hdr.dtb_addr = 0x01100000;
const struct option longopts[] = {{"base", required_argument, 0, 0},
{"cmdline", required_argument, 0, 0},
{"disable-verification", no_argument, 0, 0},
{"disable-verity", no_argument, 0, 0},
{"disable-super-optimization", no_argument, 0, 0},
{"exclude-dynamic-partitions", no_argument, 0, 0},
{"disable-fastboot-info", no_argument, 0, 0},
{"force", no_argument, 0, 0},
{"fs-options", required_argument, 0, 0},
{"header-version", required_argument, 0, 0},
{"help", no_argument, 0, 'h'},
{"kernel-offset", required_argument, 0, 0},
{"os-patch-level", required_argument, 0, 0},
{"os-version", required_argument, 0, 0},
{"page-size", required_argument, 0, 0},
{"ramdisk-offset", required_argument, 0, 0},
{"set-active", optional_argument, 0, 'a'},
{"skip-reboot", no_argument, 0, 0},
{"skip-secondary", no_argument, 0, 0},
{"slot", required_argument, 0, 0},
{"tags-offset", required_argument, 0, 0},
{"dtb", required_argument, 0, 0},
{"dtb-offset", required_argument, 0, 0},
{"unbuffered", no_argument, 0, 0},
{"verbose", no_argument, 0, 'v'},
{"version", no_argument, 0, 0},
{0, 0, 0, 0}};
serial = getenv("FASTBOOT_DEVICE");
if (!serial) {
serial = getenv("ANDROID_SERIAL");
}
int c;
while ((c = getopt_long(argc, argv, "a::hls:S:vw", longopts, &longindex)) != -1) {
if (c == 0) {
std::string name{longopts[longindex].name};
if (name == "base") {
g_base_addr = strtoul(optarg, 0, 16);
} else if (name == "cmdline") {
g_cmdline = optarg;
} else if (name == "disable-verification") {
g_disable_verification = true;
} else if (name == "disable-verity") {
g_disable_verity = true;
} else if (name == "disable-super-optimization") {
fp->should_optimize_flash_super = false;
} else if (name == "exclude-dynamic-partitions") {
fp->exclude_dynamic_partitions = true;
fp->should_optimize_flash_super = false;
} else if (name == "disable-fastboot-info") {
fp->should_use_fastboot_info = false;
} else if (name == "force") {
fp->force_flash = true;
} else if (name == "fs-options") {
fp->fs_options = ParseFsOption(optarg);
} else if (name == "header-version") {
g_boot_img_hdr.header_version = strtoul(optarg, nullptr, 0);
} else if (name == "dtb") {
g_dtb_path = optarg;
} else if (name == "kernel-offset") {
g_boot_img_hdr.kernel_addr = strtoul(optarg, 0, 16);
} else if (name == "os-patch-level") {
ParseOsPatchLevel(&g_boot_img_hdr, optarg);
} else if (name == "os-version") {
ParseOsVersion(&g_boot_img_hdr, optarg);
} else if (name == "page-size") {
g_boot_img_hdr.page_size = strtoul(optarg, nullptr, 0);
if (g_boot_img_hdr.page_size == 0) die("invalid page size");
} else if (name == "ramdisk-offset") {
g_boot_img_hdr.ramdisk_addr = strtoul(optarg, 0, 16);
} else if (name == "skip-reboot") {
fp->skip_reboot = true;
} else if (name == "skip-secondary") {
fp->skip_secondary = true;
} else if (name == "slot") {
fp->slot_override = optarg;
} else if (name == "dtb-offset") {
g_boot_img_hdr.dtb_addr = strtoul(optarg, 0, 16);
} else if (name == "tags-offset") {
g_boot_img_hdr.tags_addr = strtoul(optarg, 0, 16);
} else if (name == "unbuffered") {
setvbuf(stdout, nullptr, _IONBF, 0);
setvbuf(stderr, nullptr, _IONBF, 0);
} else if (name == "version") {
fprintf(stdout, "fastboot version %s-%s\n", PLATFORM_TOOLS_VERSION,
android::build::GetBuildNumber().c_str());
fprintf(stdout, "Installed as %s\n", android::base::GetExecutablePath().c_str());
return 0;
} else {
die("unknown option %s", longopts[longindex].name);
}
} else {
switch (c) {
case 'a':
fp->wants_set_active = true;
if (optarg) next_active = optarg;
break;
case 'h':
return show_help();
case 'l':
g_long_listing = true;
break;
case 's':
serial = optarg;
break;
case 'S':
if (!android::base::ParseByteCount(optarg, &fp->sparse_limit)) {
die("invalid sparse limit %s", optarg);
}
break;
case 'v':
set_verbose();
break;
case 'w':
fp->wants_wipe = true;
break;
case '?':
return 1;
default:
abort();
}
}
}
argc -= optind;
argv += optind;
if (argc == 0 && !fp->wants_wipe && !fp->wants_set_active) syntax_error("no command");
if (argc > 0 && !strcmp(*argv, "devices")) {
list_devices();
return 0;
}
if (argc > 0 && !strcmp(*argv, "connect")) {
argc -= optind;
argv += optind;
return Connect(argc, argv);
}
if (argc > 0 && !strcmp(*argv, "disconnect")) {
argc -= optind;
argv += optind;
return Disconnect(argc, argv);
}
if (argc > 0 && !strcmp(*argv, "help")) {
return show_help();
}
std::unique_ptr<Transport> transport = open_device();
if (!transport) {
return 1;
}
fastboot::DriverCallbacks driver_callbacks = {
.prolog = Status,
.epilog = Epilog,
.info = InfoMessage,
.text = TextMessage,
};
fastboot::FastBootDriver fastboot_driver(std::move(transport), driver_callbacks, false);
fb = &fastboot_driver;
fp->fb = &fastboot_driver;
const double start = now();
if (fp->slot_override != "") fp->slot_override = verify_slot(fp->slot_override);
if (next_active != "") next_active = verify_slot(next_active, false);
if (fp->wants_set_active) {
if (next_active == "") {
if (fp->slot_override == "") {
std::string current_slot;
if (fb->GetVar("current-slot", &current_slot) == fastboot::SUCCESS) {
if (current_slot[0] == '_') current_slot.erase(0, 1);
next_active = verify_slot(current_slot, false);
} else {
fp->wants_set_active = false;
}
} else {
next_active = verify_slot(fp->slot_override, false);
}
}
}
std::vector<std::unique_ptr<Task>> tasks;
std::vector<std::string> args(argv, argv + argc);
while (!args.empty()) {
std::string command = next_arg(&args);
if (command == FB_CMD_GETVAR) {
std::string variable = next_arg(&args);
DisplayVarOrError(variable, variable);
} else if (command == FB_CMD_ERASE) {
std::string partition = next_arg(&args);
auto erase = [&](const std::string& partition) {
std::string partition_type;
if (fb->GetVar("partition-type:" + partition, &partition_type) ==
fastboot::SUCCESS &&
fs_get_generator(partition_type) != nullptr) {
fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
partition_type.c_str());
}
fb->Erase(partition);
};
do_for_partitions(partition, fp->slot_override, erase, true);
} else if (android::base::StartsWith(command, "format")) {
// Parsing for: "format[:[type][:[size]]]"
// Some valid things:
// - select only the size, and leave default fs type:
// format::0x4000000 userdata
// - default fs type and size:
// format userdata
// format:: userdata
std::vector<std::string> pieces = android::base::Split(command, ":");
std::string type_override;
if (pieces.size() > 1) type_override = pieces[1].c_str();
std::string size_override;
if (pieces.size() > 2) size_override = pieces[2].c_str();
std::string partition = next_arg(&args);
auto format = [&](const std::string& partition) {
fb_perform_format(partition, 0, type_override, size_override, fp->fs_options,
fp.get());
};
do_for_partitions(partition, fp->slot_override, format, true);
} else if (command == "signature") {
std::string filename = next_arg(&args);
std::vector<char> data;
if (!ReadFileToVector(filename, &data)) {
die("could not load '%s': %s", filename.c_str(), strerror(errno));
}
if (data.size() != 256) die("signature must be 256 bytes (got %zu)", data.size());
fb->Download("signature", data);
fb->RawCommand("signature", "installing signature");
} else if (command == FB_CMD_REBOOT) {
if (args.size() == 1) {
std::string reboot_target = next_arg(&args);
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), reboot_target));
} else if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
if (!args.empty()) syntax_error("junk after reboot command");
} else if (command == FB_CMD_REBOOT_BOOTLOADER) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "bootloader"));
} else if (command == FB_CMD_REBOOT_RECOVERY) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "recovery"));
} else if (command == FB_CMD_REBOOT_FASTBOOT) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get(), "fastboot"));
} else if (command == FB_CMD_CONTINUE) {
fb->Continue();
} else if (command == FB_CMD_BOOT) {
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
fb->Download("boot.img", data);
fb->Boot();
} else if (command == FB_CMD_FLASH) {
std::string pname = next_arg(&args);
std::string fname;
if (!args.empty()) {
fname = next_arg(&args);
} else {
fname = find_item(pname);
}
if (fname.empty()) die("cannot determine image filename for '%s'", pname.c_str());
FlashTask task(fp->slot_override, pname, fname, is_vbmeta_partition(pname), fp.get());
task.Run();
} else if (command == "flash:raw") {
std::string partition = next_arg(&args);
std::string kernel = next_arg(&args);
std::string ramdisk;
if (!args.empty()) ramdisk = next_arg(&args);
std::string second_stage;
if (!args.empty()) second_stage = next_arg(&args);
auto data = LoadBootableImage(kernel, ramdisk, second_stage);
auto flashraw = [&data](const std::string& partition) {
fb->FlashPartition(partition, data);
};
do_for_partitions(partition, fp->slot_override, flashraw, true);
} else if (command == "flashall") {
if (fp->slot_override == "all") {
fprintf(stderr,
"Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
fp->skip_secondary = true;
}
do_flashall(fp.get());
if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
} else if (command == "update") {
bool slot_all = (fp->slot_override == "all");
if (slot_all) {
fprintf(stderr,
"Warning: slot set to 'all'. Secondary slots will not be flashed.\n");
}
std::string filename = "update.zip";
if (!args.empty()) {
filename = next_arg(&args);
}
do_update(filename.c_str(), fp.get());
if (!fp->skip_reboot) {
tasks.emplace_back(std::make_unique<RebootTask>(fp.get()));
}
} else if (command == FB_CMD_SET_ACTIVE) {
std::string slot = verify_slot(next_arg(&args), false);
fb->SetActive(slot);
} else if (command == "stage") {
std::string filename = next_arg(&args);
struct fastboot_buffer buf;
if (!load_buf(filename.c_str(), &buf, fp.get()) || buf.type != FB_BUFFER_FD) {
die("cannot load '%s'", filename.c_str());
}
fb->Download(filename, buf.fd.get(), buf.sz);
} else if (command == "get_staged") {
std::string filename = next_arg(&args);
fb->Upload(filename);
} else if (command == FB_CMD_OEM) {
do_oem_command(FB_CMD_OEM, &args);
} else if (command == "flashing") {
if (args.empty()) {
syntax_error("missing 'flashing' command");
} else if (args.size() == 1 &&
(args[0] == "unlock" || args[0] == "lock" || args[0] == "unlock_critical" ||
args[0] == "lock_critical" || args[0] == "get_unlock_ability")) {
do_oem_command("flashing", &args);
} else {
syntax_error("unknown 'flashing' command %s", args[0].c_str());
}
} else if (command == FB_CMD_CREATE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
fb->CreatePartition(partition, size);
} else if (command == FB_CMD_DELETE_PARTITION) {
std::string partition = next_arg(&args);
tasks.emplace_back(std::make_unique<DeleteTask>(fp.get(), partition));
} else if (command == FB_CMD_RESIZE_PARTITION) {
std::string partition = next_arg(&args);
std::string size = next_arg(&args);
std::unique_ptr<ResizeTask> resize_task =
std::make_unique<ResizeTask>(fp.get(), partition, size, fp->slot_override);
resize_task->Run();
} else if (command == "gsi") {
if (args.empty()) syntax_error("invalid gsi command");
std::string cmd("gsi");
while (!args.empty()) {
cmd += ":" + next_arg(&args);
}
fb->RawCommand(cmd, "");
} else if (command == "wipe-super") {
std::string image;
if (args.empty()) {
image = find_item_given_name("super_empty.img");
} else {
image = next_arg(&args);
}
do_wipe_super(image, fp->slot_override, fp.get());
} else if (command == "snapshot-update") {
std::string arg;
if (!args.empty()) {
arg = next_arg(&args);
}
if (!arg.empty() && (arg != "cancel" && arg != "merge")) {
syntax_error("expected: snapshot-update [cancel|merge]");
}
fb->SnapshotUpdateCommand(arg);
} else if (command == FB_CMD_FETCH) {
std::string partition = next_arg(&args);
std::string outfile = next_arg(&args);
do_fetch(partition, fp->slot_override, outfile, fp->fb);
} else {
syntax_error("unknown command %s", command.c_str());
}
}
if (fp->wants_wipe) {
if (fp->force_flash) {
CancelSnapshotIfNeeded();
}
std::vector<std::unique_ptr<Task>> wipe_tasks;
std::vector<std::string> partitions = {"userdata", "cache", "metadata"};
for (const auto& partition : partitions) {
wipe_tasks.emplace_back(std::make_unique<WipeTask>(fp.get(), partition));
}
tasks.insert(tasks.begin(), std::make_move_iterator(wipe_tasks.begin()),
std::make_move_iterator(wipe_tasks.end()));
}
if (fp->wants_set_active) {
fb->SetActive(next_active);
}
for (auto& task : tasks) {
task->Run();
}
fprintf(stderr, "Finished. Total time: %.3fs\n", (now() - start));
return 0;
}
void FastBootTool::ParseOsPatchLevel(boot_img_hdr_v1* hdr, const char* arg) {
unsigned year, month, day;
if (sscanf(arg, "%u-%u-%u", &year, &month, &day) != 3) {
syntax_error("OS patch level should be YYYY-MM-DD: %s", arg);
}
if (year < 2000 || year >= 2128) syntax_error("year out of range: %d", year);
if (month < 1 || month > 12) syntax_error("month out of range: %d", month);
hdr->SetOsPatchLevel(year, month);
}
void FastBootTool::ParseOsVersion(boot_img_hdr_v1* hdr, const char* arg) {
unsigned major = 0, minor = 0, patch = 0;
std::vector<std::string> versions = android::base::Split(arg, ".");
if (versions.size() < 1 || versions.size() > 3 ||
(versions.size() >= 1 && !android::base::ParseUint(versions[0], &major)) ||
(versions.size() >= 2 && !android::base::ParseUint(versions[1], &minor)) ||
(versions.size() == 3 && !android::base::ParseUint(versions[2], &patch)) ||
(major > 0x7f || minor > 0x7f || patch > 0x7f)) {
syntax_error("bad OS version: %s", arg);
}
hdr->SetOsVersion(major, minor, patch);
}
unsigned FastBootTool::ParseFsOption(const char* arg) {
unsigned fsOptions = 0;
std::vector<std::string> options = android::base::Split(arg, ",");
if (options.size() < 1) syntax_error("bad options: %s", arg);
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == "casefold")
fsOptions |= (1 << FS_OPT_CASEFOLD);
else if (options[i] == "projid")
fsOptions |= (1 << FS_OPT_PROJID);
else if (options[i] == "compress")
fsOptions |= (1 << FS_OPT_COMPRESS);
else
syntax_error("unsupported options: %s", options[i].c_str());
}
return fsOptions;
}