| /* |
| * Copyright 2016, The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <dirent.h> |
| #include <dlfcn.h> |
| #include <err.h> |
| #include <fcntl.h> |
| #include <linux/prctl.h> |
| #include <malloc.h> |
| #include <stdlib.h> |
| #include <sys/capability.h> |
| #include <sys/mman.h> |
| #include <sys/prctl.h> |
| #include <sys/ptrace.h> |
| #include <sys/resource.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <chrono> |
| #include <regex> |
| #include <set> |
| #include <string> |
| #include <thread> |
| |
| #include <android/fdsan.h> |
| #include <android/set_abort_message.h> |
| #include <bionic/malloc.h> |
| #include <bionic/mte.h> |
| #include <bionic/reserved_signals.h> |
| |
| #include <android-base/cmsg.h> |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/macros.h> |
| #include <android-base/parseint.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/test_utils.h> |
| #include <android-base/unique_fd.h> |
| #include <cutils/sockets.h> |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| |
| #include <unwindstack/Elf.h> |
| #include <unwindstack/Memory.h> |
| |
| #include <libminijail.h> |
| #include <scoped_minijail.h> |
| |
| #include "crash_test.h" |
| #include "debuggerd/handler.h" |
| #include "libdebuggerd/utility.h" |
| #include "protocol.h" |
| #include "tombstoned/tombstoned.h" |
| #include "util.h" |
| |
| using namespace std::chrono_literals; |
| |
| using android::base::SendFileDescriptors; |
| using android::base::unique_fd; |
| using ::testing::HasSubstr; |
| |
| #if defined(__LP64__) |
| #define ARCH_SUFFIX "64" |
| #else |
| #define ARCH_SUFFIX "" |
| #endif |
| |
| constexpr char kWaitForDebuggerKey[] = "debug.debuggerd.wait_for_debugger"; |
| |
| #define TIMEOUT(seconds, expr) \ |
| [&]() { \ |
| struct sigaction old_sigaction; \ |
| struct sigaction new_sigaction = {}; \ |
| new_sigaction.sa_handler = [](int) {}; \ |
| if (sigaction(SIGALRM, &new_sigaction, &old_sigaction) != 0) { \ |
| err(1, "sigaction failed"); \ |
| } \ |
| alarm(seconds); \ |
| auto value = expr; \ |
| int saved_errno = errno; \ |
| if (sigaction(SIGALRM, &old_sigaction, nullptr) != 0) { \ |
| err(1, "sigaction failed"); \ |
| } \ |
| alarm(0); \ |
| errno = saved_errno; \ |
| return value; \ |
| }() |
| |
| // Backtrace frame dump could contain: |
| // #01 pc 0001cded /data/tmp/debuggerd_test32 (raise_debugger_signal+80) |
| // or |
| // #01 pc 00022a09 /data/tmp/debuggerd_test32 (offset 0x12000) (raise_debugger_signal+80) |
| #define ASSERT_BACKTRACE_FRAME(result, frame_name) \ |
| ASSERT_MATCH(result, \ |
| R"(#\d\d pc [0-9a-f]+\s+ \S+ (\(offset 0x[0-9a-f]+\) )?\()" frame_name R"(\+)"); |
| |
| // Enable GWP-ASan at the start of this process. GWP-ASan is enabled using |
| // process sampling, so we need to ensure we force GWP-ASan on. |
| __attribute__((constructor)) static void enable_gwp_asan() { |
| android_mallopt_gwp_asan_options_t opts; |
| // No, we're not an app, but let's turn ourselves on without sampling. |
| // Technically, if someone's using the *.default_app sysprops, they'll adjust |
| // our settings, but I don't think this will be common on a device that's |
| // running debuggerd_tests. |
| opts.desire = android_mallopt_gwp_asan_options_t::Action::TURN_ON_FOR_APP; |
| opts.program_name = ""; |
| android_mallopt(M_INITIALIZE_GWP_ASAN, &opts, sizeof(android_mallopt_gwp_asan_options_t)); |
| } |
| |
| static void tombstoned_intercept(pid_t target_pid, unique_fd* intercept_fd, unique_fd* output_fd, |
| InterceptStatus* status, DebuggerdDumpType intercept_type) { |
| intercept_fd->reset(socket_local_client(kTombstonedInterceptSocketName, |
| ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_SEQPACKET)); |
| if (intercept_fd->get() == -1) { |
| FAIL() << "failed to contact tombstoned: " << strerror(errno); |
| } |
| |
| InterceptRequest req = { |
| .dump_type = intercept_type, |
| .pid = target_pid, |
| }; |
| |
| unique_fd output_pipe_write; |
| if (!Pipe(output_fd, &output_pipe_write)) { |
| FAIL() << "failed to create output pipe: " << strerror(errno); |
| } |
| |
| std::string pipe_size_str; |
| int pipe_buffer_size; |
| if (!android::base::ReadFileToString("/proc/sys/fs/pipe-max-size", &pipe_size_str)) { |
| FAIL() << "failed to read /proc/sys/fs/pipe-max-size: " << strerror(errno); |
| } |
| |
| pipe_size_str = android::base::Trim(pipe_size_str); |
| |
| if (!android::base::ParseInt(pipe_size_str.c_str(), &pipe_buffer_size, 0)) { |
| FAIL() << "failed to parse pipe max size"; |
| } |
| |
| if (fcntl(output_fd->get(), F_SETPIPE_SZ, pipe_buffer_size) != pipe_buffer_size) { |
| FAIL() << "failed to set pipe size: " << strerror(errno); |
| } |
| |
| ASSERT_GE(pipe_buffer_size, 1024 * 1024); |
| |
| ssize_t rc = SendFileDescriptors(intercept_fd->get(), &req, sizeof(req), output_pipe_write.get()); |
| output_pipe_write.reset(); |
| if (rc != sizeof(req)) { |
| FAIL() << "failed to send output fd to tombstoned: " << strerror(errno); |
| } |
| |
| InterceptResponse response; |
| rc = TEMP_FAILURE_RETRY(read(intercept_fd->get(), &response, sizeof(response))); |
| if (rc == -1) { |
| FAIL() << "failed to read response from tombstoned: " << strerror(errno); |
| } else if (rc == 0) { |
| FAIL() << "failed to read response from tombstoned (EOF)"; |
| } else if (rc != sizeof(response)) { |
| FAIL() << "received packet of unexpected length from tombstoned: expected " << sizeof(response) |
| << ", received " << rc; |
| } |
| |
| *status = response.status; |
| } |
| |
| static bool pac_supported() { |
| #if defined(__aarch64__) |
| return getauxval(AT_HWCAP) & HWCAP_PACA; |
| #else |
| return false; |
| #endif |
| } |
| |
| class CrasherTest : public ::testing::Test { |
| public: |
| pid_t crasher_pid = -1; |
| bool previous_wait_for_debugger; |
| unique_fd crasher_pipe; |
| unique_fd intercept_fd; |
| |
| CrasherTest(); |
| ~CrasherTest(); |
| |
| void StartIntercept(unique_fd* output_fd, DebuggerdDumpType intercept_type = kDebuggerdTombstone); |
| |
| // Returns -1 if we fail to read a response from tombstoned, otherwise the received return code. |
| void FinishIntercept(int* result); |
| |
| void StartProcess(std::function<void()> function, std::function<pid_t()> forker = fork); |
| void StartCrasher(const std::string& crash_type); |
| void FinishCrasher(); |
| void AssertDeath(int signo); |
| |
| static void Trap(void* ptr); |
| }; |
| |
| CrasherTest::CrasherTest() { |
| previous_wait_for_debugger = android::base::GetBoolProperty(kWaitForDebuggerKey, false); |
| android::base::SetProperty(kWaitForDebuggerKey, "0"); |
| |
| // Clear the old property too, just in case someone's been using it |
| // on this device. (We only document the new name, but we still support |
| // the old name so we don't break anyone's existing setups.) |
| android::base::SetProperty("debug.debuggerd.wait_for_gdb", "0"); |
| } |
| |
| CrasherTest::~CrasherTest() { |
| if (crasher_pid != -1) { |
| kill(crasher_pid, SIGKILL); |
| int status; |
| TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, WUNTRACED)); |
| } |
| |
| android::base::SetProperty(kWaitForDebuggerKey, previous_wait_for_debugger ? "1" : "0"); |
| } |
| |
| void CrasherTest::StartIntercept(unique_fd* output_fd, DebuggerdDumpType intercept_type) { |
| if (crasher_pid == -1) { |
| FAIL() << "crasher hasn't been started"; |
| } |
| |
| InterceptStatus status; |
| tombstoned_intercept(crasher_pid, &this->intercept_fd, output_fd, &status, intercept_type); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| } |
| |
| void CrasherTest::FinishIntercept(int* result) { |
| InterceptResponse response; |
| |
| ssize_t rc = TIMEOUT(30, read(intercept_fd.get(), &response, sizeof(response))); |
| if (rc == -1) { |
| FAIL() << "failed to read response from tombstoned: " << strerror(errno); |
| } else if (rc == 0) { |
| *result = -1; |
| } else if (rc != sizeof(response)) { |
| FAIL() << "received packet of unexpected length from tombstoned: expected " << sizeof(response) |
| << ", received " << rc; |
| } else { |
| *result = response.status == InterceptStatus::kStarted ? 1 : 0; |
| } |
| } |
| |
| void CrasherTest::StartProcess(std::function<void()> function, std::function<pid_t()> forker) { |
| unique_fd read_pipe; |
| unique_fd crasher_read_pipe; |
| if (!Pipe(&crasher_read_pipe, &crasher_pipe)) { |
| FAIL() << "failed to create pipe: " << strerror(errno); |
| } |
| |
| crasher_pid = forker(); |
| if (crasher_pid == -1) { |
| FAIL() << "fork failed: " << strerror(errno); |
| } else if (crasher_pid == 0) { |
| char dummy; |
| crasher_pipe.reset(); |
| TEMP_FAILURE_RETRY(read(crasher_read_pipe.get(), &dummy, 1)); |
| function(); |
| _exit(0); |
| } |
| } |
| |
| void CrasherTest::FinishCrasher() { |
| if (crasher_pipe == -1) { |
| FAIL() << "crasher pipe uninitialized"; |
| } |
| |
| ssize_t rc = TEMP_FAILURE_RETRY(write(crasher_pipe.get(), "\n", 1)); |
| if (rc == -1) { |
| FAIL() << "failed to write to crasher pipe: " << strerror(errno); |
| } else if (rc == 0) { |
| FAIL() << "crasher pipe was closed"; |
| } |
| } |
| |
| void CrasherTest::AssertDeath(int signo) { |
| int status; |
| pid_t pid = TIMEOUT(30, waitpid(crasher_pid, &status, 0)); |
| if (pid != crasher_pid) { |
| printf("failed to wait for crasher (expected pid %d, return value %d): %s\n", crasher_pid, pid, |
| strerror(errno)); |
| sleep(100); |
| FAIL() << "failed to wait for crasher: " << strerror(errno); |
| } |
| |
| if (signo == 0) { |
| ASSERT_TRUE(WIFEXITED(status)) << "Terminated due to unexpected signal " << WTERMSIG(status); |
| ASSERT_EQ(0, WEXITSTATUS(signo)); |
| } else { |
| ASSERT_FALSE(WIFEXITED(status)); |
| ASSERT_TRUE(WIFSIGNALED(status)) << "crasher didn't terminate via a signal"; |
| ASSERT_EQ(signo, WTERMSIG(status)); |
| } |
| crasher_pid = -1; |
| } |
| |
| static void ConsumeFd(unique_fd fd, std::string* output) { |
| constexpr size_t read_length = PAGE_SIZE; |
| std::string result; |
| |
| while (true) { |
| size_t offset = result.size(); |
| result.resize(result.size() + PAGE_SIZE); |
| ssize_t rc = TEMP_FAILURE_RETRY(read(fd.get(), &result[offset], read_length)); |
| if (rc == -1) { |
| FAIL() << "read failed: " << strerror(errno); |
| } else if (rc == 0) { |
| result.resize(result.size() - PAGE_SIZE); |
| break; |
| } |
| |
| result.resize(result.size() - PAGE_SIZE + rc); |
| } |
| |
| *output = std::move(result); |
| } |
| |
| class LogcatCollector { |
| public: |
| LogcatCollector() { system("logcat -c"); } |
| |
| void Collect(std::string* output) { |
| FILE* cmd_stdout = popen("logcat -d '*:S DEBUG'", "r"); |
| ASSERT_NE(cmd_stdout, nullptr); |
| unique_fd tmp_fd(TEMP_FAILURE_RETRY(dup(fileno(cmd_stdout)))); |
| ConsumeFd(std::move(tmp_fd), output); |
| pclose(cmd_stdout); |
| } |
| }; |
| |
| TEST_F(CrasherTest, smoke) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| *reinterpret_cast<volatile char*>(0xdead) = '1'; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| #ifdef __LP64__ |
| ASSERT_MATCH(result, |
| R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x000000000000dead)"); |
| #else |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0000dead)"); |
| #endif |
| |
| if (mte_supported()) { |
| // Test that the default TAGGED_ADDR_CTRL value is set. |
| ASSERT_MATCH(result, R"(tagged_addr_ctrl: 000000000007fff3)" |
| R"( \(PR_TAGGED_ADDR_ENABLE, PR_MTE_TCF_SYNC, mask 0xfffe\))"); |
| } |
| |
| if (pac_supported()) { |
| // Test that the default PAC_ENABLED_KEYS value is set. |
| ASSERT_MATCH(result, R"(pac_enabled_keys: 000000000000000f)" |
| R"( \(PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY, PR_PAC_APDBKEY\))"); |
| } |
| } |
| |
| TEST_F(CrasherTest, tagged_fault_addr) { |
| #if !defined(__aarch64__) |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| // HWASan crashes with SIGABRT on tag mismatch. |
| SKIP_WITH_HWASAN; |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| *reinterpret_cast<volatile char*>(0x100000000000dead) = '1'; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| // The address can either be tagged (new kernels) or untagged (old kernels). |
| ASSERT_MATCH( |
| result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x[01]00000000000dead)"); |
| } |
| |
| // Marked as weak to prevent the compiler from removing the malloc in the caller. In theory, the |
| // compiler could still clobber the argument register before trapping, but that's unlikely. |
| __attribute__((weak)) void CrasherTest::Trap(void* ptr ATTRIBUTE_UNUSED) { |
| __builtin_trap(); |
| } |
| |
| TEST_F(CrasherTest, heap_addr_in_register) { |
| #if defined(__i386__) |
| GTEST_SKIP() << "architecture does not pass arguments in registers"; |
| #endif |
| // The memory dump in HWASan crashes sadly shows the memory near the registers |
| // in the HWASan dump function, rather the faulting context. This is a known |
| // issue. |
| SKIP_WITH_HWASAN; |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| // Crash with a heap pointer in the first argument register. |
| Trap(malloc(1)); |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| int status; |
| ASSERT_EQ(crasher_pid, TIMEOUT(30, waitpid(crasher_pid, &status, 0))); |
| ASSERT_TRUE(WIFSIGNALED(status)) << "crasher didn't terminate via a signal"; |
| // Don't test the signal number because different architectures use different signals for |
| // __builtin_trap(). |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| #if defined(__aarch64__) |
| ASSERT_MATCH(result, "memory near x0 \\(\\[anon:"); |
| #elif defined(__arm__) |
| ASSERT_MATCH(result, "memory near r0 \\(\\[anon:"); |
| #elif defined(__x86_64__) |
| ASSERT_MATCH(result, "memory near rdi \\(\\[anon:"); |
| #else |
| ASSERT_TRUE(false) << "unsupported architecture"; |
| #endif |
| } |
| |
| #if defined(__aarch64__) |
| static void SetTagCheckingLevelSync() { |
| if (mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_SYNC) == 0) { |
| abort(); |
| } |
| } |
| |
| static void SetTagCheckingLevelAsync() { |
| if (mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_ASYNC) == 0) { |
| abort(); |
| } |
| } |
| #endif |
| |
| // Number of iterations required to reliably guarantee a GWP-ASan crash. |
| // GWP-ASan's sample rate is not truly nondeterministic, it initialises a |
| // thread-local counter at 2*SampleRate, and decrements on each malloc(). Once |
| // the counter reaches zero, we provide a sampled allocation. Then, double that |
| // figure to allow for left/right allocation alignment, as this is done randomly |
| // without bias. |
| #define GWP_ASAN_ITERATIONS_TO_ENSURE_CRASH (0x20000) |
| |
| struct GwpAsanTestParameters { |
| size_t alloc_size; |
| bool free_before_access; |
| int access_offset; |
| std::string cause_needle; // Needle to be found in the "Cause: [GWP-ASan]" line. |
| }; |
| |
| struct GwpAsanCrasherTest : CrasherTest, testing::WithParamInterface<GwpAsanTestParameters> {}; |
| |
| GwpAsanTestParameters gwp_asan_tests[] = { |
| {/* alloc_size */ 7, /* free_before_access */ true, /* access_offset */ 0, "Use After Free, 0 bytes into a 7-byte allocation"}, |
| {/* alloc_size */ 7, /* free_before_access */ true, /* access_offset */ 1, "Use After Free, 1 byte into a 7-byte allocation"}, |
| {/* alloc_size */ 7, /* free_before_access */ false, /* access_offset */ 16, "Buffer Overflow, 9 bytes right of a 7-byte allocation"}, |
| {/* alloc_size */ 16, /* free_before_access */ false, /* access_offset */ -1, "Buffer Underflow, 1 byte left of a 16-byte allocation"}, |
| }; |
| |
| INSTANTIATE_TEST_SUITE_P(GwpAsanTests, GwpAsanCrasherTest, testing::ValuesIn(gwp_asan_tests)); |
| |
| TEST_P(GwpAsanCrasherTest, gwp_asan_uaf) { |
| if (mte_supported()) { |
| // Skip this test on MTE hardware, as MTE will reliably catch these errors |
| // instead of GWP-ASan. |
| GTEST_SKIP() << "Skipped on MTE."; |
| } |
| // Skip this test on HWASan, which will reliably catch test errors as well. |
| SKIP_WITH_HWASAN; |
| |
| GwpAsanTestParameters params = GetParam(); |
| LogcatCollector logcat_collector; |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([¶ms]() { |
| for (unsigned i = 0; i < GWP_ASAN_ITERATIONS_TO_ENSURE_CRASH; ++i) { |
| volatile char* p = reinterpret_cast<volatile char*>(malloc(params.alloc_size)); |
| if (params.free_before_access) free(static_cast<void*>(const_cast<char*>(p))); |
| p[params.access_offset] = 42; |
| if (!params.free_before_access) free(static_cast<void*>(const_cast<char*>(p))); |
| } |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::vector<std::string> log_sources(2); |
| ConsumeFd(std::move(output_fd), &log_sources[0]); |
| logcat_collector.Collect(&log_sources[1]); |
| |
| for (const auto& result : log_sources) { |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 2 \(SEGV_ACCERR\))"); |
| ASSERT_MATCH(result, R"(Cause: \[GWP-ASan\]: )" + params.cause_needle); |
| if (params.free_before_access) { |
| ASSERT_MATCH(result, R"(deallocated by thread .*\n.*#00 pc)"); |
| } |
| ASSERT_MATCH(result, R"((^|\s)allocated by thread .*\n.*#00 pc)"); |
| } |
| } |
| |
| struct SizeParamCrasherTest : CrasherTest, testing::WithParamInterface<size_t> {}; |
| |
| INSTANTIATE_TEST_SUITE_P(Sizes, SizeParamCrasherTest, testing::Values(0, 16, 131072)); |
| |
| TEST_P(SizeParamCrasherTest, mte_uaf) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| // Any UAF on a zero-sized allocation will be out-of-bounds so it won't be reported. |
| if (GetParam() == 0) { |
| return; |
| } |
| |
| LogcatCollector logcat_collector; |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile int* p = (volatile int*)malloc(GetParam()); |
| free((void *)p); |
| p[0] = 42; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::vector<std::string> log_sources(2); |
| ConsumeFd(std::move(output_fd), &log_sources[0]); |
| logcat_collector.Collect(&log_sources[1]); |
| // Tag dump only available in the tombstone, not logcat. |
| ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); |
| |
| for (const auto& result : log_sources) { |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); |
| ASSERT_MATCH(result, R"(Cause: \[MTE\]: Use After Free, 0 bytes into a )" + |
| std::to_string(GetParam()) + R"(-byte allocation)"); |
| ASSERT_MATCH(result, R"(deallocated by thread .*?\n.*#00 pc)"); |
| ASSERT_MATCH(result, R"((^|\s)allocated by thread .*?\n.*#00 pc)"); |
| } |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_P(SizeParamCrasherTest, mte_oob_uaf) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile int* p = (volatile int*)malloc(GetParam()); |
| free((void *)p); |
| p[-1] = 42; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); |
| ASSERT_NOT_MATCH(result, R"(Cause: \[MTE\]: Use After Free, 4 bytes left)"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_P(SizeParamCrasherTest, mte_overflow) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| LogcatCollector logcat_collector; |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile char* p = (volatile char*)malloc(GetParam()); |
| p[GetParam()] = 42; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::vector<std::string> log_sources(2); |
| ConsumeFd(std::move(output_fd), &log_sources[0]); |
| logcat_collector.Collect(&log_sources[1]); |
| |
| // Tag dump only in tombstone, not logcat, and tagging is not used for |
| // overflow protection in the scudo secondary (guard pages are used instead). |
| if (GetParam() < 0x10000) { |
| ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); |
| } |
| |
| for (const auto& result : log_sources) { |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); |
| ASSERT_MATCH(result, R"(Cause: \[MTE\]: Buffer Overflow, 0 bytes right of a )" + |
| std::to_string(GetParam()) + R"(-byte allocation)"); |
| ASSERT_MATCH(result, R"((^|\s)allocated by thread .*?\n.*#00 pc)"); |
| } |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_P(SizeParamCrasherTest, mte_underflow) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile int* p = (volatile int*)malloc(GetParam()); |
| p[-1] = 42; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 9 \(SEGV_MTESERR\))"); |
| ASSERT_MATCH(result, R"(Cause: \[MTE\]: Buffer Underflow, 4 bytes left of a )" + |
| std::to_string(GetParam()) + R"(-byte allocation)"); |
| ASSERT_MATCH(result, R"((^|\s)allocated by thread .* |
| #00 pc)"); |
| ASSERT_MATCH(result, "Memory tags around the fault address"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, mte_async) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelAsync(); |
| volatile int* p = (volatile int*)malloc(16); |
| p[-1] = 42; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 8 \(SEGV_MTEAERR\), fault addr --------)"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, mte_multiple_causes) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| LogcatCollector logcat_collector; |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| SetTagCheckingLevelSync(); |
| |
| // Make two allocations with the same tag and close to one another. Check for both properties |
| // with a bounds check -- this relies on the fact that only if the allocations have the same tag |
| // would they be measured as closer than 128 bytes to each other. Otherwise they would be about |
| // (some non-zero value << 56) apart. |
| // |
| // The out-of-bounds access will be considered either an overflow of one or an underflow of the |
| // other. |
| std::set<uintptr_t> allocs; |
| for (int i = 0; i != 4096; ++i) { |
| uintptr_t alloc = reinterpret_cast<uintptr_t>(malloc(16)); |
| auto it = allocs.insert(alloc).first; |
| if (it != allocs.begin() && *std::prev(it) + 128 > alloc) { |
| *reinterpret_cast<int*>(*std::prev(it) + 16) = 42; |
| } |
| if (std::next(it) != allocs.end() && alloc + 128 > *std::next(it)) { |
| *reinterpret_cast<int*>(alloc + 16) = 42; |
| } |
| } |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::vector<std::string> log_sources(2); |
| ConsumeFd(std::move(output_fd), &log_sources[0]); |
| logcat_collector.Collect(&log_sources[1]); |
| |
| // Tag dump only in the tombstone, not logcat. |
| ASSERT_MATCH(log_sources[0], "Memory tags around the fault address"); |
| |
| for (const auto& result : log_sources) { |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\))"); |
| ASSERT_THAT(result, HasSubstr("Note: multiple potential causes for this crash were detected, " |
| "listing them in decreasing order of likelihood.")); |
| // Adjacent untracked allocations may cause us to see the wrong underflow here (or only |
| // overflows), so we can't match explicitly for an underflow message. |
| ASSERT_MATCH(result, |
| R"(Cause: \[MTE\]: Buffer Overflow, 0 bytes right of a 16-byte allocation)"); |
| // Ensure there's at least two allocation traces (one for each cause). |
| ASSERT_MATCH( |
| result, |
| R"((^|\s)allocated by thread .*?\n.*#00 pc(.|\n)*?(^|\s)allocated by thread .*?\n.*#00 pc)"); |
| } |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| #if defined(__aarch64__) |
| static uintptr_t CreateTagMapping() { |
| // Some of the MTE tag dump tests assert that there is an inaccessible page to the left and right |
| // of the PROT_MTE page, so map three pages and set the two guard pages to PROT_NONE. |
| size_t page_size = getpagesize(); |
| void* mapping = mmap(nullptr, page_size * 3, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| uintptr_t mapping_uptr = reinterpret_cast<uintptr_t>(mapping); |
| if (mapping == MAP_FAILED) { |
| return 0; |
| } |
| mprotect(reinterpret_cast<void*>(mapping_uptr + page_size), page_size, |
| PROT_READ | PROT_WRITE | PROT_MTE); |
| // Stripe the mapping, where even granules get tag '1', and odd granules get tag '0'. |
| for (uintptr_t offset = 0; offset < page_size; offset += 2 * kTagGranuleSize) { |
| uintptr_t tagged_addr = mapping_uptr + page_size + offset + (1ULL << 56); |
| __asm__ __volatile__(".arch_extension mte; stg %0, [%0]" : : "r"(tagged_addr) : "memory"); |
| } |
| return mapping_uptr + page_size; |
| } |
| #endif |
| |
| TEST_F(CrasherTest, mte_register_tag_dump) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| Trap(reinterpret_cast<void *>(CreateTagMapping())); |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGTRAP); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(memory near x0: |
| .* |
| .* |
| 01.............0 0000000000000000 0000000000000000 ................ |
| 00.............0)"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, mte_fault_tag_dump_front_truncated) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile char* p = reinterpret_cast<char*>(CreateTagMapping()); |
| p[0] = 0; // Untagged pointer, tagged memory. |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(Memory tags around the fault address.* |
| \s*=>0x[0-9a-f]+000:\[1\] 0 1 0)"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, mte_fault_tag_dump) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| volatile char* p = reinterpret_cast<char*>(CreateTagMapping()); |
| p[320] = 0; // Untagged pointer, tagged memory. |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(Memory tags around the fault address.* |
| \s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
| \s*=>0x[0-9a-f]+: 1 0 1 0 \[1\] 0 1 0 1 0 1 0 1 0 1 0 |
| \s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
| )"); |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, mte_fault_tag_dump_rear_truncated) { |
| #if defined(__aarch64__) |
| if (!mte_supported()) { |
| GTEST_SKIP() << "Requires MTE"; |
| } |
| |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([&]() { |
| SetTagCheckingLevelSync(); |
| size_t page_size = getpagesize(); |
| volatile char* p = reinterpret_cast<char*>(CreateTagMapping()); |
| p[page_size - kTagGranuleSize * 2] = 0; // Untagged pointer, tagged memory. |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| ASSERT_MATCH(result, R"(Memory tags around the fault address)"); |
| ASSERT_MATCH(result, |
| R"(\s*0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
| \s*=>0x[0-9a-f]+: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 \[1\] 0 |
| |
| )"); // Ensure truncation happened and there's a newline after the tag fault. |
| #else |
| GTEST_SKIP() << "Requires aarch64"; |
| #endif |
| } |
| |
| TEST_F(CrasherTest, LD_PRELOAD) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| setenv("LD_PRELOAD", "nonexistent.so", 1); |
| *reinterpret_cast<volatile char*>(0xdead) = '1'; |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0+dead)"); |
| } |
| |
| TEST_F(CrasherTest, abort) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| abort(); |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| } |
| |
| TEST_F(CrasherTest, signal) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| while (true) { |
| sleep(1); |
| } |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| ASSERT_EQ(0, kill(crasher_pid, SIGSEGV)); |
| |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH( |
| result, |
| R"(signal 11 \(SIGSEGV\), code 0 \(SI_USER from pid \d+, uid \d+\), fault addr --------)"); |
| ASSERT_MATCH(result, R"(backtrace:)"); |
| } |
| |
| TEST_F(CrasherTest, abort_message) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| // Arrived at experimentally; |
| // logd truncates at 4062. |
| // strlen("Abort message: ''") is 17. |
| // That's 4045, but we also want a NUL. |
| char buf[4045 + 1]; |
| memset(buf, 'x', sizeof(buf)); |
| buf[sizeof(buf) - 1] = '\0'; |
| android_set_abort_message(buf); |
| abort(); |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(Abort message: 'x{4045}')"); |
| } |
| |
| TEST_F(CrasherTest, abort_message_newline_trimmed) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| android_set_abort_message("Message with a newline.\n"); |
| abort(); |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(Abort message: 'Message with a newline.')"); |
| } |
| |
| TEST_F(CrasherTest, abort_message_multiple_newlines_trimmed) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| android_set_abort_message("Message with multiple newlines.\n\n\n\n\n"); |
| abort(); |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(Abort message: 'Message with multiple newlines.')"); |
| } |
| |
| TEST_F(CrasherTest, abort_message_backtrace) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| android_set_abort_message("not actually aborting"); |
| raise(BIONIC_SIGNAL_DEBUGGER); |
| exit(0); |
| }); |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(0); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_NOT_MATCH(result, R"(Abort message:)"); |
| } |
| |
| TEST_F(CrasherTest, intercept_timeout) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| abort(); |
| }); |
| StartIntercept(&output_fd); |
| |
| // Don't let crasher finish until we timeout. |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_NE(1, intercept_result) << "tombstoned reported success? (intercept_result = " |
| << intercept_result << ")"; |
| |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| } |
| |
| TEST_F(CrasherTest, wait_for_debugger) { |
| if (!android::base::SetProperty(kWaitForDebuggerKey, "1")) { |
| FAIL() << "failed to enable wait_for_debugger"; |
| } |
| sleep(1); |
| |
| StartProcess([]() { |
| abort(); |
| }); |
| FinishCrasher(); |
| |
| int status; |
| ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, WUNTRACED))); |
| ASSERT_TRUE(WIFSTOPPED(status)); |
| ASSERT_EQ(SIGSTOP, WSTOPSIG(status)); |
| |
| ASSERT_EQ(0, kill(crasher_pid, SIGCONT)); |
| |
| AssertDeath(SIGABRT); |
| } |
| |
| TEST_F(CrasherTest, backtrace) { |
| std::string result; |
| int intercept_result; |
| unique_fd output_fd; |
| |
| StartProcess([]() { |
| abort(); |
| }); |
| StartIntercept(&output_fd, kDebuggerdNativeBacktrace); |
| |
| std::this_thread::sleep_for(500ms); |
| |
| sigval val; |
| val.sival_int = 1; |
| ASSERT_EQ(0, sigqueue(crasher_pid, BIONIC_SIGNAL_DEBUGGER, val)) << strerror(errno); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "read"); |
| |
| int status; |
| ASSERT_EQ(0, waitpid(crasher_pid, &status, WNOHANG | WUNTRACED)); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| } |
| |
| TEST_F(CrasherTest, PR_SET_DUMPABLE_0_crash) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| prctl(PR_SET_DUMPABLE, 0); |
| abort(); |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| } |
| |
| TEST_F(CrasherTest, capabilities) { |
| ASSERT_EQ(0U, getuid()) << "capability test requires root"; |
| |
| StartProcess([]() { |
| if (prctl(PR_SET_KEEPCAPS, 1, 0, 0, 0) != 0) { |
| err(1, "failed to set PR_SET_KEEPCAPS"); |
| } |
| |
| if (setresuid(1, 1, 1) != 0) { |
| err(1, "setresuid failed"); |
| } |
| |
| __user_cap_header_struct capheader; |
| __user_cap_data_struct capdata[2]; |
| memset(&capheader, 0, sizeof(capheader)); |
| memset(&capdata, 0, sizeof(capdata)); |
| |
| capheader.version = _LINUX_CAPABILITY_VERSION_3; |
| capheader.pid = 0; |
| |
| // Turn on every third capability. |
| static_assert(CAP_LAST_CAP > 33, "CAP_LAST_CAP <= 32"); |
| for (int i = 0; i < CAP_LAST_CAP; i += 3) { |
| capdata[CAP_TO_INDEX(i)].permitted |= CAP_TO_MASK(i); |
| capdata[CAP_TO_INDEX(i)].effective |= CAP_TO_MASK(i); |
| } |
| |
| // Make sure CAP_SYS_PTRACE is off. |
| capdata[CAP_TO_INDEX(CAP_SYS_PTRACE)].permitted &= ~(CAP_TO_MASK(CAP_SYS_PTRACE)); |
| capdata[CAP_TO_INDEX(CAP_SYS_PTRACE)].effective &= ~(CAP_TO_MASK(CAP_SYS_PTRACE)); |
| |
| if (capset(&capheader, &capdata[0]) != 0) { |
| err(1, "capset failed"); |
| } |
| |
| if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) != 0) { |
| err(1, "failed to drop ambient capabilities"); |
| } |
| |
| pthread_setname_np(pthread_self(), "thread_name"); |
| raise(SIGSYS); |
| }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSYS); |
| |
| std::string result; |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(name: thread_name\s+>>> .+debuggerd_test(32|64) <<<)"); |
| ASSERT_BACKTRACE_FRAME(result, "tgkill"); |
| } |
| |
| TEST_F(CrasherTest, fake_pid) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| // Prime the getpid/gettid caches. |
| UNUSED(getpid()); |
| UNUSED(gettid()); |
| |
| std::function<pid_t()> clone_fn = []() { |
| return syscall(__NR_clone, SIGCHLD, nullptr, nullptr, nullptr, nullptr); |
| }; |
| StartProcess( |
| []() { |
| ASSERT_NE(getpid(), syscall(__NR_getpid)); |
| ASSERT_NE(gettid(), syscall(__NR_gettid)); |
| raise(SIGSEGV); |
| }, |
| clone_fn); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "tgkill"); |
| } |
| |
| static const char* const kDebuggerdSeccompPolicy = |
| "/system/etc/seccomp_policy/crash_dump." ABI_STRING ".policy"; |
| |
| static pid_t seccomp_fork_impl(void (*prejail)()) { |
| std::string policy; |
| if (!android::base::ReadFileToString(kDebuggerdSeccompPolicy, &policy)) { |
| PLOG(FATAL) << "failed to read policy file"; |
| } |
| |
| // Allow a bunch of syscalls used by the tests. |
| policy += "\nclone: 1"; |
| policy += "\nsigaltstack: 1"; |
| policy += "\nnanosleep: 1"; |
| policy += "\ngetrlimit: 1"; |
| policy += "\nugetrlimit: 1"; |
| |
| FILE* tmp_file = tmpfile(); |
| if (!tmp_file) { |
| PLOG(FATAL) << "tmpfile failed"; |
| } |
| |
| unique_fd tmp_fd(TEMP_FAILURE_RETRY(dup(fileno(tmp_file)))); |
| if (!android::base::WriteStringToFd(policy, tmp_fd.get())) { |
| PLOG(FATAL) << "failed to write policy to tmpfile"; |
| } |
| |
| if (lseek(tmp_fd.get(), 0, SEEK_SET) != 0) { |
| PLOG(FATAL) << "failed to seek tmp_fd"; |
| } |
| |
| ScopedMinijail jail{minijail_new()}; |
| if (!jail) { |
| LOG(FATAL) << "failed to create minijail"; |
| } |
| |
| minijail_no_new_privs(jail.get()); |
| minijail_log_seccomp_filter_failures(jail.get()); |
| minijail_use_seccomp_filter(jail.get()); |
| minijail_parse_seccomp_filters_from_fd(jail.get(), tmp_fd.release()); |
| |
| pid_t result = fork(); |
| if (result == -1) { |
| return result; |
| } else if (result != 0) { |
| return result; |
| } |
| |
| // Spawn and detach a thread that spins forever. |
| std::atomic<bool> thread_ready(false); |
| std::thread thread([&jail, &thread_ready]() { |
| minijail_enter(jail.get()); |
| thread_ready = true; |
| for (;;) |
| ; |
| }); |
| thread.detach(); |
| |
| while (!thread_ready) { |
| continue; |
| } |
| |
| if (prejail) { |
| prejail(); |
| } |
| |
| minijail_enter(jail.get()); |
| return result; |
| } |
| |
| static pid_t seccomp_fork() { |
| return seccomp_fork_impl(nullptr); |
| } |
| |
| TEST_F(CrasherTest, seccomp_crash) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| StartProcess([]() { abort(); }, &seccomp_fork); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| } |
| |
| static pid_t seccomp_fork_rlimit() { |
| return seccomp_fork_impl([]() { |
| struct rlimit rlim = { |
| .rlim_cur = 512 * 1024 * 1024, |
| .rlim_max = 512 * 1024 * 1024, |
| }; |
| |
| if (setrlimit(RLIMIT_AS, &rlim) != 0) { |
| raise(SIGINT); |
| } |
| }); |
| } |
| |
| TEST_F(CrasherTest, seccomp_crash_oom) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| StartProcess( |
| []() { |
| std::vector<void*> vec; |
| for (int i = 0; i < 512; ++i) { |
| char* buf = static_cast<char*>(malloc(1024 * 1024)); |
| if (!buf) { |
| abort(); |
| } |
| memset(buf, 0xff, 1024 * 1024); |
| vec.push_back(buf); |
| } |
| }, |
| &seccomp_fork_rlimit); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| // We can't actually generate a backtrace, just make sure that the process terminates. |
| } |
| |
| __attribute__((__noinline__)) extern "C" bool raise_debugger_signal(DebuggerdDumpType dump_type) { |
| siginfo_t siginfo; |
| siginfo.si_code = SI_QUEUE; |
| siginfo.si_pid = getpid(); |
| siginfo.si_uid = getuid(); |
| |
| if (dump_type != kDebuggerdNativeBacktrace && dump_type != kDebuggerdTombstone) { |
| PLOG(FATAL) << "invalid dump type"; |
| } |
| |
| siginfo.si_value.sival_int = dump_type == kDebuggerdNativeBacktrace; |
| |
| if (syscall(__NR_rt_tgsigqueueinfo, getpid(), gettid(), BIONIC_SIGNAL_DEBUGGER, &siginfo) != 0) { |
| PLOG(ERROR) << "libdebuggerd_client: failed to send signal to self"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| extern "C" void foo() { |
| LOG(INFO) << "foo"; |
| std::this_thread::sleep_for(1s); |
| } |
| |
| extern "C" void bar() { |
| LOG(INFO) << "bar"; |
| std::this_thread::sleep_for(1s); |
| } |
| |
| TEST_F(CrasherTest, seccomp_tombstone) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| static const auto dump_type = kDebuggerdTombstone; |
| StartProcess( |
| []() { |
| std::thread a(foo); |
| std::thread b(bar); |
| |
| std::this_thread::sleep_for(100ms); |
| |
| raise_debugger_signal(dump_type); |
| _exit(0); |
| }, |
| &seccomp_fork); |
| |
| StartIntercept(&output_fd, dump_type); |
| FinishCrasher(); |
| AssertDeath(0); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); |
| ASSERT_BACKTRACE_FRAME(result, "foo"); |
| ASSERT_BACKTRACE_FRAME(result, "bar"); |
| } |
| |
| TEST_F(CrasherTest, seccomp_tombstone_thread_abort) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| static const auto dump_type = kDebuggerdTombstone; |
| StartProcess( |
| []() { |
| std::thread abort_thread([] { abort(); }); |
| abort_thread.join(); |
| }, |
| &seccomp_fork); |
| |
| StartIntercept(&output_fd, dump_type); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| } |
| |
| TEST_F(CrasherTest, seccomp_tombstone_multiple_threads_abort) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| static const auto dump_type = kDebuggerdTombstone; |
| StartProcess( |
| []() { |
| std::thread a(foo); |
| std::thread b(bar); |
| |
| std::this_thread::sleep_for(100ms); |
| |
| std::thread abort_thread([] { abort(); }); |
| abort_thread.join(); |
| }, |
| &seccomp_fork); |
| |
| StartIntercept(&output_fd, dump_type); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "abort"); |
| ASSERT_BACKTRACE_FRAME(result, "foo"); |
| ASSERT_BACKTRACE_FRAME(result, "bar"); |
| ASSERT_BACKTRACE_FRAME(result, "main"); |
| } |
| |
| TEST_F(CrasherTest, seccomp_backtrace) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| static const auto dump_type = kDebuggerdNativeBacktrace; |
| StartProcess( |
| []() { |
| std::thread a(foo); |
| std::thread b(bar); |
| |
| std::this_thread::sleep_for(100ms); |
| |
| raise_debugger_signal(dump_type); |
| _exit(0); |
| }, |
| &seccomp_fork); |
| |
| StartIntercept(&output_fd, dump_type); |
| FinishCrasher(); |
| AssertDeath(0); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); |
| ASSERT_BACKTRACE_FRAME(result, "foo"); |
| ASSERT_BACKTRACE_FRAME(result, "bar"); |
| } |
| |
| TEST_F(CrasherTest, seccomp_backtrace_from_thread) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| static const auto dump_type = kDebuggerdNativeBacktrace; |
| StartProcess( |
| []() { |
| std::thread a(foo); |
| std::thread b(bar); |
| |
| std::this_thread::sleep_for(100ms); |
| |
| std::thread raise_thread([] { |
| raise_debugger_signal(dump_type); |
| _exit(0); |
| }); |
| raise_thread.join(); |
| }, |
| &seccomp_fork); |
| |
| StartIntercept(&output_fd, dump_type); |
| FinishCrasher(); |
| AssertDeath(0); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); |
| ASSERT_BACKTRACE_FRAME(result, "foo"); |
| ASSERT_BACKTRACE_FRAME(result, "bar"); |
| ASSERT_BACKTRACE_FRAME(result, "main"); |
| } |
| |
| TEST_F(CrasherTest, seccomp_crash_logcat) { |
| StartProcess([]() { abort(); }, &seccomp_fork); |
| FinishCrasher(); |
| |
| // Make sure we don't get SIGSYS when trying to dump a crash to logcat. |
| AssertDeath(SIGABRT); |
| } |
| |
| TEST_F(CrasherTest, competing_tracer) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { |
| raise(SIGABRT); |
| }); |
| |
| StartIntercept(&output_fd); |
| |
| ASSERT_EQ(0, ptrace(PTRACE_SEIZE, crasher_pid, 0, 0)); |
| FinishCrasher(); |
| |
| int status; |
| ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, 0))); |
| ASSERT_TRUE(WIFSTOPPED(status)); |
| ASSERT_EQ(SIGABRT, WSTOPSIG(status)); |
| |
| ASSERT_EQ(0, ptrace(PTRACE_CONT, crasher_pid, 0, SIGABRT)); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| std::string regex = R"(failed to attach to thread \d+, already traced by )"; |
| regex += std::to_string(gettid()); |
| regex += R"( \(.+debuggerd_test)"; |
| ASSERT_MATCH(result, regex.c_str()); |
| |
| ASSERT_EQ(crasher_pid, TEMP_FAILURE_RETRY(waitpid(crasher_pid, &status, 0))); |
| ASSERT_TRUE(WIFSTOPPED(status)); |
| ASSERT_EQ(SIGABRT, WSTOPSIG(status)); |
| |
| ASSERT_EQ(0, ptrace(PTRACE_DETACH, crasher_pid, 0, SIGABRT)); |
| AssertDeath(SIGABRT); |
| } |
| |
| TEST_F(CrasherTest, fdsan_warning_abort_message) { |
| int intercept_result; |
| unique_fd output_fd; |
| |
| StartProcess([]() { |
| android_fdsan_set_error_level(ANDROID_FDSAN_ERROR_LEVEL_WARN_ONCE); |
| unique_fd fd(TEMP_FAILURE_RETRY(open("/dev/null", O_RDONLY | O_CLOEXEC))); |
| if (fd == -1) { |
| abort(); |
| } |
| close(fd.get()); |
| _exit(0); |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(0); |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, "Abort message: 'attempted to close"); |
| } |
| |
| TEST(crash_dump, zombie) { |
| pid_t forkpid = fork(); |
| |
| pid_t rc; |
| int status; |
| |
| if (forkpid == 0) { |
| errno = 0; |
| rc = waitpid(-1, &status, WNOHANG | __WALL | __WNOTHREAD); |
| if (rc != -1 || errno != ECHILD) { |
| errx(2, "first waitpid returned %d (%s), expected failure with ECHILD", rc, strerror(errno)); |
| } |
| |
| raise(BIONIC_SIGNAL_DEBUGGER); |
| |
| errno = 0; |
| rc = TEMP_FAILURE_RETRY(waitpid(-1, &status, __WALL | __WNOTHREAD)); |
| if (rc != -1 || errno != ECHILD) { |
| errx(2, "second waitpid returned %d (%s), expected failure with ECHILD", rc, strerror(errno)); |
| } |
| _exit(0); |
| } else { |
| rc = TEMP_FAILURE_RETRY(waitpid(forkpid, &status, 0)); |
| ASSERT_EQ(forkpid, rc); |
| ASSERT_TRUE(WIFEXITED(status)); |
| ASSERT_EQ(0, WEXITSTATUS(status)); |
| } |
| } |
| |
| TEST(tombstoned, no_notify) { |
| // Do this a few times. |
| for (int i = 0; i < 3; ++i) { |
| pid_t pid = 123'456'789 + i; |
| |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(pid, &intercept_fd, &output_fd, &status, kDebuggerdTombstone); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| { |
| unique_fd tombstoned_socket, input_fd; |
| ASSERT_TRUE(tombstoned_connect(pid, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); |
| ASSERT_TRUE(android::base::WriteFully(input_fd.get(), &pid, sizeof(pid))); |
| } |
| |
| pid_t read_pid; |
| ASSERT_TRUE(android::base::ReadFully(output_fd.get(), &read_pid, sizeof(read_pid))); |
| ASSERT_EQ(read_pid, pid); |
| } |
| } |
| |
| TEST(tombstoned, stress) { |
| // Spawn threads to simultaneously do a bunch of failing dumps and a bunch of successful dumps. |
| static constexpr int kDumpCount = 100; |
| |
| std::atomic<bool> start(false); |
| std::vector<std::thread> threads; |
| threads.emplace_back([&start]() { |
| while (!start) { |
| continue; |
| } |
| |
| // Use a way out of range pid, to avoid stomping on an actual process. |
| pid_t pid_base = 1'000'000; |
| |
| for (int dump = 0; dump < kDumpCount; ++dump) { |
| pid_t pid = pid_base + dump; |
| |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(pid, &intercept_fd, &output_fd, &status, kDebuggerdTombstone); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| // Pretend to crash, and then immediately close the socket. |
| unique_fd sockfd(socket_local_client(kTombstonedCrashSocketName, |
| ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_SEQPACKET)); |
| if (sockfd == -1) { |
| FAIL() << "failed to connect to tombstoned: " << strerror(errno); |
| } |
| TombstonedCrashPacket packet = {}; |
| packet.packet_type = CrashPacketType::kDumpRequest; |
| packet.packet.dump_request.pid = pid; |
| if (TEMP_FAILURE_RETRY(write(sockfd, &packet, sizeof(packet))) != sizeof(packet)) { |
| FAIL() << "failed to write to tombstoned: " << strerror(errno); |
| } |
| |
| continue; |
| } |
| }); |
| |
| threads.emplace_back([&start]() { |
| while (!start) { |
| continue; |
| } |
| |
| // Use a way out of range pid, to avoid stomping on an actual process. |
| pid_t pid_base = 2'000'000; |
| |
| for (int dump = 0; dump < kDumpCount; ++dump) { |
| pid_t pid = pid_base + dump; |
| |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(pid, &intercept_fd, &output_fd, &status, kDebuggerdTombstone); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| { |
| unique_fd tombstoned_socket, input_fd; |
| ASSERT_TRUE(tombstoned_connect(pid, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); |
| ASSERT_TRUE(android::base::WriteFully(input_fd.get(), &pid, sizeof(pid))); |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| } |
| |
| // TODO: Fix the race that requires this sleep. |
| std::this_thread::sleep_for(50ms); |
| |
| pid_t read_pid; |
| ASSERT_TRUE(android::base::ReadFully(output_fd.get(), &read_pid, sizeof(read_pid))); |
| ASSERT_EQ(read_pid, pid); |
| } |
| }); |
| |
| start = true; |
| |
| for (std::thread& thread : threads) { |
| thread.join(); |
| } |
| } |
| |
| TEST(tombstoned, java_trace_intercept_smoke) { |
| // Using a "real" PID is a little dangerous here - if the test fails |
| // or crashes, we might end up getting a bogus / unreliable stack |
| // trace. |
| const pid_t self = getpid(); |
| |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(self, &intercept_fd, &output_fd, &status, kDebuggerdJavaBacktrace); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| // First connect to tombstoned requesting a native tombstone. This |
| // should result in a "regular" FD and not the installed intercept. |
| const char native[] = "native"; |
| unique_fd tombstoned_socket, input_fd; |
| ASSERT_TRUE(tombstoned_connect(self, &tombstoned_socket, &input_fd, kDebuggerdTombstone)); |
| ASSERT_TRUE(android::base::WriteFully(input_fd.get(), native, sizeof(native))); |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| |
| // Then, connect to tombstoned asking for a java backtrace. This *should* |
| // trigger the intercept. |
| const char java[] = "java"; |
| ASSERT_TRUE(tombstoned_connect(self, &tombstoned_socket, &input_fd, kDebuggerdJavaBacktrace)); |
| ASSERT_TRUE(android::base::WriteFully(input_fd.get(), java, sizeof(java))); |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| |
| char outbuf[sizeof(java)]; |
| ASSERT_TRUE(android::base::ReadFully(output_fd.get(), outbuf, sizeof(outbuf))); |
| ASSERT_STREQ("java", outbuf); |
| } |
| |
| TEST(tombstoned, multiple_intercepts) { |
| const pid_t fake_pid = 1'234'567; |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &status, kDebuggerdJavaBacktrace); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| unique_fd intercept_fd_2, output_fd_2; |
| tombstoned_intercept(fake_pid, &intercept_fd_2, &output_fd_2, &status, kDebuggerdNativeBacktrace); |
| ASSERT_EQ(InterceptStatus::kFailedAlreadyRegistered, status); |
| } |
| |
| TEST(tombstoned, intercept_any) { |
| const pid_t fake_pid = 1'234'567; |
| |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| tombstoned_intercept(fake_pid, &intercept_fd, &output_fd, &status, kDebuggerdNativeBacktrace); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| const char any[] = "any"; |
| unique_fd tombstoned_socket, input_fd; |
| ASSERT_TRUE(tombstoned_connect(fake_pid, &tombstoned_socket, &input_fd, kDebuggerdAnyIntercept)); |
| ASSERT_TRUE(android::base::WriteFully(input_fd.get(), any, sizeof(any))); |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| |
| char outbuf[sizeof(any)]; |
| ASSERT_TRUE(android::base::ReadFully(output_fd.get(), outbuf, sizeof(outbuf))); |
| ASSERT_STREQ("any", outbuf); |
| } |
| |
| TEST(tombstoned, interceptless_backtrace) { |
| // Generate 50 backtraces, and then check to see that we haven't created 50 new tombstones. |
| auto get_tombstone_timestamps = []() -> std::map<int, time_t> { |
| std::map<int, time_t> result; |
| for (int i = 0; i < 99; ++i) { |
| std::string path = android::base::StringPrintf("/data/tombstones/tombstone_%02d", i); |
| struct stat st; |
| if (stat(path.c_str(), &st) == 0) { |
| result[i] = st.st_mtim.tv_sec; |
| } |
| } |
| return result; |
| }; |
| |
| auto before = get_tombstone_timestamps(); |
| for (int i = 0; i < 50; ++i) { |
| raise_debugger_signal(kDebuggerdNativeBacktrace); |
| } |
| auto after = get_tombstone_timestamps(); |
| |
| int diff = 0; |
| for (int i = 0; i < 99; ++i) { |
| if (after.count(i) == 0) { |
| continue; |
| } |
| if (before.count(i) == 0) { |
| ++diff; |
| continue; |
| } |
| if (before[i] != after[i]) { |
| ++diff; |
| } |
| } |
| |
| // We can't be sure that nothing's crash looping in the background. |
| // This should be good enough, though... |
| ASSERT_LT(diff, 10) << "too many new tombstones; is something crashing in the background?"; |
| } |
| |
| static __attribute__((__noinline__)) void overflow_stack(void* p) { |
| void* buf[1]; |
| buf[0] = p; |
| static volatile void* global = buf; |
| if (global) { |
| global = buf; |
| overflow_stack(&buf); |
| } |
| } |
| |
| TEST_F(CrasherTest, stack_overflow) { |
| int intercept_result; |
| unique_fd output_fd; |
| StartProcess([]() { overflow_stack(nullptr); }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(Cause: stack pointer[^\n]*stack overflow.\n)"); |
| } |
| |
| static bool CopySharedLibrary(const char* tmp_dir, std::string* tmp_so_name) { |
| std::string test_lib(testing::internal::GetArgvs()[0]); |
| auto const value = test_lib.find_last_of('/'); |
| if (value == std::string::npos) { |
| test_lib = "./"; |
| } else { |
| test_lib = test_lib.substr(0, value + 1) + "./"; |
| } |
| test_lib += "libcrash_test.so"; |
| |
| *tmp_so_name = std::string(tmp_dir) + "/libcrash_test.so"; |
| std::string cp_cmd = android::base::StringPrintf("cp %s %s", test_lib.c_str(), tmp_dir); |
| |
| // Copy the shared so to a tempory directory. |
| return system(cp_cmd.c_str()) == 0; |
| } |
| |
| TEST_F(CrasherTest, unreadable_elf) { |
| int intercept_result; |
| unique_fd output_fd; |
| std::string tmp_so_name; |
| StartProcess([&tmp_so_name]() { |
| TemporaryDir td; |
| if (!CopySharedLibrary(td.path, &tmp_so_name)) { |
| _exit(1); |
| } |
| void* handle = dlopen(tmp_so_name.c_str(), RTLD_NOW); |
| if (handle == nullptr) { |
| _exit(1); |
| } |
| // Delete the original shared library so that we get the warning |
| // about unreadable elf files. |
| if (unlink(tmp_so_name.c_str()) == -1) { |
| _exit(1); |
| } |
| void (*crash_func)() = reinterpret_cast<void (*)()>(dlsym(handle, "crash")); |
| if (crash_func == nullptr) { |
| _exit(1); |
| } |
| crash_func(); |
| }); |
| |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(NOTE: Function names and BuildId information is missing )"); |
| std::string match_str = "NOTE: " + tmp_so_name; |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| TEST(tombstoned, proto) { |
| const pid_t self = getpid(); |
| unique_fd tombstoned_socket, text_fd, proto_fd; |
| ASSERT_TRUE( |
| tombstoned_connect(self, &tombstoned_socket, &text_fd, &proto_fd, kDebuggerdTombstoneProto)); |
| |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| |
| ASSERT_NE(-1, text_fd.get()); |
| ASSERT_NE(-1, proto_fd.get()); |
| |
| struct stat text_st; |
| ASSERT_EQ(0, fstat(text_fd.get(), &text_st)); |
| |
| // Give tombstoned some time to link the files into place. |
| std::this_thread::sleep_for(100ms); |
| |
| // Find the tombstone. |
| std::optional<std::string> tombstone_file; |
| std::unique_ptr<DIR, decltype(&closedir)> dir_h(opendir("/data/tombstones"), closedir); |
| ASSERT_TRUE(dir_h != nullptr); |
| std::regex tombstone_re("tombstone_\\d+"); |
| dirent* entry; |
| while ((entry = readdir(dir_h.get())) != nullptr) { |
| if (!std::regex_match(entry->d_name, tombstone_re)) { |
| continue; |
| } |
| std::string path = android::base::StringPrintf("/data/tombstones/%s", entry->d_name); |
| |
| struct stat st; |
| if (TEMP_FAILURE_RETRY(stat(path.c_str(), &st)) != 0) { |
| continue; |
| } |
| |
| if (st.st_dev == text_st.st_dev && st.st_ino == text_st.st_ino) { |
| tombstone_file = path; |
| break; |
| } |
| } |
| |
| ASSERT_TRUE(tombstone_file); |
| std::string proto_path = tombstone_file.value() + ".pb"; |
| |
| struct stat proto_fd_st; |
| struct stat proto_file_st; |
| ASSERT_EQ(0, fstat(proto_fd.get(), &proto_fd_st)); |
| ASSERT_EQ(0, stat(proto_path.c_str(), &proto_file_st)); |
| |
| ASSERT_EQ(proto_fd_st.st_dev, proto_file_st.st_dev); |
| ASSERT_EQ(proto_fd_st.st_ino, proto_file_st.st_ino); |
| } |
| |
| TEST(tombstoned, proto_intercept) { |
| const pid_t self = getpid(); |
| unique_fd intercept_fd, output_fd; |
| InterceptStatus status; |
| |
| tombstoned_intercept(self, &intercept_fd, &output_fd, &status, kDebuggerdTombstone); |
| ASSERT_EQ(InterceptStatus::kRegistered, status); |
| |
| unique_fd tombstoned_socket, text_fd, proto_fd; |
| ASSERT_TRUE( |
| tombstoned_connect(self, &tombstoned_socket, &text_fd, &proto_fd, kDebuggerdTombstoneProto)); |
| ASSERT_TRUE(android::base::WriteStringToFd("foo", text_fd.get())); |
| tombstoned_notify_completion(tombstoned_socket.get()); |
| |
| text_fd.reset(); |
| |
| std::string output; |
| ASSERT_TRUE(android::base::ReadFdToString(output_fd, &output)); |
| ASSERT_EQ("foo", output); |
| } |
| |
| // Verify that when an intercept is present for the main thread, and the signal |
| // is received on a different thread, the intercept still works. |
| TEST_F(CrasherTest, intercept_for_main_thread_signal_on_side_thread) { |
| StartProcess([]() { |
| std::thread thread([]() { |
| // Raise the signal on the side thread. |
| raise_debugger_signal(kDebuggerdNativeBacktrace); |
| }); |
| thread.join(); |
| _exit(0); |
| }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd, kDebuggerdNativeBacktrace); |
| FinishCrasher(); |
| AssertDeath(0); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_BACKTRACE_FRAME(result, "raise_debugger_signal"); |
| } |
| |
| static std::string format_pointer(uintptr_t ptr) { |
| #if defined(__LP64__) |
| return android::base::StringPrintf("%08x'%08x", static_cast<uint32_t>(ptr >> 32), |
| static_cast<uint32_t>(ptr & 0xffffffff)); |
| #else |
| return android::base::StringPrintf("%08x", static_cast<uint32_t>(ptr & 0xffffffff)); |
| #endif |
| } |
| |
| static std::string format_pointer(void* ptr) { |
| return format_pointer(reinterpret_cast<uintptr_t>(ptr)); |
| } |
| |
| static std::string format_full_pointer(uintptr_t ptr) { |
| #if defined(__LP64__) |
| return android::base::StringPrintf("%016" PRIx64, ptr); |
| #else |
| return android::base::StringPrintf("%08x", ptr); |
| #endif |
| } |
| |
| static std::string format_full_pointer(void* ptr) { |
| return format_full_pointer(reinterpret_cast<uintptr_t>(ptr)); |
| } |
| |
| __attribute__((__noinline__)) int crash_call(uintptr_t ptr) { |
| int* crash_ptr = reinterpret_cast<int*>(ptr); |
| *crash_ptr = 1; |
| return *crash_ptr; |
| } |
| |
| // Verify that a fault address before the first map is properly handled. |
| TEST_F(CrasherTest, fault_address_before_first_map) { |
| StartProcess([]() { |
| ASSERT_EQ(0, crash_call(0x1024)); |
| _exit(0); |
| }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0+1024)"); |
| |
| ASSERT_MATCH(result, R"(\nmemory map \(.*\):\n)"); |
| |
| std::string match_str = android::base::StringPrintf( |
| R"(memory map .*:\n--->Fault address falls at %s before any mapped regions\n )", |
| format_pointer(0x1024).c_str()); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that a fault address after the last map is properly handled. |
| TEST_F(CrasherTest, fault_address_after_last_map) { |
| // This makes assumptions about the memory layout that are not true in HWASan |
| // processes. |
| SKIP_WITH_HWASAN; |
| uintptr_t crash_uptr = untag_address(UINTPTR_MAX - 15); |
| StartProcess([crash_uptr]() { |
| ASSERT_EQ(0, crash_call(crash_uptr)); |
| _exit(0); |
| }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| std::string match_str = R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x)"; |
| match_str += format_full_pointer(crash_uptr); |
| ASSERT_MATCH(result, match_str); |
| |
| ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->)\n)"); |
| |
| // Assumes that the open files section comes after the map section. |
| // If that assumption changes, the regex below needs to change. |
| match_str = android::base::StringPrintf( |
| R"(\n--->Fault address falls at %s after any mapped regions\n\nopen files:)", |
| format_pointer(crash_uptr).c_str()); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that a fault address between maps is properly handled. |
| TEST_F(CrasherTest, fault_address_between_maps) { |
| // Create a map before the fork so it will be present in the child. |
| void* start_ptr = |
| mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, start_ptr); |
| // Unmap the page in the middle. |
| void* middle_ptr = |
| reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(start_ptr) + getpagesize()); |
| ASSERT_EQ(0, munmap(middle_ptr, getpagesize())); |
| |
| StartProcess([middle_ptr]() { |
| ASSERT_EQ(0, crash_call(reinterpret_cast<uintptr_t>(middle_ptr))); |
| _exit(0); |
| }); |
| |
| // Unmap the two maps. |
| ASSERT_EQ(0, munmap(start_ptr, getpagesize())); |
| void* end_ptr = |
| reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(start_ptr) + 2 * getpagesize()); |
| ASSERT_EQ(0, munmap(end_ptr, getpagesize())); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| std::string match_str = R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x)"; |
| match_str += format_full_pointer(reinterpret_cast<uintptr_t>(middle_ptr)); |
| ASSERT_MATCH(result, match_str); |
| |
| ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->)\n)"); |
| |
| match_str = android::base::StringPrintf( |
| R"( %s.*\n--->Fault address falls at %s between mapped regions\n %s)", |
| format_pointer(start_ptr).c_str(), format_pointer(middle_ptr).c_str(), |
| format_pointer(end_ptr).c_str()); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that a fault address happens in the correct map. |
| TEST_F(CrasherTest, fault_address_in_map) { |
| // Create a map before the fork so it will be present in the child. |
| void* ptr = mmap(nullptr, getpagesize(), 0, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, ptr); |
| |
| StartProcess([ptr]() { |
| ASSERT_EQ(0, crash_call(reinterpret_cast<uintptr_t>(ptr))); |
| _exit(0); |
| }); |
| |
| ASSERT_EQ(0, munmap(ptr, getpagesize())); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| std::string match_str = R"(signal 11 \(SIGSEGV\), code 2 \(SEGV_ACCERR\), fault addr 0x)"; |
| match_str += format_full_pointer(reinterpret_cast<uintptr_t>(ptr)); |
| ASSERT_MATCH(result, match_str); |
| |
| ASSERT_MATCH(result, R"(\nmemory map \(.*\): \(fault address prefixed with --->)\n)"); |
| |
| match_str = android::base::StringPrintf(R"(\n--->%s.*\n)", format_pointer(ptr).c_str()); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| static constexpr uint32_t kDexData[] = { |
| 0x0a786564, 0x00383330, 0xc98b3ab8, 0xf3749d94, 0xaecca4d8, 0xffc7b09a, 0xdca9ca7f, 0x5be5deab, |
| 0x00000220, 0x00000070, 0x12345678, 0x00000000, 0x00000000, 0x0000018c, 0x00000008, 0x00000070, |
| 0x00000004, 0x00000090, 0x00000002, 0x000000a0, 0x00000000, 0x00000000, 0x00000003, 0x000000b8, |
| 0x00000001, 0x000000d0, 0x00000130, 0x000000f0, 0x00000122, 0x0000012a, 0x00000132, 0x00000146, |
| 0x00000151, 0x00000154, 0x00000158, 0x0000016d, 0x00000001, 0x00000002, 0x00000004, 0x00000006, |
| 0x00000004, 0x00000002, 0x00000000, 0x00000005, 0x00000002, 0x0000011c, 0x00000000, 0x00000000, |
| 0x00010000, 0x00000007, 0x00000001, 0x00000000, 0x00000000, 0x00000001, 0x00000001, 0x00000000, |
| 0x00000003, 0x00000000, 0x0000017e, 0x00000000, 0x00010001, 0x00000001, 0x00000173, 0x00000004, |
| 0x00021070, 0x000e0000, 0x00010001, 0x00000000, 0x00000178, 0x00000001, 0x0000000e, 0x00000001, |
| 0x3c060003, 0x74696e69, 0x4c06003e, 0x6e69614d, 0x4c12003b, 0x6176616a, 0x6e616c2f, 0x624f2f67, |
| 0x7463656a, 0x4d09003b, 0x2e6e6961, 0x6176616a, 0x00560100, 0x004c5602, 0x6a4c5b13, 0x2f617661, |
| 0x676e616c, 0x7274532f, 0x3b676e69, 0x616d0400, 0x01006e69, 0x000e0700, 0x07000103, 0x0000000e, |
| 0x81000002, 0x01f00480, 0x02880901, 0x0000000c, 0x00000000, 0x00000001, 0x00000000, 0x00000001, |
| 0x00000008, 0x00000070, 0x00000002, 0x00000004, 0x00000090, 0x00000003, 0x00000002, 0x000000a0, |
| 0x00000005, 0x00000003, 0x000000b8, 0x00000006, 0x00000001, 0x000000d0, 0x00002001, 0x00000002, |
| 0x000000f0, 0x00001001, 0x00000001, 0x0000011c, 0x00002002, 0x00000008, 0x00000122, 0x00002003, |
| 0x00000002, 0x00000173, 0x00002000, 0x00000001, 0x0000017e, 0x00001000, 0x00000001, 0x0000018c, |
| }; |
| |
| TEST_F(CrasherTest, verify_dex_pc_with_function_name) { |
| StartProcess([]() { |
| TemporaryDir td; |
| std::string tmp_so_name; |
| if (!CopySharedLibrary(td.path, &tmp_so_name)) { |
| _exit(1); |
| } |
| |
| // In order to cause libunwindstack to look for this __dex_debug_descriptor |
| // move the library to which has a basename of libart.so. |
| std::string art_so_name = android::base::Dirname(tmp_so_name) + "/libart.so"; |
| ASSERT_EQ(0, rename(tmp_so_name.c_str(), art_so_name.c_str())); |
| void* handle = dlopen(art_so_name.c_str(), RTLD_NOW | RTLD_LOCAL); |
| if (handle == nullptr) { |
| _exit(1); |
| } |
| |
| void* ptr = |
| mmap(nullptr, sizeof(kDexData), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_TRUE(ptr != MAP_FAILED); |
| memcpy(ptr, kDexData, sizeof(kDexData)); |
| prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ptr, sizeof(kDexData), "dex"); |
| |
| JITCodeEntry dex_entry = {.symfile_addr = reinterpret_cast<uintptr_t>(ptr), |
| .symfile_size = sizeof(kDexData)}; |
| |
| JITDescriptor* dex_debug = |
| reinterpret_cast<JITDescriptor*>(dlsym(handle, "__dex_debug_descriptor")); |
| ASSERT_TRUE(dex_debug != nullptr); |
| dex_debug->version = 1; |
| dex_debug->action_flag = 0; |
| dex_debug->relevant_entry = 0; |
| dex_debug->first_entry = reinterpret_cast<uintptr_t>(&dex_entry); |
| |
| // This sets the magic dex pc value for register 0, using the value |
| // of register 1 + 0x102. |
| asm(".cfi_escape " |
| "0x16 /* DW_CFA_val_expression */, 0, 0x0a /* size */," |
| "0x0c /* DW_OP_const4u */, 0x44, 0x45, 0x58, 0x31, /* magic = 'DEX1' */" |
| "0x13 /* DW_OP_drop */," |
| "0x92 /* DW_OP_bregx */, 1, 0x82, 0x02 /* 2-byte SLEB128 */"); |
| |
| // For each different architecture, set register one to the dex ptr mmap |
| // created above. Then do a nullptr dereference to force a crash. |
| #if defined(__arm__) |
| asm volatile( |
| "mov r1, %[base]\n" |
| "mov r2, 0\n" |
| "str r3, [r2]\n" |
| : [base] "+r"(ptr) |
| : |
| : "r1", "r2", "r3", "memory"); |
| #elif defined(__aarch64__) |
| asm volatile( |
| "mov x1, %[base]\n" |
| "mov x2, 0\n" |
| "str x3, [x2]\n" |
| : [base] "+r"(ptr) |
| : |
| : "x1", "x2", "x3", "memory"); |
| #elif defined(__i386__) |
| asm volatile( |
| "mov %[base], %%ecx\n" |
| "movl $0, %%edi\n" |
| "movl 0(%%edi), %%edx\n" |
| : [base] "+r"(ptr) |
| : |
| : "edi", "ecx", "edx", "memory"); |
| #elif defined(__x86_64__) |
| asm volatile( |
| "mov %[base], %%rdx\n" |
| "movq 0, %%rdi\n" |
| "movq 0(%%rdi), %%rcx\n" |
| : [base] "+r"(ptr) |
| : |
| : "rcx", "rdx", "rdi", "memory"); |
| #else |
| #error "Unsupported architecture" |
| #endif |
| _exit(0); |
| }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGSEGV); |
| |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| // Verify the process crashed properly. |
| ASSERT_MATCH(result, R"(signal 11 \(SIGSEGV\), code 1 \(SEGV_MAPERR\), fault addr 0x0*)"); |
| |
| // Now verify that the dex_pc frame includes a proper function name. |
| ASSERT_MATCH(result, R"( \[anon:dex\] \(Main\.\<init\>\+2)"); |
| } |
| |
| static std::string format_map_pointer(uintptr_t ptr) { |
| #if defined(__LP64__) |
| return android::base::StringPrintf("%08x'%08x", static_cast<uint32_t>(ptr >> 32), |
| static_cast<uint32_t>(ptr & 0xffffffff)); |
| #else |
| return android::base::StringPrintf("%08x", ptr); |
| #endif |
| } |
| |
| // Verify that map data is properly formatted. |
| TEST_F(CrasherTest, verify_map_format) { |
| // Create multiple maps to make sure that the map data is formatted properly. |
| void* none_map = mmap(nullptr, getpagesize(), 0, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, none_map); |
| void* r_map = mmap(nullptr, getpagesize(), PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, r_map); |
| void* w_map = mmap(nullptr, getpagesize(), PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, w_map); |
| void* x_map = mmap(nullptr, getpagesize(), PROT_EXEC, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, x_map); |
| |
| TemporaryFile tf; |
| ASSERT_EQ(0x2000, lseek(tf.fd, 0x2000, SEEK_SET)); |
| char c = 'f'; |
| ASSERT_EQ(1, write(tf.fd, &c, 1)); |
| ASSERT_EQ(0x5000, lseek(tf.fd, 0x5000, SEEK_SET)); |
| ASSERT_EQ(1, write(tf.fd, &c, 1)); |
| ASSERT_EQ(0, lseek(tf.fd, 0, SEEK_SET)); |
| void* file_map = mmap(nullptr, 0x3001, PROT_READ, MAP_PRIVATE, tf.fd, 0x2000); |
| ASSERT_NE(MAP_FAILED, file_map); |
| |
| StartProcess([]() { abort(); }); |
| |
| ASSERT_EQ(0, munmap(none_map, getpagesize())); |
| ASSERT_EQ(0, munmap(r_map, getpagesize())); |
| ASSERT_EQ(0, munmap(w_map, getpagesize())); |
| ASSERT_EQ(0, munmap(x_map, getpagesize())); |
| ASSERT_EQ(0, munmap(file_map, 0x3001)); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| std::string match_str; |
| // Verify none. |
| match_str = android::base::StringPrintf( |
| " %s-%s --- 0 1000\\n", |
| format_map_pointer(reinterpret_cast<uintptr_t>(none_map)).c_str(), |
| format_map_pointer(reinterpret_cast<uintptr_t>(none_map) + getpagesize() - 1).c_str()); |
| ASSERT_MATCH(result, match_str); |
| |
| // Verify read-only. |
| match_str = android::base::StringPrintf( |
| " %s-%s r-- 0 1000\\n", |
| format_map_pointer(reinterpret_cast<uintptr_t>(r_map)).c_str(), |
| format_map_pointer(reinterpret_cast<uintptr_t>(r_map) + getpagesize() - 1).c_str()); |
| ASSERT_MATCH(result, match_str); |
| |
| // Verify write-only. |
| match_str = android::base::StringPrintf( |
| " %s-%s -w- 0 1000\\n", |
| format_map_pointer(reinterpret_cast<uintptr_t>(w_map)).c_str(), |
| format_map_pointer(reinterpret_cast<uintptr_t>(w_map) + getpagesize() - 1).c_str()); |
| ASSERT_MATCH(result, match_str); |
| |
| // Verify exec-only. |
| match_str = android::base::StringPrintf( |
| " %s-%s --x 0 1000\\n", |
| format_map_pointer(reinterpret_cast<uintptr_t>(x_map)).c_str(), |
| format_map_pointer(reinterpret_cast<uintptr_t>(x_map) + getpagesize() - 1).c_str()); |
| ASSERT_MATCH(result, match_str); |
| |
| // Verify file map with non-zero offset and a name. |
| match_str = android::base::StringPrintf( |
| " %s-%s r-- 2000 4000 %s\\n", |
| format_map_pointer(reinterpret_cast<uintptr_t>(file_map)).c_str(), |
| format_map_pointer(reinterpret_cast<uintptr_t>(file_map) + 0x3fff).c_str(), tf.path); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that the tombstone map data is correct. |
| TEST_F(CrasherTest, verify_header) { |
| StartProcess([]() { abort(); }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| std::string match_str = android::base::StringPrintf( |
| "Build fingerprint: '%s'\\nRevision: '%s'\\n", |
| android::base::GetProperty("ro.build.fingerprint", "unknown").c_str(), |
| android::base::GetProperty("ro.revision", "unknown").c_str()); |
| match_str += android::base::StringPrintf("ABI: '%s'\n", ABI_STRING); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that the thread header is formatted properly. |
| TEST_F(CrasherTest, verify_thread_header) { |
| void* shared_map = |
| mmap(nullptr, sizeof(pid_t), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); |
| ASSERT_NE(MAP_FAILED, shared_map); |
| memset(shared_map, 0, sizeof(pid_t)); |
| |
| StartProcess([&shared_map]() { |
| std::atomic_bool tid_written; |
| std::thread thread([&tid_written, &shared_map]() { |
| pid_t tid = gettid(); |
| memcpy(shared_map, &tid, sizeof(pid_t)); |
| tid_written = true; |
| volatile bool done = false; |
| while (!done) |
| ; |
| }); |
| thread.detach(); |
| while (!tid_written.load(std::memory_order_acquire)) |
| ; |
| abort(); |
| }); |
| |
| pid_t primary_pid = crasher_pid; |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| // Read the tid data out. |
| pid_t tid; |
| memcpy(&tid, shared_map, sizeof(pid_t)); |
| ASSERT_NE(0, tid); |
| |
| ASSERT_EQ(0, munmap(shared_map, sizeof(pid_t))); |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| // Verify that there are two headers, one where the tid is "primary_pid" |
| // and the other where the tid is "tid". |
| std::string match_str = android::base::StringPrintf("pid: %d, tid: %d, name: .* >>> .* <<<\\n", |
| primary_pid, primary_pid); |
| ASSERT_MATCH(result, match_str); |
| |
| match_str = |
| android::base::StringPrintf("pid: %d, tid: %d, name: .* >>> .* <<<\\n", primary_pid, tid); |
| ASSERT_MATCH(result, match_str); |
| } |
| |
| // Verify that there is a BuildID present in the map section and set properly. |
| TEST_F(CrasherTest, verify_build_id) { |
| StartProcess([]() { abort(); }); |
| |
| unique_fd output_fd; |
| StartIntercept(&output_fd); |
| FinishCrasher(); |
| AssertDeath(SIGABRT); |
| int intercept_result; |
| FinishIntercept(&intercept_result); |
| ASSERT_EQ(1, intercept_result) << "tombstoned reported failure"; |
| |
| std::string result; |
| ConsumeFd(std::move(output_fd), &result); |
| |
| // Find every /system or /apex lib and verify the BuildID is displayed |
| // properly. |
| bool found_valid_elf = false; |
| std::smatch match; |
| std::regex build_id_regex(R"( ((/system/|/apex/)\S+) \(BuildId: ([^\)]+)\))"); |
| for (std::string prev_file; std::regex_search(result, match, build_id_regex); |
| result = match.suffix()) { |
| if (prev_file == match[1]) { |
| // Already checked this file. |
| continue; |
| } |
| |
| prev_file = match[1]; |
| unwindstack::Elf elf(unwindstack::Memory::CreateFileMemory(prev_file, 0).release()); |
| if (!elf.Init() || !elf.valid()) { |
| // Skipping invalid elf files. |
| continue; |
| } |
| ASSERT_EQ(match[3], elf.GetPrintableBuildID()); |
| |
| found_valid_elf = true; |
| } |
| ASSERT_TRUE(found_valid_elf) << "Did not find any elf files with valid BuildIDs to check."; |
| } |