blob: cc9f06c8cde40a6496a81dc03c8658fc8afe227a [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define _LARGEFILE64_SOURCE
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <functional>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
#include <android-base/strings.h>
#include <android-base/parseint.h>
#include "bootimg_utils.h"
#include "fastboot.h"
#include "fs.h"
#include "transport.h"
#include "usb.h"
#ifndef O_BINARY
#define O_BINARY 0
#endif
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(*(a)))
char cur_product[FB_RESPONSE_SZ + 1];
static const char *serial = 0;
static const char *product = 0;
static const char *cmdline = 0;
static unsigned short vendor_id = 0;
static int long_listing = 0;
static int64_t sparse_limit = -1;
static int64_t target_sparse_limit = -1;
static unsigned page_size = 2048;
static unsigned base_addr = 0x10000000;
static unsigned kernel_offset = 0x00008000;
static unsigned ramdisk_offset = 0x01000000;
static unsigned second_offset = 0x00f00000;
static unsigned tags_offset = 0x00000100;
enum fb_buffer_type {
FB_BUFFER,
FB_BUFFER_SPARSE,
};
struct fastboot_buffer {
enum fb_buffer_type type;
void* data;
int64_t sz;
};
static struct {
char img_name[13];
char sig_name[13];
char part_name[9];
bool is_optional;
} images[] = {
{"boot.img", "boot.sig", "boot", false},
{"recovery.img", "recovery.sig", "recovery", true},
{"system.img", "system.sig", "system", false},
{"vendor.img", "vendor.sig", "vendor", true},
};
static char* find_item(const char* item, const char* product) {
char *dir;
const char *fn;
char path[PATH_MAX + 128];
if(!strcmp(item,"boot")) {
fn = "boot.img";
} else if(!strcmp(item,"recovery")) {
fn = "recovery.img";
} else if(!strcmp(item,"system")) {
fn = "system.img";
} else if(!strcmp(item,"vendor")) {
fn = "vendor.img";
} else if(!strcmp(item,"userdata")) {
fn = "userdata.img";
} else if(!strcmp(item,"cache")) {
fn = "cache.img";
} else if(!strcmp(item,"info")) {
fn = "android-info.txt";
} else {
fprintf(stderr,"unknown partition '%s'\n", item);
return 0;
}
if(product) {
get_my_path(path);
sprintf(path + strlen(path),
"../../../target/product/%s/%s", product, fn);
return strdup(path);
}
dir = getenv("ANDROID_PRODUCT_OUT");
if((dir == 0) || (dir[0] == 0)) {
die("neither -p product specified nor ANDROID_PRODUCT_OUT set");
return 0;
}
sprintf(path, "%s/%s", dir, fn);
return strdup(path);
}
static int64_t get_file_size(int fd) {
struct stat sb;
return fstat(fd, &sb) == -1 ? -1 : sb.st_size;
}
static void* load_fd(int fd, int64_t* sz) {
int errno_tmp;
char* data = nullptr;
*sz = get_file_size(fd);
if (*sz < 0) {
goto oops;
}
data = (char*) malloc(*sz);
if (data == nullptr) goto oops;
if(read(fd, data, *sz) != *sz) goto oops;
close(fd);
return data;
oops:
errno_tmp = errno;
close(fd);
if(data != 0) free(data);
errno = errno_tmp;
return 0;
}
static void* load_file(const char* fn, int64_t* sz) {
int fd = open(fn, O_RDONLY | O_BINARY);
if (fd == -1) return nullptr;
return load_fd(fd, sz);
}
static int match_fastboot_with_serial(usb_ifc_info* info, const char* local_serial) {
// Require a matching vendor id if the user specified one with -i.
if (vendor_id != 0 && info->dev_vendor != vendor_id) {
return -1;
}
if (info->ifc_class != 0xff || info->ifc_subclass != 0x42 || info->ifc_protocol != 0x03) {
return -1;
}
// require matching serial number or device path if requested
// at the command line with the -s option.
if (local_serial && (strcmp(local_serial, info->serial_number) != 0 &&
strcmp(local_serial, info->device_path) != 0)) return -1;
return 0;
}
static int match_fastboot(usb_ifc_info* info) {
return match_fastboot_with_serial(info, serial);
}
static int list_devices_callback(usb_ifc_info* info) {
if (match_fastboot_with_serial(info, nullptr) == 0) {
const char* serial = info->serial_number;
if (!info->writable) {
serial = "no permissions"; // like "adb devices"
}
if (!serial[0]) {
serial = "????????????";
}
// output compatible with "adb devices"
if (!long_listing) {
printf("%s\tfastboot\n", serial);
} else if (strcmp("", info->device_path) == 0) {
printf("%-22s fastboot\n", serial);
} else {
printf("%-22s fastboot %s\n", serial, info->device_path);
}
}
return -1;
}
static Transport* open_device() {
static Transport* transport = nullptr;
int announce = 1;
if (transport) return transport;
for (;;) {
transport = usb_open(match_fastboot);
if (transport) return transport;
if (announce) {
announce = 0;
fprintf(stderr, "< waiting for %s >\n", serial ? serial : "any device");
}
usleep(1000);
}
}
static void list_devices() {
// We don't actually open a USB device here,
// just getting our callback called so we can
// list all the connected devices.
usb_open(list_devices_callback);
}
static void usage() {
fprintf(stderr,
/* 1234567890123456789012345678901234567890123456789012345678901234567890123456 */
"usage: fastboot [ <option> ] <command>\n"
"\n"
"commands:\n"
" update <filename> Reflash device from update.zip.\n"
" flashall Flash boot, system, vendor, and --\n"
" if found -- recovery.\n"
" flash <partition> [ <filename> ] Write a file to a flash partition.\n"
" flashing lock Locks the device. Prevents flashing.\n"
" flashing unlock Unlocks the device. Allows flashing\n"
" any partition except\n"
" bootloader-related partitions.\n"
" flashing lock_critical Prevents flashing bootloader-related\n"
" partitions.\n"
" flashing unlock_critical Enables flashing bootloader-related\n"
" partitions.\n"
" flashing get_unlock_ability Queries bootloader to see if the\n"
" device is unlocked.\n"
" flashing get_unlock_bootloader_nonce Queries the bootloader to get the\n"
" unlock nonce.\n"
" flashing unlock_bootloader <request> Issue unlock bootloader using request.\n"
" flashing lock_bootloader Locks the bootloader to prevent\n"
" bootloader version rollback.\n"
" erase <partition> Erase a flash partition.\n"
" format[:[<fs type>][:[<size>]] <partition>\n"
" Format a flash partition. Can\n"
" override the fs type and/or size\n"
" the bootloader reports.\n"
" getvar <variable> Display a bootloader variable.\n"
" boot <kernel> [ <ramdisk> [ <second> ] ] Download and boot kernel.\n"
" flash:raw boot <kernel> [ <ramdisk> [ <second> ] ]\n"
" Create bootimage and flash it.\n"
" devices [-l] List all connected devices [with\n"
" device paths].\n"
" continue Continue with autoboot.\n"
" reboot [bootloader] Reboot device [into bootloader].\n"
" reboot-bootloader Reboot device into bootloader.\n"
" help Show this help message.\n"
"\n"
"options:\n"
" -w Erase userdata and cache (and format\n"
" if supported by partition type).\n"
" -u Do not erase partition before\n"
" formatting.\n"
" -s <specific device> Specify device serial number\n"
" or path to device port.\n"
" -p <product> Specify product name.\n"
" -c <cmdline> Override kernel commandline.\n"
" -i <vendor id> Specify a custom USB vendor id.\n"
" -b, --base <base_addr> Specify a custom kernel base\n"
" address (default: 0x10000000).\n"
" --kernel-offset Specify a custom kernel offset.\n"
" (default: 0x00008000)\n"
" --ramdisk-offset Specify a custom ramdisk offset.\n"
" (default: 0x01000000)\n"
" --tags-offset Specify a custom tags offset.\n"
" (default: 0x00000100)\n"
" -n, --page-size <page size> Specify the nand page size\n"
" (default: 2048).\n"
" -S <size>[K|M|G] Automatically sparse files greater\n"
" than 'size'. 0 to disable.\n"
" --slot <suffix> Specify slot suffix to be used if the\n"
" device supports slots. This will be\n"
" added to all partition names that use\n"
" slots. 'all' can be given to refer\n"
" to all slots. If this is not given,\n"
" slotted partitions will default to\n"
" the current active slot.\n"
" -a, --set-active[=<suffix>] Sets the active slot. If no suffix is\n"
" provided, this will default to the value\n"
" given by --slot. If slots are not\n"
" supported, this does nothing.\n"
" --unbuffered Do not buffer input or output.\n"
" --version Display version.\n"
" -h, --help show this message.\n"
);
}
static void* load_bootable_image(const char* kernel, const char* ramdisk,
const char* secondstage, int64_t* sz,
const char* cmdline) {
if (kernel == nullptr) {
fprintf(stderr, "no image specified\n");
return 0;
}
int64_t ksize;
void* kdata = load_file(kernel, &ksize);
if (kdata == nullptr) {
fprintf(stderr, "cannot load '%s': %s\n", kernel, strerror(errno));
return 0;
}
// Is this actually a boot image?
if(!memcmp(kdata, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
if (cmdline) bootimg_set_cmdline((boot_img_hdr*) kdata, cmdline);
if (ramdisk) {
fprintf(stderr, "cannot boot a boot.img *and* ramdisk\n");
return 0;
}
*sz = ksize;
return kdata;
}
void* rdata = nullptr;
int64_t rsize = 0;
if (ramdisk) {
rdata = load_file(ramdisk, &rsize);
if (rdata == nullptr) {
fprintf(stderr,"cannot load '%s': %s\n", ramdisk, strerror(errno));
return 0;
}
}
void* sdata = nullptr;
int64_t ssize = 0;
if (secondstage) {
sdata = load_file(secondstage, &ssize);
if (sdata == nullptr) {
fprintf(stderr,"cannot load '%s': %s\n", secondstage, strerror(errno));
return 0;
}
}
fprintf(stderr,"creating boot image...\n");
int64_t bsize = 0;
void* bdata = mkbootimg(kdata, ksize, kernel_offset,
rdata, rsize, ramdisk_offset,
sdata, ssize, second_offset,
page_size, base_addr, tags_offset, &bsize);
if (bdata == nullptr) {
fprintf(stderr,"failed to create boot.img\n");
return 0;
}
if (cmdline) bootimg_set_cmdline((boot_img_hdr*) bdata, cmdline);
fprintf(stderr, "creating boot image - %" PRId64 " bytes\n", bsize);
*sz = bsize;
return bdata;
}
static void* unzip_file(ZipArchiveHandle zip, const char* entry_name, int64_t* sz)
{
ZipString zip_entry_name(entry_name);
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
return 0;
}
*sz = zip_entry.uncompressed_length;
uint8_t* data = reinterpret_cast<uint8_t*>(malloc(zip_entry.uncompressed_length));
if (data == nullptr) {
fprintf(stderr, "failed to allocate %" PRId64 " bytes for '%s'\n", *sz, entry_name);
return 0;
}
int error = ExtractToMemory(zip, &zip_entry, data, zip_entry.uncompressed_length);
if (error != 0) {
fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error));
free(data);
return 0;
}
return data;
}
#if defined(_WIN32)
// TODO: move this to somewhere it can be shared.
#include <windows.h>
// Windows' tmpfile(3) requires administrator rights because
// it creates temporary files in the root directory.
static FILE* win32_tmpfile() {
char temp_path[PATH_MAX];
DWORD nchars = GetTempPath(sizeof(temp_path), temp_path);
if (nchars == 0 || nchars >= sizeof(temp_path)) {
fprintf(stderr, "GetTempPath failed, error %ld\n", GetLastError());
return nullptr;
}
char filename[PATH_MAX];
if (GetTempFileName(temp_path, "fastboot", 0, filename) == 0) {
fprintf(stderr, "GetTempFileName failed, error %ld\n", GetLastError());
return nullptr;
}
return fopen(filename, "w+bTD");
}
#define tmpfile win32_tmpfile
#endif
static int unzip_to_file(ZipArchiveHandle zip, char* entry_name) {
FILE* fp = tmpfile();
if (fp == nullptr) {
fprintf(stderr, "failed to create temporary file for '%s': %s\n",
entry_name, strerror(errno));
return -1;
}
ZipString zip_entry_name(entry_name);
ZipEntry zip_entry;
if (FindEntry(zip, zip_entry_name, &zip_entry) != 0) {
fprintf(stderr, "archive does not contain '%s'\n", entry_name);
return -1;
}
int fd = fileno(fp);
int error = ExtractEntryToFile(zip, &zip_entry, fd);
if (error != 0) {
fprintf(stderr, "failed to extract '%s': %s\n", entry_name, ErrorCodeString(error));
return -1;
}
lseek(fd, 0, SEEK_SET);
return fd;
}
static char *strip(char *s)
{
int n;
while(*s && isspace(*s)) s++;
n = strlen(s);
while(n-- > 0) {
if(!isspace(s[n])) break;
s[n] = 0;
}
return s;
}
#define MAX_OPTIONS 32
static int setup_requirement_line(char *name)
{
char *val[MAX_OPTIONS];
char *prod = nullptr;
unsigned n, count;
char *x;
int invert = 0;
if (!strncmp(name, "reject ", 7)) {
name += 7;
invert = 1;
} else if (!strncmp(name, "require ", 8)) {
name += 8;
invert = 0;
} else if (!strncmp(name, "require-for-product:", 20)) {
// Get the product and point name past it
prod = name + 20;
name = strchr(name, ' ');
if (!name) return -1;
*name = 0;
name += 1;
invert = 0;
}
x = strchr(name, '=');
if (x == 0) return 0;
*x = 0;
val[0] = x + 1;
for(count = 1; count < MAX_OPTIONS; count++) {
x = strchr(val[count - 1],'|');
if (x == 0) break;
*x = 0;
val[count] = x + 1;
}
name = strip(name);
for(n = 0; n < count; n++) val[n] = strip(val[n]);
name = strip(name);
if (name == 0) return -1;
const char* var = name;
// Work around an unfortunate name mismatch.
if (!strcmp(name,"board")) var = "product";
const char** out = reinterpret_cast<const char**>(malloc(sizeof(char*) * count));
if (out == 0) return -1;
for(n = 0; n < count; n++) {
out[n] = strdup(strip(val[n]));
if (out[n] == 0) {
for(size_t i = 0; i < n; ++i) {
free((char*) out[i]);
}
free(out);
return -1;
}
}
fb_queue_require(prod, var, invert, n, out);
return 0;
}
static void setup_requirements(char* data, int64_t sz) {
char* s = data;
while (sz-- > 0) {
if (*s == '\n') {
*s++ = 0;
if (setup_requirement_line(data)) {
die("out of memory");
}
data = s;
} else {
s++;
}
}
}
static void queue_info_dump() {
fb_queue_notice("--------------------------------------------");
fb_queue_display("version-bootloader", "Bootloader Version...");
fb_queue_display("version-baseband", "Baseband Version.....");
fb_queue_display("serialno", "Serial Number........");
fb_queue_notice("--------------------------------------------");
}
static struct sparse_file **load_sparse_files(int fd, int max_size)
{
struct sparse_file* s = sparse_file_import_auto(fd, false, true);
if (!s) {
die("cannot sparse read file\n");
}
int files = sparse_file_resparse(s, max_size, nullptr, 0);
if (files < 0) {
die("Failed to resparse\n");
}
sparse_file** out_s = reinterpret_cast<sparse_file**>(calloc(sizeof(struct sparse_file *), files + 1));
if (!out_s) {
die("Failed to allocate sparse file array\n");
}
files = sparse_file_resparse(s, max_size, out_s, files);
if (files < 0) {
die("Failed to resparse\n");
}
return out_s;
}
static int64_t get_target_sparse_limit(Transport* transport) {
std::string max_download_size;
if (!fb_getvar(transport, "max-download-size", &max_download_size) ||
max_download_size.empty()) {
fprintf(stderr, "target didn't report max-download-size\n");
return 0;
}
// Some bootloaders (angler, for example) send spurious whitespace too.
max_download_size = android::base::Trim(max_download_size);
uint64_t limit;
if (!android::base::ParseUint(max_download_size.c_str(), &limit)) {
fprintf(stderr, "couldn't parse max-download-size '%s'\n", max_download_size.c_str());
return 0;
}
if (limit > 0) {
fprintf(stderr, "target reported max download size of %" PRId64 " bytes\n", limit);
}
return limit;
}
static int64_t get_sparse_limit(Transport* transport, int64_t size) {
int64_t limit;
if (sparse_limit == 0) {
return 0;
} else if (sparse_limit > 0) {
limit = sparse_limit;
} else {
if (target_sparse_limit == -1) {
target_sparse_limit = get_target_sparse_limit(transport);
}
if (target_sparse_limit > 0) {
limit = target_sparse_limit;
} else {
return 0;
}
}
if (size > limit) {
return limit;
}
return 0;
}
// Until we get lazy inode table init working in make_ext4fs, we need to
// erase partitions of type ext4 before flashing a filesystem so no stale
// inodes are left lying around. Otherwise, e2fsck gets very upset.
static bool needs_erase(Transport* transport, const char* partition) {
std::string partition_type;
if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) {
return false;
}
return partition_type == "ext4";
}
static int load_buf_fd(Transport* transport, int fd, struct fastboot_buffer* buf) {
int64_t sz = get_file_size(fd);
if (sz == -1) {
return -1;
}
lseek64(fd, 0, SEEK_SET);
int64_t limit = get_sparse_limit(transport, sz);
if (limit) {
sparse_file** s = load_sparse_files(fd, limit);
if (s == nullptr) {
return -1;
}
buf->type = FB_BUFFER_SPARSE;
buf->data = s;
} else {
void* data = load_fd(fd, &sz);
if (data == nullptr) return -1;
buf->type = FB_BUFFER;
buf->data = data;
buf->sz = sz;
}
return 0;
}
static int load_buf(Transport* transport, const char *fname, struct fastboot_buffer *buf)
{
int fd;
fd = open(fname, O_RDONLY | O_BINARY);
if (fd < 0) {
return -1;
}
return load_buf_fd(transport, fd, buf);
}
static void flash_buf(const char *pname, struct fastboot_buffer *buf)
{
sparse_file** s;
switch (buf->type) {
case FB_BUFFER_SPARSE:
s = reinterpret_cast<sparse_file**>(buf->data);
while (*s) {
int64_t sz = sparse_file_len(*s, true, false);
fb_queue_flash_sparse(pname, *s++, sz);
}
break;
case FB_BUFFER:
fb_queue_flash(pname, buf->data, buf->sz);
break;
default:
die("unknown buffer type: %d", buf->type);
}
}
static std::vector<std::string> get_suffixes(Transport* transport) {
std::vector<std::string> suffixes;
std::string suffix_list;
if (!fb_getvar(transport, "slot-suffixes", &suffix_list)) {
die("Could not get suffixes.\n");
}
return android::base::Split(suffix_list, ",");
}
static std::string verify_slot(Transport* transport, const char *slot) {
if (strcmp(slot, "all") == 0) {
return "all";
}
std::vector<std::string> suffixes = get_suffixes(transport);
for (const std::string &suffix : suffixes) {
if (suffix == slot)
return slot;
}
fprintf(stderr, "Slot %s does not exist. supported slots are:\n", slot);
for (const std::string &suffix : suffixes) {
fprintf(stderr, "%s\n", suffix.c_str());
}
exit(1);
}
static void do_for_partition(Transport* transport, const char *part, const char *slot,
std::function<void(const std::string&)> func, bool force_slot) {
std::string has_slot;
std::string current_slot;
if (!fb_getvar(transport, std::string("has-slot:")+part, &has_slot)) {
/* If has-slot is not supported, the answer is no. */
has_slot = "no";
}
if (has_slot == "yes") {
if (!slot || slot[0] == 0) {
if (!fb_getvar(transport, "current-slot", &current_slot)) {
die("Failed to identify current slot.\n");
}
func(std::string(part) + current_slot);
} else {
func(std::string(part) + slot);
}
} else {
if (force_slot && slot && slot[0]) {
fprintf(stderr, "Warning: %s does not support slots, and slot %s was requested.\n",
part, slot);
}
func(part);
}
}
/* This function will find the real partition name given a base name, and a slot. If slot is NULL or
* empty, it will use the current slot. If slot is "all", it will return a list of all possible
* partition names. If force_slot is true, it will fail if a slot is specified, and the given
* partition does not support slots.
*/
static void do_for_partitions(Transport* transport, const char *part, const char *slot,
std::function<void(const std::string&)> func, bool force_slot) {
std::string has_slot;
if (slot && strcmp(slot, "all") == 0) {
if (!fb_getvar(transport, std::string("has-slot:") + part, &has_slot)) {
die("Could not check if partition %s has slot.", part);
}
if (has_slot == "yes") {
std::vector<std::string> suffixes = get_suffixes(transport);
for (std::string &suffix : suffixes) {
do_for_partition(transport, part, suffix.c_str(), func, force_slot);
}
} else {
do_for_partition(transport, part, "", func, force_slot);
}
} else {
do_for_partition(transport, part, slot, func, force_slot);
}
}
static void do_flash(Transport* transport, const char* pname, const char* fname) {
struct fastboot_buffer buf;
if (load_buf(transport, fname, &buf)) {
die("cannot load '%s'", fname);
}
flash_buf(pname, &buf);
}
static void do_update_signature(ZipArchiveHandle zip, char* fn) {
int64_t sz;
void* data = unzip_file(zip, fn, &sz);
if (data == nullptr) return;
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
}
static void do_update(Transport* transport, const char* filename, const char* slot_override, bool erase_first) {
queue_info_dump();
fb_queue_query_save("product", cur_product, sizeof(cur_product));
ZipArchiveHandle zip;
int error = OpenArchive(filename, &zip);
if (error != 0) {
CloseArchive(zip);
die("failed to open zip file '%s': %s", filename, ErrorCodeString(error));
}
int64_t sz;
void* data = unzip_file(zip, "android-info.txt", &sz);
if (data == nullptr) {
CloseArchive(zip);
die("update package '%s' has no android-info.txt", filename);
}
setup_requirements(reinterpret_cast<char*>(data), sz);
for (size_t i = 0; i < ARRAY_SIZE(images); ++i) {
int fd = unzip_to_file(zip, images[i].img_name);
if (fd == -1) {
if (images[i].is_optional) {
continue;
}
CloseArchive(zip);
exit(1); // unzip_to_file already explained why.
}
fastboot_buffer buf;
int rc = load_buf_fd(transport, fd, &buf);
if (rc) die("cannot load %s from flash", images[i].img_name);
auto update = [&](const std::string &partition) {
do_update_signature(zip, images[i].sig_name);
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
flash_buf(partition.c_str(), &buf);
/* not closing the fd here since the sparse code keeps the fd around
* but hasn't mmaped data yet. The tmpfile will get cleaned up when the
* program exits.
*/
};
do_for_partitions(transport, images[i].part_name, slot_override, update, false);
}
CloseArchive(zip);
}
static void do_send_signature(char* fn) {
char* xtn = strrchr(fn, '.');
if (!xtn) return;
if (strcmp(xtn, ".img")) return;
strcpy(xtn, ".sig");
int64_t sz;
void* data = load_file(fn, &sz);
strcpy(xtn, ".img");
if (data == nullptr) return;
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
}
static void do_flashall(Transport* transport, const char* slot_override, int erase_first) {
queue_info_dump();
fb_queue_query_save("product", cur_product, sizeof(cur_product));
char* fname = find_item("info", product);
if (fname == nullptr) die("cannot find android-info.txt");
int64_t sz;
void* data = load_file(fname, &sz);
if (data == nullptr) die("could not load android-info.txt: %s", strerror(errno));
setup_requirements(reinterpret_cast<char*>(data), sz);
for (size_t i = 0; i < ARRAY_SIZE(images); i++) {
fname = find_item(images[i].part_name, product);
fastboot_buffer buf;
if (load_buf(transport, fname, &buf)) {
if (images[i].is_optional)
continue;
die("could not load %s\n", images[i].img_name);
}
auto flashall = [&](const std::string &partition) {
do_send_signature(fname);
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
flash_buf(partition.c_str(), &buf);
};
do_for_partitions(transport, images[i].part_name, slot_override, flashall, false);
}
}
#define skip(n) do { argc -= (n); argv += (n); } while (0)
#define require(n) do { if (argc < (n)) {usage(); exit(1);}} while (0)
static int do_bypass_unlock_command(int argc, char **argv)
{
if (argc <= 2) return 0;
skip(2);
/*
* Process unlock_bootloader, we have to load the message file
* and send that to the remote device.
*/
require(1);
int64_t sz;
void* data = load_file(*argv, &sz);
if (data == nullptr) die("could not load '%s': %s", *argv, strerror(errno));
fb_queue_download("unlock_message", data, sz);
fb_queue_command("flashing unlock_bootloader", "unlocking bootloader");
skip(1);
return 0;
}
static int do_oem_command(int argc, char **argv)
{
char command[256];
if (argc <= 1) return 0;
command[0] = 0;
while(1) {
strcat(command,*argv);
skip(1);
if(argc == 0) break;
strcat(command," ");
}
fb_queue_command(command,"");
return 0;
}
static int64_t parse_num(const char *arg)
{
char *endptr;
unsigned long long num;
num = strtoull(arg, &endptr, 0);
if (endptr == arg) {
return -1;
}
if (*endptr == 'k' || *endptr == 'K') {
if (num >= (-1ULL) / 1024) {
return -1;
}
num *= 1024LL;
endptr++;
} else if (*endptr == 'm' || *endptr == 'M') {
if (num >= (-1ULL) / (1024 * 1024)) {
return -1;
}
num *= 1024LL * 1024LL;
endptr++;
} else if (*endptr == 'g' || *endptr == 'G') {
if (num >= (-1ULL) / (1024 * 1024 * 1024)) {
return -1;
}
num *= 1024LL * 1024LL * 1024LL;
endptr++;
}
if (*endptr != '\0') {
return -1;
}
if (num > INT64_MAX) {
return -1;
}
return num;
}
static void fb_perform_format(Transport* transport,
const char* partition, int skip_if_not_supported,
const char* type_override, const char* size_override) {
std::string partition_type, partition_size;
struct fastboot_buffer buf;
const char* errMsg = nullptr;
const struct fs_generator* gen = nullptr;
int fd;
unsigned int limit = INT_MAX;
if (target_sparse_limit > 0 && target_sparse_limit < limit) {
limit = target_sparse_limit;
}
if (sparse_limit > 0 && sparse_limit < limit) {
limit = sparse_limit;
}
if (!fb_getvar(transport, std::string("partition-type:") + partition, &partition_type)) {
errMsg = "Can't determine partition type.\n";
goto failed;
}
if (type_override) {
if (partition_type != type_override) {
fprintf(stderr, "Warning: %s type is %s, but %s was requested for formatting.\n",
partition, partition_type.c_str(), type_override);
}
partition_type = type_override;
}
if (!fb_getvar(transport, std::string("partition-size:") + partition, &partition_size)) {
errMsg = "Unable to get partition size\n";
goto failed;
}
if (size_override) {
if (partition_size != size_override) {
fprintf(stderr, "Warning: %s size is %s, but %s was requested for formatting.\n",
partition, partition_size.c_str(), size_override);
}
partition_size = size_override;
}
// Some bootloaders (angler, for example), send spurious leading whitespace.
partition_size = android::base::Trim(partition_size);
// Some bootloaders (hammerhead, for example) use implicit hex.
// This code used to use strtol with base 16.
if (!android::base::StartsWith(partition_size, "0x")) partition_size = "0x" + partition_size;
gen = fs_get_generator(partition_type);
if (!gen) {
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
fprintf(stderr, "File system type %s not supported.\n", partition_type.c_str());
return;
}
fprintf(stderr, "Formatting is not supported for file system with type '%s'.\n",
partition_type.c_str());
return;
}
int64_t size;
if (!android::base::ParseInt(partition_size.c_str(), &size)) {
fprintf(stderr, "Couldn't parse partition size '%s'.\n", partition_size.c_str());
return;
}
fd = fileno(tmpfile());
if (fs_generator_generate(gen, fd, size)) {
fprintf(stderr, "Cannot generate image: %s\n", strerror(errno));
close(fd);
return;
}
if (load_buf_fd(transport, fd, &buf)) {
fprintf(stderr, "Cannot read image: %s\n", strerror(errno));
close(fd);
return;
}
flash_buf(partition, &buf);
return;
failed:
if (skip_if_not_supported) {
fprintf(stderr, "Erase successful, but not automatically formatting.\n");
if (errMsg) fprintf(stderr, "%s", errMsg);
}
fprintf(stderr,"FAILED (%s)\n", fb_get_error());
}
int main(int argc, char **argv)
{
bool wants_wipe = false;
bool wants_reboot = false;
bool wants_reboot_bootloader = false;
bool wants_set_active = false;
bool erase_first = true;
void *data;
int64_t sz;
int longindex;
std::string slot_override;
std::string next_active;
const struct option longopts[] = {
{"base", required_argument, 0, 'b'},
{"kernel_offset", required_argument, 0, 'k'},
{"kernel-offset", required_argument, 0, 'k'},
{"page_size", required_argument, 0, 'n'},
{"page-size", required_argument, 0, 'n'},
{"ramdisk_offset", required_argument, 0, 'r'},
{"ramdisk-offset", required_argument, 0, 'r'},
{"tags_offset", required_argument, 0, 't'},
{"tags-offset", required_argument, 0, 't'},
{"help", no_argument, 0, 'h'},
{"unbuffered", no_argument, 0, 0},
{"version", no_argument, 0, 0},
{"slot", required_argument, 0, 0},
{"set_active", optional_argument, 0, 'a'},
{"set-active", optional_argument, 0, 'a'},
{0, 0, 0, 0}
};
serial = getenv("ANDROID_SERIAL");
while (1) {
int c = getopt_long(argc, argv, "wub:k:n:r:t:s:S:lp:c:i:m:ha::", longopts, &longindex);
if (c < 0) {
break;
}
/* Alphabetical cases */
switch (c) {
case 'a':
wants_set_active = true;
if (optarg)
next_active = optarg;
break;
case 'b':
base_addr = strtoul(optarg, 0, 16);
break;
case 'c':
cmdline = optarg;
break;
case 'h':
usage();
return 1;
case 'i': {
char *endptr = nullptr;
unsigned long val;
val = strtoul(optarg, &endptr, 0);
if (!endptr || *endptr != '\0' || (val & ~0xffff))
die("invalid vendor id '%s'", optarg);
vendor_id = (unsigned short)val;
break;
}
case 'k':
kernel_offset = strtoul(optarg, 0, 16);
break;
case 'l':
long_listing = 1;
break;
case 'n':
page_size = (unsigned)strtoul(optarg, nullptr, 0);
if (!page_size) die("invalid page size");
break;
case 'p':
product = optarg;
break;
case 'r':
ramdisk_offset = strtoul(optarg, 0, 16);
break;
case 't':
tags_offset = strtoul(optarg, 0, 16);
break;
case 's':
serial = optarg;
break;
case 'S':
sparse_limit = parse_num(optarg);
if (sparse_limit < 0) {
die("invalid sparse limit");
}
break;
case 'u':
erase_first = false;
break;
case 'w':
wants_wipe = true;
break;
case '?':
return 1;
case 0:
if (strcmp("unbuffered", longopts[longindex].name) == 0) {
setvbuf(stdout, nullptr, _IONBF, 0);
setvbuf(stderr, nullptr, _IONBF, 0);
} else if (strcmp("version", longopts[longindex].name) == 0) {
fprintf(stdout, "fastboot version %s\n", FASTBOOT_REVISION);
return 0;
} else if (strcmp("slot", longopts[longindex].name) == 0) {
slot_override = std::string(optarg);
}
break;
default:
abort();
}
}
argc -= optind;
argv += optind;
if (argc == 0 && !wants_wipe && !wants_set_active) {
usage();
return 1;
}
if (argc > 0 && !strcmp(*argv, "devices")) {
skip(1);
list_devices();
return 0;
}
if (argc > 0 && !strcmp(*argv, "help")) {
usage();
return 0;
}
Transport* transport = open_device();
if (slot_override != "")
slot_override = verify_slot(transport, slot_override.c_str());
if (next_active != "")
next_active = verify_slot(transport, next_active.c_str());
if (wants_set_active) {
if (next_active == "") {
if (slot_override == "") {
wants_set_active = false;
} else {
next_active = slot_override;
}
}
}
while (argc > 0) {
if (!strcmp(*argv, "getvar")) {
require(2);
fb_queue_display(argv[1], argv[1]);
skip(2);
} else if(!strcmp(*argv, "erase")) {
require(2);
auto erase = [&](const std::string &partition) {
std::string partition_type;
if (fb_getvar(transport, std::string("partition-type:") + argv[1], &partition_type) &&
fs_get_generator(partition_type) != nullptr) {
fprintf(stderr, "******** Did you mean to fastboot format this %s partition?\n",
partition_type.c_str());
}
fb_queue_erase(partition.c_str());
};
do_for_partitions(transport, argv[1], slot_override.c_str(), erase, true);
skip(2);
} else if(!strncmp(*argv, "format", strlen("format"))) {
char *overrides;
char *type_override = nullptr;
char *size_override = nullptr;
require(2);
/*
* Parsing for: "format[:[type][:[size]]]"
* Some valid things:
* - select ontly the size, and leave default fs type:
* format::0x4000000 userdata
* - default fs type and size:
* format userdata
* format:: userdata
*/
overrides = strchr(*argv, ':');
if (overrides) {
overrides++;
size_override = strchr(overrides, ':');
if (size_override) {
size_override[0] = '\0';
size_override++;
}
type_override = overrides;
}
if (type_override && !type_override[0]) type_override = nullptr;
if (size_override && !size_override[0]) size_override = nullptr;
auto format = [&](const std::string &partition) {
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
fb_perform_format(transport, partition.c_str(), 0, type_override, size_override);
};
do_for_partitions(transport, argv[1], slot_override.c_str(), format, true);
skip(2);
} else if(!strcmp(*argv, "signature")) {
require(2);
data = load_file(argv[1], &sz);
if (data == nullptr) die("could not load '%s': %s", argv[1], strerror(errno));
if (sz != 256) die("signature must be 256 bytes");
fb_queue_download("signature", data, sz);
fb_queue_command("signature", "installing signature");
skip(2);
} else if(!strcmp(*argv, "reboot")) {
wants_reboot = true;
skip(1);
if (argc > 0) {
if (!strcmp(*argv, "bootloader")) {
wants_reboot = false;
wants_reboot_bootloader = true;
skip(1);
}
}
require(0);
} else if(!strcmp(*argv, "reboot-bootloader")) {
wants_reboot_bootloader = true;
skip(1);
} else if (!strcmp(*argv, "continue")) {
fb_queue_command("continue", "resuming boot");
skip(1);
} else if(!strcmp(*argv, "boot")) {
char *kname = 0;
char *rname = 0;
char *sname = 0;
skip(1);
if (argc > 0) {
kname = argv[0];
skip(1);
}
if (argc > 0) {
rname = argv[0];
skip(1);
}
if (argc > 0) {
sname = argv[0];
skip(1);
}
data = load_bootable_image(kname, rname, sname, &sz, cmdline);
if (data == 0) return 1;
fb_queue_download("boot.img", data, sz);
fb_queue_command("boot", "booting");
} else if(!strcmp(*argv, "flash")) {
char *pname = argv[1];
char *fname = 0;
require(2);
if (argc > 2) {
fname = argv[2];
skip(3);
} else {
fname = find_item(pname, product);
skip(2);
}
if (fname == 0) die("cannot determine image filename for '%s'", pname);
auto flash = [&](const std::string &partition) {
if (erase_first && needs_erase(transport, partition.c_str())) {
fb_queue_erase(partition.c_str());
}
do_flash(transport, partition.c_str(), fname);
};
do_for_partitions(transport, pname, slot_override.c_str(), flash, true);
} else if(!strcmp(*argv, "flash:raw")) {
char *kname = argv[2];
char *rname = 0;
char *sname = 0;
require(3);
skip(3);
if (argc > 0) {
rname = argv[0];
skip(1);
}
if (argc > 0) {
sname = argv[0];
skip(1);
}
data = load_bootable_image(kname, rname, sname, &sz, cmdline);
if (data == 0) die("cannot load bootable image");
auto flashraw = [&](const std::string &partition) {
fb_queue_flash(partition.c_str(), data, sz);
};
do_for_partitions(transport, argv[1], slot_override.c_str(), flashraw, true);
} else if(!strcmp(*argv, "flashall")) {
skip(1);
do_flashall(transport, slot_override.c_str(), erase_first);
wants_reboot = true;
} else if(!strcmp(*argv, "update")) {
if (argc > 1) {
do_update(transport, argv[1], slot_override.c_str(), erase_first);
skip(2);
} else {
do_update(transport, "update.zip", slot_override.c_str(), erase_first);
skip(1);
}
wants_reboot = true;
} else if(!strcmp(*argv, "oem")) {
argc = do_oem_command(argc, argv);
} else if(!strcmp(*argv, "flashing")) {
if (argc == 2 && (!strcmp(*(argv+1), "unlock") ||
!strcmp(*(argv+1), "lock") ||
!strcmp(*(argv+1), "unlock_critical") ||
!strcmp(*(argv+1), "lock_critical") ||
!strcmp(*(argv+1), "get_unlock_ability") ||
!strcmp(*(argv+1), "get_unlock_bootloader_nonce") ||
!strcmp(*(argv+1), "lock_bootloader"))) {
argc = do_oem_command(argc, argv);
} else
if (argc == 3 && !strcmp(*(argv+1), "unlock_bootloader")) {
argc = do_bypass_unlock_command(argc, argv);
} else {
usage();
return 1;
}
} else {
usage();
return 1;
}
}
if (wants_wipe) {
fprintf(stderr, "wiping userdata...\n");
fb_queue_erase("userdata");
fb_perform_format(transport, "userdata", 1, nullptr, nullptr);
std::string cache_type;
if (fb_getvar(transport, "partition-type:cache", &cache_type) && !cache_type.empty()) {
fprintf(stderr, "wiping cache...\n");
fb_queue_erase("cache");
fb_perform_format(transport, "cache", 1, nullptr, nullptr);
}
}
if (wants_set_active) {
fb_set_active(next_active.c_str());
}
if (wants_reboot) {
fb_queue_reboot();
fb_queue_wait_for_disconnect();
} else if (wants_reboot_bootloader) {
fb_queue_command("reboot-bootloader", "rebooting into bootloader");
fb_queue_wait_for_disconnect();
}
return fb_execute_queue(transport) ? EXIT_FAILURE : EXIT_SUCCESS;
}