| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <errno.h> |
| #include <signal.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/ptrace.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <vector> |
| |
| #include <android-base/test_utils.h> |
| #include <android-base/file.h> |
| #include <gtest/gtest.h> |
| |
| #include "MemoryRemote.h" |
| |
| #include "MemoryFake.h" |
| #include "TestUtils.h" |
| |
| namespace unwindstack { |
| |
| class MemoryRemoteTest : public ::testing::Test { |
| protected: |
| static bool Attach(pid_t pid) { |
| if (ptrace(PTRACE_ATTACH, pid, 0, 0) == -1) { |
| return false; |
| } |
| |
| return TestQuiescePid(pid); |
| } |
| |
| static bool Detach(pid_t pid) { |
| return ptrace(PTRACE_DETACH, pid, 0, 0) == 0; |
| } |
| |
| static constexpr size_t NS_PER_SEC = 1000000000ULL; |
| }; |
| |
| TEST_F(MemoryRemoteTest, read) { |
| std::vector<uint8_t> src(1024); |
| memset(src.data(), 0x4c, 1024); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true); |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| std::vector<uint8_t> dst(1024); |
| ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src.data()), dst.data(), 1024)); |
| for (size_t i = 0; i < 1024; i++) { |
| ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i; |
| } |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_large) { |
| static constexpr size_t kTotalPages = 245; |
| std::vector<uint8_t> src(kTotalPages * getpagesize()); |
| for (size_t i = 0; i < kTotalPages; i++) { |
| memset(&src[i * getpagesize()], i, getpagesize()); |
| } |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true) |
| ; |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| std::vector<uint8_t> dst(kTotalPages * getpagesize()); |
| ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src.data()), dst.data(), src.size())); |
| for (size_t i = 0; i < kTotalPages * getpagesize(); i++) { |
| ASSERT_EQ(i / getpagesize(), dst[i]) << "Failed at byte " << i; |
| } |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_partial) { |
| char* mapping = static_cast<char*>( |
| mmap(nullptr, 4 * getpagesize(), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); |
| ASSERT_NE(MAP_FAILED, mapping); |
| memset(mapping, 0x4c, 4 * getpagesize()); |
| ASSERT_EQ(0, mprotect(mapping + getpagesize(), getpagesize(), PROT_NONE)); |
| ASSERT_EQ(0, munmap(mapping + 3 * getpagesize(), getpagesize())); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true) |
| ; |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| // Unmap from our process. |
| ASSERT_EQ(0, munmap(mapping, 3 * getpagesize())); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| std::vector<uint8_t> dst(4096); |
| size_t bytes = |
| remote.Read(reinterpret_cast<uint64_t>(mapping + getpagesize() - 1024), dst.data(), 4096); |
| // Some read methods can read PROT_NONE maps, allow that. |
| ASSERT_LE(1024U, bytes); |
| for (size_t i = 0; i < bytes; i++) { |
| ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i; |
| } |
| |
| // Now verify that reading stops at the end of a map. |
| bytes = |
| remote.Read(reinterpret_cast<uint64_t>(mapping + 3 * getpagesize() - 1024), dst.data(), 4096); |
| ASSERT_EQ(1024U, bytes); |
| for (size_t i = 0; i < bytes; i++) { |
| ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i; |
| } |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_fail) { |
| int pagesize = getpagesize(); |
| void* src = mmap(nullptr, pagesize * 2, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE,-1, 0); |
| memset(src, 0x4c, pagesize * 2); |
| ASSERT_NE(MAP_FAILED, src); |
| // Put a hole right after the first page. |
| ASSERT_EQ(0, munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(src) + pagesize), |
| pagesize)); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true); |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| std::vector<uint8_t> dst(pagesize); |
| ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src), dst.data(), pagesize)); |
| for (size_t i = 0; i < 1024; i++) { |
| ASSERT_EQ(0x4cU, dst[i]) << "Failed at byte " << i; |
| } |
| |
| ASSERT_FALSE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize, dst.data(), 1)); |
| ASSERT_TRUE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize - 1, dst.data(), 1)); |
| ASSERT_FALSE(remote.ReadFully(reinterpret_cast<uint64_t>(src) + pagesize - 4, dst.data(), 8)); |
| |
| // Check overflow condition is caught properly. |
| ASSERT_FALSE(remote.ReadFully(UINT64_MAX - 100, dst.data(), 200)); |
| |
| ASSERT_EQ(0, munmap(src, pagesize)); |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_overflow) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true) |
| ; |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| // Check overflow condition is caught properly. |
| std::vector<uint8_t> dst(200); |
| ASSERT_FALSE(remote.ReadFully(UINT64_MAX - 100, dst.data(), 200)); |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_illegal) { |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true); |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| |
| std::vector<uint8_t> dst(100); |
| ASSERT_FALSE(remote.ReadFully(0, dst.data(), 1)); |
| ASSERT_FALSE(remote.ReadFully(0, dst.data(), 100)); |
| |
| ASSERT_TRUE(Detach(pid)); |
| } |
| |
| TEST_F(MemoryRemoteTest, read_mprotect_hole) { |
| size_t page_size = getpagesize(); |
| void* mapping = |
| mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, mapping); |
| memset(mapping, 0xFF, 3 * page_size); |
| ASSERT_EQ(0, mprotect(static_cast<char*>(mapping) + page_size, page_size, PROT_NONE)); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true); |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_EQ(0, munmap(mapping, 3 * page_size)); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| std::vector<uint8_t> dst(getpagesize() * 4, 0xCC); |
| size_t read_size = remote.Read(reinterpret_cast<uint64_t>(mapping), dst.data(), page_size * 3); |
| // Some read methods can read PROT_NONE maps, allow that. |
| ASSERT_LE(page_size, read_size); |
| for (size_t i = 0; i < read_size; ++i) { |
| ASSERT_EQ(0xFF, dst[i]); |
| } |
| for (size_t i = read_size; i < dst.size(); ++i) { |
| ASSERT_EQ(0xCC, dst[i]); |
| } |
| } |
| |
| TEST_F(MemoryRemoteTest, read_munmap_hole) { |
| size_t page_size = getpagesize(); |
| void* mapping = |
| mmap(nullptr, 3 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, mapping); |
| memset(mapping, 0xFF, 3 * page_size); |
| ASSERT_EQ(0, munmap(static_cast<char*>(mapping) + page_size, page_size)); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true) |
| ; |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_EQ(0, munmap(mapping, page_size)); |
| ASSERT_EQ(0, munmap(static_cast<char*>(mapping) + 2 * page_size, page_size)); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| MemoryRemote remote(pid); |
| std::vector<uint8_t> dst(getpagesize() * 4, 0xCC); |
| size_t read_size = remote.Read(reinterpret_cast<uint64_t>(mapping), dst.data(), page_size * 3); |
| ASSERT_EQ(page_size, read_size); |
| for (size_t i = 0; i < read_size; ++i) { |
| ASSERT_EQ(0xFF, dst[i]); |
| } |
| for (size_t i = read_size; i < dst.size(); ++i) { |
| ASSERT_EQ(0xCC, dst[i]); |
| } |
| } |
| |
| // Verify that the memory remote object chooses a memory read function |
| // properly. Either process_vm_readv or ptrace. |
| TEST_F(MemoryRemoteTest, read_choose_correctly) { |
| size_t page_size = getpagesize(); |
| void* mapping = |
| mmap(nullptr, 2 * getpagesize(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| ASSERT_NE(MAP_FAILED, mapping); |
| memset(mapping, 0xFC, 2 * page_size); |
| ASSERT_EQ(0, mprotect(static_cast<char*>(mapping), page_size, PROT_NONE)); |
| |
| pid_t pid; |
| if ((pid = fork()) == 0) { |
| while (true) |
| ; |
| exit(1); |
| } |
| ASSERT_LT(0, pid); |
| TestScopedPidReaper reap(pid); |
| |
| ASSERT_EQ(0, munmap(mapping, 2 * page_size)); |
| |
| ASSERT_TRUE(Attach(pid)); |
| |
| // We know that process_vm_readv of a mprotect'd PROT_NONE region will fail. |
| // Read from the PROT_NONE area first to force the choice of ptrace. |
| MemoryRemote remote_ptrace(pid); |
| uint32_t value; |
| size_t bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value)); |
| ASSERT_EQ(sizeof(value), bytes); |
| ASSERT_EQ(0xfcfcfcfcU, value); |
| bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value)); |
| ASSERT_EQ(sizeof(value), bytes); |
| ASSERT_EQ(0xfcfcfcfcU, value); |
| bytes = remote_ptrace.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value)); |
| ASSERT_EQ(sizeof(value), bytes); |
| ASSERT_EQ(0xfcfcfcfcU, value); |
| |
| // Now verify that choosing process_vm_readv results in failing reads of |
| // the PROT_NONE part of the map. Read from a valid map first which |
| // should prefer process_vm_readv, and keep that as the read function. |
| MemoryRemote remote_readv(pid); |
| bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value)); |
| ASSERT_EQ(sizeof(value), bytes); |
| ASSERT_EQ(0xfcfcfcfcU, value); |
| bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping), &value, sizeof(value)); |
| ASSERT_EQ(0U, bytes); |
| bytes = remote_readv.Read(reinterpret_cast<uint64_t>(mapping) + page_size, &value, sizeof(value)); |
| ASSERT_EQ(sizeof(value), bytes); |
| ASSERT_EQ(0xfcfcfcfcU, value); |
| } |
| |
| } // namespace unwindstack |