| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "fs_mgr.h" |
| |
| #include <ctype.h> |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <libgen.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mount.h> |
| #include <sys/stat.h> |
| #include <sys/swap.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <functional> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <thread> |
| #include <utility> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <cutils/android_filesystem_config.h> |
| #include <cutils/android_reboot.h> |
| #include <cutils/partition_utils.h> |
| #include <cutils/properties.h> |
| #include <ext4_utils/ext4.h> |
| #include <ext4_utils/ext4_sb.h> |
| #include <ext4_utils/ext4_utils.h> |
| #include <ext4_utils/wipe.h> |
| #include <fs_avb/fs_avb.h> |
| #include <fs_mgr_overlayfs.h> |
| #include <libdm/dm.h> |
| #include <liblp/metadata_format.h> |
| #include <linux/fs.h> |
| #include <linux/loop.h> |
| #include <linux/magic.h> |
| #include <log/log_properties.h> |
| #include <logwrap/logwrap.h> |
| |
| #include "fs_mgr_priv.h" |
| |
| #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" |
| #define KEY_IN_FOOTER "footer" |
| |
| #define E2FSCK_BIN "/system/bin/e2fsck" |
| #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs" |
| #define MKSWAP_BIN "/system/bin/mkswap" |
| #define TUNE2FS_BIN "/system/bin/tune2fs" |
| |
| #define FSCK_LOG_FILE "/dev/fscklogs/log" |
| |
| #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" |
| #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams" |
| #define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev" |
| |
| #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity" |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) |
| |
| using android::base::Realpath; |
| using android::base::StartsWith; |
| using android::base::unique_fd; |
| using android::dm::DeviceMapper; |
| using android::dm::DmDeviceState; |
| |
| // Realistically, this file should be part of the android::fs_mgr namespace; |
| using namespace android::fs_mgr; |
| |
| using namespace std::literals; |
| |
| // record fs stat |
| enum FsStatFlags { |
| FS_STAT_IS_EXT4 = 0x0001, |
| FS_STAT_NEW_IMAGE_VERSION = 0x0002, |
| FS_STAT_E2FSCK_F_ALWAYS = 0x0004, |
| FS_STAT_UNCLEAN_SHUTDOWN = 0x0008, |
| FS_STAT_QUOTA_ENABLED = 0x0010, |
| FS_STAT_RO_MOUNT_FAILED = 0x0040, |
| FS_STAT_RO_UNMOUNT_FAILED = 0x0080, |
| FS_STAT_FULL_MOUNT_FAILED = 0x0100, |
| FS_STAT_E2FSCK_FAILED = 0x0200, |
| FS_STAT_E2FSCK_FS_FIXED = 0x0400, |
| FS_STAT_INVALID_MAGIC = 0x0800, |
| FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000, |
| FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000, |
| FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000, |
| FS_STAT_ENABLE_VERITY_FAILED = 0x80000, |
| }; |
| |
| // TODO: switch to inotify() |
| bool fs_mgr_wait_for_file(const std::string& filename, |
| const std::chrono::milliseconds relative_timeout, |
| FileWaitMode file_wait_mode) { |
| auto start_time = std::chrono::steady_clock::now(); |
| |
| while (true) { |
| int rv = access(filename.c_str(), F_OK); |
| if (file_wait_mode == FileWaitMode::Exists) { |
| if (!rv || errno != ENOENT) return true; |
| } else if (file_wait_mode == FileWaitMode::DoesNotExist) { |
| if (rv && errno == ENOENT) return true; |
| } |
| |
| std::this_thread::sleep_for(50ms); |
| |
| auto now = std::chrono::steady_clock::now(); |
| auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time); |
| if (time_elapsed > relative_timeout) return false; |
| } |
| } |
| |
| static void log_fs_stat(const std::string& blk_device, int fs_stat) { |
| if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4 |
| std::string msg = |
| android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat); |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | |
| O_APPEND | O_CREAT, 0664))); |
| if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) { |
| LWARNING << __FUNCTION__ << "() cannot log " << msg; |
| } |
| } |
| |
| static bool is_extfs(const std::string& fs_type) { |
| return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2"; |
| } |
| |
| static bool is_f2fs(const std::string& fs_type) { |
| return fs_type == "f2fs"; |
| } |
| |
| static std::string realpath(const std::string& blk_device) { |
| std::string real_path; |
| if (!Realpath(blk_device, &real_path)) { |
| real_path = blk_device; |
| } |
| return real_path; |
| } |
| |
| static bool should_force_check(int fs_stat) { |
| return fs_stat & |
| (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED | |
| FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED | |
| FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED | |
| FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED); |
| } |
| |
| static void check_fs(const std::string& blk_device, const std::string& fs_type, |
| const std::string& target, int* fs_stat) { |
| int status; |
| int ret; |
| long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; |
| auto tmpmnt_opts = "errors=remount-ro"s; |
| const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()}; |
| const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()}; |
| |
| if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try |
| return; |
| } |
| |
| /* Check for the types of filesystems we know how to check */ |
| if (is_extfs(fs_type)) { |
| /* |
| * First try to mount and unmount the filesystem. We do this because |
| * the kernel is more efficient than e2fsck in running the journal and |
| * processing orphaned inodes, and on at least one device with a |
| * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes |
| * to do what the kernel does in about a second. |
| * |
| * After mounting and unmounting the filesystem, run e2fsck, and if an |
| * error is recorded in the filesystem superblock, e2fsck will do a full |
| * check. Otherwise, it does nothing. If the kernel cannot mount the |
| * filesytsem due to an error, e2fsck is still run to do a full check |
| * fix the filesystem. |
| */ |
| if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed |
| errno = 0; |
| if (fs_type == "ext4") { |
| // This option is only valid with ext4 |
| tmpmnt_opts += ",nomblk_io_submit"; |
| } |
| ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags, |
| tmpmnt_opts.c_str()); |
| PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type |
| << ")=" << ret; |
| if (!ret) { |
| bool umounted = false; |
| int retry_count = 5; |
| while (retry_count-- > 0) { |
| umounted = umount(target.c_str()) == 0; |
| if (umounted) { |
| LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded"; |
| break; |
| } |
| PERROR << __FUNCTION__ << "(): umount(" << target << ") failed"; |
| if (retry_count) sleep(1); |
| } |
| if (!umounted) { |
| // boot may fail but continue and leave it to later stage for now. |
| PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out"; |
| *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED; |
| } |
| } else { |
| *fs_stat |= FS_STAT_RO_MOUNT_FAILED; |
| } |
| } |
| |
| /* |
| * Some system images do not have e2fsck for licensing reasons |
| * (e.g. recent SDK system images). Detect these and skip the check. |
| */ |
| if (access(E2FSCK_BIN, X_OK)) { |
| LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device) |
| << " (executable not in system image)"; |
| } else { |
| LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device); |
| if (should_force_check(*fs_stat)) { |
| ret = android_fork_execvp_ext( |
| ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status, |
| true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); |
| } else { |
| ret = android_fork_execvp_ext( |
| ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true, |
| LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); |
| } |
| |
| if (ret < 0) { |
| /* No need to check for error in fork, we can't really handle it now */ |
| LERROR << "Failed trying to run " << E2FSCK_BIN; |
| *fs_stat |= FS_STAT_E2FSCK_FAILED; |
| } else if (status != 0) { |
| LINFO << "e2fsck returned status 0x" << std::hex << status; |
| *fs_stat |= FS_STAT_E2FSCK_FS_FIXED; |
| } |
| } |
| } else if (is_f2fs(fs_type)) { |
| const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", blk_device.c_str()}; |
| LINFO << "Running " << F2FS_FSCK_BIN << " -a " << realpath(blk_device); |
| |
| ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv), |
| const_cast<char **>(f2fs_fsck_argv), |
| &status, true, LOG_KLOG | LOG_FILE, |
| true, const_cast<char *>(FSCK_LOG_FILE), |
| NULL, 0); |
| if (ret < 0) { |
| /* No need to check for error in fork, we can't really handle it now */ |
| LERROR << "Failed trying to run " << F2FS_FSCK_BIN; |
| } |
| } |
| |
| return; |
| } |
| |
| static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) { |
| return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) | |
| le32_to_cpu(es->s_blocks_count_lo); |
| } |
| |
| static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) { |
| return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) | |
| le32_to_cpu(es->s_r_blocks_count_lo); |
| } |
| |
| static bool is_ext4_superblock_valid(const struct ext4_super_block* es) { |
| if (es->s_magic != EXT4_SUPER_MAGIC) return false; |
| if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false; |
| if (EXT4_INODES_PER_GROUP(es) == 0) return false; |
| return true; |
| } |
| |
| // Read the primary superblock from an ext4 filesystem. On failure return |
| // false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC. |
| static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb, |
| int* fs_stat) { |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| |
| if (fd < 0) { |
| PERROR << "Failed to open '" << blk_device << "'"; |
| return false; |
| } |
| |
| if (pread(fd, sb, sizeof(*sb), 1024) != sizeof(*sb)) { |
| PERROR << "Can't read '" << blk_device << "' superblock"; |
| return false; |
| } |
| |
| if (!is_ext4_superblock_valid(sb)) { |
| LINFO << "Invalid ext4 superblock on '" << blk_device << "'"; |
| // not a valid fs, tune2fs, fsck, and mount will all fail. |
| *fs_stat |= FS_STAT_INVALID_MAGIC; |
| return false; |
| } |
| *fs_stat |= FS_STAT_IS_EXT4; |
| LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device; |
| if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4 |
| *fs_stat |= FS_STAT_NEW_IMAGE_VERSION; |
| } |
| return true; |
| } |
| |
| // Some system images do not have tune2fs for licensing reasons. |
| // Detect these and skip running it. |
| static bool tune2fs_available(void) { |
| return access(TUNE2FS_BIN, X_OK) == 0; |
| } |
| |
| static bool run_tune2fs(const char* argv[], int argc) { |
| int ret; |
| |
| ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true, |
| LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0); |
| return ret == 0; |
| } |
| |
| // Enable/disable quota support on the filesystem if needed. |
| static void tune_quota(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0; |
| bool want_quota = entry.fs_mgr_flags.quota; |
| |
| if (has_quota == want_quota) { |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()}; |
| |
| if (want_quota) { |
| LINFO << "Enabling quotas on " << blk_device; |
| argv[1] = "-Oquota"; |
| argv[2] = "-Qusrquota,grpquota"; |
| *fs_stat |= FS_STAT_QUOTA_ENABLED; |
| } else { |
| LINFO << "Disabling quotas on " << blk_device; |
| argv[1] = "-O^quota"; |
| argv[2] = "-Q^usrquota,^grpquota"; |
| } |
| |
| if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable") |
| << " quotas on " << blk_device; |
| *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED; |
| } |
| } |
| |
| // Set the number of reserved filesystem blocks if needed. |
| static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| if (entry.reserved_size != 0) { |
| return; |
| } |
| |
| // The size to reserve is given in the fstab, but we won't reserve more |
| // than 2% of the filesystem. |
| const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02; |
| uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb); |
| |
| if (reserved_blocks > max_reserved_blocks) { |
| LWARNING << "Reserved blocks " << reserved_blocks << " is too large; " |
| << "capping to " << max_reserved_blocks; |
| reserved_blocks = max_reserved_blocks; |
| } |
| |
| if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) { |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to set the number of reserved blocks on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks; |
| |
| auto reserved_blocks_str = std::to_string(reserved_blocks); |
| auto reserved_gid_str = std::to_string(AID_RESERVED_DISK); |
| const char* argv[] = { |
| TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(), |
| blk_device.c_str()}; |
| if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on " |
| << blk_device; |
| *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED; |
| } |
| } |
| |
| // Enable file-based encryption if needed. |
| static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0; |
| bool want_encrypt = entry.fs_mgr_flags.file_encryption; |
| |
| if (has_encrypt || !want_encrypt) { |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable ext4 encryption on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device.c_str()}; |
| |
| LINFO << "Enabling ext4 encryption on " << blk_device; |
| if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 encryption on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED; |
| } |
| } |
| |
| // Enable fs-verity if needed. |
| static void tune_verity(const std::string& blk_device, const FstabEntry& entry, |
| const struct ext4_super_block* sb, int* fs_stat) { |
| bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0; |
| bool want_verity = entry.fs_mgr_flags.fs_verity; |
| |
| if (has_verity || !want_verity) { |
| return; |
| } |
| |
| std::string verity_support; |
| if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) { |
| LERROR << "Failed to open " << SYSFS_EXT4_VERITY; |
| return; |
| } |
| |
| if (!(android::base::Trim(verity_support) == "supported")) { |
| LERROR << "Current ext4 verity not supported by kernel"; |
| return; |
| } |
| |
| if (!tune2fs_available()) { |
| LERROR << "Unable to enable ext4 verity on " << blk_device |
| << " because " TUNE2FS_BIN " is missing"; |
| return; |
| } |
| |
| LINFO << "Enabling ext4 verity on " << blk_device; |
| |
| const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()}; |
| if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { |
| LERROR << "Failed to run " TUNE2FS_BIN " to enable " |
| << "ext4 verity on " << blk_device; |
| *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED; |
| } |
| } |
| |
| // Read the primary superblock from an f2fs filesystem. On failure return |
| // false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC. |
| #define F2FS_BLKSIZE 4096 |
| #define F2FS_SUPER_OFFSET 1024 |
| static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) { |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| __le32 sb1, sb2; |
| |
| if (fd < 0) { |
| PERROR << "Failed to open '" << blk_device << "'"; |
| return false; |
| } |
| |
| if (pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET) != sizeof(sb1)) { |
| PERROR << "Can't read '" << blk_device << "' superblock1"; |
| return false; |
| } |
| if (pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET) != sizeof(sb2)) { |
| PERROR << "Can't read '" << blk_device << "' superblock2"; |
| return false; |
| } |
| |
| if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) { |
| LINFO << "Invalid f2fs superblock on '" << blk_device << "'"; |
| *fs_stat |= FS_STAT_INVALID_MAGIC; |
| return false; |
| } |
| return true; |
| } |
| |
| // |
| // Prepare the filesystem on the given block device to be mounted. |
| // |
| // If the "check" option was given in the fstab record, or it seems that the |
| // filesystem was uncleanly shut down, we'll run fsck on the filesystem. |
| // |
| // If needed, we'll also enable (or disable) filesystem features as specified by |
| // the fstab record. |
| // |
| static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) { |
| int fs_stat = 0; |
| |
| if (is_extfs(entry.fs_type)) { |
| struct ext4_super_block sb; |
| |
| if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { |
| if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 || |
| (sb.s_state & EXT4_VALID_FS) == 0) { |
| LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; " |
| << "state flags: 0x" << std::hex << sb.s_state << ", " |
| << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat; |
| fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN; |
| } |
| |
| // Note: quotas should be enabled before running fsck. |
| tune_quota(blk_device, entry, &sb, &fs_stat); |
| } else { |
| return fs_stat; |
| } |
| } else if (is_f2fs(entry.fs_type)) { |
| if (!read_f2fs_superblock(blk_device, &fs_stat)) { |
| return fs_stat; |
| } |
| } |
| |
| if (entry.fs_mgr_flags.check || |
| (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) { |
| check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat); |
| } |
| |
| if (is_extfs(entry.fs_type) && |
| (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption || |
| entry.fs_mgr_flags.fs_verity)) { |
| struct ext4_super_block sb; |
| |
| if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { |
| tune_reserved_size(blk_device, entry, &sb, &fs_stat); |
| tune_encrypt(blk_device, entry, &sb, &fs_stat); |
| tune_verity(blk_device, entry, &sb, &fs_stat); |
| } |
| } |
| |
| return fs_stat; |
| } |
| |
| // Mark the given block device as read-only, using the BLKROSET ioctl. |
| bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) { |
| unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| return false; |
| } |
| |
| int ON = readonly; |
| return ioctl(fd, BLKROSET, &ON) == 0; |
| } |
| |
| // Orange state means the device is unlocked, see the following link for details. |
| // https://source.android.com/security/verifiedboot/verified-boot#device_state |
| bool fs_mgr_is_device_unlocked() { |
| std::string verified_boot_state; |
| if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) { |
| return verified_boot_state == "orange"; |
| } |
| return false; |
| } |
| |
| // __mount(): wrapper around the mount() system call which also |
| // sets the underlying block device to read-only if the mount is read-only. |
| // See "man 2 mount" for return values. |
| static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) { |
| // We need this because sometimes we have legacy symlinks that are |
| // lingering around and need cleaning up. |
| struct stat info; |
| if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) { |
| unlink(target.c_str()); |
| } |
| mkdir(target.c_str(), 0755); |
| errno = 0; |
| unsigned long mountflags = entry.flags; |
| int ret = 0; |
| int save_errno = 0; |
| do { |
| if (save_errno == EAGAIN) { |
| PINFO << "Retrying mount (source=" << source << ",target=" << target |
| << ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")"; |
| } |
| ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags, |
| entry.fs_options.c_str()); |
| save_errno = errno; |
| } while (ret && save_errno == EAGAIN); |
| const char* target_missing = ""; |
| const char* source_missing = ""; |
| if (save_errno == ENOENT) { |
| if (access(target.c_str(), F_OK)) { |
| target_missing = "(missing)"; |
| } else if (access(source.c_str(), F_OK)) { |
| source_missing = "(missing)"; |
| } |
| errno = save_errno; |
| } |
| PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target |
| << target_missing << ",type=" << entry.fs_type << ")=" << ret; |
| if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { |
| fs_mgr_set_blk_ro(source); |
| } |
| errno = save_errno; |
| return ret; |
| } |
| |
| static bool fs_match(const std::string& in1, const std::string& in2) { |
| if (in1.empty() || in2.empty()) { |
| return false; |
| } |
| |
| auto in1_end = in1.size() - 1; |
| while (in1_end > 0 && in1[in1_end] == '/') { |
| in1_end--; |
| } |
| |
| auto in2_end = in2.size() - 1; |
| while (in2_end > 0 && in2[in2_end] == '/') { |
| in2_end--; |
| } |
| |
| if (in1_end != in2_end) { |
| return false; |
| } |
| |
| for (size_t i = 0; i <= in1_end; ++i) { |
| if (in1[i] != in2[i]) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Tries to mount any of the consecutive fstab entries that match |
| // the mountpoint of the one given by fstab[start_idx]. |
| // |
| // end_idx: On return, will be the last entry that was looked at. |
| // attempted_idx: On return, will indicate which fstab entry |
| // succeeded. In case of failure, it will be the start_idx. |
| // Sets errno to match the 1st mount failure on failure. |
| static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx, |
| int* attempted_idx) { |
| unsigned long i; |
| int mount_errno = 0; |
| bool mounted = false; |
| |
| // Hunt down an fstab entry for the same mount point that might succeed. |
| for (i = start_idx; |
| // We required that fstab entries for the same mountpoint be consecutive. |
| i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) { |
| // Don't try to mount/encrypt the same mount point again. |
| // Deal with alternate entries for the same point which are required to be all following |
| // each other. |
| if (mounted) { |
| LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point |
| << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as " |
| << fstab[*attempted_idx].fs_type; |
| continue; |
| } |
| |
| int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]); |
| if (fs_stat & FS_STAT_INVALID_MAGIC) { |
| LERROR << __FUNCTION__ |
| << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point |
| << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i |
| << "].fs_type=" << fstab[i].fs_type; |
| mount_errno = EINVAL; // continue bootup for FDE |
| continue; |
| } |
| |
| int retry_count = 2; |
| while (retry_count-- > 0) { |
| if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) { |
| *attempted_idx = i; |
| mounted = true; |
| if (i != start_idx) { |
| LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on " |
| << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type |
| << " instead of " << fstab[start_idx].fs_type; |
| } |
| fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; |
| mount_errno = 0; |
| break; |
| } else { |
| if (retry_count <= 0) break; // run check_fs only once |
| fs_stat |= FS_STAT_FULL_MOUNT_FAILED; |
| // back up the first errno for crypto decisions. |
| if (mount_errno == 0) { |
| mount_errno = errno; |
| } |
| // retry after fsck |
| check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat); |
| } |
| } |
| log_fs_stat(fstab[i].blk_device, fs_stat); |
| } |
| |
| /* Adjust i for the case where it was still withing the recs[] */ |
| if (i < fstab.size()) --i; |
| |
| *end_idx = i; |
| if (!mounted) { |
| *attempted_idx = start_idx; |
| errno = mount_errno; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool TranslateExtLabels(FstabEntry* entry) { |
| if (!StartsWith(entry->blk_device, "LABEL=")) { |
| return true; |
| } |
| |
| std::string label = entry->blk_device.substr(6); |
| if (label.size() > 16) { |
| LERROR << "FS label is longer than allowed by filesystem"; |
| return false; |
| } |
| |
| auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir}; |
| if (!blockdir) { |
| LERROR << "couldn't open /dev/block"; |
| return false; |
| } |
| |
| struct dirent* ent; |
| while ((ent = readdir(blockdir.get()))) { |
| if (ent->d_type != DT_BLK) |
| continue; |
| |
| unique_fd fd(TEMP_FAILURE_RETRY( |
| openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| LERROR << "Cannot open block device /dev/block/" << ent->d_name; |
| return false; |
| } |
| |
| ext4_super_block super_block; |
| if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 || |
| TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) != |
| sizeof(super_block)) { |
| // Probably a loopback device or something else without a readable superblock. |
| continue; |
| } |
| |
| if (super_block.s_magic != EXT4_SUPER_MAGIC) { |
| LINFO << "/dev/block/" << ent->d_name << " not ext{234}"; |
| continue; |
| } |
| |
| if (label == super_block.s_volume_name) { |
| std::string new_blk_device = "/dev/block/"s + ent->d_name; |
| |
| LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device; |
| |
| entry->blk_device = new_blk_device; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool needs_block_encryption(const FstabEntry& entry) { |
| if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable()) |
| return true; |
| if (entry.fs_mgr_flags.force_crypt) return true; |
| if (entry.fs_mgr_flags.crypt) { |
| // Check for existence of convert_fde breadcrumb file. |
| auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde"; |
| if (access(convert_fde_name.c_str(), F_OK) == 0) return true; |
| } |
| if (entry.fs_mgr_flags.force_fde_or_fbe) { |
| // Check for absence of convert_fbe breadcrumb file. |
| auto convert_fbe_name = entry.mount_point + "/convert_fbe"; |
| if (access(convert_fbe_name.c_str(), F_OK) != 0) return true; |
| } |
| return false; |
| } |
| |
| static bool should_use_metadata_encryption(const FstabEntry& entry) { |
| return !entry.key_dir.empty() && |
| (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe); |
| } |
| |
| // Check to see if a mountable volume has encryption requirements |
| static int handle_encryptable(const FstabEntry& entry) { |
| // If this is block encryptable, need to trigger encryption. |
| if (needs_block_encryption(entry)) { |
| if (umount(entry.mount_point.c_str()) == 0) { |
| return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION; |
| } else { |
| PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted"; |
| return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; |
| } |
| } else if (should_use_metadata_encryption(entry)) { |
| if (umount(entry.mount_point.c_str()) == 0) { |
| return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION; |
| } else { |
| PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt"; |
| return FS_MGR_MNTALL_FAIL; |
| } |
| } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) { |
| LINFO << entry.mount_point << " is file encrypted"; |
| return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED; |
| } else if (entry.is_encryptable()) { |
| return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; |
| } else { |
| return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; |
| } |
| } |
| |
| static bool call_vdc(const std::vector<std::string>& args) { |
| std::vector<char const*> argv; |
| argv.emplace_back("/system/bin/vdc"); |
| for (auto& arg : args) { |
| argv.emplace_back(arg.c_str()); |
| } |
| LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); |
| int ret = |
| android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), nullptr, false, true); |
| if (ret != 0) { |
| LOG(ERROR) << "vdc returned error code: " << ret; |
| return false; |
| } |
| LOG(DEBUG) << "vdc finished successfully"; |
| return true; |
| } |
| |
| static bool call_vdc_ret(const std::vector<std::string>& args, int* ret) { |
| std::vector<char const*> argv; |
| argv.emplace_back("/system/bin/vdc"); |
| for (auto& arg : args) { |
| argv.emplace_back(arg.c_str()); |
| } |
| LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); |
| int err = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), ret, false, true); |
| if (err != 0) { |
| LOG(ERROR) << "vdc call failed with error code: " << err; |
| return false; |
| } |
| LOG(DEBUG) << "vdc finished successfully"; |
| *ret = WEXITSTATUS(*ret); |
| return true; |
| } |
| |
| bool fs_mgr_update_logical_partition(FstabEntry* entry) { |
| // Logical partitions are specified with a named partition rather than a |
| // block device, so if the block device is a path, then it has already |
| // been updated. |
| if (entry->blk_device[0] == '/') { |
| return true; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| std::string device_name; |
| if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) { |
| return false; |
| } |
| |
| entry->blk_device = device_name; |
| return true; |
| } |
| |
| class CheckpointManager { |
| public: |
| CheckpointManager(int needs_checkpoint = -1) : needs_checkpoint_(needs_checkpoint) {} |
| |
| bool Update(FstabEntry* entry) { |
| if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { |
| return true; |
| } |
| |
| if (entry->fs_mgr_flags.checkpoint_blk) { |
| call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}); |
| } |
| |
| if (needs_checkpoint_ == UNKNOWN && |
| !call_vdc_ret({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) { |
| LERROR << "Failed to find if checkpointing is needed. Assuming no."; |
| needs_checkpoint_ = NO; |
| } |
| |
| if (needs_checkpoint_ != YES) { |
| return true; |
| } |
| |
| if (!UpdateCheckpointPartition(entry)) { |
| LERROR << "Could not set up checkpoint partition, skipping!"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Revert(FstabEntry* entry) { |
| if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { |
| return true; |
| } |
| |
| if (device_map_.find(entry->blk_device) == device_map_.end()) { |
| return true; |
| } |
| |
| std::string bow_device = entry->blk_device; |
| entry->blk_device = device_map_[bow_device]; |
| device_map_.erase(bow_device); |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| if (!dm.DeleteDevice("bow")) { |
| PERROR << "Failed to remove bow device"; |
| } |
| |
| return true; |
| } |
| |
| private: |
| bool UpdateCheckpointPartition(FstabEntry* entry) { |
| if (entry->fs_mgr_flags.checkpoint_fs) { |
| if (is_f2fs(entry->fs_type)) { |
| entry->fs_options += ",checkpoint=disable"; |
| } else { |
| LERROR << entry->fs_type << " does not implement checkpoints."; |
| } |
| } else if (entry->fs_mgr_flags.checkpoint_blk) { |
| unique_fd fd(TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd < 0) { |
| PERROR << "Cannot open device " << entry->blk_device; |
| return false; |
| } |
| |
| uint64_t size = get_block_device_size(fd) / 512; |
| if (!size) { |
| PERROR << "Cannot get device size"; |
| return false; |
| } |
| |
| android::dm::DmTable table; |
| if (!table.AddTarget( |
| std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device))) { |
| LERROR << "Failed to add bow target"; |
| return false; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| if (!dm.CreateDevice("bow", table)) { |
| PERROR << "Failed to create bow device"; |
| return false; |
| } |
| |
| std::string name; |
| if (!dm.GetDmDevicePathByName("bow", &name)) { |
| PERROR << "Failed to get bow device name"; |
| return false; |
| } |
| |
| device_map_[name] = entry->blk_device; |
| entry->blk_device = name; |
| } |
| return true; |
| } |
| |
| enum { UNKNOWN = -1, NO = 0, YES = 1 }; |
| int needs_checkpoint_; |
| std::map<std::string, std::string> device_map_; |
| }; |
| |
| static bool IsMountPointMounted(const std::string& mount_point) { |
| // Check if this is already mounted. |
| Fstab fstab; |
| if (!ReadFstabFromFile("/proc/mounts", &fstab)) { |
| return false; |
| } |
| return GetEntryForMountPoint(&fstab, mount_point) != nullptr; |
| } |
| |
| // When multiple fstab records share the same mount_point, it will try to mount each |
| // one in turn, and ignore any duplicates after a first successful mount. |
| // Returns -1 on error, and FS_MGR_MNTALL_* otherwise. |
| int fs_mgr_mount_all(Fstab* fstab, int mount_mode) { |
| int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; |
| int error_count = 0; |
| CheckpointManager checkpoint_manager; |
| AvbUniquePtr avb_handle(nullptr); |
| |
| if (fstab->empty()) { |
| return FS_MGR_MNTALL_FAIL; |
| } |
| |
| for (size_t i = 0; i < fstab->size(); i++) { |
| auto& current_entry = (*fstab)[i]; |
| |
| // If a filesystem should have been mounted in the first stage, we |
| // ignore it here. With one exception, if the filesystem is |
| // formattable, then it can only be formatted in the second stage, |
| // so we allow it to mount here. |
| if (current_entry.fs_mgr_flags.first_stage_mount && |
| (!current_entry.fs_mgr_flags.formattable || |
| IsMountPointMounted(current_entry.mount_point))) { |
| continue; |
| } |
| |
| // Don't mount entries that are managed by vold or not for the mount mode. |
| if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only || |
| ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) || |
| ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) { |
| continue; |
| } |
| |
| // Skip swap and raw partition entries such as boot, recovery, etc. |
| if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" || |
| current_entry.fs_type == "mtd") { |
| continue; |
| } |
| |
| // Skip mounting the root partition, as it will already have been mounted. |
| if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") { |
| if ((current_entry.flags & MS_RDONLY) != 0) { |
| fs_mgr_set_blk_ro(current_entry.blk_device); |
| } |
| continue; |
| } |
| |
| // Translate LABEL= file system labels into block devices. |
| if (is_extfs(current_entry.fs_type)) { |
| if (!TranslateExtLabels(¤t_entry)) { |
| LERROR << "Could not translate label to block device"; |
| continue; |
| } |
| } |
| |
| if (current_entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(¤t_entry)) { |
| LERROR << "Could not set up logical partition, skipping!"; |
| continue; |
| } |
| } |
| |
| if (!checkpoint_manager.Update(¤t_entry)) { |
| continue; |
| } |
| |
| if (current_entry.fs_mgr_flags.wait && |
| !fs_mgr_wait_for_file(current_entry.blk_device, 20s)) { |
| LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all"; |
| continue; |
| } |
| |
| if (current_entry.fs_mgr_flags.avb) { |
| if (!avb_handle) { |
| avb_handle = AvbHandle::Open(); |
| if (!avb_handle) { |
| LERROR << "Failed to open AvbHandle"; |
| return FS_MGR_MNTALL_FAIL; |
| } |
| } |
| if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) == |
| AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point |
| << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if (!current_entry.avb_key.empty()) { |
| if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on standalone partition: " |
| << current_entry.mount_point << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if ((current_entry.fs_mgr_flags.verify)) { |
| int rc = fs_mgr_setup_verity(¤t_entry, true); |
| if (__android_log_is_debuggable() && |
| (rc == FS_MGR_SETUP_VERITY_DISABLED || |
| rc == FS_MGR_SETUP_VERITY_SKIPPED)) { |
| LINFO << "Verity disabled"; |
| } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { |
| LERROR << "Could not set up verified partition, skipping!"; |
| continue; |
| } |
| } |
| |
| int last_idx_inspected; |
| int top_idx = i; |
| int attempted_idx = -1; |
| |
| bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx); |
| auto& attempted_entry = (*fstab)[attempted_idx]; |
| i = last_idx_inspected; |
| int mount_errno = errno; |
| |
| // Handle success and deal with encryptability. |
| if (mret) { |
| int status = handle_encryptable(attempted_entry); |
| |
| if (status == FS_MGR_MNTALL_FAIL) { |
| // Fatal error - no point continuing. |
| return status; |
| } |
| |
| if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { |
| if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { |
| // Log and continue |
| LERROR << "Only one encryptable/encrypted partition supported"; |
| } |
| encryptable = status; |
| if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) { |
| if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.mount_point})) { |
| LERROR << "Encryption failed"; |
| return FS_MGR_MNTALL_FAIL; |
| } |
| } |
| } |
| |
| // Success! Go get the next one. |
| continue; |
| } |
| |
| // Mounting failed, understand why and retry. |
| bool wiped = partition_wiped(current_entry.blk_device.c_str()); |
| bool crypt_footer = false; |
| if (mount_errno != EBUSY && mount_errno != EACCES && |
| current_entry.fs_mgr_flags.formattable && wiped) { |
| // current_entry and attempted_entry point at the same partition, but sometimes |
| // at two different lines in the fstab. Use current_entry for formatting |
| // as that is the preferred one. |
| LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device) |
| << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type |
| << " is formattable. Format it."; |
| |
| checkpoint_manager.Revert(¤t_entry); |
| |
| if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) { |
| unique_fd fd(TEMP_FAILURE_RETRY( |
| open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC))); |
| if (fd >= 0) { |
| LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc; |
| wipe_block_device(fd, get_file_size(fd)); |
| } else { |
| PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open"; |
| } |
| } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) { |
| crypt_footer = true; |
| } |
| if (fs_mgr_do_format(current_entry, crypt_footer) == 0) { |
| // Let's replay the mount actions. |
| i = top_idx - 1; |
| continue; |
| } else { |
| LERROR << __FUNCTION__ << "(): Format failed. " |
| << "Suggest recovery..."; |
| encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; |
| continue; |
| } |
| } |
| |
| // mount(2) returned an error, handle the encryptable/formattable case. |
| if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) { |
| if (wiped) { |
| LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and " |
| << attempted_entry.mount_point << " " << attempted_entry.fs_type |
| << " is encryptable. Suggest recovery..."; |
| encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; |
| continue; |
| } else { |
| // Need to mount a tmpfs at this mountpoint for now, and set |
| // properties that vold will query later for decrypting |
| LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev " |
| << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point |
| << " type " << attempted_entry.fs_type; |
| if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) { |
| ++error_count; |
| continue; |
| } |
| } |
| encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; |
| } else if (mount_errno != EBUSY && mount_errno != EACCES && |
| should_use_metadata_encryption(attempted_entry)) { |
| if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.mount_point})) { |
| ++error_count; |
| } |
| encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; |
| continue; |
| } else { |
| // fs_options might be null so we cannot use PERROR << directly. |
| // Use StringPrintf to output "(null)" instead. |
| if (attempted_entry.fs_mgr_flags.no_fail) { |
| PERROR << android::base::StringPrintf( |
| "Ignoring failure to mount an un-encryptable or wiped " |
| "partition on %s at %s options: %s", |
| attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), |
| attempted_entry.fs_options.c_str()); |
| } else { |
| PERROR << android::base::StringPrintf( |
| "Failed to mount an un-encryptable or wiped partition " |
| "on %s at %s options: %s", |
| attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), |
| attempted_entry.fs_options.c_str()); |
| ++error_count; |
| } |
| continue; |
| } |
| } |
| |
| #if ALLOW_ADBD_DISABLE_VERITY == 1 // "userdebug" build |
| fs_mgr_overlayfs_mount_all(fstab); |
| #endif |
| |
| if (error_count) { |
| return FS_MGR_MNTALL_FAIL; |
| } else { |
| return encryptable; |
| } |
| } |
| |
| // wrapper to __mount() and expects a fully prepared fstab_rec, |
| // unlike fs_mgr_do_mount which does more things with avb / verity etc. |
| int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) { |
| // Run fsck if needed |
| prepare_fs_for_mount(entry.blk_device, entry); |
| |
| int ret = |
| __mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry); |
| if (ret) { |
| ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED; |
| } |
| |
| return ret; |
| } |
| |
| // If tmp_mount_point is non-null, mount the filesystem there. This is for the |
| // tmp mount we do to check the user password |
| // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one |
| // in turn, and stop on 1st success, or no more match. |
| static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name, |
| const std::string& n_blk_device, const char* tmp_mount_point, |
| int needs_checkpoint) { |
| int mount_errors = 0; |
| int first_mount_errno = 0; |
| std::string mount_point; |
| CheckpointManager checkpoint_manager(needs_checkpoint); |
| AvbUniquePtr avb_handle(nullptr); |
| |
| if (!fstab) { |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| for (auto& fstab_entry : *fstab) { |
| if (!fs_match(fstab_entry.mount_point, n_name)) { |
| continue; |
| } |
| |
| // We found our match. |
| // If this swap or a raw partition, report an error. |
| if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" || |
| fstab_entry.fs_type == "mtd") { |
| LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on " |
| << n_blk_device; |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| if (fstab_entry.fs_mgr_flags.logical) { |
| if (!fs_mgr_update_logical_partition(&fstab_entry)) { |
| LERROR << "Could not set up logical partition, skipping!"; |
| continue; |
| } |
| } |
| |
| if (!checkpoint_manager.Update(&fstab_entry)) { |
| LERROR << "Could not set up checkpoint partition, skipping!"; |
| continue; |
| } |
| |
| // First check the filesystem if requested. |
| if (fstab_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(n_blk_device, 20s)) { |
| LERROR << "Skipping mounting '" << n_blk_device << "'"; |
| continue; |
| } |
| |
| int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry); |
| |
| if (fstab_entry.fs_mgr_flags.avb) { |
| if (!avb_handle) { |
| avb_handle = AvbHandle::Open(); |
| if (!avb_handle) { |
| LERROR << "Failed to open AvbHandle"; |
| return FS_MGR_DOMNT_FAILED; |
| } |
| } |
| if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) == |
| AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point |
| << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if (!fstab_entry.avb_key.empty()) { |
| if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) { |
| LERROR << "Failed to set up AVB on standalone partition: " |
| << fstab_entry.mount_point << ", skipping!"; |
| // Skips mounting the device. |
| continue; |
| } |
| } else if (fstab_entry.fs_mgr_flags.verify) { |
| int rc = fs_mgr_setup_verity(&fstab_entry, true); |
| if (__android_log_is_debuggable() && |
| (rc == FS_MGR_SETUP_VERITY_DISABLED || |
| rc == FS_MGR_SETUP_VERITY_SKIPPED)) { |
| LINFO << "Verity disabled"; |
| } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { |
| LERROR << "Could not set up verified partition, skipping!"; |
| continue; |
| } |
| } |
| |
| // Now mount it where requested */ |
| if (tmp_mount_point) { |
| mount_point = tmp_mount_point; |
| } else { |
| mount_point = fstab_entry.mount_point; |
| } |
| int retry_count = 2; |
| while (retry_count-- > 0) { |
| if (!__mount(n_blk_device, mount_point, fstab_entry)) { |
| fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; |
| return FS_MGR_DOMNT_SUCCESS; |
| } else { |
| if (retry_count <= 0) break; // run check_fs only once |
| if (!first_mount_errno) first_mount_errno = errno; |
| mount_errors++; |
| fs_stat |= FS_STAT_FULL_MOUNT_FAILED; |
| // try again after fsck |
| check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat); |
| } |
| } |
| log_fs_stat(fstab_entry.blk_device, fs_stat); |
| } |
| |
| // Reach here means the mount attempt fails. |
| if (mount_errors) { |
| PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point; |
| if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY; |
| } else { |
| // We didn't find a match, say so and return an error. |
| LERROR << "Cannot find mount point " << n_name << " in fstab"; |
| } |
| return FS_MGR_DOMNT_FAILED; |
| } |
| |
| int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) { |
| return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1); |
| } |
| |
| int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point, |
| bool needs_checkpoint) { |
| return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint); |
| } |
| |
| /* |
| * mount a tmpfs filesystem at the given point. |
| * return 0 on success, non-zero on failure. |
| */ |
| int fs_mgr_do_tmpfs_mount(const char *n_name) |
| { |
| int ret; |
| |
| ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC, |
| CRYPTO_TMPFS_OPTIONS); |
| if (ret < 0) { |
| LERROR << "Cannot mount tmpfs filesystem at " << n_name; |
| return -1; |
| } |
| |
| /* Success */ |
| return 0; |
| } |
| |
| static bool InstallZramDevice(const std::string& device) { |
| if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) { |
| PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV; |
| return false; |
| } |
| LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV; |
| return true; |
| } |
| |
| static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) { |
| if (loop.empty() && bdev.empty()) return true; |
| |
| if (bdev.length()) { |
| return InstallZramDevice(bdev); |
| } |
| |
| // Get free loopback |
| unique_fd loop_fd(TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC))); |
| if (loop_fd.get() == -1) { |
| PERROR << "Cannot open loop-control"; |
| return false; |
| } |
| |
| int num = ioctl(loop_fd.get(), LOOP_CTL_GET_FREE); |
| if (num == -1) { |
| PERROR << "Cannot get free loop slot"; |
| return false; |
| } |
| |
| // Prepare target path |
| unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600))); |
| if (target_fd.get() == -1) { |
| PERROR << "Cannot open target path: " << loop; |
| return false; |
| } |
| if (fallocate(target_fd.get(), 0, 0, size) < 0) { |
| PERROR << "Cannot truncate target path: " << loop; |
| return false; |
| } |
| |
| // Connect loopback (device_fd) to target path (target_fd) |
| std::string device = android::base::StringPrintf("/dev/block/loop%d", num); |
| unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC))); |
| if (device_fd.get() == -1) { |
| PERROR << "Cannot open /dev/block/loop" << num; |
| return false; |
| } |
| |
| if (ioctl(device_fd.get(), LOOP_SET_FD, target_fd.get())) { |
| PERROR << "Cannot set loopback to target path"; |
| return false; |
| } |
| |
| // set block size & direct IO |
| if (ioctl(device_fd.get(), LOOP_SET_BLOCK_SIZE, 4096)) { |
| PWARNING << "Cannot set 4KB blocksize to /dev/block/loop" << num; |
| } |
| if (ioctl(device_fd.get(), LOOP_SET_DIRECT_IO, 1)) { |
| PWARNING << "Cannot set direct_io to /dev/block/loop" << num; |
| } |
| |
| return InstallZramDevice(device); |
| } |
| |
| bool fs_mgr_swapon_all(const Fstab& fstab) { |
| bool ret = true; |
| for (const auto& entry : fstab) { |
| // Skip non-swap entries. |
| if (entry.fs_type != "swap") { |
| continue; |
| } |
| |
| if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) { |
| LERROR << "Skipping losetup for '" << entry.blk_device << "'"; |
| } |
| |
| if (entry.zram_size > 0) { |
| // A zram_size was specified, so we need to configure the |
| // device. There is no point in having multiple zram devices |
| // on a system (all the memory comes from the same pool) so |
| // we can assume the device number is 0. |
| if (entry.max_comp_streams >= 0) { |
| auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{ |
| fopen(ZRAM_CONF_MCS, "re"), fclose}; |
| if (zram_mcs_fp == nullptr) { |
| LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS; |
| ret = false; |
| continue; |
| } |
| fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams); |
| } |
| |
| auto zram_fp = |
| std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose}; |
| if (zram_fp == nullptr) { |
| LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV; |
| ret = false; |
| continue; |
| } |
| fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size); |
| } |
| |
| if (entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(entry.blk_device, 20s)) { |
| LERROR << "Skipping mkswap for '" << entry.blk_device << "'"; |
| ret = false; |
| continue; |
| } |
| |
| // Initialize the swap area. |
| const char* mkswap_argv[2] = { |
| MKSWAP_BIN, |
| entry.blk_device.c_str(), |
| }; |
| int err = 0; |
| int status; |
| err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), const_cast<char**>(mkswap_argv), |
| &status, true, LOG_KLOG, false, nullptr, nullptr, 0); |
| if (err) { |
| LERROR << "mkswap failed for " << entry.blk_device; |
| ret = false; |
| continue; |
| } |
| |
| /* If -1, then no priority was specified in fstab, so don't set |
| * SWAP_FLAG_PREFER or encode the priority */ |
| int flags = 0; |
| if (entry.swap_prio >= 0) { |
| flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK; |
| flags |= SWAP_FLAG_PREFER; |
| } else { |
| flags = 0; |
| } |
| err = swapon(entry.blk_device.c_str(), flags); |
| if (err) { |
| LERROR << "swapon failed for " << entry.blk_device; |
| ret = false; |
| } |
| } |
| |
| return ret; |
| } |
| |
| bool fs_mgr_load_verity_state(int* mode) { |
| /* return the default mode, unless any of the verified partitions are in |
| * logging mode, in which case return that */ |
| *mode = VERITY_MODE_DEFAULT; |
| |
| Fstab fstab; |
| if (!ReadDefaultFstab(&fstab)) { |
| LERROR << "Failed to read default fstab"; |
| return false; |
| } |
| |
| for (const auto& entry : fstab) { |
| if (entry.fs_mgr_flags.avb) { |
| *mode = VERITY_MODE_RESTART; // avb only supports restart mode. |
| break; |
| } else if (!entry.fs_mgr_flags.verify) { |
| continue; |
| } |
| |
| int current; |
| if (load_verity_state(entry, ¤t) < 0) { |
| continue; |
| } |
| if (current != VERITY_MODE_DEFAULT) { |
| *mode = current; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool fs_mgr_update_verity_state( |
| std::function<void(const std::string& mount_point, int mode)> callback) { |
| if (!callback) { |
| return false; |
| } |
| |
| int mode; |
| if (!fs_mgr_load_verity_state(&mode)) { |
| return false; |
| } |
| |
| Fstab fstab; |
| if (!ReadDefaultFstab(&fstab)) { |
| LERROR << "Failed to read default fstab"; |
| return false; |
| } |
| |
| DeviceMapper& dm = DeviceMapper::Instance(); |
| |
| for (const auto& entry : fstab) { |
| if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) { |
| continue; |
| } |
| |
| std::string mount_point; |
| if (entry.mount_point == "/") { |
| // In AVB, the dm device name is vroot instead of system. |
| mount_point = entry.fs_mgr_flags.avb ? "vroot" : "system"; |
| } else { |
| mount_point = basename(entry.mount_point.c_str()); |
| } |
| |
| if (dm.GetState(mount_point) == DmDeviceState::INVALID) { |
| PERROR << "Could not find verity device for mount point: " << mount_point; |
| continue; |
| } |
| |
| const char* status; |
| std::vector<DeviceMapper::TargetInfo> table; |
| if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) { |
| if (!entry.fs_mgr_flags.verify_at_boot) { |
| PERROR << "Failed to query DM_TABLE_STATUS for " << mount_point; |
| continue; |
| } |
| status = "V"; |
| } else { |
| status = table[0].data.c_str(); |
| } |
| |
| // To be consistent in vboot 1.0 and vboot 2.0 (AVB), change the mount_point |
| // back to 'system' for the callback. So it has property [partition.system.verified] |
| // instead of [partition.vroot.verified]. |
| if (mount_point == "vroot") mount_point = "system"; |
| if (*status == 'C' || *status == 'V') { |
| callback(mount_point, mode); |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string fs_mgr_get_super_partition_name(int slot) { |
| // Devices upgrading to dynamic partitions are allowed to specify a super |
| // partition name, assumed to be A/B (non-A/B retrofit is not supported). |
| // For devices launching with dynamic partition support, the partition |
| // name must be "super". |
| std::string super_partition; |
| if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) { |
| std::string suffix; |
| if (slot == 0) { |
| suffix = "_a"; |
| } else if (slot == 1) { |
| suffix = "_b"; |
| } else if (slot == -1) { |
| suffix = fs_mgr_get_slot_suffix(); |
| } |
| return super_partition + suffix; |
| } |
| return LP_METADATA_DEFAULT_PARTITION_NAME; |
| } |