blob: 11128f227b917c1502e62fdf56c3683cd894405d [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_STRONG_POINTER_H
#define ANDROID_STRONG_POINTER_H
#include <functional>
#include <type_traits> // for common_type.
// ---------------------------------------------------------------------------
namespace android {
template<typename T> class wp;
// ---------------------------------------------------------------------------
template<typename T>
class sp {
public:
inline sp() : m_ptr(nullptr) { }
// TODO: switch everyone to using this over new, and make RefBase operator
// new private to that class so that we can avoid RefBase being used with
// other memory management mechanisms.
template <typename... Args>
static inline sp<T> make(Args&&... args);
sp(T* other); // NOLINT(implicit)
sp(const sp<T>& other);
sp(sp<T>&& other) noexcept;
template<typename U> sp(U* other); // NOLINT(implicit)
template<typename U> sp(const sp<U>& other); // NOLINT(implicit)
template<typename U> sp(sp<U>&& other); // NOLINT(implicit)
~sp();
// Assignment
sp& operator = (T* other);
sp& operator = (const sp<T>& other);
sp& operator=(sp<T>&& other) noexcept;
template<typename U> sp& operator = (const sp<U>& other);
template<typename U> sp& operator = (sp<U>&& other);
template<typename U> sp& operator = (U* other);
//! Special optimization for use by ProcessState (and nobody else).
void force_set(T* other);
// Reset
void clear();
// Accessors
inline T& operator* () const { return *m_ptr; }
inline T* operator-> () const { return m_ptr; }
inline T* get() const { return m_ptr; }
inline explicit operator bool () const { return m_ptr != nullptr; }
// Punt these to the wp<> implementation.
template<typename U>
inline bool operator == (const wp<U>& o) const {
return o == *this;
}
template<typename U>
inline bool operator != (const wp<U>& o) const {
return o != *this;
}
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
void set_pointer(T* ptr);
static inline void check_not_on_stack(const void* ptr);
T* m_ptr;
};
#define COMPARE_STRONG(_op_) \
template <typename T, typename U> \
static inline bool operator _op_(const sp<T>& t, const sp<U>& u) { \
return t.get() _op_ u.get(); \
} \
template <typename T, typename U> \
static inline bool operator _op_(const T* t, const sp<U>& u) { \
return t _op_ u.get(); \
} \
template <typename T, typename U> \
static inline bool operator _op_(const sp<T>& t, const U* u) { \
return t.get() _op_ u; \
} \
template <typename T> \
static inline bool operator _op_(const sp<T>& t, std::nullptr_t) { \
return t.get() _op_ nullptr; \
} \
template <typename T> \
static inline bool operator _op_(std::nullptr_t, const sp<T>& t) { \
return nullptr _op_ t.get(); \
}
template <template <typename C> class comparator, typename T, typename U>
static inline bool _sp_compare_(T* a, U* b) {
return comparator<typename std::common_type<T*, U*>::type>()(a, b);
}
#define COMPARE_STRONG_FUNCTIONAL(_op_, _compare_) \
template <typename T, typename U> \
static inline bool operator _op_(const sp<T>& t, const sp<U>& u) { \
return _sp_compare_<_compare_>(t.get(), u.get()); \
} \
template <typename T, typename U> \
static inline bool operator _op_(const T* t, const sp<U>& u) { \
return _sp_compare_<_compare_>(t, u.get()); \
} \
template <typename T, typename U> \
static inline bool operator _op_(const sp<T>& t, const U* u) { \
return _sp_compare_<_compare_>(t.get(), u); \
} \
template <typename T> \
static inline bool operator _op_(const sp<T>& t, std::nullptr_t) { \
return _sp_compare_<_compare_>(t.get(), nullptr); \
} \
template <typename T> \
static inline bool operator _op_(std::nullptr_t, const sp<T>& t) { \
return _sp_compare_<_compare_>(nullptr, t.get()); \
}
COMPARE_STRONG(==)
COMPARE_STRONG(!=)
COMPARE_STRONG_FUNCTIONAL(>, std::greater)
COMPARE_STRONG_FUNCTIONAL(<, std::less)
COMPARE_STRONG_FUNCTIONAL(<=, std::less_equal)
COMPARE_STRONG_FUNCTIONAL(>=, std::greater_equal)
#undef COMPARE_STRONG
#undef COMPARE_STRONG_FUNCTIONAL
// For code size reasons, we do not want these inlined or templated.
void sp_report_race();
void sp_report_stack_pointer();
// ---------------------------------------------------------------------------
// No user serviceable parts below here.
// Check whether address is definitely on the calling stack. We actually check whether it is on
// the same 4K page as the frame pointer.
//
// Assumptions:
// - Pages are never smaller than 4K (MIN_PAGE_SIZE)
// - Malloced memory never shares a page with a stack.
//
// It does not appear safe to broaden this check to include adjacent pages; apparently this code
// is used in environments where there may not be a guard page below (at higher addresses than)
// the bottom of the stack.
template <typename T>
void sp<T>::check_not_on_stack(const void* ptr) {
static constexpr int MIN_PAGE_SIZE = 0x1000; // 4K. Safer than including sys/user.h.
static constexpr uintptr_t MIN_PAGE_MASK = ~static_cast<uintptr_t>(MIN_PAGE_SIZE - 1);
uintptr_t my_frame_address =
reinterpret_cast<uintptr_t>(__builtin_frame_address(0 /* this frame */));
if (((reinterpret_cast<uintptr_t>(ptr) ^ my_frame_address) & MIN_PAGE_MASK) == 0) {
sp_report_stack_pointer();
}
}
// TODO: Ideally we should find a way to increment the reference count before running the
// constructor, so that generating an sp<> to this in the constructor is no longer dangerous.
template <typename T>
template <typename... Args>
sp<T> sp<T>::make(Args&&... args) {
T* t = new T(std::forward<Args>(args)...);
sp<T> result;
result.m_ptr = t;
t->incStrong(t); // bypass check_not_on_stack for heap allocation
return result;
}
template<typename T>
sp<T>::sp(T* other)
: m_ptr(other) {
if (other) {
check_not_on_stack(other);
other->incStrong(this);
}
}
template<typename T>
sp<T>::sp(const sp<T>& other)
: m_ptr(other.m_ptr) {
if (m_ptr)
m_ptr->incStrong(this);
}
template <typename T>
sp<T>::sp(sp<T>&& other) noexcept : m_ptr(other.m_ptr) {
other.m_ptr = nullptr;
}
template<typename T> template<typename U>
sp<T>::sp(U* other)
: m_ptr(other) {
if (other) {
check_not_on_stack(other);
(static_cast<T*>(other))->incStrong(this);
}
}
template<typename T> template<typename U>
sp<T>::sp(const sp<U>& other)
: m_ptr(other.m_ptr) {
if (m_ptr)
m_ptr->incStrong(this);
}
template<typename T> template<typename U>
sp<T>::sp(sp<U>&& other)
: m_ptr(other.m_ptr) {
other.m_ptr = nullptr;
}
template<typename T>
sp<T>::~sp() {
if (m_ptr)
m_ptr->decStrong(this);
}
template<typename T>
sp<T>& sp<T>::operator =(const sp<T>& other) {
// Force m_ptr to be read twice, to heuristically check for data races.
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
T* otherPtr(other.m_ptr);
if (otherPtr) otherPtr->incStrong(this);
if (oldPtr) oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = otherPtr;
return *this;
}
template <typename T>
sp<T>& sp<T>::operator=(sp<T>&& other) noexcept {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
if (oldPtr) oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = other.m_ptr;
other.m_ptr = nullptr;
return *this;
}
template<typename T>
sp<T>& sp<T>::operator =(T* other) {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
if (other) {
check_not_on_stack(other);
other->incStrong(this);
}
if (oldPtr) oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = other;
return *this;
}
template<typename T> template<typename U>
sp<T>& sp<T>::operator =(const sp<U>& other) {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
T* otherPtr(other.m_ptr);
if (otherPtr) otherPtr->incStrong(this);
if (oldPtr) oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = otherPtr;
return *this;
}
template<typename T> template<typename U>
sp<T>& sp<T>::operator =(sp<U>&& other) {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
if (m_ptr) m_ptr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = other.m_ptr;
other.m_ptr = nullptr;
return *this;
}
template<typename T> template<typename U>
sp<T>& sp<T>::operator =(U* other) {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
if (other) (static_cast<T*>(other))->incStrong(this);
if (oldPtr) oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = other;
return *this;
}
template<typename T>
void sp<T>::force_set(T* other) {
other->forceIncStrong(this);
m_ptr = other;
}
template<typename T>
void sp<T>::clear() {
T* oldPtr(*const_cast<T* volatile*>(&m_ptr));
if (oldPtr) {
oldPtr->decStrong(this);
if (oldPtr != *const_cast<T* volatile*>(&m_ptr)) sp_report_race();
m_ptr = nullptr;
}
}
template<typename T>
void sp<T>::set_pointer(T* ptr) {
m_ptr = ptr;
}
} // namespace android
// ---------------------------------------------------------------------------
#endif // ANDROID_STRONG_POINTER_H