| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define TRACE_TAG SOCKETS |
| |
| #include "sysdeps.h" |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <mutex> |
| #include <string> |
| #include <vector> |
| |
| #include <android-base/strings.h> |
| |
| #if !ADB_HOST |
| #include <android-base/properties.h> |
| #include <log/log_properties.h> |
| #endif |
| |
| #include "adb.h" |
| #include "adb_io.h" |
| #include "adb_utils.h" |
| #include "transport.h" |
| #include "types.h" |
| |
| using namespace std::chrono_literals; |
| |
| static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex(); |
| static unsigned local_socket_next_id = 1; |
| |
| static auto& local_socket_list = *new std::vector<asocket*>(); |
| |
| /* the the list of currently closing local sockets. |
| ** these have no peer anymore, but still packets to |
| ** write to their fd. |
| */ |
| static auto& local_socket_closing_list = *new std::vector<asocket*>(); |
| |
| // Parse the global list of sockets to find one with id |local_id|. |
| // If |peer_id| is not 0, also check that it is connected to a peer |
| // with id |peer_id|. Returns an asocket handle on success, NULL on failure. |
| asocket* find_local_socket(unsigned local_id, unsigned peer_id) { |
| asocket* result = nullptr; |
| |
| std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); |
| for (asocket* s : local_socket_list) { |
| if (s->id != local_id) { |
| continue; |
| } |
| if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) { |
| result = s; |
| } |
| break; |
| } |
| |
| return result; |
| } |
| |
| void install_local_socket(asocket* s) { |
| std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); |
| |
| s->id = local_socket_next_id++; |
| |
| // Socket ids should never be 0. |
| if (local_socket_next_id == 0) { |
| LOG(FATAL) << "local socket id overflow"; |
| } |
| |
| local_socket_list.push_back(s); |
| } |
| |
| void remove_socket(asocket* s) { |
| std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); |
| for (auto list : { &local_socket_list, &local_socket_closing_list }) { |
| list->erase(std::remove_if(list->begin(), list->end(), [s](asocket* x) { return x == s; }), |
| list->end()); |
| } |
| } |
| |
| void close_all_sockets(atransport* t) { |
| /* this is a little gross, but since s->close() *will* modify |
| ** the list out from under you, your options are limited. |
| */ |
| std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); |
| restart: |
| for (asocket* s : local_socket_list) { |
| if (s->transport == t || (s->peer && s->peer->transport == t)) { |
| s->close(s); |
| goto restart; |
| } |
| } |
| } |
| |
| enum class SocketFlushResult { |
| Destroyed, |
| TryAgain, |
| Completed, |
| }; |
| |
| static SocketFlushResult local_socket_flush_incoming(asocket* s) { |
| D("LS(%u) %s: %zu bytes in queue", s->id, __func__, s->packet_queue.size()); |
| uint32_t bytes_flushed = 0; |
| if (!s->packet_queue.empty()) { |
| std::vector<adb_iovec> iov = s->packet_queue.iovecs(); |
| ssize_t rc = adb_writev(s->fd, iov.data(), iov.size()); |
| D("LS(%u) %s: rc = %zd", s->id, __func__, rc); |
| if (rc > 0) { |
| bytes_flushed = rc; |
| if (static_cast<size_t>(rc) == s->packet_queue.size()) { |
| s->packet_queue.clear(); |
| } else { |
| s->packet_queue.drop_front(rc); |
| } |
| } else if (rc == -1 && errno == EAGAIN) { |
| // fd is full. |
| } else { |
| // rc == 0, probably. |
| // The other side closed its read side of the fd, but it's possible that we can still |
| // read from the socket. Give that a try before giving up. |
| s->has_write_error = true; |
| } |
| } |
| |
| bool fd_full = !s->packet_queue.empty() && !s->has_write_error; |
| if (s->transport && s->peer) { |
| if (s->available_send_bytes.has_value()) { |
| // Deferred acks are available. |
| send_ready(s->id, s->peer->id, s->transport, bytes_flushed); |
| } else { |
| // Deferred acks aren't available, we should ask for more data as long as we have less |
| // than a full packet left in our queue. |
| if (bytes_flushed != 0 && s->packet_queue.size() < MAX_PAYLOAD) { |
| send_ready(s->id, s->peer->id, s->transport, 0); |
| } |
| } |
| } |
| |
| // If we sent the last packet of a closing socket, we can now destroy it. |
| if (s->closing && !fd_full) { |
| s->close(s); |
| return SocketFlushResult::Destroyed; |
| } |
| |
| if (fd_full) { |
| fdevent_add(s->fde, FDE_WRITE); |
| return SocketFlushResult::TryAgain; |
| } else { |
| fdevent_del(s->fde, FDE_WRITE); |
| return SocketFlushResult::Completed; |
| } |
| } |
| |
| // Returns false if the socket has been closed and destroyed as a side-effect of this function. |
| static bool local_socket_flush_outgoing(asocket* s) { |
| const size_t max_payload = s->get_max_payload(); |
| apacket::payload_type data; |
| data.resize(max_payload); |
| char* x = &data[0]; |
| size_t avail = max_payload; |
| int r = 0; |
| int is_eof = 0; |
| |
| while (avail > 0) { |
| r = adb_read(s->fd, x, avail); |
| D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r, |
| r < 0 ? errno : 0, avail); |
| if (r == -1) { |
| if (errno == EAGAIN) { |
| break; |
| } |
| } else if (r > 0) { |
| avail -= r; |
| x += r; |
| continue; |
| } |
| |
| /* r = 0 or unhandled error */ |
| is_eof = 1; |
| break; |
| } |
| D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d", s->id, s->fd, r, is_eof); |
| |
| if (avail != max_payload && s->peer) { |
| data.resize(max_payload - avail); |
| |
| // s->peer->enqueue() may call s->close() and free s, |
| // so save variables for debug printing below. |
| unsigned saved_id = s->id; |
| int saved_fd = s->fd; |
| |
| if (s->available_send_bytes) { |
| *s->available_send_bytes -= data.size(); |
| } |
| |
| r = s->peer->enqueue(s->peer, std::move(data)); |
| D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r); |
| |
| if (r < 0) { |
| // Error return means they closed us as a side-effect and we must |
| // return immediately. |
| // |
| // Note that if we still have buffered packets, the socket will be |
| // placed on the closing socket list. This handler function will be |
| // called again to process FDE_WRITE events. |
| return false; |
| } |
| |
| if (r > 0) { |
| if (s->available_send_bytes) { |
| if (*s->available_send_bytes <= 0) { |
| D("LS(%u): send buffer full (%" PRId64 ")", saved_id, *s->available_send_bytes); |
| fdevent_del(s->fde, FDE_READ); |
| } |
| } else { |
| D("LS(%u): acks not deferred, blocking", saved_id); |
| fdevent_del(s->fde, FDE_READ); |
| } |
| } |
| } |
| |
| if (is_eof) { |
| D(" closing because is_eof=%d", is_eof); |
| s->close(s); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int local_socket_enqueue(asocket* s, apacket::payload_type data) { |
| D("LS(%d): enqueue %zu", s->id, data.size()); |
| |
| s->packet_queue.append(std::move(data)); |
| switch (local_socket_flush_incoming(s)) { |
| case SocketFlushResult::Destroyed: |
| return -1; |
| |
| case SocketFlushResult::TryAgain: |
| return 1; |
| |
| case SocketFlushResult::Completed: |
| return 0; |
| } |
| |
| return !s->packet_queue.empty(); |
| } |
| |
| static void local_socket_ready(asocket* s) { |
| /* far side is ready for data, pay attention to |
| readable events */ |
| fdevent_add(s->fde, FDE_READ); |
| } |
| |
| struct ClosingSocket { |
| std::chrono::steady_clock::time_point begin; |
| }; |
| |
| // The standard (RFC 1122 - 4.2.2.13) says that if we call close on a |
| // socket while we have pending data, a TCP RST should be sent to the |
| // other end to notify it that we didn't read all of its data. However, |
| // this can result in data that we've successfully written out to be dropped |
| // on the other end. To avoid this, instead of immediately closing a |
| // socket, call shutdown on it instead, and then read from the file |
| // descriptor until we hit EOF or an error before closing. |
| static void deferred_close(unique_fd fd) { |
| // Shutdown the socket in the outgoing direction only, so that |
| // we don't have the same problem on the opposite end. |
| adb_shutdown(fd.get(), SHUT_WR); |
| auto callback = [](fdevent* fde, unsigned event, void* arg) { |
| auto socket_info = static_cast<ClosingSocket*>(arg); |
| if (event & FDE_READ) { |
| ssize_t rc; |
| char buf[BUFSIZ]; |
| while ((rc = adb_read(fde->fd.get(), buf, sizeof(buf))) > 0) { |
| continue; |
| } |
| |
| if (rc == -1 && errno == EAGAIN) { |
| // There's potentially more data to read. |
| auto duration = std::chrono::steady_clock::now() - socket_info->begin; |
| if (duration > 1s) { |
| LOG(WARNING) << "timeout expired while flushing socket, closing"; |
| } else { |
| return; |
| } |
| } |
| } else if (event & FDE_TIMEOUT) { |
| LOG(WARNING) << "timeout expired while flushing socket, closing"; |
| } |
| |
| // Either there was an error, we hit the end of the socket, or our timeout expired. |
| fdevent_destroy(fde); |
| delete socket_info; |
| }; |
| |
| ClosingSocket* socket_info = new ClosingSocket{ |
| .begin = std::chrono::steady_clock::now(), |
| }; |
| |
| fdevent* fde = fdevent_create(fd.release(), callback, socket_info); |
| fdevent_add(fde, FDE_READ); |
| fdevent_set_timeout(fde, 1s); |
| } |
| |
| // be sure to hold the socket list lock when calling this |
| static void local_socket_destroy(asocket* s) { |
| int exit_on_close = s->exit_on_close; |
| |
| D("LS(%d): destroying fde.fd=%d", s->id, s->fd); |
| |
| deferred_close(fdevent_release(s->fde)); |
| |
| remove_socket(s); |
| delete s; |
| |
| if (exit_on_close) { |
| D("local_socket_destroy: exiting"); |
| exit(0); |
| } |
| } |
| |
| static void local_socket_close(asocket* s) { |
| D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd); |
| std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); |
| if (s->peer) { |
| D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); |
| /* Note: it's important to call shutdown before disconnecting from |
| * the peer, this ensures that remote sockets can still get the id |
| * of the local socket they're connected to, to send a CLOSE() |
| * protocol event. */ |
| if (s->peer->shutdown) { |
| s->peer->shutdown(s->peer); |
| } |
| s->peer->peer = nullptr; |
| s->peer->close(s->peer); |
| s->peer = nullptr; |
| } |
| |
| /* If we are already closing, or if there are no |
| ** pending packets, destroy immediately |
| */ |
| if (s->closing || s->has_write_error || s->packet_queue.empty()) { |
| int id = s->id; |
| local_socket_destroy(s); |
| D("LS(%d): closed", id); |
| return; |
| } |
| |
| /* otherwise, put on the closing list |
| */ |
| D("LS(%d): closing", s->id); |
| s->closing = true; |
| fdevent_del(s->fde, FDE_READ); |
| remove_socket(s); |
| D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd); |
| local_socket_closing_list.push_back(s); |
| CHECK_EQ(FDE_WRITE, s->fde->state & FDE_WRITE); |
| } |
| |
| static void local_socket_event_func(int fd, unsigned ev, void* _s) { |
| asocket* s = reinterpret_cast<asocket*>(_s); |
| D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev); |
| |
| /* put the FDE_WRITE processing before the FDE_READ |
| ** in order to simplify the code. |
| */ |
| if (ev & FDE_WRITE) { |
| switch (local_socket_flush_incoming(s)) { |
| case SocketFlushResult::Destroyed: |
| return; |
| |
| case SocketFlushResult::TryAgain: |
| break; |
| |
| case SocketFlushResult::Completed: |
| break; |
| } |
| } |
| |
| if (ev & FDE_READ) { |
| if (!local_socket_flush_outgoing(s)) { |
| return; |
| } |
| } |
| |
| if (ev & FDE_ERROR) { |
| /* this should be caught be the next read or write |
| ** catching it here means we may skip the last few |
| ** bytes of readable data. |
| */ |
| D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd); |
| return; |
| } |
| } |
| |
| void local_socket_ack(asocket* s, std::optional<int32_t> acked_bytes) { |
| // acked_bytes can be negative! |
| // |
| // In the future, we can use this to preemptively supply backpressure, instead |
| // of waiting for the writer to hit its limit. |
| if (s->available_send_bytes.has_value() != acked_bytes.has_value()) { |
| LOG(ERROR) << "delayed ack mismatch: socket = " << s->available_send_bytes.has_value() |
| << ", payload = " << acked_bytes.has_value(); |
| return; |
| } |
| |
| if (s->available_send_bytes.has_value()) { |
| D("LS(%d) received delayed ack, available bytes: %" PRId64 " += %" PRIu32, s->id, |
| *s->available_send_bytes, *acked_bytes); |
| |
| // This can't (reasonably) overflow: available_send_bytes is 64-bit. |
| *s->available_send_bytes += *acked_bytes; |
| if (*s->available_send_bytes > 0) { |
| s->ready(s); |
| } |
| } else { |
| D("LS(%d) received ack", s->id); |
| s->ready(s); |
| } |
| } |
| |
| asocket* create_local_socket(unique_fd ufd) { |
| int fd = ufd.release(); |
| asocket* s = new asocket(); |
| s->fd = fd; |
| s->enqueue = local_socket_enqueue; |
| s->ready = local_socket_ready; |
| s->shutdown = nullptr; |
| s->close = local_socket_close; |
| install_local_socket(s); |
| |
| s->fde = fdevent_create(fd, local_socket_event_func, s); |
| D("LS(%d): created (fd=%d)", s->id, s->fd); |
| return s; |
| } |
| |
| asocket* create_local_service_socket(std::string_view name, atransport* transport) { |
| #if !ADB_HOST |
| if (asocket* s = daemon_service_to_socket(name, transport); s) { |
| return s; |
| } |
| #endif |
| unique_fd fd = service_to_fd(name, transport); |
| if (fd < 0) { |
| return nullptr; |
| } |
| |
| int fd_value = fd.get(); |
| asocket* s = create_local_socket(std::move(fd)); |
| s->transport = transport; |
| LOG(VERBOSE) << "LS(" << s->id << "): bound to '" << name << "' via " << fd_value; |
| |
| #if !ADB_HOST |
| if ((name.starts_with("root:") && getuid() != 0 && __android_log_is_debuggable()) || |
| (name.starts_with("unroot:") && getuid() == 0) || name.starts_with("usb:") || |
| name.starts_with("tcpip:")) { |
| D("LS(%d): enabling exit_on_close", s->id); |
| s->exit_on_close = 1; |
| } |
| #endif |
| |
| return s; |
| } |
| |
| static int remote_socket_enqueue(asocket* s, apacket::payload_type data) { |
| D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); |
| apacket* p = get_apacket(); |
| |
| p->msg.command = A_WRTE; |
| p->msg.arg0 = s->peer->id; |
| p->msg.arg1 = s->id; |
| |
| if (data.size() > MAX_PAYLOAD) { |
| put_apacket(p); |
| return -1; |
| } |
| |
| p->payload = std::move(data); |
| p->msg.data_length = p->payload.size(); |
| |
| send_packet(p, s->transport); |
| return 1; |
| } |
| |
| static void remote_socket_ready(asocket* s) { |
| D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); |
| apacket* p = get_apacket(); |
| p->msg.command = A_OKAY; |
| p->msg.arg0 = s->peer->id; |
| p->msg.arg1 = s->id; |
| send_packet(p, s->transport); |
| } |
| |
| static void remote_socket_shutdown(asocket* s) { |
| D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, |
| s->peer ? s->peer->fd : -1); |
| apacket* p = get_apacket(); |
| p->msg.command = A_CLSE; |
| if (s->peer) { |
| p->msg.arg0 = s->peer->id; |
| } |
| p->msg.arg1 = s->id; |
| send_packet(p, s->transport); |
| } |
| |
| static void remote_socket_close(asocket* s) { |
| if (s->peer) { |
| s->peer->peer = nullptr; |
| D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); |
| s->peer->close(s->peer); |
| } |
| D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, |
| s->peer ? s->peer->fd : -1); |
| D("RS(%d): closed", s->id); |
| delete s; |
| } |
| |
| // Create a remote socket to exchange packets with a remote service through transport |
| // |t|. Where |id| is the socket id of the corresponding service on the other |
| // side of the transport (it is allocated by the remote side and _cannot_ be 0). |
| // Returns a new non-NULL asocket handle. |
| asocket* create_remote_socket(unsigned id, atransport* t) { |
| if (id == 0) { |
| LOG(FATAL) << "invalid remote socket id (0)"; |
| } |
| asocket* s = new asocket(); |
| s->id = id; |
| s->enqueue = remote_socket_enqueue; |
| s->ready = remote_socket_ready; |
| s->shutdown = remote_socket_shutdown; |
| s->close = remote_socket_close; |
| s->transport = t; |
| |
| D("RS(%d): created", s->id); |
| return s; |
| } |
| |
| void connect_to_remote(asocket* s, std::string_view destination) { |
| #if ADB_HOST |
| // Snoop reverse:forward: requests to track them so that an |
| // appropriate filter (to figure out whether the remote is |
| // allowed to connect locally) can be applied. |
| s->transport->UpdateReverseConfig(destination); |
| #endif |
| D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd); |
| apacket* p = get_apacket(); |
| |
| LOG(VERBOSE) << "LS(" << s->id << ": connect(" << destination << ")"; |
| p->msg.command = A_OPEN; |
| p->msg.arg0 = s->id; |
| |
| if (s->transport->SupportsDelayedAck()) { |
| p->msg.arg1 = INITIAL_DELAYED_ACK_BYTES; |
| s->available_send_bytes = 0; |
| } |
| |
| // adbd used to expect a null-terminated string. |
| // Keep doing so to maintain backward compatibility. |
| p->payload.resize(destination.size() + 1); |
| memcpy(p->payload.data(), destination.data(), destination.size()); |
| p->payload[destination.size()] = '\0'; |
| p->msg.data_length = p->payload.size(); |
| |
| CHECK_LE(p->msg.data_length, s->get_max_payload()); |
| |
| send_packet(p, s->transport); |
| } |
| |
| #if ADB_HOST |
| /* this is used by magic sockets to rig local sockets to |
| send the go-ahead message when they connect */ |
| static void local_socket_ready_notify(asocket* s) { |
| s->ready = local_socket_ready; |
| s->shutdown = nullptr; |
| s->close = local_socket_close; |
| SendOkay(s->fd); |
| s->ready(s); |
| } |
| |
| /* this is used by magic sockets to rig local sockets to |
| send the failure message if they are closed before |
| connected (to avoid closing them without a status message) */ |
| static void local_socket_close_notify(asocket* s) { |
| s->ready = local_socket_ready; |
| s->shutdown = nullptr; |
| s->close = local_socket_close; |
| SendFail(s->fd, "closed"); |
| s->close(s); |
| } |
| |
| static unsigned unhex(const char* s, int len) { |
| unsigned n = 0, c; |
| |
| while (len-- > 0) { |
| switch ((c = *s++)) { |
| case '0': |
| case '1': |
| case '2': |
| case '3': |
| case '4': |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': |
| c -= '0'; |
| break; |
| case 'a': |
| case 'b': |
| case 'c': |
| case 'd': |
| case 'e': |
| case 'f': |
| c = c - 'a' + 10; |
| break; |
| case 'A': |
| case 'B': |
| case 'C': |
| case 'D': |
| case 'E': |
| case 'F': |
| c = c - 'A' + 10; |
| break; |
| default: |
| return 0xffffffff; |
| } |
| |
| n = (n << 4) | c; |
| } |
| |
| return n; |
| } |
| |
| namespace internal { |
| |
| // Parses a host service string of the following format: |
| // * [tcp:|udp:]<serial>[:<port>]:<command> |
| // * <prefix>:<serial>:<command> |
| // Where <port> must be a base-10 number and <prefix> may be any of {usb,product,model,device}. |
| bool parse_host_service(std::string_view* out_serial, std::string_view* out_command, |
| std::string_view full_service) { |
| if (full_service.empty()) { |
| return false; |
| } |
| |
| std::string_view serial; |
| std::string_view command = full_service; |
| // Remove |count| bytes from the beginning of command and add them to |serial|. |
| auto consume = [&full_service, &serial, &command](size_t count) { |
| CHECK_LE(count, command.size()); |
| if (!serial.empty()) { |
| CHECK_EQ(serial.data() + serial.size(), command.data()); |
| } |
| |
| serial = full_service.substr(0, serial.size() + count); |
| command.remove_prefix(count); |
| }; |
| |
| // Remove the trailing : from serial, and assign the values to the output parameters. |
| auto finish = [out_serial, out_command, &serial, &command] { |
| if (serial.empty() || command.empty()) { |
| return false; |
| } |
| |
| CHECK_EQ(':', serial.back()); |
| serial.remove_suffix(1); |
| |
| *out_serial = serial; |
| *out_command = command; |
| return true; |
| }; |
| |
| static constexpr std::string_view prefixes[] = { |
| "usb:", "product:", "model:", "device:", "localfilesystem:"}; |
| for (std::string_view prefix : prefixes) { |
| if (command.starts_with(prefix)) { |
| consume(prefix.size()); |
| |
| size_t offset = command.find_first_of(':'); |
| if (offset == std::string::npos) { |
| return false; |
| } |
| consume(offset + 1); |
| return finish(); |
| } |
| } |
| |
| // For fastboot compatibility, ignore protocol prefixes. |
| if (command.starts_with("tcp:") || command.starts_with("udp:")) { |
| consume(4); |
| if (command.empty()) { |
| return false; |
| } |
| } |
| if (command.starts_with("vsock:")) { |
| // vsock serials are vsock:cid:port, which have an extra colon compared to tcp. |
| size_t next_colon = command.find(':'); |
| if (next_colon == std::string::npos) { |
| return false; |
| } |
| consume(next_colon + 1); |
| } |
| |
| bool found_address = false; |
| if (command[0] == '[') { |
| // Read an IPv6 address. `adb connect` creates the serial number from the canonical |
| // network address so it will always have the [] delimiters. |
| size_t ipv6_end = command.find_first_of(']'); |
| if (ipv6_end != std::string::npos) { |
| consume(ipv6_end + 1); |
| if (command.empty()) { |
| // Nothing after the IPv6 address. |
| return false; |
| } else if (command[0] != ':') { |
| // Garbage after the IPv6 address. |
| return false; |
| } |
| consume(1); |
| found_address = true; |
| } |
| } |
| |
| if (!found_address) { |
| // Scan ahead to the next colon. |
| size_t offset = command.find_first_of(':'); |
| if (offset == std::string::npos) { |
| return false; |
| } |
| consume(offset + 1); |
| } |
| |
| // We're either at the beginning of a port, or the command itself. |
| // Look for a port in between colons. |
| size_t next_colon = command.find_first_of(':'); |
| if (next_colon == std::string::npos) { |
| // No colon, we must be at the command. |
| return finish(); |
| } |
| |
| bool port_valid = true; |
| if (command.size() <= next_colon) { |
| return false; |
| } |
| |
| std::string_view port = command.substr(0, next_colon); |
| for (auto digit : port) { |
| if (!isdigit(digit)) { |
| // Port isn't a number. |
| port_valid = false; |
| break; |
| } |
| } |
| |
| if (port_valid) { |
| consume(next_colon + 1); |
| } |
| return finish(); |
| } |
| |
| } // namespace internal |
| |
| static int smart_socket_enqueue(asocket* s, apacket::payload_type data) { |
| std::string_view service; |
| std::string_view serial; |
| TransportId transport_id = 0; |
| TransportType type = kTransportAny; |
| |
| D("SS(%d): enqueue %zu", s->id, data.size()); |
| |
| if (s->smart_socket_data.empty()) { |
| // TODO: Make this an IOVector? |
| s->smart_socket_data.assign(data.begin(), data.end()); |
| } else { |
| std::copy(data.begin(), data.end(), std::back_inserter(s->smart_socket_data)); |
| } |
| |
| /* don't bother if we can't decode the length */ |
| if (s->smart_socket_data.size() < 4) { |
| return 0; |
| } |
| |
| uint32_t len = unhex(s->smart_socket_data.data(), 4); |
| if (len == 0 || len > MAX_PAYLOAD) { |
| D("SS(%d): bad size (%u)", s->id, len); |
| goto fail; |
| } |
| |
| D("SS(%d): len is %u", s->id, len); |
| /* can't do anything until we have the full header */ |
| if ((len + 4) > s->smart_socket_data.size()) { |
| D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - s->smart_socket_data.size()); |
| return 0; |
| } |
| |
| s->smart_socket_data[len + 4] = 0; |
| |
| D("SS(%d): '%s'", s->id, (char*)(s->smart_socket_data.data() + 4)); |
| |
| service = std::string_view(s->smart_socket_data).substr(4); |
| |
| VLOG(SERVICES) << "service request: '" << service << "'"; |
| |
| // TODO: These should be handled in handle_host_request. |
| if (android::base::ConsumePrefix(&service, "host-serial:")) { |
| // serial number should follow "host:" and could be a host:port string. |
| if (!internal::parse_host_service(&serial, &service, service)) { |
| LOG(ERROR) << "SS(" << s->id << "): failed to parse host service: " << service; |
| goto fail; |
| } |
| } else if (android::base::ConsumePrefix(&service, "host-transport-id:")) { |
| if (!ParseUint(&transport_id, service, &service)) { |
| LOG(ERROR) << "SS(" << s->id << "): failed to parse host transport id: " << service; |
| return -1; |
| } |
| if (!android::base::ConsumePrefix(&service, ":")) { |
| LOG(ERROR) << "SS(" << s->id << "): host-transport-id without command"; |
| return -1; |
| } |
| } else if (android::base::ConsumePrefix(&service, "host-usb:")) { |
| type = kTransportUsb; |
| } else if (android::base::ConsumePrefix(&service, "host-local:")) { |
| type = kTransportLocal; |
| } else if (android::base::ConsumePrefix(&service, "host:")) { |
| type = kTransportAny; |
| } else { |
| service = std::string_view{}; |
| } |
| |
| if (!service.empty()) { |
| asocket* s2; |
| |
| // Some requests are handled immediately -- in that case the handle_host_request() routine |
| // has sent the OKAY or FAIL message and all we have to do is clean up. |
| auto host_request_result = handle_host_request( |
| service, type, serial.empty() ? nullptr : std::string(serial).c_str(), transport_id, |
| s->peer->fd, s); |
| |
| switch (host_request_result) { |
| case HostRequestResult::Handled: |
| LOG(VERBOSE) << "SS(" << s->id << "): handled host service '" << service << "'"; |
| goto fail; |
| |
| case HostRequestResult::SwitchedTransport: |
| D("SS(%d): okay transport", s->id); |
| s->smart_socket_data.clear(); |
| return 0; |
| |
| case HostRequestResult::Unhandled: |
| break; |
| } |
| |
| /* try to find a local service with this name. |
| ** if no such service exists, we'll fail out |
| ** and tear down here. |
| */ |
| // TODO: Convert to string_view. |
| s2 = host_service_to_socket(service, serial, transport_id); |
| if (s2 == nullptr) { |
| LOG(VERBOSE) << "SS(" << s->id << "): couldn't create host service '" << service << "'"; |
| std::string msg = std::string("unknown host service '") + std::string(service) + "'"; |
| SendFail(s->peer->fd, msg); |
| goto fail; |
| } |
| |
| /* we've connected to a local host service, |
| ** so we make our peer back into a regular |
| ** local socket and bind it to the new local |
| ** service socket, acknowledge the successful |
| ** connection, and close this smart socket now |
| ** that its work is done. |
| */ |
| SendOkay(s->peer->fd); |
| |
| s->peer->ready = local_socket_ready; |
| s->peer->shutdown = nullptr; |
| s->peer->close = local_socket_close; |
| s->peer->peer = s2; |
| s2->peer = s->peer; |
| s->peer = nullptr; |
| D("SS(%d): okay", s->id); |
| s->close(s); |
| |
| /* initial state is "ready" */ |
| s2->ready(s2); |
| return 0; |
| } |
| |
| if (!s->transport) { |
| SendFail(s->peer->fd, "device offline (no transport)"); |
| goto fail; |
| } else if (!ConnectionStateIsOnline(s->transport->GetConnectionState())) { |
| /* if there's no remote we fail the connection |
| ** right here and terminate it |
| */ |
| SendFail(s->peer->fd, "device offline (transport offline)"); |
| goto fail; |
| } |
| |
| /* instrument our peer to pass the success or fail |
| ** message back once it connects or closes, then |
| ** detach from it, request the connection, and |
| ** tear down |
| */ |
| s->peer->ready = local_socket_ready_notify; |
| s->peer->shutdown = nullptr; |
| s->peer->close = local_socket_close_notify; |
| s->peer->peer = nullptr; |
| /* give them our transport and upref it */ |
| s->peer->transport = s->transport; |
| |
| connect_to_remote(s->peer, std::string_view(s->smart_socket_data).substr(4)); |
| s->peer = nullptr; |
| s->close(s); |
| return 1; |
| |
| fail: |
| /* we're going to close our peer as a side-effect, so |
| ** return -1 to signal that state to the local socket |
| ** who is enqueueing against us |
| */ |
| s->close(s); |
| return -1; |
| } |
| |
| static void smart_socket_ready(asocket* s) { |
| D("SS(%d): ready", s->id); |
| } |
| |
| static void smart_socket_close(asocket* s) { |
| D("SS(%d): closed", s->id); |
| if (s->peer) { |
| s->peer->peer = nullptr; |
| s->peer->close(s->peer); |
| s->peer = nullptr; |
| } |
| delete s; |
| } |
| |
| static asocket* create_smart_socket(void) { |
| D("Creating smart socket"); |
| asocket* s = new asocket(); |
| s->enqueue = smart_socket_enqueue; |
| s->ready = smart_socket_ready; |
| s->shutdown = nullptr; |
| s->close = smart_socket_close; |
| |
| D("SS(%d)", s->id); |
| return s; |
| } |
| |
| void connect_to_smartsocket(asocket* s) { |
| D("Connecting to smart socket"); |
| asocket* ss = create_smart_socket(); |
| s->peer = ss; |
| ss->peer = s; |
| s->ready(s); |
| } |
| #endif |
| |
| size_t asocket::get_max_payload() const { |
| size_t max_payload = MAX_PAYLOAD; |
| if (transport) { |
| max_payload = std::min(max_payload, transport->get_max_payload()); |
| } |
| if (peer && peer->transport) { |
| max_payload = std::min(max_payload, peer->transport->get_max_payload()); |
| } |
| return max_payload; |
| } |