blob: 6133e7c87109a6955505108bdc2d1323b63314e0 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sysdeps.h"
#include "client/usb.h"
#include <stdint.h>
#include <stdlib.h>
#if defined(__linux__)
#include <sys/inotify.h>
#include <unistd.h>
#endif
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <unordered_map>
#include <vector>
#include <libusb/libusb.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/thread_annotations.h>
#include "adb.h"
#include "adb_utils.h"
#include "fdevent/fdevent.h"
#include "transfer_id.h"
#include "transport.h"
using namespace std::chrono_literals;
using android::base::ScopedLockAssertion;
using android::base::StringPrintf;
#define LOG_ERR(out, fmt, ...) \
do { \
std::string __err = android::base::StringPrintf(fmt, ##__VA_ARGS__); \
LOG(ERROR) << __err; \
*out = std::move(__err); \
} while (0)
// RAII wrappers for libusb.
struct ConfigDescriptorDeleter {
void operator()(libusb_config_descriptor* desc) { libusb_free_config_descriptor(desc); }
};
using unique_config_descriptor = std::unique_ptr<libusb_config_descriptor, ConfigDescriptorDeleter>;
struct DeviceDeleter {
void operator()(libusb_device* d) { libusb_unref_device(d); }
};
using unique_device = std::unique_ptr<libusb_device, DeviceDeleter>;
struct DeviceHandleDeleter {
void operator()(libusb_device_handle* h) { libusb_close(h); }
};
using unique_device_handle = std::unique_ptr<libusb_device_handle, DeviceHandleDeleter>;
static void process_device(libusb_device* device_raw);
static std::string get_device_address(libusb_device* device) {
uint8_t ports[7];
int port_count = libusb_get_port_numbers(device, ports, 7);
if (port_count < 0) return "";
std::string address = StringPrintf("%d-%d", libusb_get_bus_number(device), ports[0]);
for (int port = 1; port < port_count; ++port) {
address += StringPrintf(".%d", ports[port]);
}
return address;
}
#if defined(__linux__)
static std::string get_device_serial_path(libusb_device* device) {
std::string address = get_device_address(device);
std::string path = StringPrintf("/sys/bus/usb/devices/%s/serial", address.c_str());
return path;
}
#endif
static bool endpoint_is_output(uint8_t endpoint) {
return (endpoint & LIBUSB_ENDPOINT_DIR_MASK) == LIBUSB_ENDPOINT_OUT;
}
static bool should_perform_zero_transfer(size_t write_length, uint16_t zero_mask) {
return write_length != 0 && zero_mask != 0 && (write_length & zero_mask) == 0;
}
struct LibusbConnection : public Connection {
struct ReadBlock {
LibusbConnection* self = nullptr;
libusb_transfer* transfer = nullptr;
Block block;
bool active = false;
};
struct WriteBlock {
LibusbConnection* self;
libusb_transfer* transfer;
Block block;
TransferId id;
};
explicit LibusbConnection(unique_device device)
: device_(std::move(device)), device_address_(get_device_address(device_.get())) {}
~LibusbConnection() { Stop(); }
void HandlePacket(amessage& msg, std::optional<Block> payload) {
auto packet = std::make_unique<apacket>();
packet->msg = msg;
if (payload) {
packet->payload = std::move(*payload);
}
transport_->HandleRead(std::move(packet));
}
void Cleanup(ReadBlock* read_block) REQUIRES(read_mutex_) {
libusb_free_transfer(read_block->transfer);
read_block->active = false;
read_block->transfer = nullptr;
if (terminated_) {
destruction_cv_.notify_one();
}
}
bool MaybeCleanup(ReadBlock* read_block) REQUIRES(read_mutex_) {
CHECK(read_block);
CHECK(read_block->transfer);
if (terminated_) {
Cleanup(read_block);
return true;
}
return false;
}
static void LIBUSB_CALL header_read_cb(libusb_transfer* transfer) {
auto read_block = static_cast<ReadBlock*>(transfer->user_data);
auto self = read_block->self;
std::lock_guard<std::mutex> lock(self->read_mutex_);
CHECK_EQ(read_block, &self->header_read_);
if (self->MaybeCleanup(read_block)) {
return;
}
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
std::string msg = StringPrintf("usb read failed: status = %d", transfer->status);
LOG(ERROR) << msg;
if (!self->detached_) {
self->OnError(msg);
}
self->Cleanup(read_block);
return;
}
if (transfer->actual_length != sizeof(amessage)) {
std::string msg = StringPrintf("usb read: invalid length for header: %d",
transfer->actual_length);
LOG(ERROR) << msg;
self->OnError(msg);
self->Cleanup(read_block);
return;
}
CHECK(!self->incoming_header_);
amessage& amsg = self->incoming_header_.emplace();
memcpy(&amsg, transfer->buffer, sizeof(amsg));
if (amsg.data_length > MAX_PAYLOAD) {
std::string msg =
StringPrintf("usb read: payload length too long: %d", amsg.data_length);
LOG(ERROR) << msg;
self->OnError(msg);
self->Cleanup(&self->header_read_);
return;
} else if (amsg.data_length == 0) {
self->HandlePacket(amsg, std::nullopt);
self->incoming_header_.reset();
self->SubmitRead(read_block, sizeof(amessage));
} else {
read_block->active = false;
self->SubmitRead(&self->payload_read_, amsg.data_length);
}
}
static void LIBUSB_CALL payload_read_cb(libusb_transfer* transfer) {
auto read_block = static_cast<ReadBlock*>(transfer->user_data);
auto self = read_block->self;
std::lock_guard<std::mutex> lock(self->read_mutex_);
if (self->MaybeCleanup(&self->payload_read_)) {
return;
}
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
std::string msg = StringPrintf("usb read failed: status = %d", transfer->status);
LOG(ERROR) << msg;
if (!self->detached_) {
self->OnError(msg);
}
self->Cleanup(&self->payload_read_);
return;
}
if (transfer->actual_length != transfer->length) {
std::string msg =
StringPrintf("usb read: unexpected length for payload: wanted %d, got %d",
transfer->length, transfer->actual_length);
LOG(ERROR) << msg;
self->OnError(msg);
self->Cleanup(&self->payload_read_);
return;
}
CHECK(self->incoming_header_.has_value());
self->HandlePacket(*self->incoming_header_, std::move(read_block->block));
self->incoming_header_.reset();
read_block->active = false;
self->SubmitRead(&self->header_read_, sizeof(amessage));
}
static void LIBUSB_CALL write_cb(libusb_transfer* transfer) {
auto write_block = static_cast<WriteBlock*>(transfer->user_data);
auto self = write_block->self;
bool succeeded = transfer->status == LIBUSB_TRANSFER_COMPLETED;
{
std::lock_guard<std::mutex> lock(self->write_mutex_);
libusb_free_transfer(transfer);
self->writes_.erase(write_block->id);
if (self->terminated_ && self->writes_.empty()) {
self->destruction_cv_.notify_one();
}
}
if (!succeeded && !self->detached_) {
self->OnError("libusb write failed");
}
}
bool DoTlsHandshake(RSA*, std::string*) final {
LOG(FATAL) << "tls not supported";
return false;
}
void CreateRead(ReadBlock* read, bool header) {
read->self = this;
read->transfer = libusb_alloc_transfer(0);
if (!read->transfer) {
LOG(FATAL) << "failed to allocate libusb_transfer for read";
}
libusb_fill_bulk_transfer(read->transfer, device_handle_.get(), read_endpoint_, nullptr, 0,
header ? header_read_cb : payload_read_cb, read, 0);
}
void SubmitRead(ReadBlock* read, size_t length) {
read->block.resize(length);
read->transfer->buffer = reinterpret_cast<unsigned char*>(read->block.data());
read->transfer->length = length;
read->active = true;
int rc = libusb_submit_transfer(read->transfer);
if (rc != 0) {
LOG(ERROR) << "libusb_submit_transfer failed: " << libusb_strerror(rc);
}
}
void SubmitWrite(Block&& block) REQUIRES(write_mutex_) {
// TODO: Reuse write blocks.
auto write = std::make_unique<WriteBlock>();
write->self = this;
write->id = TransferId::write(next_write_id_++);
write->block = std::move(block);
write->transfer = libusb_alloc_transfer(0);
if (!write->transfer) {
LOG(FATAL) << "failed to allocate libusb_transfer for write";
}
libusb_fill_bulk_transfer(write->transfer, device_handle_.get(), write_endpoint_,
reinterpret_cast<unsigned char*>(write->block.data()),
write->block.size(), &write_cb, write.get(), 0);
int rc = libusb_submit_transfer(write->transfer);
if (rc == 0) {
writes_[write->id] = std::move(write);
} else {
LOG(ERROR) << "libusb_submit_transfer failed: " << libusb_strerror(rc);
libusb_free_transfer(write->transfer);
}
}
bool Write(std::unique_ptr<apacket> packet) final {
VLOG(USB) << "USB write: " << dump_header(&packet->msg);
Block header;
header.resize(sizeof(packet->msg));
memcpy(header.data(), &packet->msg, sizeof(packet->msg));
std::lock_guard<std::mutex> lock(write_mutex_);
if (terminated_) {
return false;
}
if (detached_) {
return true;
}
SubmitWrite(std::move(header));
if (!packet->payload.empty()) {
size_t payload_length = packet->payload.size();
SubmitWrite(std::move(packet->payload));
// If the payload is a multiple of the endpoint packet size, we
// need an explicit zero-sized transfer.
if (should_perform_zero_transfer(payload_length, zero_mask_)) {
VLOG(USB) << "submitting zero transfer for payload length " << payload_length;
Block empty;
SubmitWrite(std::move(empty));
}
}
return true;
}
std::optional<libusb_device_descriptor> GetDeviceDescriptor() {
libusb_device_descriptor device_desc;
int rc = libusb_get_device_descriptor(device_.get(), &device_desc);
if (rc != 0) {
LOG(WARNING) << "failed to get device descriptor for device at " << device_address_
<< ": " << libusb_error_name(rc);
return {};
}
return device_desc;
}
bool FindInterface(libusb_device_descriptor* device_desc) {
if (device_desc->bDeviceClass != LIBUSB_CLASS_PER_INTERFACE) {
// Assume that all Android devices have the device class set to per interface.
// TODO: Is this assumption valid?
VLOG(USB) << "skipping device with incorrect class at " << device_address_;
return false;
}
libusb_config_descriptor* config_raw;
int rc = libusb_get_active_config_descriptor(device_.get(), &config_raw);
if (rc != 0) {
LOG(WARNING) << "failed to get active config descriptor for device at "
<< device_address_ << ": " << libusb_error_name(rc);
return false;
}
const unique_config_descriptor config(config_raw);
// Use size_t for interface_num so <iostream>s don't mangle it.
size_t interface_num;
uint16_t zero_mask = 0;
uint8_t bulk_in = 0, bulk_out = 0;
size_t packet_size = 0;
bool found_adb = false;
for (interface_num = 0; interface_num < config->bNumInterfaces; ++interface_num) {
const libusb_interface& interface = config->interface[interface_num];
if (interface.num_altsetting == 0) {
continue;
}
const libusb_interface_descriptor& interface_desc = interface.altsetting[0];
if (!is_adb_interface(interface_desc.bInterfaceClass, interface_desc.bInterfaceSubClass,
interface_desc.bInterfaceProtocol)) {
VLOG(USB) << "skipping non-adb interface at " << device_address_ << " (interface "
<< interface_num << ")";
continue;
}
if (interface.num_altsetting != 1) {
// Assume that interfaces with alternate settings aren't adb interfaces.
// TODO: Is this assumption valid?
LOG(WARNING) << "skipping interface with unexpected num_altsetting at "
<< device_address_ << " (interface " << interface_num << ")";
continue;
}
VLOG(USB) << "found potential adb interface at " << device_address_ << " (interface "
<< interface_num << ")";
bool found_in = false;
bool found_out = false;
for (size_t endpoint_num = 0; endpoint_num < interface_desc.bNumEndpoints;
++endpoint_num) {
const auto& endpoint_desc = interface_desc.endpoint[endpoint_num];
const uint8_t endpoint_addr = endpoint_desc.bEndpointAddress;
const uint8_t endpoint_attr = endpoint_desc.bmAttributes;
const uint8_t transfer_type = endpoint_attr & LIBUSB_TRANSFER_TYPE_MASK;
if (transfer_type != LIBUSB_TRANSFER_TYPE_BULK) {
continue;
}
if (endpoint_is_output(endpoint_addr) && !found_out) {
found_out = true;
bulk_out = endpoint_addr;
zero_mask = endpoint_desc.wMaxPacketSize - 1;
} else if (!endpoint_is_output(endpoint_addr) && !found_in) {
found_in = true;
bulk_in = endpoint_addr;
}
size_t endpoint_packet_size = endpoint_desc.wMaxPacketSize;
CHECK(endpoint_packet_size != 0);
if (packet_size == 0) {
packet_size = endpoint_packet_size;
} else {
CHECK(packet_size == endpoint_packet_size);
}
}
if (found_in && found_out) {
found_adb = true;
break;
} else {
VLOG(USB) << "rejecting potential adb interface at " << device_address_
<< "(interface " << interface_num << "): missing bulk endpoints "
<< "(found_in = " << found_in << ", found_out = " << found_out << ")";
}
}
if (!found_adb) {
return false;
}
interface_num_ = interface_num;
write_endpoint_ = bulk_out;
read_endpoint_ = bulk_in;
zero_mask_ = zero_mask;
return true;
}
std::string GetUsbDeviceAddress() const { return std::string("usb:") + device_address_; }
std::string GetSerial() {
std::string serial;
auto device_desc = GetDeviceDescriptor();
serial.resize(255);
int rc = libusb_get_string_descriptor_ascii(
device_handle_.get(), device_desc->iSerialNumber,
reinterpret_cast<unsigned char*>(&serial[0]), serial.length());
if (rc == 0) {
LOG(WARNING) << "received empty serial from device at " << device_address_;
return {};
} else if (rc < 0) {
LOG(WARNING) << "failed to get serial from device at " << device_address_
<< libusb_error_name(rc);
return {};
}
serial.resize(rc);
return serial;
}
// libusb gives us an int which is a value from 'enum libusb_speed'
static ConnectionSpeed ToConnectionSpeed(int speed) {
switch (speed) {
case LIBUSB_SPEED_LOW:
return USB1_0;
case LIBUSB_SPEED_FULL:
return USB2_0_FULL;
case LIBUSB_SPEED_HIGH:
return USB2_0_HIGH;
case LIBUSB_SPEED_SUPER:
return USB3_0;
case LIBUSB_SPEED_SUPER_PLUS:
return USB3_1;
case LIBUSB_SPEED_UNKNOWN:
default:
return UNKNOWN;
}
}
// libusb gives us a bitfield made of 'enum libusb_supported_speed' values
static ConnectionSpeed ExtractMaxSpeed(uint16_t wSpeedSupported) {
if (wSpeedSupported == 0) {
return UNKNOWN;
}
int msb = 0;
while (wSpeedSupported >>= 1) {
msb++;
}
switch (1 << msb) {
case LIBUSB_LOW_SPEED_OPERATION:
return USB1_0;
case LIBUSB_FULL_SPEED_OPERATION:
return USB2_0_FULL;
case LIBUSB_HIGH_SPEED_OPERATION:
return USB2_0_HIGH;
case LIBUSB_SUPER_SPEED_OPERATION:
return USB3_0;
default:
return UNKNOWN;
}
}
void RetrieveSpeeds() {
negotiated_speed_ = ToConnectionSpeed(libusb_get_device_speed(device_.get()));
// The set of supported speed is in a SuperSpeed capability
struct libusb_bos_descriptor* bos = nullptr;
if (!libusb_get_bos_descriptor(device_handle_.get(), &bos)) {
for (int i = 0; i < bos->bNumDeviceCaps; i++) {
if (bos->dev_capability[i]->bDevCapabilityType !=
LIBUSB_BT_SS_USB_DEVICE_CAPABILITY) {
continue;
}
libusb_ss_usb_device_capability_descriptor* ss_usb_device_cap = nullptr;
int r = libusb_get_ss_usb_device_capability_descriptor(
nullptr, bos->dev_capability[i], &ss_usb_device_cap);
if (!r) {
max_speed_ = ExtractMaxSpeed(ss_usb_device_cap->wSpeedSupported);
libusb_free_ss_usb_device_capability_descriptor(ss_usb_device_cap);
}
}
libusb_free_bos_descriptor(bos);
}
}
bool OpenDevice(std::string* error) {
if (device_handle_) {
LOG_ERR(error, "device already open");
return false;
}
libusb_device_handle* handle_raw;
int rc = libusb_open(device_.get(), &handle_raw);
if (rc != 0) {
// TODO: Handle no permissions.
LOG_ERR(error, "failed to open device: %s", libusb_strerror(rc));
return false;
}
unique_device_handle handle(handle_raw);
device_handle_ = std::move(handle);
auto device_desc = GetDeviceDescriptor();
if (!device_desc) {
LOG_ERR(error, "failed to get device descriptor");
device_handle_.reset();
return false;
}
if (!FindInterface(&device_desc.value())) {
LOG_ERR(error, "failed to find adb interface");
device_handle_.reset();
return false;
}
serial_ = GetSerial();
VLOG(USB) << "successfully opened adb device at " << device_address_ << ", "
<< StringPrintf("bulk_in = %#x, bulk_out = %#x", read_endpoint_, write_endpoint_);
// WARNING: this isn't released via RAII.
rc = libusb_claim_interface(device_handle_.get(), interface_num_);
if (rc != 0) {
LOG_ERR(error, "failed to claim adb interface for device '%s': %s", serial_.c_str(),
libusb_error_name(rc));
device_handle_.reset();
return false;
}
for (uint8_t endpoint : {read_endpoint_, write_endpoint_}) {
rc = libusb_clear_halt(device_handle_.get(), endpoint);
if (rc != 0) {
LOG_ERR(error, "failed to clear halt on device '%s' endpoint %#02x: %s",
serial_.c_str(), endpoint, libusb_error_name(rc));
libusb_release_interface(device_handle_.get(), interface_num_);
device_handle_.reset();
return false;
}
}
RetrieveSpeeds();
return true;
}
void CancelReadTransfer(ReadBlock* read_block) REQUIRES(read_mutex_) {
if (!read_block->transfer) {
return;
}
if (!read_block->active) {
// There is no read_cb pending. Clean it up right now.
Cleanup(read_block);
return;
}
int rc = libusb_cancel_transfer(read_block->transfer);
if (rc != 0) {
LOG(WARNING) << "libusb_cancel_transfer failed: " << libusb_error_name(rc);
// There is no read_cb pending. Clean it up right now.
Cleanup(read_block);
return;
}
}
void CloseDevice() {
// This is rather messy, because of the lifecyle of libusb_transfers.
//
// We can't call libusb_free_transfer for a submitted transfer, we have to cancel it
// and free it in the callback. Complicating things more, it's possible for us to be in
// the callback for a transfer as the destructor is being called, at which point cancelling
// the transfer won't do anything (and it's possible that we'll submit the transfer again
// in the callback).
//
// Resolve this by setting an atomic flag before we lock to cancel transfers, and take the
// lock in the callbacks before checking the flag.
if (terminated_) {
return;
}
terminated_ = true;
{
std::unique_lock<std::mutex> lock(write_mutex_);
ScopedLockAssertion assumed_locked(write_mutex_);
std::erase_if(writes_, [](const auto& write_item) {
auto const& [id, write_block] = write_item;
int rc = libusb_cancel_transfer(write_block->transfer);
if (rc != 0) {
// libusb_cancel_transfer failed for some reason. We will
// never get a callback for this transfer. So we need to
// remove it from the list or we will hang below.
LOG(INFO) << "libusb_cancel_transfer failed: " << libusb_error_name(rc);
libusb_free_transfer(write_block->transfer);
return true;
}
// Wait for the write_cb to fire before removing.
return false;
});
// Wait here until the write callbacks have all fired and removed
// the remaining writes_.
destruction_cv_.wait(lock, [this]() {
ScopedLockAssertion assumed_locked(write_mutex_);
return writes_.empty();
});
}
{
std::unique_lock<std::mutex> lock(read_mutex_);
ScopedLockAssertion assumed_locked(read_mutex_);
CancelReadTransfer(&header_read_);
CancelReadTransfer(&payload_read_);
destruction_cv_.wait(lock, [this]() {
ScopedLockAssertion assumed_locked(read_mutex_);
return !header_read_.active && !payload_read_.active;
});
incoming_header_.reset();
incoming_payload_.clear();
}
if (device_handle_) {
int rc = libusb_release_interface(device_handle_.get(), interface_num_);
if (rc != 0) {
LOG(WARNING) << "libusb_release_interface failed: " << libusb_error_name(rc);
}
device_handle_.reset();
}
}
bool StartImpl(std::string* error) {
if (!device_handle_) {
*error = "device not opened";
return false;
}
VLOG(USB) << "registered new usb device '" << serial_ << "'";
std::lock_guard lock(read_mutex_);
CreateRead(&header_read_, true);
CreateRead(&payload_read_, false);
SubmitRead(&header_read_, sizeof(amessage));
return true;
}
void OnError(const std::string& error) {
std::call_once(error_flag_, [this, &error]() {
if (transport_) {
transport_->HandleError(error);
}
});
}
virtual bool Attach(std::string* error) override final {
terminated_ = false;
detached_ = false;
if (!OpenDevice(error)) {
return false;
}
if (!StartImpl(error)) {
CloseDevice();
return false;
}
return true;
}
virtual bool Detach(std::string* error) override final {
detached_ = true;
CloseDevice();
return true;
}
virtual void Reset() override final {
VLOG(USB) << "resetting " << transport_->serial_name();
int rc = libusb_reset_device(device_handle_.get());
if (rc == 0) {
libusb_device* device = libusb_ref_device(device_.get());
Stop();
fdevent_run_on_looper([device]() {
process_device(device);
libusb_unref_device(device);
});
} else {
LOG(ERROR) << "libusb_reset_device failed: " << libusb_error_name(rc);
}
}
virtual void Start() override final {
std::string error;
if (!Attach(&error)) {
OnError(error);
}
}
virtual void Stop() override final {
CloseDevice();
OnError("requested stop");
}
static std::optional<std::shared_ptr<LibusbConnection>> Create(unique_device device) {
auto connection = std::make_unique<LibusbConnection>(std::move(device));
if (!connection) {
LOG(FATAL) << "failed to construct LibusbConnection";
}
auto device_desc = connection->GetDeviceDescriptor();
if (!device_desc) {
VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress()
<< ": not an adb interface. (GetDeviceDescriptor)";
return {};
}
if (!connection->FindInterface(&device_desc.value())) {
VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress()
<< ": not an adb interface. (FindInterface)";
return {};
}
#if defined(__linux__)
std::string device_serial;
if (android::base::ReadFileToString(get_device_serial_path(connection->device_.get()),
&device_serial)) {
connection->serial_ = android::base::Trim(device_serial);
} else {
// We don't actually want to treat an unknown serial as an error because
// devices aren't able to communicate a serial number in early bringup.
// http://b/20883914
connection->serial_ = "<unknown>";
}
#else
// We need to open the device to get its serial on Windows and OS X.
std::string error;
if (!connection->OpenDevice(&error)) {
VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress()
<< ": not an adb interface. (OpenDevice)";
return {};
}
connection->serial_ = connection->GetSerial();
connection->CloseDevice();
#endif
if (!transport_server_owns_device(connection->GetUsbDeviceAddress(), connection->serial_)) {
VLOG(USB) << "ignoring device " << connection->GetUsbDeviceAddress() << " serial "
<< connection->serial_ << ": this server owns '" << transport_get_one_device()
<< "'";
return {};
}
return connection;
}
virtual ConnectionSpeed MaxSpeedMbps() override final { return max_speed_; }
virtual ConnectionSpeed NegotiatedSpeedMbps() override final { return negotiated_speed_; }
unique_device device_;
unique_device_handle device_handle_;
std::string device_address_;
std::string serial_ = "<unknown>";
uint32_t interface_num_;
uint8_t write_endpoint_;
uint8_t read_endpoint_;
std::mutex read_mutex_;
ReadBlock header_read_ GUARDED_BY(read_mutex_);
ReadBlock payload_read_ GUARDED_BY(read_mutex_);
std::optional<amessage> incoming_header_ GUARDED_BY(read_mutex_);
IOVector incoming_payload_ GUARDED_BY(read_mutex_);
std::mutex write_mutex_;
std::unordered_map<TransferId, std::unique_ptr<WriteBlock>> writes_ GUARDED_BY(write_mutex_);
std::atomic<size_t> next_write_id_ = 0;
std::once_flag error_flag_;
std::atomic<bool> terminated_ = false;
std::atomic<bool> detached_ = false;
std::condition_variable destruction_cv_;
size_t zero_mask_ = 0;
ConnectionSpeed negotiated_speed_ = UNKNOWN;
ConnectionSpeed max_speed_ = UNKNOWN;
};
static std::mutex usb_handles_mutex [[clang::no_destroy]];
static std::unordered_map<libusb_device*, std::weak_ptr<LibusbConnection>> usb_handles
[[clang::no_destroy]] GUARDED_BY(usb_handles_mutex);
static std::atomic<int> connecting_devices(0);
static void process_device(libusb_device* device_raw) {
std::string device_address = get_device_address(device_raw);
VLOG(USB) << "device connected: " << device_address;
unique_device device(libusb_ref_device(device_raw));
auto connection_opt = LibusbConnection::Create(std::move(device));
if (!connection_opt) {
return;
}
auto connection = *connection_opt;
{
std::lock_guard<std::mutex> lock(usb_handles_mutex);
usb_handles.emplace(libusb_ref_device(device_raw), connection);
}
VLOG(USB) << "constructed LibusbConnection for device " << connection->serial_ << " ("
<< device_address << ")";
register_usb_transport(connection, connection->serial_.c_str(), device_address.c_str(), true);
}
static void device_connected(libusb_device* device) {
#if defined(__linux__)
// Android's host linux libusb uses netlink instead of udev for device hotplug notification,
// which means we can get hotplug notifications before udev has updated ownership/perms on the
// device. Since we're not going to be able to link against the system's libudev any time soon,
// poll for accessibility changes with inotify until a timeout expires.
libusb_ref_device(device);
auto thread = std::thread([device]() {
std::string bus_path = StringPrintf("/dev/bus/usb/%03d/", libusb_get_bus_number(device));
std::string device_path =
StringPrintf("%s/%03d", bus_path.c_str(), libusb_get_device_address(device));
auto deadline = std::chrono::steady_clock::now() + 1s;
unique_fd infd(inotify_init1(IN_CLOEXEC | IN_NONBLOCK));
if (infd == -1) {
PLOG(FATAL) << "failed to create inotify fd";
}
// Register the watch first, and then check for accessibility, to avoid a race.
// We can't watch the device file itself, as that requires us to be able to access it.
if (inotify_add_watch(infd.get(), bus_path.c_str(), IN_ATTRIB) == -1) {
PLOG(ERROR) << "failed to register inotify watch on '" << bus_path
<< "', falling back to sleep";
std::this_thread::sleep_for(std::chrono::seconds(1));
} else {
adb_pollfd pfd = {.fd = infd.get(), .events = POLLIN, .revents = 0};
while (access(device_path.c_str(), R_OK | W_OK) == -1) {
auto timeout = deadline - std::chrono::steady_clock::now();
if (timeout < 0s) {
break;
}
uint64_t ms = timeout / 1ms;
int rc = adb_poll(&pfd, 1, ms);
if (rc == -1) {
if (errno == EINTR) {
continue;
} else {
LOG(WARNING) << "timeout expired while waiting for device accessibility";
break;
}
}
union {
struct inotify_event ev;
char bytes[sizeof(struct inotify_event) + NAME_MAX + 1];
} buf;
rc = adb_read(infd.get(), &buf, sizeof(buf));
if (rc == -1) {
break;
}
// We don't actually care about the data: we might get spurious events for
// other devices on the bus, but we'll double check in the loop condition.
continue;
}
}
process_device(device);
if (--connecting_devices == 0) {
adb_notify_device_scan_complete();
}
libusb_unref_device(device);
});
thread.detach();
#else
process_device(device);
#endif
}
static void device_disconnected(libusb_device* device) {
usb_handles_mutex.lock();
auto it = usb_handles.find(device);
if (it != usb_handles.end()) {
// We need to ensure that we don't destroy the LibusbConnection on this thread,
// as we're in a context with internal libusb mutexes held.
libusb_device* device = it->first;
std::weak_ptr<LibusbConnection> connection_weak = it->second;
usb_handles.erase(it);
fdevent_run_on_looper([connection_weak]() {
auto connection = connection_weak.lock();
if (connection) {
connection->Stop();
VLOG(USB) << "libusb_hotplug: device disconnected: " << connection->serial_;
} else {
VLOG(USB) << "libusb_hotplug: device disconnected: (destroyed)";
}
});
libusb_unref_device(device);
}
usb_handles_mutex.unlock();
}
static auto& hotplug_queue = *new BlockingQueue<std::pair<libusb_hotplug_event, libusb_device*>>();
static void hotplug_thread() {
VLOG(USB) << "libusb hotplug thread started";
adb_thread_setname("libusb hotplug");
while (true) {
hotplug_queue.PopAll([](std::pair<libusb_hotplug_event, libusb_device*> pair) {
libusb_hotplug_event event = pair.first;
libusb_device* device = pair.second;
if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED) {
VLOG(USB) << "libusb hotplug: device arrived";
device_connected(device);
} else if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT) {
VLOG(USB) << "libusb hotplug: device left";
device_disconnected(device);
} else {
LOG(WARNING) << "unknown libusb hotplug event: " << event;
}
});
}
}
static LIBUSB_CALL int hotplug_callback(libusb_context*, libusb_device* device,
libusb_hotplug_event event, void*) {
// We're called with the libusb lock taken. Call these on a separate thread outside of this
// function so that the usb_handle mutex is always taken before the libusb mutex.
static std::once_flag once;
std::call_once(once, []() { std::thread(hotplug_thread).detach(); });
if (event == LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED) {
++connecting_devices;
}
hotplug_queue.Push({event, device});
return 0;
}
namespace libusb {
void usb_init() {
VLOG(USB) << "initializing libusb...";
int rc = libusb_init(nullptr);
if (rc != 0) {
LOG(WARNING) << "failed to initialize libusb: " << libusb_error_name(rc);
return;
}
// Register the hotplug callback.
rc = libusb_hotplug_register_callback(
nullptr,
static_cast<libusb_hotplug_event>(LIBUSB_HOTPLUG_EVENT_DEVICE_ARRIVED |
LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT),
LIBUSB_HOTPLUG_ENUMERATE, LIBUSB_HOTPLUG_MATCH_ANY, LIBUSB_HOTPLUG_MATCH_ANY,
LIBUSB_CLASS_PER_INTERFACE, hotplug_callback, nullptr, nullptr);
if (rc != LIBUSB_SUCCESS) {
LOG(FATAL) << "failed to register libusb hotplug callback";
}
// Spawn a thread for libusb_handle_events.
std::thread([]() {
adb_thread_setname("libusb");
while (true) {
libusb_handle_events(nullptr);
}
}).detach();
}
} // namespace libusb