blob: cf6492fb16ca16aa939029f1ef0d85152185d928 [file] [log] [blame]
// Copyright (C) 2022 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "libclat/clatutils.h"
#include <android-base/stringprintf.h>
#include <arpa/inet.h>
#include <gtest/gtest.h>
#include <linux/if_packet.h>
#include <linux/if_tun.h>
#include <netinet/in.h>
#include "tun_interface.h"
extern "C" {
#include "checksum.h"
}
#include <aidl/android/net/INetd.h>
#include "clat_mark.h"
static_assert(aidl::android::net::INetd::CLAT_MARK == CLAT_MARK, "must be 0xDEADC1A7");
// Default translation parameters.
static const char kIPv4LocalAddr[] = "192.0.0.4";
namespace android {
namespace net {
namespace clat {
using android::net::TunInterface;
using base::StringPrintf;
class ClatUtils : public ::testing::Test {};
// Mock functions for isIpv4AddressFree.
bool neverFree(in_addr_t /* addr */) {
return 0;
}
bool alwaysFree(in_addr_t /* addr */) {
return 1;
}
bool only2Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) == 2;
}
bool over6Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) >= 6;
}
bool only10Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) == 10;
}
// Apply mocked isIpv4AddressFree function for selectIpv4Address test.
in_addr_t selectIpv4Address(const in_addr ip, int16_t prefixlen,
isIpv4AddrFreeFn fn /* mocked function */) {
// Call internal function to replace isIpv4AddressFreeFn for testing.
return selectIpv4AddressInternal(ip, prefixlen, fn);
}
TEST_F(ClatUtils, SelectIpv4Address) {
struct in_addr addr;
inet_pton(AF_INET, kIPv4LocalAddr, &addr);
// If no addresses are free, return INADDR_NONE.
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 29, neverFree));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 16, neverFree));
// If the configured address is free, pick that. But a prefix that's too big is invalid.
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 29, alwaysFree));
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 20, alwaysFree));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 15, alwaysFree));
// A prefix length of 32 works, but anything above it is invalid.
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 32, alwaysFree));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 33, alwaysFree));
// If another address is free, pick it.
EXPECT_EQ(inet_addr("192.0.0.6"), selectIpv4Address(addr, 29, over6Free));
// Check that we wrap around to addresses that are lower than the first address.
EXPECT_EQ(inet_addr("192.0.0.2"), selectIpv4Address(addr, 29, only2Free));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 30, only2Free));
// If a free address exists outside the prefix, we don't pick it.
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 29, only10Free));
EXPECT_EQ(inet_addr("192.0.0.10"), selectIpv4Address(addr, 24, only10Free));
// Now try using the real function which sees if IP addresses are free using bind().
// Assume that the machine running the test has the address 127.0.0.1, but not 8.8.8.8.
addr.s_addr = inet_addr("8.8.8.8");
EXPECT_EQ(inet_addr("8.8.8.8"), selectIpv4Address(addr, 29));
addr.s_addr = inet_addr("127.0.0.1");
EXPECT_EQ(inet_addr("127.0.0.2"), selectIpv4Address(addr, 29));
}
TEST_F(ClatUtils, MakeChecksumNeutral) {
// We can't test generateIPv6Address here since it requires manipulating routing, which we can't
// do without talking to the real netd on the system.
uint32_t rand = arc4random_uniform(0xffffffff);
uint16_t rand1 = rand & 0xffff;
uint16_t rand2 = (rand >> 16) & 0xffff;
std::string v6PrefixStr = StringPrintf("2001:db8:%x:%x", rand1, rand2);
std::string v6InterfaceAddrStr = StringPrintf("%s::%x:%x", v6PrefixStr.c_str(), rand2, rand1);
std::string nat64PrefixStr = StringPrintf("2001:db8:%x:%x::", rand2, rand1);
in_addr v4 = {inet_addr(kIPv4LocalAddr)};
in6_addr v6InterfaceAddr;
ASSERT_TRUE(inet_pton(AF_INET6, v6InterfaceAddrStr.c_str(), &v6InterfaceAddr));
in6_addr nat64Prefix;
ASSERT_TRUE(inet_pton(AF_INET6, nat64PrefixStr.c_str(), &nat64Prefix));
// Generate a boatload of random IIDs.
int onebits = 0;
uint64_t prev_iid = 0;
for (int i = 0; i < 100000; i++) {
in6_addr v6 = v6InterfaceAddr;
makeChecksumNeutral(&v6, v4, nat64Prefix);
// Check the generated IP address is in the same prefix as the interface IPv6 address.
EXPECT_EQ(0, memcmp(&v6, &v6InterfaceAddr, 8));
// Check that consecutive IIDs are not the same.
uint64_t iid = *(uint64_t*)(&v6.s6_addr[8]);
ASSERT_TRUE(iid != prev_iid)
<< "Two consecutive random IIDs are the same: " << std::showbase << std::hex << iid
<< "\n";
prev_iid = iid;
// Check that the IID is checksum-neutral with the NAT64 prefix and the
// local prefix.
uint16_t c1 = ip_checksum_finish(ip_checksum_add(0, &v4, sizeof(v4)));
uint16_t c2 = ip_checksum_finish(ip_checksum_add(0, &nat64Prefix, sizeof(nat64Prefix)) +
ip_checksum_add(0, &v6, sizeof(v6)));
if (c1 != c2) {
char v6Str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &v6, v6Str, sizeof(v6Str));
FAIL() << "Bad IID: " << v6Str << " not checksum-neutral with " << kIPv4LocalAddr
<< " and " << nat64PrefixStr.c_str() << std::showbase << std::hex
<< "\n IPv4 checksum: " << c1 << "\n IPv6 checksum: " << c2 << "\n";
}
// Check that IIDs are roughly random and use all the bits by counting the
// total number of bits set to 1 in a random sample of 100000 generated IIDs.
onebits += __builtin_popcountll(*(uint64_t*)&iid);
}
EXPECT_LE(3190000, onebits);
EXPECT_GE(3210000, onebits);
}
TEST_F(ClatUtils, DetectMtu) {
// ::1 with bottom 32 bits set to 1 is still ::1 which routes via lo with mtu of 64KiB
ASSERT_EQ(detect_mtu(&in6addr_loopback, htonl(1), 0 /*MARK_UNSET*/), 65536);
}
TEST_F(ClatUtils, ConfigurePacketSocket) {
// Create an interface for configure_packet_socket to attach socket filter to.
TunInterface v6Iface;
ASSERT_EQ(0, v6Iface.init());
const int s = socket(AF_PACKET, SOCK_RAW | SOCK_CLOEXEC, htons(ETH_P_IPV6));
EXPECT_LE(0, s);
struct in6_addr addr6;
EXPECT_EQ(1, inet_pton(AF_INET6, "2001:db8::f00", &addr6));
EXPECT_EQ(0, configure_packet_socket(s, &addr6, v6Iface.ifindex()));
// Check that the packet socket is bound to the interface. We can't check the socket filter
// because there is no way to fetch it from the kernel.
sockaddr_ll sll;
socklen_t len = sizeof(sll);
ASSERT_EQ(0, getsockname(s, reinterpret_cast<sockaddr*>(&sll), &len));
EXPECT_EQ(htons(ETH_P_IPV6), sll.sll_protocol);
EXPECT_EQ(sll.sll_ifindex, v6Iface.ifindex());
close(s);
v6Iface.destroy();
}
// This is not a realistic test because we can't test generateIPv6Address here since it requires
// manipulating routing, which we can't do without talking to the real netd on the system.
// See test MakeChecksumNeutral.
// TODO: remove this test once EthernetTetheringTest can test on mainline test coverage branch.
TEST_F(ClatUtils, GenerateIpv6AddressFailWithUlaSocketAddress) {
// Create an interface for generateIpv6Address to connect to.
TunInterface tun;
ASSERT_EQ(0, tun.init());
// Unused because v6 address is ULA and makeChecksumNeutral has never called.
in_addr v4 = {inet_addr(kIPv4LocalAddr)};
// Not a NAT64 prefix because test can't connect to in generateIpv6Address.
// Used to be a fake address from the tun interface for generating an IPv6 socket address.
// nat64Prefix won't be used in MakeChecksumNeutral because MakeChecksumNeutral has never
// be called.
in6_addr nat64Prefix = tun.dstAddr(); // not realistic
in6_addr v6;
EXPECT_EQ(1, inet_pton(AF_INET6, "::", &v6)); // initialize as zero
// 0u is MARK_UNSET
EXPECT_EQ(-ENETUNREACH, generateIpv6Address(tun.name().c_str(), v4, nat64Prefix, &v6, 0u));
EXPECT_TRUE(IN6_IS_ADDR_ULA(&v6));
tun.destroy();
}
} // namespace clat
} // namespace net
} // namespace android