| /* |
| * Copyright (C) 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <linux/if.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/pkt_cls.h> |
| #include <linux/tcp.h> |
| |
| // bionic kernel uapi linux/udp.h header is munged... |
| #define __kernel_udphdr udphdr |
| #include <linux/udp.h> |
| |
| #ifdef BTF |
| // BTF is incompatible with bpfloaders < v0.10, hence for S (v0.2) we must |
| // ship a different file than for later versions, but we need bpfloader v0.25+ |
| // for obj@ver.o support |
| #define BPFLOADER_MIN_VER BPFLOADER_OBJ_AT_VER_VERSION |
| #else /* BTF */ |
| // The resulting .o needs to load on the Android S bpfloader |
| #define BPFLOADER_MIN_VER BPFLOADER_S_VERSION |
| #define BPFLOADER_MAX_VER BPFLOADER_OBJ_AT_VER_VERSION |
| #endif /* BTF */ |
| |
| // Warning: values other than AID_ROOT don't work for map uid on BpfLoader < v0.21 |
| #define TETHERING_UID AID_ROOT |
| |
| #define TETHERING_GID AID_NETWORK_STACK |
| |
| #include "bpf_helpers.h" |
| #include "bpf_net_helpers.h" |
| #include "offload.h" |
| |
| // From kernel:include/net/ip.h |
| #define IP_DF 0x4000 // Flag: "Don't Fragment" |
| |
| // ----- Helper functions for offsets to fields ----- |
| |
| // They all assume simple IP packets: |
| // - no VLAN ethernet tags |
| // - no IPv4 options (see IPV4_HLEN/TCP4_OFFSET/UDP4_OFFSET) |
| // - no IPv6 extension headers |
| // - no TCP options (see TCP_HLEN) |
| |
| //#define ETH_HLEN sizeof(struct ethhdr) |
| #define IP4_HLEN sizeof(struct iphdr) |
| #define IP6_HLEN sizeof(struct ipv6hdr) |
| #define TCP_HLEN sizeof(struct tcphdr) |
| #define UDP_HLEN sizeof(struct udphdr) |
| |
| // Offsets from beginning of L4 (TCP/UDP) header |
| #define TCP_OFFSET(field) offsetof(struct tcphdr, field) |
| #define UDP_OFFSET(field) offsetof(struct udphdr, field) |
| |
| // Offsets from beginning of L3 (IPv4) header |
| #define IP4_OFFSET(field) offsetof(struct iphdr, field) |
| #define IP4_TCP_OFFSET(field) (IP4_HLEN + TCP_OFFSET(field)) |
| #define IP4_UDP_OFFSET(field) (IP4_HLEN + UDP_OFFSET(field)) |
| |
| // Offsets from beginning of L3 (IPv6) header |
| #define IP6_OFFSET(field) offsetof(struct ipv6hdr, field) |
| #define IP6_TCP_OFFSET(field) (IP6_HLEN + TCP_OFFSET(field)) |
| #define IP6_UDP_OFFSET(field) (IP6_HLEN + UDP_OFFSET(field)) |
| |
| // Offsets from beginning of L2 (ie. Ethernet) header (which must be present) |
| #define ETH_IP4_OFFSET(field) (ETH_HLEN + IP4_OFFSET(field)) |
| #define ETH_IP4_TCP_OFFSET(field) (ETH_HLEN + IP4_TCP_OFFSET(field)) |
| #define ETH_IP4_UDP_OFFSET(field) (ETH_HLEN + IP4_UDP_OFFSET(field)) |
| #define ETH_IP6_OFFSET(field) (ETH_HLEN + IP6_OFFSET(field)) |
| #define ETH_IP6_TCP_OFFSET(field) (ETH_HLEN + IP6_TCP_OFFSET(field)) |
| #define ETH_IP6_UDP_OFFSET(field) (ETH_HLEN + IP6_UDP_OFFSET(field)) |
| |
| // ----- Tethering Error Counters ----- |
| |
| // Note that pre-T devices with Mediatek chipsets may have a kernel bug (bad patch |
| // "[ALPS05162612] bpf: fix ubsan error") making it impossible to write to non-zero |
| // offset of bpf map ARRAYs. This file (offload.o) loads on S+, but luckily this |
| // array is only written by bpf code, and only read by userspace. |
| DEFINE_BPF_MAP_RO(tether_error_map, ARRAY, uint32_t, uint32_t, BPF_TETHER_ERR__MAX, TETHERING_GID) |
| |
| #define COUNT_AND_RETURN(counter, ret) do { \ |
| uint32_t code = BPF_TETHER_ERR_ ## counter; \ |
| uint32_t *count = bpf_tether_error_map_lookup_elem(&code); \ |
| if (count) __sync_fetch_and_add(count, 1); \ |
| return ret; \ |
| } while(0) |
| |
| #define TC_DROP(counter) COUNT_AND_RETURN(counter, TC_ACT_SHOT) |
| #define TC_PUNT(counter) COUNT_AND_RETURN(counter, TC_ACT_PIPE) |
| |
| #define XDP_DROP(counter) COUNT_AND_RETURN(counter, XDP_DROP) |
| #define XDP_PUNT(counter) COUNT_AND_RETURN(counter, XDP_PASS) |
| |
| // ----- Tethering Data Stats and Limits ----- |
| |
| // Tethering stats, indexed by upstream interface. |
| DEFINE_BPF_MAP_GRW(tether_stats_map, HASH, TetherStatsKey, TetherStatsValue, 16, TETHERING_GID) |
| |
| // Tethering data limit, indexed by upstream interface. |
| // (tethering allowed when stats[iif].rxBytes + stats[iif].txBytes < limit[iif]) |
| DEFINE_BPF_MAP_GRW(tether_limit_map, HASH, TetherLimitKey, TetherLimitValue, 16, TETHERING_GID) |
| |
| // ----- IPv6 Support ----- |
| |
| DEFINE_BPF_MAP_GRW(tether_downstream6_map, HASH, TetherDownstream6Key, Tether6Value, 64, |
| TETHERING_GID) |
| |
| DEFINE_BPF_MAP_GRW(tether_downstream64_map, HASH, TetherDownstream64Key, TetherDownstream64Value, |
| 1024, TETHERING_GID) |
| |
| DEFINE_BPF_MAP_GRW(tether_upstream6_map, HASH, TetherUpstream6Key, Tether6Value, 64, |
| TETHERING_GID) |
| |
| static inline __always_inline int do_forward6(struct __sk_buff* skb, |
| const struct rawip_bool rawip, |
| const struct stream_bool stream, |
| const struct kver_uint kver) { |
| const bool is_ethernet = !rawip.rawip; |
| |
| // Must be meta-ethernet IPv6 frame |
| if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_PIPE; |
| |
| // Require ethernet dst mac address to be our unicast address. |
| if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE; |
| |
| const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; |
| |
| // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does |
| // not trigger and thus we need to manually make sure we can read packet headers via DPA. |
| // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter. |
| // It has to be done early cause it will invalidate any skb->data/data_end derived pointers. |
| try_make_writable(skb, l2_header_size + IP6_HLEN + TCP_HLEN); |
| |
| void* data = (void*)(long)skb->data; |
| const void* data_end = (void*)(long)skb->data_end; |
| struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet |
| struct ipv6hdr* ip6 = is_ethernet ? (void*)(eth + 1) : data; |
| |
| // Must have (ethernet and) ipv6 header |
| if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_PIPE; |
| |
| // Ethertype - if present - must be IPv6 |
| if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_PIPE; |
| |
| // IP version must be 6 |
| if (ip6->version != 6) TC_PUNT(INVALID_IPV6_VERSION); |
| |
| // Cannot decrement during forward if already zero or would be zero, |
| // Let the kernel's stack handle these cases and generate appropriate ICMP errors. |
| if (ip6->hop_limit <= 1) TC_PUNT(LOW_TTL); |
| |
| // If hardware offload is running and programming flows based on conntrack entries, |
| // try not to interfere with it. |
| if (ip6->nexthdr == IPPROTO_TCP) { |
| struct tcphdr* tcph = (void*)(ip6 + 1); |
| |
| // Make sure we can get at the tcp header |
| if (data + l2_header_size + sizeof(*ip6) + sizeof(*tcph) > data_end) |
| TC_PUNT(INVALID_TCP_HEADER); |
| |
| // Do not offload TCP packets with any one of the SYN/FIN/RST flags |
| if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV6_CONTROL_PACKET); |
| } |
| |
| // Protect against forwarding packets sourced from ::1 or fe80::/64 or other weirdness. |
| __be32 src32 = ip6->saddr.s6_addr32[0]; |
| if (src32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP |
| (src32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast |
| TC_PUNT(NON_GLOBAL_SRC); |
| |
| // Protect against forwarding packets destined to ::1 or fe80::/64 or other weirdness. |
| __be32 dst32 = ip6->daddr.s6_addr32[0]; |
| if (dst32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP |
| (dst32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast |
| TC_PUNT(NON_GLOBAL_DST); |
| |
| // In the upstream direction do not forward traffic within the same /64 subnet. |
| if (!stream.down && (src32 == dst32) && (ip6->saddr.s6_addr32[1] == ip6->daddr.s6_addr32[1])) |
| TC_PUNT(LOCAL_SRC_DST); |
| |
| TetherDownstream6Key kd = { |
| .iif = skb->ifindex, |
| .neigh6 = ip6->daddr, |
| }; |
| |
| TetherUpstream6Key ku = { |
| .iif = skb->ifindex, |
| // Retrieve the first 64 bits of the source IPv6 address in network order |
| .src64 = *(uint64_t*)&(ip6->saddr.s6_addr32[0]), |
| }; |
| if (is_ethernet) __builtin_memcpy(stream.down ? kd.dstMac : ku.dstMac, eth->h_dest, ETH_ALEN); |
| |
| Tether6Value* v = stream.down ? bpf_tether_downstream6_map_lookup_elem(&kd) |
| : bpf_tether_upstream6_map_lookup_elem(&ku); |
| |
| // If we don't find any offload information then simply let the core stack handle it... |
| if (!v) return TC_ACT_PIPE; |
| |
| uint32_t stat_and_limit_k = stream.down ? skb->ifindex : v->oif; |
| |
| TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k); |
| |
| // If we don't have anywhere to put stats, then abort... |
| if (!stat_v) TC_PUNT(NO_STATS_ENTRY); |
| |
| uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k); |
| |
| // If we don't have a limit, then abort... |
| if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY); |
| |
| // Required IPv6 minimum mtu is 1280, below that not clear what we should do, abort... |
| if (v->pmtu < IPV6_MIN_MTU) TC_PUNT(BELOW_IPV6_MTU); |
| |
| // Approximate handling of TCP/IPv6 overhead for incoming LRO/GRO packets: default |
| // outbound path mtu of 1500 is not necessarily correct, but worst case we simply |
| // undercount, which is still better then not accounting for this overhead at all. |
| // Note: this really shouldn't be device/path mtu at all, but rather should be |
| // derived from this particular connection's mss (ie. from gro segment size). |
| // This would require a much newer kernel with newer ebpf accessors. |
| // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header) |
| uint64_t packets = 1; |
| uint64_t L3_bytes = skb->len - l2_header_size; |
| if (L3_bytes > v->pmtu) { |
| const int tcp6_overhead = sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + 12; |
| const int mss = v->pmtu - tcp6_overhead; |
| const uint64_t payload = L3_bytes - tcp6_overhead; |
| packets = (payload + mss - 1) / mss; |
| L3_bytes = tcp6_overhead * packets + payload; |
| } |
| |
| // Are we past the limit? If so, then abort... |
| // Note: will not overflow since u64 is 936 years even at 5Gbps. |
| // Do not drop here. Offload is just that, whenever we fail to handle |
| // a packet we let the core stack deal with things. |
| // (The core stack needs to handle limits correctly anyway, |
| // since we don't offload all traffic in both directions) |
| if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED); |
| |
| if (!is_ethernet) { |
| // Try to inject an ethernet header, and simply return if we fail. |
| // We do this even if TX interface is RAWIP and thus does not need an ethernet header, |
| // because this is easier and the kernel will strip extraneous ethernet header. |
| if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) { |
| __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1); |
| TC_PUNT(CHANGE_HEAD_FAILED); |
| } |
| |
| // bpf_skb_change_head() invalidates all pointers - reload them |
| data = (void*)(long)skb->data; |
| data_end = (void*)(long)skb->data_end; |
| eth = data; |
| ip6 = (void*)(eth + 1); |
| |
| // I do not believe this can ever happen, but keep the verifier happy... |
| if (data + sizeof(struct ethhdr) + sizeof(*ip6) > data_end) { |
| __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1); |
| TC_DROP(TOO_SHORT); |
| } |
| }; |
| |
| // At this point we always have an ethernet header - which will get stripped by the |
| // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid. |
| // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct. |
| |
| // CHECKSUM_COMPLETE is a 16-bit one's complement sum, |
| // thus corrections for it need to be done in 16-byte chunks at even offsets. |
| // IPv6 nexthdr is at offset 6, while hop limit is at offset 7 |
| uint8_t old_hl = ip6->hop_limit; |
| --ip6->hop_limit; |
| uint8_t new_hl = ip6->hop_limit; |
| |
| // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error |
| // (-ENOTSUPP) if it isn't. |
| bpf_csum_update(skb, 0xFFFF - ntohs(old_hl) + ntohs(new_hl)); |
| |
| __sync_fetch_and_add(stream.down ? &stat_v->rxPackets : &stat_v->txPackets, packets); |
| __sync_fetch_and_add(stream.down ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes); |
| |
| // Overwrite any mac header with the new one |
| // For a rawip tx interface it will simply be a bunch of zeroes and later stripped. |
| *eth = v->macHeader; |
| |
| // Redirect to forwarded interface. |
| // |
| // Note that bpf_redirect() cannot fail unless you pass invalid flags. |
| // The redirect actually happens after the ebpf program has already terminated, |
| // and can fail for example for mtu reasons at that point in time, but there's nothing |
| // we can do about it here. |
| return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); |
| } |
| |
| DEFINE_BPF_PROG("schedcls/tether_downstream6_ether", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream6_ether) |
| (struct __sk_buff* skb) { |
| return do_forward6(skb, ETHER, DOWNSTREAM, KVER_NONE); |
| } |
| |
| DEFINE_BPF_PROG("schedcls/tether_upstream6_ether", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream6_ether) |
| (struct __sk_buff* skb) { |
| return do_forward6(skb, ETHER, UPSTREAM, KVER_NONE); |
| } |
| |
| // Note: section names must be unique to prevent programs from appending to each other, |
| // so instead the bpf loader will strip everything past the final $ symbol when actually |
| // pinning the program into the filesystem. |
| // |
| // bpf_skb_change_head() is only present on 4.14+ and 2 trivial kernel patches are needed: |
| // ANDROID: net: bpf: Allow TC programs to call BPF_FUNC_skb_change_head |
| // ANDROID: net: bpf: permit redirect from ingress L3 to egress L2 devices at near max mtu |
| // (the first of those has already been upstreamed) |
| // |
| // These were added to 4.14+ Android Common Kernel in R (including the original release of ACK 5.4) |
| // and there is a test in kernel/tests/net/test/bpf_test.py testSkbChangeHead() |
| // and in system/netd/tests/binder_test.cpp NetdBinderTest TetherOffloadForwarding. |
| // |
| // Hence, these mandatory (must load successfully) implementations for 4.14+ kernels: |
| DEFINE_BPF_PROG_KVER("schedcls/tether_downstream6_rawip$4_14", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream6_rawip_4_14, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return do_forward6(skb, RAWIP, DOWNSTREAM, KVER_4_14); |
| } |
| |
| DEFINE_BPF_PROG_KVER("schedcls/tether_upstream6_rawip$4_14", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream6_rawip_4_14, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return do_forward6(skb, RAWIP, UPSTREAM, KVER_4_14); |
| } |
| |
| // and define no-op stubs for pre-4.14 kernels. |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream6_rawip$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream6_rawip_stub, KVER_NONE, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream6_rawip$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream6_rawip_stub, KVER_NONE, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| // ----- IPv4 Support ----- |
| |
| DEFINE_BPF_MAP_GRW(tether_downstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID) |
| |
| DEFINE_BPF_MAP_GRW(tether_upstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID) |
| |
| static inline __always_inline int do_forward4_bottom(struct __sk_buff* skb, |
| const int l2_header_size, void* data, const void* data_end, |
| struct ethhdr* eth, struct iphdr* ip, const struct rawip_bool rawip, |
| const struct stream_bool stream, const struct updatetime_bool updatetime, |
| const bool is_tcp, const struct kver_uint kver) { |
| const bool is_ethernet = !rawip.rawip; |
| struct tcphdr* tcph = is_tcp ? (void*)(ip + 1) : NULL; |
| struct udphdr* udph = is_tcp ? NULL : (void*)(ip + 1); |
| |
| if (is_tcp) { |
| // Make sure we can get at the tcp header |
| if (data + l2_header_size + sizeof(*ip) + sizeof(*tcph) > data_end) |
| TC_PUNT(SHORT_TCP_HEADER); |
| |
| // If hardware offload is running and programming flows based on conntrack entries, try not |
| // to interfere with it, so do not offload TCP packets with any one of the SYN/FIN/RST flags |
| if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV4_CONTROL_PACKET); |
| } else { // UDP |
| // Make sure we can get at the udp header |
| if (data + l2_header_size + sizeof(*ip) + sizeof(*udph) > data_end) |
| TC_PUNT(SHORT_UDP_HEADER); |
| |
| // Skip handling of CHECKSUM_COMPLETE packets with udp checksum zero due to need for |
| // additional updating of skb->csum (this could be fixed up manually with more effort). |
| // |
| // Note that the in-kernel implementation of 'int64_t bpf_csum_update(skb, u32 csum)' is: |
| // if (skb->ip_summed == CHECKSUM_COMPLETE) |
| // return (skb->csum = csum_add(skb->csum, csum)); |
| // else |
| // return -ENOTSUPP; |
| // |
| // So this will punt any CHECKSUM_COMPLETE packet with a zero UDP checksum, |
| // and leave all other packets unaffected (since it just at most adds zero to skb->csum). |
| // |
| // In practice this should almost never trigger because most nics do not generate |
| // CHECKSUM_COMPLETE packets on receive - especially so for nics/drivers on a phone. |
| // |
| // Additionally since we're forwarding, in most cases the value of the skb->csum field |
| // shouldn't matter (it's not used by physical nic egress). |
| // |
| // It only matters if we're ingressing through a CHECKSUM_COMPLETE capable nic |
| // and egressing through a virtual interface looping back to the kernel itself |
| // (ie. something like veth) where the CHECKSUM_COMPLETE/skb->csum can get reused |
| // on ingress. |
| // |
| // If we were in the kernel we'd simply probably call |
| // void skb_checksum_complete_unset(struct sk_buff *skb) { |
| // if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; |
| // } |
| // here instead. Perhaps there should be a bpf helper for that? |
| if (!udph->check && (bpf_csum_update(skb, 0) >= 0)) TC_PUNT(UDP_CSUM_ZERO); |
| } |
| |
| Tether4Key k = { |
| .iif = skb->ifindex, |
| .l4Proto = ip->protocol, |
| .src4.s_addr = ip->saddr, |
| .dst4.s_addr = ip->daddr, |
| .srcPort = is_tcp ? tcph->source : udph->source, |
| .dstPort = is_tcp ? tcph->dest : udph->dest, |
| }; |
| if (is_ethernet) __builtin_memcpy(k.dstMac, eth->h_dest, ETH_ALEN); |
| |
| Tether4Value* v = stream.down ? bpf_tether_downstream4_map_lookup_elem(&k) |
| : bpf_tether_upstream4_map_lookup_elem(&k); |
| |
| // If we don't find any offload information then simply let the core stack handle it... |
| if (!v) return TC_ACT_PIPE; |
| |
| uint32_t stat_and_limit_k = stream.down ? skb->ifindex : v->oif; |
| |
| TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k); |
| |
| // If we don't have anywhere to put stats, then abort... |
| if (!stat_v) TC_PUNT(NO_STATS_ENTRY); |
| |
| uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k); |
| |
| // If we don't have a limit, then abort... |
| if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY); |
| |
| // Required IPv4 minimum mtu is 68, below that not clear what we should do, abort... |
| if (v->pmtu < 68) TC_PUNT(BELOW_IPV4_MTU); |
| |
| // Approximate handling of TCP/IPv4 overhead for incoming LRO/GRO packets: default |
| // outbound path mtu of 1500 is not necessarily correct, but worst case we simply |
| // undercount, which is still better then not accounting for this overhead at all. |
| // Note: this really shouldn't be device/path mtu at all, but rather should be |
| // derived from this particular connection's mss (ie. from gro segment size). |
| // This would require a much newer kernel with newer ebpf accessors. |
| // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header) |
| uint64_t packets = 1; |
| uint64_t L3_bytes = skb->len - l2_header_size; |
| if (L3_bytes > v->pmtu) { |
| const int tcp4_overhead = sizeof(struct iphdr) + sizeof(struct tcphdr) + 12; |
| const int mss = v->pmtu - tcp4_overhead; |
| const uint64_t payload = L3_bytes - tcp4_overhead; |
| packets = (payload + mss - 1) / mss; |
| L3_bytes = tcp4_overhead * packets + payload; |
| } |
| |
| // Are we past the limit? If so, then abort... |
| // Note: will not overflow since u64 is 936 years even at 5Gbps. |
| // Do not drop here. Offload is just that, whenever we fail to handle |
| // a packet we let the core stack deal with things. |
| // (The core stack needs to handle limits correctly anyway, |
| // since we don't offload all traffic in both directions) |
| if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED); |
| |
| if (!is_ethernet) { |
| // Try to inject an ethernet header, and simply return if we fail. |
| // We do this even if TX interface is RAWIP and thus does not need an ethernet header, |
| // because this is easier and the kernel will strip extraneous ethernet header. |
| if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) { |
| __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1); |
| TC_PUNT(CHANGE_HEAD_FAILED); |
| } |
| |
| // bpf_skb_change_head() invalidates all pointers - reload them |
| data = (void*)(long)skb->data; |
| data_end = (void*)(long)skb->data_end; |
| eth = data; |
| ip = (void*)(eth + 1); |
| tcph = is_tcp ? (void*)(ip + 1) : NULL; |
| udph = is_tcp ? NULL : (void*)(ip + 1); |
| |
| // I do not believe this can ever happen, but keep the verifier happy... |
| if (data + sizeof(struct ethhdr) + sizeof(*ip) + (is_tcp ? sizeof(*tcph) : sizeof(*udph)) > data_end) { |
| __sync_fetch_and_add(stream.down ? &stat_v->rxErrors : &stat_v->txErrors, 1); |
| TC_DROP(TOO_SHORT); |
| } |
| }; |
| |
| // At this point we always have an ethernet header - which will get stripped by the |
| // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid. |
| // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct. |
| |
| // Overwrite any mac header with the new one |
| // For a rawip tx interface it will simply be a bunch of zeroes and later stripped. |
| *eth = v->macHeader; |
| |
| // Decrement the IPv4 TTL, we already know it's greater than 1. |
| // u8 TTL field is followed by u8 protocol to make a u16 for ipv4 header checksum update. |
| // Since we're keeping the ipv4 checksum valid (which means the checksum of the entire |
| // ipv4 header remains 0), the overall checksum of the entire packet does not change. |
| const int sz2 = sizeof(__be16); |
| const __be16 old_ttl_proto = *(__be16 *)&ip->ttl; |
| const __be16 new_ttl_proto = old_ttl_proto - htons(0x0100); |
| bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_ttl_proto, new_ttl_proto, sz2); |
| bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(ttl), &new_ttl_proto, sz2, 0); |
| |
| const int l4_offs_csum = is_tcp ? ETH_IP4_TCP_OFFSET(check) : ETH_IP4_UDP_OFFSET(check); |
| const int sz4 = sizeof(__be32); |
| // UDP 0 is special and stored as FFFF (this flag also causes a csum of 0 to be unmodified) |
| const int l4_flags = is_tcp ? 0 : BPF_F_MARK_MANGLED_0; |
| const __be32 old_daddr = k.dst4.s_addr; |
| const __be32 old_saddr = k.src4.s_addr; |
| const __be32 new_daddr = v->dst46.s6_addr32[3]; |
| const __be32 new_saddr = v->src46.s6_addr32[3]; |
| |
| bpf_l4_csum_replace(skb, l4_offs_csum, old_daddr, new_daddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags); |
| bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_daddr, new_daddr, sz4); |
| bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(daddr), &new_daddr, sz4, 0); |
| |
| bpf_l4_csum_replace(skb, l4_offs_csum, old_saddr, new_saddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags); |
| bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_saddr, new_saddr, sz4); |
| bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(saddr), &new_saddr, sz4, 0); |
| |
| // The offsets for TCP and UDP ports: source (u16 @ L4 offset 0) & dest (u16 @ L4 offset 2) are |
| // actually the same, so the compiler should just optimize them both down to a constant. |
| bpf_l4_csum_replace(skb, l4_offs_csum, k.srcPort, v->srcPort, sz2 | l4_flags); |
| bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(source) : ETH_IP4_UDP_OFFSET(source), |
| &v->srcPort, sz2, 0); |
| |
| bpf_l4_csum_replace(skb, l4_offs_csum, k.dstPort, v->dstPort, sz2 | l4_flags); |
| bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(dest) : ETH_IP4_UDP_OFFSET(dest), |
| &v->dstPort, sz2, 0); |
| |
| // This requires the bpf_ktime_get_boot_ns() helper which was added in 5.8, |
| // and backported to all Android Common Kernel 4.14+ trees. |
| if (updatetime.updatetime) v->last_used = bpf_ktime_get_boot_ns(); |
| |
| __sync_fetch_and_add(stream.down ? &stat_v->rxPackets : &stat_v->txPackets, packets); |
| __sync_fetch_and_add(stream.down ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes); |
| |
| // Redirect to forwarded interface. |
| // |
| // Note that bpf_redirect() cannot fail unless you pass invalid flags. |
| // The redirect actually happens after the ebpf program has already terminated, |
| // and can fail for example for mtu reasons at that point in time, but there's nothing |
| // we can do about it here. |
| return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); |
| } |
| |
| static inline __always_inline int do_forward4(struct __sk_buff* skb, |
| const struct rawip_bool rawip, |
| const struct stream_bool stream, |
| const struct updatetime_bool updatetime, |
| const struct kver_uint kver) { |
| const bool is_ethernet = !rawip.rawip; |
| |
| // Require ethernet dst mac address to be our unicast address. |
| if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE; |
| |
| // Must be meta-ethernet IPv4 frame |
| if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_PIPE; |
| |
| const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; |
| |
| // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does |
| // not trigger and thus we need to manually make sure we can read packet headers via DPA. |
| // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter. |
| // It has to be done early cause it will invalidate any skb->data/data_end derived pointers. |
| try_make_writable(skb, l2_header_size + IP4_HLEN + TCP_HLEN); |
| |
| void* data = (void*)(long)skb->data; |
| const void* data_end = (void*)(long)skb->data_end; |
| struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet |
| struct iphdr* ip = is_ethernet ? (void*)(eth + 1) : data; |
| |
| // Must have (ethernet and) ipv4 header |
| if (data + l2_header_size + sizeof(*ip) > data_end) return TC_ACT_PIPE; |
| |
| // Ethertype - if present - must be IPv4 |
| if (is_ethernet && (eth->h_proto != htons(ETH_P_IP))) return TC_ACT_PIPE; |
| |
| // IP version must be 4 |
| if (ip->version != 4) TC_PUNT(INVALID_IPV4_VERSION); |
| |
| // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header |
| if (ip->ihl != 5) TC_PUNT(HAS_IP_OPTIONS); |
| |
| // Calculate the IPv4 one's complement checksum of the IPv4 header. |
| __wsum sum4 = 0; |
| for (int i = 0; i < sizeof(*ip) / sizeof(__u16); ++i) { |
| sum4 += ((__u16*)ip)[i]; |
| } |
| // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4 |
| sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE |
| sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 |
| // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF |
| if (sum4 != 0xFFFF) TC_PUNT(CHECKSUM); |
| |
| // Minimum IPv4 total length is the size of the header |
| if (ntohs(ip->tot_len) < sizeof(*ip)) TC_PUNT(TRUNCATED_IPV4); |
| |
| // We are incapable of dealing with IPv4 fragments |
| if (ip->frag_off & ~htons(IP_DF)) TC_PUNT(IS_IP_FRAG); |
| |
| // Cannot decrement during forward if already zero or would be zero, |
| // Let the kernel's stack handle these cases and generate appropriate ICMP errors. |
| if (ip->ttl <= 1) TC_PUNT(LOW_TTL); |
| |
| // If we cannot update the 'last_used' field due to lack of bpf_ktime_get_boot_ns() helper, |
| // then it is not safe to offload UDP due to the small conntrack timeouts, as such, |
| // in such a situation we can only support TCP. This also has the added nice benefit of |
| // using a separate error counter, and thus making it obvious which version of the program |
| // is loaded. |
| if (!updatetime.updatetime && ip->protocol != IPPROTO_TCP) TC_PUNT(NON_TCP); |
| |
| // We do not support offloading anything besides IPv4 TCP and UDP, due to need for NAT, |
| // but no need to check this if !updatetime due to check immediately above. |
| if (updatetime.updatetime && (ip->protocol != IPPROTO_TCP) && (ip->protocol != IPPROTO_UDP)) |
| TC_PUNT(NON_TCP_UDP); |
| |
| // We want to make sure that the compiler will, in the !updatetime case, entirely optimize |
| // out all the non-tcp logic. Also note that at this point is_udp === !is_tcp. |
| const bool is_tcp = !updatetime.updatetime || (ip->protocol == IPPROTO_TCP); |
| |
| // This is a bit of a hack to make things easier on the bpf verifier. |
| // (In particular I believe the Linux 4.14 kernel's verifier can get confused later on about |
| // what offsets into the packet are valid and can spuriously reject the program, this is |
| // because it fails to realize that is_tcp && !is_tcp is impossible) |
| // |
| // For both TCP & UDP we'll need to read and modify the src/dst ports, which so happen to |
| // always be in the first 4 bytes of the L4 header. Additionally for UDP we'll need access |
| // to the checksum field which is in bytes 7 and 8. While for TCP we'll need to read the |
| // TCP flags (at offset 13) and access to the checksum field (2 bytes at offset 16). |
| // As such we *always* need access to at least 8 bytes. |
| if (data + l2_header_size + sizeof(*ip) + 8 > data_end) TC_PUNT(SHORT_L4_HEADER); |
| |
| // We're forcing the compiler to emit two copies of the following code, optimized |
| // separately for is_tcp being true or false. This simplifies the resulting bpf |
| // byte code sufficiently that the 4.14 bpf verifier is able to keep track of things. |
| // Without this (updatetime == true) case would fail to bpf verify on 4.14 even |
| // if the underlying requisite kernel support (bpf_ktime_get_boot_ns) was backported. |
| if (is_tcp) { |
| return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip, |
| rawip, stream, updatetime, /* is_tcp */ true, kver); |
| } else { |
| return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip, |
| rawip, stream, updatetime, /* is_tcp */ false, kver); |
| } |
| } |
| |
| // Full featured (required) implementations for 5.8+ kernels (these are S+ by definition) |
| |
| DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_rawip$5_8", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_rawip_5_8, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER_5_8); |
| } |
| |
| DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_rawip$5_8", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_rawip_5_8, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER_5_8); |
| } |
| |
| DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_ether$5_8", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_ether_5_8, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER_5_8); |
| } |
| |
| DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_ether$5_8", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_ether_5_8, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER_5_8); |
| } |
| |
| // Full featured (optional) implementations for 4.14-S, 4.19-S & 5.4-S kernels |
| // (optional, because we need to be able to fallback for 4.14/4.19/5.4 pre-S kernels) |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$opt", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_rawip_opt, |
| KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER_4_14); |
| } |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$opt", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_rawip_opt, |
| KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER_4_14); |
| } |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$opt", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_ether_opt, |
| KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER_4_14); |
| } |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$opt", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_ether_opt, |
| KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER_4_14); |
| } |
| |
| // Partial (TCP-only: will not update 'last_used' field) implementations for 4.14+ kernels. |
| // These will be loaded only if the above optional ones failed (loading of *these* must succeed |
| // for 5.4+, since that is always an R patched kernel). |
| // |
| // [Note: as a result TCP connections will not have their conntrack timeout refreshed, however, |
| // since /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_established defaults to 432000 (seconds), |
| // this in practice means they'll break only after 5 days. This seems an acceptable trade-off. |
| // |
| // Additionally kernel/tests change "net-test: add bpf_ktime_get_ns / bpf_ktime_get_boot_ns tests" |
| // which enforces and documents the required kernel cherrypicks will make it pretty unlikely that |
| // many devices upgrading to S will end up relying on these fallback programs. |
| |
| // RAWIP: Required for 5.4-R kernels -- which always support bpf_skb_change_head(). |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$5_4", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_rawip_5_4, KVER_5_4, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER_5_4); |
| } |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$5_4", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_rawip_5_4, KVER_5_4, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER_5_4); |
| } |
| |
| // RAWIP: Optional for 4.14/4.19 (R) kernels -- which support bpf_skb_change_head(). |
| // [Note: fallback for 4.14/4.19 (P/Q) kernels is below in stub section] |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$4_14", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_rawip_4_14, |
| KVER_4_14, KVER_5_4) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER_4_14); |
| } |
| |
| DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$4_14", |
| TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_rawip_4_14, |
| KVER_4_14, KVER_5_4) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER_4_14); |
| } |
| |
| // ETHER: Required for 4.14-Q/R, 4.19-Q/R & 5.4-R kernels. |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$4_14", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_ether_4_14, KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, DOWNSTREAM, NO_UPDATETIME, KVER_4_14); |
| } |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$4_14", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_ether_4_14, KVER_4_14, KVER_5_8) |
| (struct __sk_buff* skb) { |
| return do_forward4(skb, ETHER, UPSTREAM, NO_UPDATETIME, KVER_4_14); |
| } |
| |
| // Placeholder (no-op) implementations for older Q kernels |
| |
| // RAWIP: 4.9-P/Q, 4.14-P/Q & 4.19-Q kernels -- without bpf_skb_change_head() for tc programs |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_rawip_stub, KVER_NONE, KVER_5_4) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_rawip_stub, KVER_NONE, KVER_5_4) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| // ETHER: 4.9-P/Q kernel |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_downstream4_ether_stub, KVER_NONE, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$stub", TETHERING_UID, TETHERING_GID, |
| sched_cls_tether_upstream4_ether_stub, KVER_NONE, KVER_4_14) |
| (struct __sk_buff* skb) { |
| return TC_ACT_PIPE; |
| } |
| |
| // ----- XDP Support ----- |
| |
| DEFINE_BPF_MAP_GRW(tether_dev_map, DEVMAP_HASH, uint32_t, uint32_t, 64, TETHERING_GID) |
| |
| static inline __always_inline int do_xdp_forward6(struct xdp_md *ctx, const struct rawip_bool rawip, |
| const struct stream_bool stream) { |
| return XDP_PASS; |
| } |
| |
| static inline __always_inline int do_xdp_forward4(struct xdp_md *ctx, const struct rawip_bool rawip, |
| const struct stream_bool stream) { |
| return XDP_PASS; |
| } |
| |
| static inline __always_inline int do_xdp_forward_ether(struct xdp_md *ctx, |
| const struct stream_bool stream) { |
| const void* data = (void*)(long)ctx->data; |
| const void* data_end = (void*)(long)ctx->data_end; |
| const struct ethhdr* eth = data; |
| |
| // Make sure we actually have an ethernet header |
| if ((void*)(eth + 1) > data_end) return XDP_PASS; |
| |
| if (eth->h_proto == htons(ETH_P_IPV6)) |
| return do_xdp_forward6(ctx, ETHER, stream); |
| if (eth->h_proto == htons(ETH_P_IP)) |
| return do_xdp_forward4(ctx, ETHER, stream); |
| |
| // Anything else we don't know how to handle... |
| return XDP_PASS; |
| } |
| |
| static inline __always_inline int do_xdp_forward_rawip(struct xdp_md *ctx, |
| const struct stream_bool stream) { |
| const void* data = (void*)(long)ctx->data; |
| const void* data_end = (void*)(long)ctx->data_end; |
| |
| // The top nibble of both IPv4 and IPv6 headers is the IP version. |
| if (data_end - data < 1) return XDP_PASS; |
| const uint8_t v = (*(uint8_t*)data) >> 4; |
| |
| if (v == 6) return do_xdp_forward6(ctx, RAWIP, stream); |
| if (v == 4) return do_xdp_forward4(ctx, RAWIP, stream); |
| |
| // Anything else we don't know how to handle... |
| return XDP_PASS; |
| } |
| |
| #define DEFINE_XDP_PROG(str, func) \ |
| DEFINE_BPF_PROG_KVER(str, TETHERING_UID, TETHERING_GID, func, KVER_5_9)(struct xdp_md *ctx) |
| |
| DEFINE_XDP_PROG("xdp/tether_downstream_ether", |
| xdp_tether_downstream_ether) { |
| return do_xdp_forward_ether(ctx, DOWNSTREAM); |
| } |
| |
| DEFINE_XDP_PROG("xdp/tether_downstream_rawip", |
| xdp_tether_downstream_rawip) { |
| return do_xdp_forward_rawip(ctx, DOWNSTREAM); |
| } |
| |
| DEFINE_XDP_PROG("xdp/tether_upstream_ether", |
| xdp_tether_upstream_ether) { |
| return do_xdp_forward_ether(ctx, UPSTREAM); |
| } |
| |
| DEFINE_XDP_PROG("xdp/tether_upstream_rawip", |
| xdp_tether_upstream_rawip) { |
| return do_xdp_forward_rawip(ctx, UPSTREAM); |
| } |
| |
| LICENSE("Apache 2.0"); |
| CRITICAL("Connectivity (Tethering)"); |
| DISABLE_BTF_ON_USER_BUILDS(); |