blob: 6221ff16461eff44b9dec00483fb86dc582eab5d [file] [log] [blame]
/******************************************************************************
*
* Copyright 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* This file contains L2CAP internal definitions
*
******************************************************************************/
#ifndef L2C_INT_H
#define L2C_INT_H
#include <base/strings/stringprintf.h>
#include <bluetooth/log.h>
#include <stdbool.h>
#include <string>
#include "internal_include/bt_target.h"
#include "l2c_api.h"
#include "l2cdefs.h"
#include "macros.h"
#include "osi/include/alarm.h"
#include "osi/include/fixed_queue.h"
#include "osi/include/list.h"
#include "stack/include/bt_hdr.h"
#include "stack/include/btm_sec_api_types.h"
#include "stack/include/hci_error_code.h"
#include "types/hci_role.h"
#include "types/raw_address.h"
#define L2CAP_MIN_MTU 48 /* Minimum acceptable MTU is 48 bytes */
#define MAX_ACTIVE_AVDT_CONN 2
constexpr uint16_t L2CAP_CREDIT_BASED_MIN_MTU = 64;
constexpr uint16_t L2CAP_CREDIT_BASED_MIN_MPS = 64;
/*
* Timeout values (in milliseconds).
*/
#define L2CAP_LINK_ROLE_SWITCH_TIMEOUT_MS (10 * 1000) /* 10 seconds */
#define L2CAP_LINK_CONNECT_TIMEOUT_MS (60 * 1000) /* 30 seconds */
#define L2CAP_LINK_CONNECT_EXT_TIMEOUT_MS (120 * 1000) /* 120 seconds */
#define L2CAP_LINK_FLOW_CONTROL_TIMEOUT_MS (2 * 1000) /* 2 seconds */
#define L2CAP_LINK_DISCONNECT_TIMEOUT_MS (30 * 1000) /* 30 seconds */
#define L2CAP_CHNL_CONNECT_TIMEOUT_MS (60 * 1000) /* 60 seconds */
#define L2CAP_CHNL_CONNECT_EXT_TIMEOUT_MS (120 * 1000) /* 120 seconds */
#define L2CAP_CHNL_CFG_TIMEOUT_MS (30 * 1000) /* 30 seconds */
#define L2CAP_CHNL_DISCONNECT_TIMEOUT_MS (10 * 1000) /* 10 seconds */
#define L2CAP_DELAY_CHECK_SM4_TIMEOUT_MS (2 * 1000) /* 2 seconds */
#define L2CAP_WAIT_INFO_RSP_TIMEOUT_MS (3 * 1000) /* 3 seconds */
#define L2CAP_BLE_LINK_CONNECT_TIMEOUT_MS (30 * 1000) /* 30 seconds */
#define L2CAP_FCR_ACK_TIMEOUT_MS 200 /* 200 milliseconds */
/* Define the possible L2CAP channel states. The names of
* the states may seem a bit strange, but they are taken from
* the Bluetooth specification.
*/
typedef enum {
CST_CLOSED, /* Channel is in closed state */
CST_ORIG_W4_SEC_COMP, /* Originator waits security clearence */
CST_TERM_W4_SEC_COMP, /* Acceptor waits security clearence */
CST_W4_L2CAP_CONNECT_RSP, /* Waiting for peer conenct response */
CST_W4_L2CA_CONNECT_RSP, /* Waiting for upper layer connect rsp */
CST_CONFIG, /* Negotiating configuration */
CST_OPEN, /* Data transfer state */
CST_W4_L2CAP_DISCONNECT_RSP, /* Waiting for peer disconnect rsp */
CST_W4_L2CA_DISCONNECT_RSP /* Waiting for upper layer disc rsp */
} tL2C_CHNL_STATE;
inline std::string channel_state_text(const tL2C_CHNL_STATE& state) {
switch (state) {
CASE_RETURN_TEXT(CST_CLOSED);
CASE_RETURN_TEXT(CST_ORIG_W4_SEC_COMP);
CASE_RETURN_TEXT(CST_TERM_W4_SEC_COMP);
CASE_RETURN_TEXT(CST_W4_L2CAP_CONNECT_RSP);
CASE_RETURN_TEXT(CST_W4_L2CA_CONNECT_RSP);
CASE_RETURN_TEXT(CST_CONFIG);
CASE_RETURN_TEXT(CST_OPEN);
CASE_RETURN_TEXT(CST_W4_L2CAP_DISCONNECT_RSP);
CASE_RETURN_TEXT(CST_W4_L2CA_DISCONNECT_RSP);
default:
return base::StringPrintf("UNKNOWN[%d]", state);
}
}
/* Define the possible L2CAP link states
*/
typedef enum {
LST_DISCONNECTED,
LST_CONNECT_HOLDING,
LST_CONNECTING_WAIT_SWITCH,
LST_CONNECTING,
LST_CONNECTED,
LST_DISCONNECTING
} tL2C_LINK_STATE;
inline std::string link_state_text(const tL2C_LINK_STATE& state) {
switch (state) {
case LST_DISCONNECTED:
return std::string("LST_DISCONNECTED");
case LST_CONNECT_HOLDING:
return std::string("LST_CONNECT_HOLDING");
case LST_CONNECTING_WAIT_SWITCH:
return std::string("LST_CONNECTING_WAIT_SWITCH");
case LST_CONNECTING:
return std::string("LST_CONNECTING");
case LST_CONNECTED:
return std::string("LST_CONNECTED");
case LST_DISCONNECTING:
return std::string("LST_DISCONNECTING");
default:
return std::string("UNKNOWN");
}
}
/* Define input events to the L2CAP link and channel state machines. The names
* of the events may seem a bit strange, but they are taken from
* the Bluetooth specification.
*/
typedef enum : uint16_t {
/* Lower layer */
L2CEVT_LP_CONNECT_CFM = 0, /* connect confirm */
L2CEVT_LP_CONNECT_CFM_NEG = 1, /* connect confirm (failed) */
L2CEVT_LP_CONNECT_IND = 2, /* connect indication */
L2CEVT_LP_DISCONNECT_IND = 3, /* disconnect indication */
/* Security */
L2CEVT_SEC_COMP = 7, /* cleared successfully */
L2CEVT_SEC_COMP_NEG = 8, /* procedure failed */
/* Peer connection */
L2CEVT_L2CAP_CONNECT_REQ = 10, /* request */
L2CEVT_L2CAP_CONNECT_RSP = 11, /* response */
L2CEVT_L2CAP_CONNECT_RSP_PND = 12, /* response pending */
L2CEVT_L2CAP_CONNECT_RSP_NEG = 13, /* response (failed) */
/* Peer configuration */
L2CEVT_L2CAP_CONFIG_REQ = 14, /* request */
L2CEVT_L2CAP_CONFIG_RSP = 15, /* response */
L2CEVT_L2CAP_CONFIG_RSP_NEG = 16, /* response (failed) */
L2CEVT_L2CAP_DISCONNECT_REQ = 17, /* Peer disconnect request */
L2CEVT_L2CAP_DISCONNECT_RSP = 18, /* Peer disconnect response */
L2CEVT_L2CAP_INFO_RSP = 19, /* Peer information response */
L2CEVT_L2CAP_DATA = 20, /* Peer data */
/* Upper layer */
L2CEVT_L2CA_CONNECT_REQ = 21, /* connect request */
L2CEVT_L2CA_CONNECT_RSP = 22, /* connect response */
L2CEVT_L2CA_CONNECT_RSP_NEG = 23, /* connect response (failed)*/
L2CEVT_L2CA_CONFIG_REQ = 24, /* config request */
L2CEVT_L2CA_CONFIG_RSP = 25, /* config response */
L2CEVT_L2CA_DISCONNECT_REQ = 27, /* disconnect request */
L2CEVT_L2CA_DISCONNECT_RSP = 28, /* disconnect response */
L2CEVT_L2CA_DATA_READ = 29, /* data read */
L2CEVT_L2CA_DATA_WRITE = 30, /* data write */
L2CEVT_TIMEOUT = 32, /* Timeout */
L2CEVT_SEC_RE_SEND_CMD = 33, /* btm_sec has enough info to proceed */
L2CEVT_ACK_TIMEOUT = 34, /* RR delay timeout */
L2CEVT_L2CA_SEND_FLOW_CONTROL_CREDIT = 35, /* Upper layer credit packet \
*/
/* Peer credit based connection */
L2CEVT_L2CAP_RECV_FLOW_CONTROL_CREDIT = 36, /* credit packet */
L2CEVT_L2CAP_CREDIT_BASED_CONNECT_REQ =
37, /* credit based connection request */
L2CEVT_L2CAP_CREDIT_BASED_CONNECT_RSP =
38, /* accepted credit based connection */
L2CEVT_L2CAP_CREDIT_BASED_CONNECT_RSP_NEG =
39, /* rejected credit based connection */
L2CEVT_L2CAP_CREDIT_BASED_RECONFIG_REQ =
40, /* credit based reconfig request*/
L2CEVT_L2CAP_CREDIT_BASED_RECONFIG_RSP =
41, /* credit based reconfig response */
/* Upper layer credit based connection */
L2CEVT_L2CA_CREDIT_BASED_CONNECT_REQ = 42, /* connect request */
L2CEVT_L2CA_CREDIT_BASED_CONNECT_RSP = 43, /* connect response */
L2CEVT_L2CA_CREDIT_BASED_CONNECT_RSP_NEG = 44, /* connect response (failed)*/
L2CEVT_L2CA_CREDIT_BASED_RECONFIG_REQ = 45, /* reconfig request */
} tL2CEVT;
/* Constants for LE Dynamic PSM values */
#define LE_DYNAMIC_PSM_START 0x0080
#define LE_DYNAMIC_PSM_END 0x00FF
#define LE_DYNAMIC_PSM_RANGE (LE_DYNAMIC_PSM_END - LE_DYNAMIC_PSM_START + 1)
/* Return values for l2cu_process_peer_cfg_req() */
#define L2CAP_PEER_CFG_UNACCEPTABLE 0
#define L2CAP_PEER_CFG_OK 1
#define L2CAP_PEER_CFG_DISCONNECT 2
/* eL2CAP option constants */
/* Min retransmission timeout if no flush timeout or PBF */
#define L2CAP_MIN_RETRANS_TOUT 2000
/* Min monitor timeout if no flush timeout or PBF */
#define L2CAP_MIN_MONITOR_TOUT 12000
#define L2CAP_MAX_FCR_CFG_TRIES 2 /* Config attempts before disconnecting */
typedef uint8_t tL2C_BLE_FIXED_CHNLS_MASK;
typedef struct {
uint8_t next_tx_seq; /* Next sequence number to be Tx'ed */
uint8_t last_rx_ack; /* Last sequence number ack'ed by the peer */
uint8_t next_seq_expected; /* Next peer sequence number expected */
uint8_t last_ack_sent; /* Last peer sequence number ack'ed */
uint8_t num_tries; /* Number of retries to send a packet */
uint8_t max_held_acks; /* Max acks we can hold before sending */
bool remote_busy; /* true if peer has flowed us off */
bool rej_sent; /* Reject was sent */
bool srej_sent; /* Selective Reject was sent */
bool wait_ack; /* Transmitter is waiting ack (poll sent) */
bool rej_after_srej; /* Send a REJ when SREJ clears */
bool send_f_rsp; /* We need to send an F-bit response */
uint16_t rx_sdu_len; /* Length of the SDU being received */
BT_HDR* p_rx_sdu; /* Buffer holding the SDU being received */
fixed_queue_t*
waiting_for_ack_q; /* Buffers sent and waiting for peer to ack */
fixed_queue_t* srej_rcv_hold_q; /* Buffers rcvd but held pending SREJ rsp */
fixed_queue_t* retrans_q; /* Buffers being retransmitted */
alarm_t* ack_timer; /* Timer delaying RR */
alarm_t* mon_retrans_timer; /* Timer Monitor or Retransmission */
} tL2C_FCRB;
typedef struct {
bool in_use;
bool log_packets;
uint16_t psm;
uint16_t real_psm; /* This may be a dummy RCB for an o/b connection but */
/* this is the real PSM that we need to connect to */
tL2CAP_APPL_INFO api;
tL2CAP_ERTM_INFO ertm_info;
tL2CAP_LE_CFG_INFO coc_cfg;
uint16_t my_mtu;
uint16_t required_remote_mtu;
} tL2C_RCB;
#ifndef L2CAP_CBB_DEFAULT_DATA_RATE_BUFF_QUOTA
#define L2CAP_CBB_DEFAULT_DATA_RATE_BUFF_QUOTA 100
#endif
typedef struct {
uint16_t psm;
tBT_TRANSPORT transport;
bool is_originator;
tBTM_SEC_CALLBACK* p_callback;
void* p_ref_data;
} tL2CAP_SEC_DATA;
/* Define a channel control block (CCB). There may be many channel control
* blocks between the same two Bluetooth devices (i.e. on the same link).
* Each CCB has unique local and remote CIDs. All channel control blocks on
* the same physical link and are chained together.
*/
typedef struct t_l2c_ccb {
bool in_use; /* true when in use, false when not */
tL2C_CHNL_STATE chnl_state; /* Channel state */
tL2CAP_LE_CFG_INFO
local_conn_cfg; /* Our config for ble conn oriented channel */
tL2CAP_LE_CFG_INFO
peer_conn_cfg; /* Peer device config ble conn oriented channel */
bool is_first_seg; /* Dtermine whether the received packet is the first
segment or not */
BT_HDR* ble_sdu; /* Buffer for storing unassembled sdu*/
uint16_t ble_sdu_length; /* Length of unassembled sdu length*/
struct t_l2c_ccb* p_next_ccb; /* Next CCB in the chain */
struct t_l2c_ccb* p_prev_ccb; /* Previous CCB in the chain */
struct t_l2c_linkcb* p_lcb; /* Link this CCB is assigned to */
uint16_t local_cid; /* Local CID */
uint16_t remote_cid; /* Remote CID */
alarm_t* l2c_ccb_timer; /* CCB Timer Entry */
tL2C_RCB* p_rcb; /* Registration CB for this Channel */
#define IB_CFG_DONE 0x01
#define OB_CFG_DONE 0x02
#define RECONFIG_FLAG 0x04 /* True after initial configuration */
uint8_t config_done; /* Configuration flag word */
uint16_t remote_config_rsp_result; /* The config rsp result from remote */
uint8_t local_id; /* Transaction ID for local trans */
uint8_t remote_id; /* Transaction ID for local */
#define CCB_FLAG_NO_RETRY 0x01 /* no more retry */
#define CCB_FLAG_SENT_PENDING 0x02 /* already sent pending response */
uint8_t flags;
bool connection_initiator; /* true if we sent ConnectReq */
tL2CAP_CFG_INFO our_cfg; /* Our saved configuration options */
tL2CAP_CFG_INFO peer_cfg; /* Peer's saved configuration options */
fixed_queue_t* xmit_hold_q; /* Transmit data hold queue */
bool cong_sent; /* Set when congested status sent */
uint16_t buff_quota; /* Buffer quota before sending congestion */
tL2CAP_CHNL_PRIORITY ccb_priority; /* Channel priority */
tL2CAP_CHNL_DATA_RATE tx_data_rate; /* Channel Tx data rate */
tL2CAP_CHNL_DATA_RATE rx_data_rate; /* Channel Rx data rate */
/* Fields used for eL2CAP */
tL2CAP_ERTM_INFO ertm_info;
tL2C_FCRB fcrb;
uint16_t tx_mps; /* TX MPS adjusted based on current controller */
uint16_t max_rx_mtu;
uint8_t fcr_cfg_tries; /* Max number of negotiation attempts */
bool peer_cfg_already_rejected; /* If mode rejected once, set to true */
bool out_cfg_fcr_present; /* true if cfg response should include fcr options
*/
bool is_flushable; /* true if channel is flushable */
uint16_t fixed_chnl_idle_tout; /* Idle timeout to use for the fixed channel */
uint16_t tx_data_len;
/* Number of LE frames that the remote can send to us (credit count in
* remote). Valid only for LE CoC */
uint16_t remote_credit_count;
/* used to indicate that ECOC is used */
bool ecoc{false};
bool reconfig_started;
struct {
struct {
unsigned bytes{0};
unsigned packets{0};
void operator()(unsigned bytes) {
this->bytes += bytes;
this->packets++;
}
} rx, tx;
struct {
struct {
unsigned bytes{0};
unsigned packets{0};
void operator()(unsigned bytes) {
this->bytes += bytes;
this->packets++;
}
} rx, tx;
} dropped;
} metrics;
} tL2C_CCB;
/***********************************************************************
* Define a queue of linked CCBs.
*/
typedef struct {
tL2C_CCB* p_first_ccb; /* The first channel in this queue */
tL2C_CCB* p_last_ccb; /* The last channel in this queue */
} tL2C_CCB_Q;
/* Round-Robin service for the same priority channels */
#define L2CAP_NUM_CHNL_PRIORITY \
3 /* Total number of priority group (high, medium, low)*/
#define L2CAP_CHNL_PRIORITY_WEIGHT \
5 /* weight per priority for burst transmission quota */
#define L2CAP_GET_PRIORITY_QUOTA(pri) \
((L2CAP_NUM_CHNL_PRIORITY - (pri)) * L2CAP_CHNL_PRIORITY_WEIGHT)
/* CCBs within the same LCB are served in round robin with priority It will make
* sure that low priority channel (for example, HF signaling on RFCOMM) can be
* sent to the headset even if higher priority channel (for example, AV media
* channel) is congested.
*/
typedef struct {
tL2C_CCB* p_serve_ccb; /* current serving ccb within priority group */
tL2C_CCB* p_first_ccb; /* first ccb of priority group */
uint8_t num_ccb; /* number of channels in priority group */
uint8_t quota; /* burst transmission quota */
} tL2C_RR_SERV;
typedef enum : uint8_t {
/* disable update connection parameters */
L2C_BLE_CONN_UPDATE_DISABLE = (1u << 0),
/* new connection parameter to be set */
L2C_BLE_NEW_CONN_PARAM = (1u << 1),
/* waiting for connection update finished */
L2C_BLE_UPDATE_PENDING = (1u << 2),
/* not using default connection parameters */
L2C_BLE_NOT_DEFAULT_PARAM = (1u << 3),
} tCONN_UPDATE_MASK;
/* Define a link control block. There is one link control block between
* this device and any other device (i.e. BD ADDR).
*/
typedef struct t_l2c_linkcb {
bool in_use; /* true when in use, false when not */
tL2C_LINK_STATE link_state;
alarm_t* l2c_lcb_timer; /* Timer entry for timeout evt */
// This tracks if the link has ever either (a)
// been used for a dynamic channel (EATT or L2CAP CoC), or (b) has been a
// GATT client. If false, the local device is just a GATT server, so for
// backwards compatibility we never do a link timeout.
bool with_active_local_clients{false};
private:
uint16_t handle_; /* The handle used with LM */
friend void l2cu_set_lcb_handle(struct t_l2c_linkcb& p_lcb, uint16_t handle);
void SetHandle(uint16_t handle) { handle_ = handle; }
public:
uint16_t Handle() const { return handle_; }
void InvalidateHandle() { handle_ = HCI_INVALID_HANDLE; }
tL2C_CCB_Q ccb_queue; /* Queue of CCBs on this LCB */
tL2C_CCB* p_pending_ccb; /* ccb of waiting channel during link disconnect */
alarm_t* info_resp_timer; /* Timer entry for info resp timeout evt */
RawAddress remote_bd_addr; /* The BD address of the remote */
private:
tHCI_ROLE link_role_{HCI_ROLE_CENTRAL}; /* Central or peripheral */
public:
tHCI_ROLE LinkRole() const { return link_role_; }
bool IsLinkRoleCentral() const { return link_role_ == HCI_ROLE_CENTRAL; }
bool IsLinkRolePeripheral() const {
return link_role_ == HCI_ROLE_PERIPHERAL;
}
void SetLinkRoleAsCentral() { link_role_ = HCI_ROLE_CENTRAL; }
void SetLinkRoleAsPeripheral() { link_role_ = HCI_ROLE_PERIPHERAL; }
uint8_t signal_id; /* Signalling channel id */
uint8_t cur_echo_id; /* Current id value for echo request */
uint16_t idle_timeout; /* Idle timeout */
private:
bool is_bonding_{false}; /* True - link active only for bonding */
public:
bool IsBonding() const { return is_bonding_; }
void SetBonding() { is_bonding_ = true; }
void ResetBonding() { is_bonding_ = false; }
uint16_t link_xmit_quota; /* Num outstanding pkts allowed */
bool is_round_robin_scheduling() const { return link_xmit_quota == 0; }
uint16_t sent_not_acked; /* Num packets sent but not acked */
void update_outstanding_packets(uint16_t packets_acked) {
if (sent_not_acked > packets_acked)
sent_not_acked -= packets_acked;
else
sent_not_acked = 0;
}
bool w4_info_rsp; /* true when info request is active */
uint32_t peer_ext_fea; /* Peer's extended features mask */
list_t* link_xmit_data_q; /* Link transmit data buffer queue */
uint8_t peer_chnl_mask[L2CAP_FIXED_CHNL_ARRAY_SIZE];
tL2CAP_PRIORITY acl_priority;
bool is_normal_priority() const {
return acl_priority == L2CAP_PRIORITY_NORMAL;
}
bool is_high_priority() const { return acl_priority == L2CAP_PRIORITY_HIGH; }
bool set_priority(tL2CAP_PRIORITY priority) {
if (acl_priority != priority) {
acl_priority = priority;
return true;
}
return false;
}
bool use_latency_mode = false;
tL2CAP_LATENCY preset_acl_latency = L2CAP_LATENCY_NORMAL;
tL2CAP_LATENCY acl_latency = L2CAP_LATENCY_NORMAL;
bool is_normal_latency() const { return acl_latency == L2CAP_LATENCY_NORMAL; }
bool is_low_latency() const { return acl_latency == L2CAP_LATENCY_LOW; }
bool set_latency(tL2CAP_LATENCY latency) {
if (acl_latency != latency) {
acl_latency = latency;
return true;
}
return false;
}
tL2C_CCB* p_fixed_ccbs[L2CAP_NUM_FIXED_CHNLS];
private:
tHCI_REASON disc_reason_{HCI_ERR_UNDEFINED};
public:
tHCI_REASON DisconnectReason() const { return disc_reason_; }
void SetDisconnectReason(tHCI_REASON disc_reason) {
disc_reason_ = disc_reason;
}
tBT_TRANSPORT transport;
bool is_transport_br_edr() const { return transport == BT_TRANSPORT_BR_EDR; }
bool is_transport_ble() const { return transport == BT_TRANSPORT_LE; }
uint16_t tx_data_len; /* tx data length used in data length extension */
fixed_queue_t* le_sec_pending_q; /* LE coc channels waiting for security check
completion */
uint8_t sec_act;
uint8_t conn_update_mask;
bool conn_update_blocked_by_service_discovery;
bool conn_update_blocked_by_profile_connection;
uint16_t min_interval; /* parameters as requested by peripheral */
uint16_t max_interval;
uint16_t latency;
uint16_t timeout;
uint16_t min_ce_len;
uint16_t max_ce_len;
#define L2C_BLE_SUBRATE_REQ_DISABLE 0x1 // disable subrate req
#define L2C_BLE_NEW_SUBRATE_PARAM 0x2 // new subrate req parameter to be set
#define L2C_BLE_SUBRATE_REQ_PENDING 0x4 // waiting for subrate to be completed
/* subrate req params */
uint16_t subrate_min;
uint16_t subrate_max;
uint16_t max_latency;
uint16_t cont_num;
uint16_t supervision_tout;
uint8_t subrate_req_mask;
/* each priority group is limited burst transmission */
/* round robin service for the same priority channels */
tL2C_RR_SERV rr_serv[L2CAP_NUM_CHNL_PRIORITY];
uint8_t rr_pri; /* current serving priority group */
/* Pending ECOC reconfiguration data */
tL2CAP_LE_CFG_INFO pending_ecoc_reconfig_cfg;
uint8_t pending_ecoc_reconfig_cnt;
/* This is to keep list of local cids use in the
* credit based connection response.
*/
uint16_t pending_ecoc_connection_cids[L2CAP_CREDIT_BASED_MAX_CIDS];
uint8_t pending_ecoc_conn_cnt;
uint16_t pending_lead_cid;
uint16_t pending_l2cap_result;
unsigned number_of_active_dynamic_channels() const {
unsigned cnt = 0;
const tL2C_CCB* cur = ccb_queue.p_first_ccb;
while (cur != nullptr) {
cnt++;
cur = cur->p_next_ccb;
}
return cnt;
}
} tL2C_LCB;
/* Define the L2CAP control structure
*/
typedef struct {
uint16_t controller_xmit_window; /* Total ACL window for all links */
uint16_t round_robin_quota; /* Round-robin link quota */
uint16_t round_robin_unacked; /* Round-robin unacked */
bool is_classic_round_robin_quota_available() const {
return round_robin_unacked < round_robin_quota;
}
void update_outstanding_classic_packets(uint16_t num_packets_acked) {
if (round_robin_unacked > num_packets_acked)
round_robin_unacked -= num_packets_acked;
else
round_robin_unacked = 0;
}
bool check_round_robin; /* Do a round robin check */
bool is_cong_cback_context;
tL2C_LCB lcb_pool[MAX_L2CAP_LINKS]; /* Link Control Block pool */
tL2C_CCB ccb_pool[MAX_L2CAP_CHANNELS]; /* Channel Control Block pool */
tL2C_RCB rcb_pool[MAX_L2CAP_CLIENTS]; /* Registration info pool */
tL2C_CCB* p_free_ccb_first; /* Pointer to first free CCB */
tL2C_CCB* p_free_ccb_last; /* Pointer to last free CCB */
bool disallow_switch; /* false, to allow switch at create conn */
uint16_t num_lm_acl_bufs; /* # of ACL buffers on controller */
uint16_t idle_timeout; /* Idle timeout */
tL2C_LCB* p_cur_hcit_lcb; /* Current HCI Transport buffer */
uint16_t num_used_lcbs; /* Number of active link control blocks */
uint16_t non_flushable_pbf; /* L2CAP_PKT_START_NON_FLUSHABLE if controller
supports */
/* Otherwise, L2CAP_PKT_START */
#if (L2CAP_CONFORMANCE_TESTING == TRUE)
uint32_t test_info_resp; /* Conformance testing needs a dynamic response */
#endif
tL2CAP_FIXED_CHNL_REG
fixed_reg[L2CAP_NUM_FIXED_CHNLS]; /* Reg info for fixed channels */
uint16_t num_ble_links_active; /* Number of LE links active */
uint16_t controller_le_xmit_window; /* Total ACL window for all links */
tL2C_BLE_FIXED_CHNLS_MASK l2c_ble_fixed_chnls_mask; // LE fixed channels mask
uint16_t num_lm_ble_bufs; /* # of ACL buffers on controller */
uint16_t ble_round_robin_quota; /* Round-robin link quota */
uint16_t ble_round_robin_unacked; /* Round-robin unacked */
bool is_ble_round_robin_quota_available() const {
return ble_round_robin_unacked < ble_round_robin_quota;
}
void update_outstanding_le_packets(uint16_t num_packets_acked) {
if (ble_round_robin_unacked > num_packets_acked)
ble_round_robin_unacked -= num_packets_acked;
else
ble_round_robin_unacked = 0;
}
bool ble_check_round_robin; /* Do a round robin check */
tL2C_RCB ble_rcb_pool[BLE_MAX_L2CAP_CLIENTS]; /* Registration info pool */
uint16_t le_dyn_psm; /* Next LE dynamic PSM value to try to assign */
bool le_dyn_psm_assigned[LE_DYNAMIC_PSM_RANGE]; /* Table of assigned LE PSM */
} tL2C_CB;
/* Define a structure that contains the information about a connection.
* This structure is used to pass between functions, and not all the
* fields will always be filled in.
*/
typedef struct {
RawAddress bd_addr; /* Remote BD address */
uint8_t status; /* Connection status */
uint16_t psm; /* PSM of the connection */
uint16_t l2cap_result; /* L2CAP result */
uint16_t l2cap_status; /* L2CAP status */
uint16_t remote_cid; /* Remote CID */
std::vector<uint16_t> lcids; /* Used when credit based is used*/
uint16_t peer_mtu; /* Peer MTU */
} tL2C_CONN_INFO;
typedef struct {
bool is_active; /* is channel active */
uint16_t local_cid; /* Remote CID */
tL2C_CCB* p_ccb; /* CCB */
} tL2C_AVDT_CHANNEL_INFO;
typedef void(tL2C_FCR_MGMT_EVT_HDLR)(uint8_t, tL2C_CCB*);
/* Necessary info for postponed TX completion callback
*/
typedef struct {
uint16_t local_cid;
uint16_t num_sdu;
tL2CA_TX_COMPLETE_CB* cb;
} tL2C_TX_COMPLETE_CB_INFO;
/* The offset in a buffer that L2CAP will use when building commands.
*/
#define L2CAP_SEND_CMD_OFFSET 0
/* Number of ACL buffers to use for high priority channel
*/
#define L2CAP_HIGH_PRI_MIN_XMIT_QUOTA_A (L2CAP_HIGH_PRI_MIN_XMIT_QUOTA)
/* L2CAP global data
***********************************
*/
extern tL2C_CB l2cb;
/* Functions provided by l2c_main.cc
***********************************
*/
void l2c_receive_hold_timer_timeout(void* data);
void l2c_ccb_timer_timeout(void* data);
void l2c_lcb_timer_timeout(void* data);
void l2c_fcrb_ack_timer_timeout(void* data);
uint8_t l2c_data_write(uint16_t cid, BT_HDR* p_data, uint16_t flag);
tL2C_LCB* l2cu_allocate_lcb(const RawAddress& p_bd_addr, bool is_bonding,
tBT_TRANSPORT transport);
void l2cu_release_lcb(tL2C_LCB* p_lcb);
tL2C_LCB* l2cu_find_lcb_by_bd_addr(const RawAddress& p_bd_addr,
tBT_TRANSPORT transport);
tL2C_LCB* l2cu_find_lcb_by_handle(uint16_t handle);
bool l2cu_set_acl_priority(const RawAddress& bd_addr, tL2CAP_PRIORITY priority,
bool reset_after_rs);
bool l2cu_set_acl_latency(const RawAddress& bd_addr, tL2CAP_LATENCY latency);
void l2cu_enqueue_ccb(tL2C_CCB* p_ccb);
void l2cu_dequeue_ccb(tL2C_CCB* p_ccb);
void l2cu_change_pri_ccb(tL2C_CCB* p_ccb, tL2CAP_CHNL_PRIORITY priority);
tL2C_CCB* l2cu_allocate_ccb(tL2C_LCB* p_lcb, uint16_t cid,
bool is_eatt = false);
void l2cu_release_ccb(tL2C_CCB* p_ccb);
tL2C_CCB* l2cu_find_ccb_by_cid(tL2C_LCB* p_lcb, uint16_t local_cid);
tL2C_CCB* l2cu_find_ccb_by_remote_cid(tL2C_LCB* p_lcb, uint16_t remote_cid);
bool l2c_is_cmd_rejected(uint8_t cmd_code, uint8_t id, tL2C_LCB* p_lcb);
void l2cu_send_peer_cmd_reject(tL2C_LCB* p_lcb, uint16_t reason, uint8_t rem_id,
uint16_t p1, uint16_t p2);
void l2cu_send_peer_connect_req(tL2C_CCB* p_ccb);
void l2cu_send_peer_connect_rsp(tL2C_CCB* p_ccb, uint16_t result,
uint16_t status);
void l2cu_send_peer_config_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2cu_send_peer_config_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2cu_send_peer_config_rej(tL2C_CCB* p_ccb, uint8_t* p_data,
uint16_t data_len, uint16_t rej_len);
void l2cu_send_peer_disc_req(tL2C_CCB* p_ccb);
void l2cu_send_peer_disc_rsp(tL2C_LCB* p_lcb, uint8_t remote_id,
uint16_t local_cid, uint16_t remote_cid);
void l2cu_send_peer_echo_rsp(tL2C_LCB* p_lcb, uint8_t id, uint8_t* p_data,
uint16_t data_len);
void l2cu_send_peer_info_rsp(tL2C_LCB* p_lcb, uint8_t id, uint16_t info_type);
void l2cu_reject_connection(tL2C_LCB* p_lcb, uint16_t remote_cid,
uint8_t rem_id, uint16_t result);
void l2cu_send_peer_info_req(tL2C_LCB* p_lcb, uint16_t info_type);
void l2cu_set_acl_hci_header(BT_HDR* p_buf, tL2C_CCB* p_ccb);
void l2cu_check_channel_congestion(tL2C_CCB* p_ccb);
void l2cu_disconnect_chnl(tL2C_CCB* p_ccb);
void l2cu_tx_complete(tL2C_TX_COMPLETE_CB_INFO* p_cbi);
void l2cu_send_peer_ble_par_req(tL2C_LCB* p_lcb, uint16_t min_int,
uint16_t max_int, uint16_t latency,
uint16_t timeout);
void l2cu_send_peer_ble_par_rsp(tL2C_LCB* p_lcb, uint16_t reason,
uint8_t rem_id);
void l2cu_reject_ble_connection(tL2C_CCB* p_ccb, uint8_t rem_id,
uint16_t result);
void l2cu_reject_credit_based_conn_req(tL2C_LCB* p_lcb, uint8_t rem_id,
uint8_t num_of_channels,
uint16_t result);
void l2cu_reject_ble_coc_connection(tL2C_LCB* p_lcb, uint8_t rem_id,
uint16_t result);
void l2cu_send_peer_ble_credit_based_conn_res(tL2C_CCB* p_ccb, uint16_t result);
void l2cu_send_peer_credit_based_conn_res(tL2C_CCB* p_ccb,
std::vector<uint16_t>& accepted_lcids,
uint16_t result);
void l2cu_send_peer_ble_credit_based_conn_req(tL2C_CCB* p_ccb);
void l2cu_send_peer_credit_based_conn_req(tL2C_CCB* p_ccb);
void l2cu_send_ble_reconfig_rsp(tL2C_LCB* p_lcb, uint8_t rem_id,
uint16_t result);
void l2cu_send_credit_based_reconfig_req(tL2C_CCB* p_ccb,
tL2CAP_LE_CFG_INFO* p_data);
void l2cu_send_peer_ble_flow_control_credit(tL2C_CCB* p_ccb,
uint16_t credit_value);
void l2cu_send_peer_ble_credit_based_disconn_req(tL2C_CCB* p_ccb);
bool l2cu_initialize_fixed_ccb(tL2C_LCB* p_lcb, uint16_t fixed_cid);
void l2cu_no_dynamic_ccbs(tL2C_LCB* p_lcb);
void l2cu_process_fixed_chnl_resp(tL2C_LCB* p_lcb);
bool l2cu_is_ccb_active(tL2C_CCB* p_ccb);
uint16_t le_result_to_l2c_conn(uint16_t result);
/* Functions provided for Broadcom Aware
***************************************
*/
tL2C_RCB* l2cu_allocate_rcb(uint16_t psm);
tL2C_RCB* l2cu_find_rcb_by_psm(uint16_t psm);
void l2cu_release_rcb(tL2C_RCB* p_rcb);
void l2cu_release_ble_rcb(tL2C_RCB* p_rcb);
tL2C_RCB* l2cu_allocate_ble_rcb(uint16_t psm);
tL2C_RCB* l2cu_find_ble_rcb_by_psm(uint16_t psm);
uint8_t l2cu_process_peer_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2cu_process_peer_cfg_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2cu_process_our_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2cu_process_our_cfg_rsp(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
tL2C_LCB* l2cu_find_lcb_by_state(tL2C_LINK_STATE state);
bool l2cu_lcb_disconnecting(void);
void l2cu_create_conn_br_edr(tL2C_LCB* p_lcb);
bool l2cu_create_conn_le(tL2C_LCB* p_lcb);
void l2cu_create_conn_after_switch(tL2C_LCB* p_lcb);
void l2cu_adjust_out_mps(tL2C_CCB* p_ccb);
/* Functions provided by l2c_link.cc
***********************************
*/
void l2c_link_timeout(tL2C_LCB* p_lcb);
void l2c_info_resp_timer_timeout(void* data);
void l2c_link_check_send_pkts(tL2C_LCB* p_lcb, uint16_t local_cid,
BT_HDR* p_buf);
void l2c_link_adjust_allocation(void);
void l2c_link_sec_comp(const RawAddress* p_bda, tBT_TRANSPORT trasnport,
void* p_ref_data, tBTM_STATUS status);
void l2c_link_adjust_chnl_allocation(void);
#if (L2CAP_CONFORMANCE_TESTING == TRUE)
/* Used only for conformance testing */
void l2cu_set_info_rsp_mask(uint32_t mask);
#endif
/* Functions provided by l2c_csm.cc
***********************************
*/
void l2c_csm_execute(tL2C_CCB* p_ccb, tL2CEVT event, void* p_data);
void l2c_enqueue_peer_data(tL2C_CCB* p_ccb, BT_HDR* p_buf);
/* Functions provided by l2c_fcr.cc
***********************************
*/
void l2c_fcr_cleanup(tL2C_CCB* p_ccb);
void l2c_fcr_proc_pdu(tL2C_CCB* p_ccb, BT_HDR* p_buf);
void l2c_fcr_proc_tout(tL2C_CCB* p_ccb);
void l2c_fcr_proc_ack_tout(tL2C_CCB* p_ccb);
void l2c_fcr_send_S_frame(tL2C_CCB* p_ccb, uint16_t function_code,
uint16_t pf_bit);
BT_HDR* l2c_fcr_clone_buf(BT_HDR* p_buf, uint16_t new_offset,
uint16_t no_of_bytes);
bool l2c_fcr_is_flow_controlled(tL2C_CCB* p_ccb);
BT_HDR* l2c_fcr_get_next_xmit_sdu_seg(tL2C_CCB* p_ccb,
uint16_t max_packet_length);
void l2c_fcr_start_timer(tL2C_CCB* p_ccb);
void l2c_lcc_proc_pdu(tL2C_CCB* p_ccb, BT_HDR* p_buf);
BT_HDR* l2c_lcc_get_next_xmit_sdu_seg(tL2C_CCB* p_ccb, bool* last_piece_of_sdu);
/* Configuration negotiation */
uint8_t l2c_fcr_chk_chan_modes(tL2C_CCB* p_ccb);
void l2c_fcr_adj_our_rsp_options(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_peer_cfg);
bool l2c_fcr_renegotiate_chan(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
uint8_t l2c_fcr_process_peer_cfg_req(tL2C_CCB* p_ccb, tL2CAP_CFG_INFO* p_cfg);
void l2c_fcr_adj_monitor_retran_timeout(tL2C_CCB* p_ccb);
void l2c_fcr_stop_timer(tL2C_CCB* p_ccb);
/* Functions provided by l2c_ble.cc
***********************************
*/
bool l2cble_create_conn(tL2C_LCB* p_lcb);
void l2cble_process_sig_cmd(tL2C_LCB* p_lcb, uint8_t* p, uint16_t pkt_len);
void l2c_ble_link_adjust_allocation(void);
void l2cble_credit_based_conn_req(tL2C_CCB* p_ccb);
void l2cble_credit_based_conn_res(tL2C_CCB* p_ccb, uint16_t result);
void l2cble_send_peer_disc_req(tL2C_CCB* p_ccb);
void l2cble_send_flow_control_credit(tL2C_CCB* p_ccb, uint16_t credit_value);
tL2CAP_LE_RESULT_CODE l2ble_sec_access_req(const RawAddress& bd_addr,
uint16_t psm, bool is_originator,
tBTM_SEC_CALLBACK* p_callback,
void* p_ref_data);
void l2cble_update_data_length(tL2C_LCB* p_lcb);
void l2cu_process_fixed_disc_cback(tL2C_LCB* p_lcb);
void l2cble_process_subrate_change_evt(uint16_t handle, uint8_t status,
uint16_t subrate_factor,
uint16_t peripheral_latency,
uint16_t cont_num, uint16_t timeout);
namespace fmt {
template <>
struct formatter<tL2C_LINK_STATE> : enum_formatter<tL2C_LINK_STATE> {};
template <>
struct formatter<tL2CEVT> : enum_formatter<tL2CEVT> {};
template <>
struct formatter<tL2C_CHNL_STATE> : enum_formatter<tL2C_CHNL_STATE> {};
} // namespace fmt
#endif