blob: d50fd5324d8ebca6d3912bc29c3f32f7afd2a932 [file] [log] [blame]
/******************************************************************************
*
* Copyright 2002-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* Utility functions to help build and parse SBC Codec Information Element
* and Media Payload.
*
******************************************************************************/
#define LOG_TAG "a2dp_sbc"
#include "a2dp_sbc.h"
#include <bluetooth/log.h>
#include <string.h>
#include "a2dp_sbc_decoder.h"
#include "a2dp_sbc_encoder.h"
#include "embdrv/sbc/encoder/include/sbc_encoder.h"
#include "include/check.h"
#include "internal_include/bt_trace.h"
#include "osi/include/osi.h"
#include "stack/include/bt_hdr.h"
#define A2DP_SBC_MAX_BITPOOL 53
using namespace bluetooth;
/* data type for the SBC Codec Information Element */
typedef struct {
uint8_t samp_freq; /* Sampling frequency */
uint8_t ch_mode; /* Channel mode */
uint8_t block_len; /* Block length */
uint8_t num_subbands; /* Number of subbands */
uint8_t alloc_method; /* Allocation method */
uint8_t min_bitpool; /* Minimum bitpool */
uint8_t max_bitpool; /* Maximum bitpool */
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
} tA2DP_SBC_CIE;
/* SBC Source codec capabilities */
static const tA2DP_SBC_CIE a2dp_sbc_source_caps = {
(A2DP_SBC_IE_SAMP_FREQ_44), /* samp_freq */
(A2DP_SBC_IE_CH_MD_MONO | A2DP_SBC_IE_CH_MD_JOINT), /* ch_mode */
(A2DP_SBC_IE_BLOCKS_16 | A2DP_SBC_IE_BLOCKS_12 | A2DP_SBC_IE_BLOCKS_8 |
A2DP_SBC_IE_BLOCKS_4), /* block_len */
A2DP_SBC_IE_SUBBAND_8, /* num_subbands */
A2DP_SBC_IE_ALLOC_MD_L, /* alloc_method */
A2DP_SBC_IE_MIN_BITPOOL, /* min_bitpool */
A2DP_SBC_MAX_BITPOOL, /* max_bitpool */
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 /* bits_per_sample */
};
/* SBC Sink codec capabilities */
static const tA2DP_SBC_CIE a2dp_sbc_sink_caps = {
(A2DP_SBC_IE_SAMP_FREQ_48 | A2DP_SBC_IE_SAMP_FREQ_44), /* samp_freq */
(A2DP_SBC_IE_CH_MD_MONO | A2DP_SBC_IE_CH_MD_STEREO |
A2DP_SBC_IE_CH_MD_JOINT | A2DP_SBC_IE_CH_MD_DUAL), /* ch_mode */
(A2DP_SBC_IE_BLOCKS_16 | A2DP_SBC_IE_BLOCKS_12 | A2DP_SBC_IE_BLOCKS_8 |
A2DP_SBC_IE_BLOCKS_4), /* block_len */
(A2DP_SBC_IE_SUBBAND_4 | A2DP_SBC_IE_SUBBAND_8), /* num_subbands */
(A2DP_SBC_IE_ALLOC_MD_L | A2DP_SBC_IE_ALLOC_MD_S), /* alloc_method */
A2DP_SBC_IE_MIN_BITPOOL, /* min_bitpool */
A2DP_SBC_MAX_BITPOOL, /* max_bitpool */
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 /* bits_per_sample */
};
/* Default SBC codec configuration */
const tA2DP_SBC_CIE a2dp_sbc_default_config = {
A2DP_SBC_IE_SAMP_FREQ_44, /* samp_freq */
A2DP_SBC_IE_CH_MD_JOINT, /* ch_mode */
A2DP_SBC_IE_BLOCKS_16, /* block_len */
A2DP_SBC_IE_SUBBAND_8, /* num_subbands */
A2DP_SBC_IE_ALLOC_MD_L, /* alloc_method */
A2DP_SBC_IE_MIN_BITPOOL, /* min_bitpool */
A2DP_SBC_MAX_BITPOOL, /* max_bitpool */
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 /* bits_per_sample */
};
static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_sbc = {
a2dp_sbc_encoder_init,
a2dp_sbc_encoder_cleanup,
a2dp_sbc_feeding_reset,
a2dp_sbc_feeding_flush,
a2dp_sbc_get_encoder_interval_ms,
a2dp_sbc_get_effective_frame_size,
a2dp_sbc_send_frames,
nullptr // set_transmit_queue_length
};
static const tA2DP_DECODER_INTERFACE a2dp_decoder_interface_sbc = {
a2dp_sbc_decoder_init,
a2dp_sbc_decoder_cleanup,
a2dp_sbc_decoder_decode_packet,
nullptr, // decoder_start
nullptr, // decoder_suspend
nullptr, // decoder_configure
};
static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilitySbc(
const tA2DP_SBC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability);
static void A2DP_ParseMplHeaderSbc(uint8_t* p_src, bool* p_frag, bool* p_start,
bool* p_last, uint8_t* p_num);
// Builds the SBC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|.
// |p_ie| is a pointer to the SBC Codec Information Element information.
// The result is stored in |p_result|. Returns A2DP_SUCCESS on success,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_BuildInfoSbc(uint8_t media_type,
const tA2DP_SBC_CIE* p_ie,
uint8_t* p_result) {
if (p_ie == NULL || p_result == NULL ||
(p_ie->samp_freq & ~A2DP_SBC_IE_SAMP_FREQ_MSK) ||
(p_ie->ch_mode & ~A2DP_SBC_IE_CH_MD_MSK) ||
(p_ie->block_len & ~A2DP_SBC_IE_BLOCKS_MSK) ||
(p_ie->num_subbands & ~A2DP_SBC_IE_SUBBAND_MSK) ||
(p_ie->alloc_method & ~A2DP_SBC_IE_ALLOC_MD_MSK) ||
(p_ie->min_bitpool > p_ie->max_bitpool) ||
(p_ie->min_bitpool < A2DP_SBC_IE_MIN_BITPOOL) ||
(p_ie->min_bitpool > A2DP_SBC_IE_MAX_BITPOOL) ||
(p_ie->max_bitpool < A2DP_SBC_IE_MIN_BITPOOL) ||
(p_ie->max_bitpool > A2DP_SBC_IE_MAX_BITPOOL)) {
/* if any unused bit is set */
return A2DP_INVALID_PARAMS;
}
*p_result++ = A2DP_SBC_INFO_LEN;
*p_result++ = (media_type << 4);
*p_result++ = A2DP_MEDIA_CT_SBC;
/* Media Codec Specific Information Element */
*p_result++ = p_ie->samp_freq | p_ie->ch_mode;
*p_result++ = p_ie->block_len | p_ie->num_subbands | p_ie->alloc_method;
*p_result++ = p_ie->min_bitpool;
*p_result = p_ie->max_bitpool;
return A2DP_SUCCESS;
}
// Parses the SBC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is
// |p_codec_info|. If |is_capability| is true, the byte sequence contains
// codec capability.
// Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error
// status code.
static tA2DP_STATUS A2DP_ParseInfoSbc(tA2DP_SBC_CIE* p_ie,
const uint8_t* p_codec_info,
bool is_capability) {
uint8_t losc;
uint8_t media_type;
tA2DP_CODEC_TYPE codec_type;
if (p_ie == NULL || p_codec_info == NULL) return A2DP_INVALID_PARAMS;
// Check the codec capability length
losc = *p_codec_info++;
if (losc != A2DP_SBC_INFO_LEN) return A2DP_WRONG_CODEC;
media_type = (*p_codec_info++) >> 4;
codec_type = *p_codec_info++;
/* Check the Media Type and Media Codec Type */
if (media_type != AVDT_MEDIA_TYPE_AUDIO || codec_type != A2DP_MEDIA_CT_SBC) {
return A2DP_WRONG_CODEC;
}
p_ie->samp_freq = *p_codec_info & A2DP_SBC_IE_SAMP_FREQ_MSK;
p_ie->ch_mode = *p_codec_info & A2DP_SBC_IE_CH_MD_MSK;
p_codec_info++;
p_ie->block_len = *p_codec_info & A2DP_SBC_IE_BLOCKS_MSK;
p_ie->num_subbands = *p_codec_info & A2DP_SBC_IE_SUBBAND_MSK;
p_ie->alloc_method = *p_codec_info & A2DP_SBC_IE_ALLOC_MD_MSK;
p_codec_info++;
p_ie->min_bitpool = *p_codec_info++;
p_ie->max_bitpool = *p_codec_info++;
if (p_ie->min_bitpool < A2DP_SBC_IE_MIN_BITPOOL ||
p_ie->min_bitpool > A2DP_SBC_IE_MAX_BITPOOL) {
return A2DP_BAD_MIN_BITPOOL;
}
if (p_ie->max_bitpool < A2DP_SBC_IE_MIN_BITPOOL ||
p_ie->max_bitpool > A2DP_SBC_IE_MAX_BITPOOL ||
p_ie->max_bitpool < p_ie->min_bitpool) {
return A2DP_BAD_MAX_BITPOOL;
}
if (is_capability) {
// NOTE: The checks here are very liberal. We should be using more
// pedantic checks specific to the SRC or SNK as specified in the spec.
if (A2DP_BitsSet(p_ie->samp_freq) == A2DP_SET_ZERO_BIT)
return A2DP_BAD_SAMP_FREQ;
if (A2DP_BitsSet(p_ie->ch_mode) == A2DP_SET_ZERO_BIT)
return A2DP_BAD_CH_MODE;
if (A2DP_BitsSet(p_ie->block_len) == A2DP_SET_ZERO_BIT)
return A2DP_BAD_BLOCK_LEN;
if (A2DP_BitsSet(p_ie->num_subbands) == A2DP_SET_ZERO_BIT)
return A2DP_BAD_SUBBANDS;
if (A2DP_BitsSet(p_ie->alloc_method) == A2DP_SET_ZERO_BIT)
return A2DP_BAD_ALLOC_METHOD;
return A2DP_SUCCESS;
}
if (A2DP_BitsSet(p_ie->samp_freq) != A2DP_SET_ONE_BIT)
return A2DP_BAD_SAMP_FREQ;
if (A2DP_BitsSet(p_ie->ch_mode) != A2DP_SET_ONE_BIT) return A2DP_BAD_CH_MODE;
if (A2DP_BitsSet(p_ie->block_len) != A2DP_SET_ONE_BIT)
return A2DP_BAD_BLOCK_LEN;
if (A2DP_BitsSet(p_ie->num_subbands) != A2DP_SET_ONE_BIT)
return A2DP_BAD_SUBBANDS;
if (A2DP_BitsSet(p_ie->alloc_method) != A2DP_SET_ONE_BIT)
return A2DP_BAD_ALLOC_METHOD;
return A2DP_SUCCESS;
}
// Build the SBC Media Payload Header.
// |p_dst| points to the location where the header should be written to.
// If |frag| is true, the media payload frame is fragmented.
// |start| is true for the first packet of a fragmented frame.
// |last| is true for the last packet of a fragmented frame.
// If |frag| is false, |num| is the number of number of frames in the packet,
// otherwise is the number of remaining fragments (including this one).
static void A2DP_BuildMediaPayloadHeaderSbc(uint8_t* p_dst, bool frag,
bool start, bool last,
uint8_t num) {
if (p_dst == NULL) return;
*p_dst = 0;
if (frag) *p_dst |= A2DP_SBC_HDR_F_MSK;
if (start) *p_dst |= A2DP_SBC_HDR_S_MSK;
if (last) *p_dst |= A2DP_SBC_HDR_L_MSK;
*p_dst |= (A2DP_SBC_HDR_NUM_MSK & num);
}
/******************************************************************************
*
* Function A2DP_ParseMplHeaderSbc
*
* Description This function is called by an application to parse
* the SBC Media Payload header.
* Input Parameters:
* p_src: the byte sequence to parse..
*
* Output Parameters:
* frag: 1, if fragmented. 0, otherwise.
*
* start: 1, if the starting packet of a fragmented frame.
*
* last: 1, if the last packet of a fragmented frame.
*
* num: If frag is 1, this is the number of remaining
* fragments
* (including this fragment) of this frame.
* If frag is 0, this is the number of frames in
* this packet.
*
* Returns void.
*****************************************************************************/
UNUSED_ATTR static void A2DP_ParseMplHeaderSbc(uint8_t* p_src, bool* p_frag,
bool* p_start, bool* p_last,
uint8_t* p_num) {
if (p_src && p_frag && p_start && p_last && p_num) {
*p_frag = (*p_src & A2DP_SBC_HDR_F_MSK) ? true : false;
*p_start = (*p_src & A2DP_SBC_HDR_S_MSK) ? true : false;
*p_last = (*p_src & A2DP_SBC_HDR_L_MSK) ? true : false;
*p_num = (*p_src & A2DP_SBC_HDR_NUM_MSK);
}
}
const char* A2DP_CodecNameSbc(UNUSED_ATTR const uint8_t* p_codec_info) {
return "SBC";
}
bool A2DP_IsSourceCodecValidSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsSinkCodecValidSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsPeerSourceCodecValidSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsPeerSinkCodecValidSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsSinkCodecSupportedSbc(const uint8_t* p_codec_info) {
return (A2DP_CodecInfoMatchesCapabilitySbc(&a2dp_sbc_sink_caps, p_codec_info,
false) == A2DP_SUCCESS);
}
bool A2DP_IsPeerSourceCodecSupportedSbc(const uint8_t* p_codec_info) {
return (A2DP_CodecInfoMatchesCapabilitySbc(&a2dp_sbc_sink_caps, p_codec_info,
true) == A2DP_SUCCESS);
}
void A2DP_InitDefaultCodecSbc(uint8_t* p_codec_info) {
if (A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &a2dp_sbc_default_config,
p_codec_info) != A2DP_SUCCESS) {
log::error("A2DP_BuildInfoSbc failed");
}
}
// Checks whether A2DP SBC codec configuration matches with a device's codec
// capabilities. |p_cap| is the SBC codec configuration. |p_codec_info| is
// the device's codec capabilities. |is_capability| is true if
// |p_codec_info| contains A2DP codec capability.
// Returns A2DP_SUCCESS if the codec configuration matches with capabilities,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilitySbc(
const tA2DP_SBC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability) {
tA2DP_STATUS status;
tA2DP_SBC_CIE cfg_cie;
/* parse configuration */
status = A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
log::error("parsing failed {}", status);
return status;
}
/* verify that each parameter is in range */
log::verbose("FREQ peer: 0x{:x}, capability 0x{:x}", cfg_cie.samp_freq,
p_cap->samp_freq);
log::verbose("CH_MODE peer: 0x{:x}, capability 0x{:x}", cfg_cie.ch_mode,
p_cap->ch_mode);
log::verbose("BLOCK_LEN peer: 0x{:x}, capability 0x{:x}", cfg_cie.block_len,
p_cap->block_len);
log::verbose("SUB_BAND peer: 0x{:x}, capability 0x{:x}", cfg_cie.num_subbands,
p_cap->num_subbands);
log::verbose("ALLOC_METHOD peer: 0x{:x}, capability 0x{:x}",
cfg_cie.alloc_method, p_cap->alloc_method);
log::verbose("MIN_BitPool peer: 0x{:x}, capability 0x{:x}",
cfg_cie.min_bitpool, p_cap->min_bitpool);
log::verbose("MAX_BitPool peer: 0x{:x}, capability 0x{:x}",
cfg_cie.max_bitpool, p_cap->max_bitpool);
/* sampling frequency */
if ((cfg_cie.samp_freq & p_cap->samp_freq) == 0) return A2DP_NS_SAMP_FREQ;
/* channel mode */
if ((cfg_cie.ch_mode & p_cap->ch_mode) == 0) return A2DP_NS_CH_MODE;
/* block length */
if ((cfg_cie.block_len & p_cap->block_len) == 0) return A2DP_BAD_BLOCK_LEN;
/* subbands */
if ((cfg_cie.num_subbands & p_cap->num_subbands) == 0)
return A2DP_NS_SUBBANDS;
/* allocation method */
if ((cfg_cie.alloc_method & p_cap->alloc_method) == 0)
return A2DP_NS_ALLOC_METHOD;
/* min bitpool */
if (cfg_cie.min_bitpool > p_cap->max_bitpool) return A2DP_NS_MIN_BITPOOL;
/* max bitpool */
if (cfg_cie.max_bitpool < p_cap->min_bitpool) return A2DP_NS_MAX_BITPOOL;
return A2DP_SUCCESS;
}
bool A2DP_CodecTypeEqualsSbc(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_SBC_CIE sbc_cie_a;
tA2DP_SBC_CIE sbc_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoSbc(&sbc_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoSbc(&sbc_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return false;
}
tA2DP_CODEC_TYPE codec_type_a = A2DP_GetCodecType(p_codec_info_a);
tA2DP_CODEC_TYPE codec_type_b = A2DP_GetCodecType(p_codec_info_b);
return (codec_type_a == codec_type_b) && (codec_type_a == A2DP_MEDIA_CT_SBC);
}
bool A2DP_CodecEqualsSbc(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_SBC_CIE sbc_cie_a;
tA2DP_SBC_CIE sbc_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoSbc(&sbc_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoSbc(&sbc_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return false;
}
tA2DP_CODEC_TYPE codec_type_a = A2DP_GetCodecType(p_codec_info_a);
tA2DP_CODEC_TYPE codec_type_b = A2DP_GetCodecType(p_codec_info_b);
if ((codec_type_a != codec_type_b) || (codec_type_a != A2DP_MEDIA_CT_SBC))
return false;
return (sbc_cie_a.samp_freq == sbc_cie_b.samp_freq) &&
(sbc_cie_a.ch_mode == sbc_cie_b.ch_mode) &&
(sbc_cie_a.block_len == sbc_cie_b.block_len) &&
(sbc_cie_a.num_subbands == sbc_cie_b.num_subbands) &&
(sbc_cie_a.alloc_method == sbc_cie_b.alloc_method) &&
(sbc_cie_a.min_bitpool == sbc_cie_b.min_bitpool) &&
(sbc_cie_a.max_bitpool == sbc_cie_b.max_bitpool);
}
int A2DP_GetTrackSampleRateSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.samp_freq) {
case A2DP_SBC_IE_SAMP_FREQ_16:
return 16000;
case A2DP_SBC_IE_SAMP_FREQ_32:
return 32000;
case A2DP_SBC_IE_SAMP_FREQ_44:
return 44100;
case A2DP_SBC_IE_SAMP_FREQ_48:
return 48000;
default:
break;
}
return -1;
}
int A2DP_GetTrackBitsPerSampleSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
// NOTE: The bits per sample never changes for SBC
return 16;
}
int A2DP_GetTrackChannelCountSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.ch_mode) {
case A2DP_SBC_IE_CH_MD_MONO:
return 1;
case A2DP_SBC_IE_CH_MD_DUAL:
case A2DP_SBC_IE_CH_MD_STEREO:
case A2DP_SBC_IE_CH_MD_JOINT:
return 2;
default:
break;
}
return -1;
}
int A2DP_GetNumberOfSubbandsSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.num_subbands) {
case A2DP_SBC_IE_SUBBAND_4:
return 4;
case A2DP_SBC_IE_SUBBAND_8:
return 8;
default:
break;
}
return -1;
}
int A2DP_GetNumberOfBlocksSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.block_len) {
case A2DP_SBC_IE_BLOCKS_4:
return 4;
case A2DP_SBC_IE_BLOCKS_8:
return 8;
case A2DP_SBC_IE_BLOCKS_12:
return 12;
case A2DP_SBC_IE_BLOCKS_16:
return 16;
default:
break;
}
return -1;
}
int A2DP_GetAllocationMethodCodeSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.alloc_method) {
case A2DP_SBC_IE_ALLOC_MD_S:
return SBC_SNR;
case A2DP_SBC_IE_ALLOC_MD_L:
return SBC_LOUDNESS;
default:
break;
}
return -1;
}
int A2DP_GetChannelModeCodeSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.ch_mode) {
case A2DP_SBC_IE_CH_MD_MONO:
return SBC_MONO;
case A2DP_SBC_IE_CH_MD_DUAL:
return SBC_DUAL;
case A2DP_SBC_IE_CH_MD_STEREO:
return SBC_STEREO;
case A2DP_SBC_IE_CH_MD_JOINT:
return SBC_JOINT_STEREO;
default:
break;
}
return -1;
}
int A2DP_GetSamplingFrequencyCodeSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.samp_freq) {
case A2DP_SBC_IE_SAMP_FREQ_16:
return SBC_sf16000;
case A2DP_SBC_IE_SAMP_FREQ_32:
return SBC_sf32000;
case A2DP_SBC_IE_SAMP_FREQ_44:
return SBC_sf44100;
case A2DP_SBC_IE_SAMP_FREQ_48:
return SBC_sf48000;
default:
break;
}
return -1;
}
int A2DP_GetMinBitpoolSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
return sbc_cie.min_bitpool;
}
int A2DP_GetMaxBitpoolSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
return sbc_cie.max_bitpool;
}
uint32_t A2DP_GetBitrateSbc() { return a2dp_sbc_get_bitrate(); }
int A2DP_GetSinkTrackChannelTypeSbc(const uint8_t* p_codec_info) {
tA2DP_SBC_CIE sbc_cie;
tA2DP_STATUS a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
log::error("cannot decode codec information: {}", a2dp_status);
return -1;
}
switch (sbc_cie.ch_mode) {
case A2DP_SBC_IE_CH_MD_MONO:
return 1;
case A2DP_SBC_IE_CH_MD_DUAL:
case A2DP_SBC_IE_CH_MD_STEREO:
case A2DP_SBC_IE_CH_MD_JOINT:
return 3;
default:
break;
}
return -1;
}
bool A2DP_GetPacketTimestampSbc(UNUSED_ATTR const uint8_t* p_codec_info,
const uint8_t* p_data, uint32_t* p_timestamp) {
*p_timestamp = *(const uint32_t*)p_data;
return true;
}
bool A2DP_BuildCodecHeaderSbc(UNUSED_ATTR const uint8_t* p_codec_info,
BT_HDR* p_buf, uint16_t frames_per_packet) {
// this doesn't happen in real life, but keeps fuzzer happy
if (p_buf->len - p_buf->offset < A2DP_SBC_MPL_HDR_LEN) {
return false;
}
// there is a 4-byte timestamp right following p_buf
if (p_buf->offset < 4 + A2DP_SBC_MPL_HDR_LEN) {
return false;
}
p_buf->offset -= A2DP_SBC_MPL_HDR_LEN;
uint8_t* p = (uint8_t*)(p_buf + 1) + p_buf->offset;
p_buf->len += A2DP_SBC_MPL_HDR_LEN;
A2DP_BuildMediaPayloadHeaderSbc(p, false, false, false,
(uint8_t)frames_per_packet);
return true;
}
std::string A2DP_CodecInfoStringSbc(const uint8_t* p_codec_info) {
std::stringstream res;
std::string field;
tA2DP_STATUS a2dp_status;
tA2DP_SBC_CIE sbc_cie;
a2dp_status = A2DP_ParseInfoSbc(&sbc_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
res << "A2DP_ParseInfoSbc fail: " << loghex(a2dp_status);
return res.str();
}
res << "\tname: SBC\n";
// Sample frequency
field.clear();
AppendField(&field, (sbc_cie.samp_freq == 0), "NONE");
AppendField(&field, (sbc_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_16), "16000");
AppendField(&field, (sbc_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_32), "32000");
AppendField(&field, (sbc_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_44), "44100");
AppendField(&field, (sbc_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_48), "48000");
res << "\tsamp_freq: " << field << " (" << loghex(sbc_cie.samp_freq) << ")\n";
// Channel mode
field.clear();
AppendField(&field, (sbc_cie.ch_mode == 0), "NONE");
AppendField(&field, (sbc_cie.ch_mode & A2DP_SBC_IE_CH_MD_MONO), "Mono");
AppendField(&field, (sbc_cie.ch_mode & A2DP_SBC_IE_CH_MD_DUAL), "Dual");
AppendField(&field, (sbc_cie.ch_mode & A2DP_SBC_IE_CH_MD_STEREO), "Stereo");
AppendField(&field, (sbc_cie.ch_mode & A2DP_SBC_IE_CH_MD_JOINT), "Joint");
res << "\tch_mode: " << field << " (" << loghex(sbc_cie.ch_mode) << ")\n";
// Block length
field.clear();
AppendField(&field, (sbc_cie.block_len == 0), "NONE");
AppendField(&field, (sbc_cie.block_len & A2DP_SBC_IE_BLOCKS_4), "4");
AppendField(&field, (sbc_cie.block_len & A2DP_SBC_IE_BLOCKS_8), "8");
AppendField(&field, (sbc_cie.block_len & A2DP_SBC_IE_BLOCKS_12), "12");
AppendField(&field, (sbc_cie.block_len & A2DP_SBC_IE_BLOCKS_16), "16");
res << "\tblock_len: " << field << " (" << loghex(sbc_cie.block_len) << ")\n";
// Number of subbands
field.clear();
AppendField(&field, (sbc_cie.num_subbands == 0), "NONE");
AppendField(&field, (sbc_cie.num_subbands & A2DP_SBC_IE_SUBBAND_4), "4");
AppendField(&field, (sbc_cie.num_subbands & A2DP_SBC_IE_SUBBAND_8), "8");
res << "\tnum_subbands: " << field << " (" << loghex(sbc_cie.num_subbands)
<< ")\n";
// Allocation method
field.clear();
AppendField(&field, (sbc_cie.alloc_method == 0), "NONE");
AppendField(&field, (sbc_cie.alloc_method & A2DP_SBC_IE_ALLOC_MD_S), "SNR");
AppendField(&field, (sbc_cie.alloc_method & A2DP_SBC_IE_ALLOC_MD_L),
"Loundess");
res << "\talloc_method: " << field << " (" << loghex(sbc_cie.alloc_method)
<< ")\n";
// Min/max bitloop
res << "\tBit pool Min: " << std::to_string(sbc_cie.min_bitpool)
<< " Max: " << std::to_string(sbc_cie.max_bitpool);
return res.str();
}
const tA2DP_ENCODER_INTERFACE* A2DP_GetEncoderInterfaceSbc(
const uint8_t* p_codec_info) {
if (!A2DP_IsSourceCodecValidSbc(p_codec_info)) return NULL;
return &a2dp_encoder_interface_sbc;
}
const tA2DP_DECODER_INTERFACE* A2DP_GetDecoderInterfaceSbc(
const uint8_t* p_codec_info) {
if (!A2DP_IsSinkCodecValidSbc(p_codec_info)) return NULL;
return &a2dp_decoder_interface_sbc;
}
bool A2DP_AdjustCodecSbc(uint8_t* p_codec_info) {
tA2DP_SBC_CIE cfg_cie;
if (A2DP_ParseInfoSbc(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS)
return false;
// Updated the max bitpool
if (cfg_cie.max_bitpool > A2DP_SBC_MAX_BITPOOL) {
log::warn("Updated the SBC codec max bitpool from {} to {}",
cfg_cie.max_bitpool, A2DP_SBC_MAX_BITPOOL);
cfg_cie.max_bitpool = A2DP_SBC_MAX_BITPOOL;
}
return (A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &cfg_cie, p_codec_info) ==
A2DP_SUCCESS);
}
btav_a2dp_codec_index_t A2DP_SourceCodecIndexSbc(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SOURCE_SBC;
}
btav_a2dp_codec_index_t A2DP_SinkCodecIndexSbc(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SINK_SBC;
}
const char* A2DP_CodecIndexStrSbc(void) { return "SBC"; }
const char* A2DP_CodecIndexStrSbcSink(void) { return "SBC SINK"; }
bool A2DP_InitCodecConfigSbc(AvdtpSepConfig* p_cfg) {
if (A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &a2dp_sbc_source_caps,
p_cfg->codec_info) != A2DP_SUCCESS) {
return false;
}
return true;
}
bool A2DP_InitCodecConfigSbcSink(AvdtpSepConfig* p_cfg) {
if (A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &a2dp_sbc_sink_caps,
p_cfg->codec_info) != A2DP_SUCCESS) {
return false;
}
return true;
}
UNUSED_ATTR static void build_codec_config(const tA2DP_SBC_CIE& config_cie,
btav_a2dp_codec_config_t* result) {
if (config_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_44)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (config_cie.samp_freq & A2DP_SBC_IE_SAMP_FREQ_48)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
result->bits_per_sample = config_cie.bits_per_sample;
if (config_cie.ch_mode & A2DP_SBC_IE_CH_MD_MONO)
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (config_cie.ch_mode & (A2DP_SBC_IE_CH_MD_STEREO | A2DP_SBC_IE_CH_MD_JOINT |
A2DP_SBC_IE_CH_MD_DUAL)) {
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigSbcSource::A2dpCodecConfigSbcSource(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfigSbcBase(BTAV_A2DP_CODEC_INDEX_SOURCE_SBC,
A2DP_CodecIndexStrSbc(), codec_priority, true) {
// Compute the local capability
if (a2dp_sbc_source_caps.samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (a2dp_sbc_source_caps.samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
codec_local_capability_.bits_per_sample =
a2dp_sbc_source_caps.bits_per_sample;
if (a2dp_sbc_source_caps.ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (a2dp_sbc_source_caps.ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (a2dp_sbc_source_caps.ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (a2dp_sbc_source_caps.ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigSbcSource::~A2dpCodecConfigSbcSource() {}
bool A2dpCodecConfigSbcSource::init() {
if (!isValid()) return false;
// Load the encoder
if (!A2DP_LoadEncoderSbc()) {
log::error("cannot load the encoder");
return false;
}
return true;
}
bool A2dpCodecConfigSbcSource::useRtpHeaderMarkerBit() const { return false; }
//
// Selects the best sample rate from |samp_freq|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_sample_rate(uint8_t samp_freq, tA2DP_SBC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
p_result->samp_freq = A2DP_SBC_IE_SAMP_FREQ_48;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
p_result->samp_freq = A2DP_SBC_IE_SAMP_FREQ_44;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
return false;
}
//
// Selects the audio sample rate from |p_codec_audio_config|.
// |samp_freq| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_sample_rate(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t samp_freq,
tA2DP_SBC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
p_result->samp_freq = A2DP_SBC_IE_SAMP_FREQ_44;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
p_result->samp_freq = A2DP_SBC_IE_SAMP_FREQ_48;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
break;
}
return false;
}
//
// Selects the best bits per sample.
// The result is stored in |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_bits_per_sample(
btav_a2dp_codec_config_t* p_codec_config) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
//
// Selects the audio bits per sample from |p_codec_audio_config|.
// The result is stored in |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_bits_per_sample(
const btav_a2dp_codec_config_t* p_codec_audio_config,
btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
break;
}
return false;
}
//
// Selects the best channel mode from |ch_mode|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_channel_mode(uint8_t ch_mode, tA2DP_SBC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_JOINT;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_DUAL;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
return false;
}
//
// Selects the audio channel mode from |p_codec_audio_config|.
// |ch_mode| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_channel_mode(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t ch_mode,
tA2DP_SBC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_JOINT;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
p_result->ch_mode = A2DP_SBC_IE_CH_MD_DUAL;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
break;
}
return false;
}
bool A2dpCodecConfigSbcBase::setCodecConfig(const uint8_t* p_peer_codec_info,
bool is_capability,
uint8_t* p_result_codec_config) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_SBC_CIE peer_info_cie;
tA2DP_SBC_CIE result_config_cie;
uint8_t samp_freq;
uint8_t ch_mode;
uint8_t block_len;
uint8_t num_subbands;
uint8_t alloc_method;
const tA2DP_SBC_CIE* p_a2dp_sbc_caps =
(is_source_) ? &a2dp_sbc_source_caps : &a2dp_sbc_sink_caps;
// Save the internal state
btav_a2dp_codec_config_t saved_codec_config = codec_config_;
btav_a2dp_codec_config_t saved_codec_capability = codec_capability_;
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_;
btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_;
uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_));
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_,
sizeof(ota_codec_peer_config_));
tA2DP_STATUS status =
A2DP_ParseInfoSbc(&peer_info_cie, p_peer_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
log::error("can't parse peer's capabilities: error = {}", status);
goto fail;
}
// Try using the prefered peer codec config (if valid), instead of the peer
// capability.
if (is_capability) {
if (is_source_) {
if (A2DP_IsPeerSinkCodecValidSbc(ota_codec_peer_config_)) {
status =
A2DP_ParseInfoSbc(&peer_info_cie, ota_codec_peer_config_, false);
}
} else {
if (A2DP_IsPeerSourceCodecValidSbc(ota_codec_peer_config_)) {
status =
A2DP_ParseInfoSbc(&peer_info_cie, ota_codec_peer_config_, false);
}
}
if (status != A2DP_SUCCESS) {
// Use the peer codec capability
status =
A2DP_ParseInfoSbc(&peer_info_cie, p_peer_codec_info, is_capability);
CHECK(status == A2DP_SUCCESS);
}
}
//
// Build the preferred configuration
//
memset(&result_config_cie, 0, sizeof(result_config_cie));
//
// Select the sample frequency
//
samp_freq = p_a2dp_sbc_caps->samp_freq & peer_info_cie.samp_freq;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
switch (codec_user_config_.sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
result_config_cie.samp_freq = A2DP_SBC_IE_SAMP_FREQ_44;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
result_config_cie.samp_freq = A2DP_SBC_IE_SAMP_FREQ_48;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
break;
}
// Select the sample frequency if there is no user preference
do {
// Compute the selectable capability
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break;
// Compute the common capability
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
// No user preference - try the codec audio config
if (select_audio_sample_rate(&codec_audio_config_, samp_freq,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_sample_rate(
a2dp_sbc_default_config.samp_freq & peer_info_cie.samp_freq,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_sample_rate(samp_freq, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) {
log::error(
"cannot match sample frequency: local caps = 0x{:x} peer info = 0x{:x}",
p_a2dp_sbc_caps->samp_freq, peer_info_cie.samp_freq);
goto fail;
}
//
// Select the bits per sample
//
// NOTE: this information is NOT included in the SBC A2DP codec description
// that is sent OTA.
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
switch (codec_user_config_.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
break;
}
// Select the bits per sample if there is no user preference
do {
// Compute the selectable capability
codec_selectable_capability_.bits_per_sample =
p_a2dp_sbc_caps->bits_per_sample;
if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE)
break;
// Compute the common capability
codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
// No user preference - try the codec audio config
if (select_audio_bits_per_sample(&codec_audio_config_, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_bits_per_sample(&codec_config_)) {
break;
}
// No user preference - use the best match
// TODO: no-op - temporary kept here for consistency
if (select_best_bits_per_sample(&codec_config_)) {
break;
}
} while (false);
if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) {
log::error("cannot match bits per sample: user preference = 0x{:x}",
codec_user_config_.bits_per_sample);
goto fail;
}
//
// Select the channel mode
//
ch_mode = p_a2dp_sbc_caps->ch_mode & peer_info_cie.ch_mode;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
switch (codec_user_config_.channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
result_config_cie.ch_mode = A2DP_SBC_IE_CH_MD_MONO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
result_config_cie.ch_mode = A2DP_SBC_IE_CH_MD_JOINT;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
break;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
result_config_cie.ch_mode = A2DP_SBC_IE_CH_MD_STEREO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
break;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
result_config_cie.ch_mode = A2DP_SBC_IE_CH_MD_DUAL;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
break;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
break;
}
// Select the channel mode if there is no user preference
do {
// Compute the selectable capability
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break;
// Compute the common capability
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO)
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (ch_mode & (A2DP_SBC_IE_CH_MD_JOINT | A2DP_SBC_IE_CH_MD_STEREO |
A2DP_SBC_IE_CH_MD_DUAL)) {
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
// No user preference - use the codec audio config
if (select_audio_channel_mode(&codec_audio_config_, ch_mode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_channel_mode(
a2dp_sbc_default_config.ch_mode & peer_info_cie.ch_mode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_channel_mode(ch_mode, &result_config_cie, &codec_config_)) {
break;
}
} while (false);
if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) {
log::error(
"cannot match channel mode: local caps = 0x{:x} peer info = 0x{:x}",
p_a2dp_sbc_caps->ch_mode, peer_info_cie.ch_mode);
goto fail;
}
//
// Select the block length
//
block_len = p_a2dp_sbc_caps->block_len & peer_info_cie.block_len;
if (block_len & A2DP_SBC_IE_BLOCKS_16) {
result_config_cie.block_len = A2DP_SBC_IE_BLOCKS_16;
} else if (block_len & A2DP_SBC_IE_BLOCKS_12) {
result_config_cie.block_len = A2DP_SBC_IE_BLOCKS_12;
} else if (block_len & A2DP_SBC_IE_BLOCKS_8) {
result_config_cie.block_len = A2DP_SBC_IE_BLOCKS_8;
} else if (block_len & A2DP_SBC_IE_BLOCKS_4) {
result_config_cie.block_len = A2DP_SBC_IE_BLOCKS_4;
} else {
log::error(
"cannot match block length: local caps = 0x{:x} peer info = 0x{:x}",
p_a2dp_sbc_caps->block_len, peer_info_cie.block_len);
goto fail;
}
//
// Select the number of sub-bands
//
num_subbands = p_a2dp_sbc_caps->num_subbands & peer_info_cie.num_subbands;
if (num_subbands & A2DP_SBC_IE_SUBBAND_8) {
result_config_cie.num_subbands = A2DP_SBC_IE_SUBBAND_8;
} else if (num_subbands & A2DP_SBC_IE_SUBBAND_4) {
result_config_cie.num_subbands = A2DP_SBC_IE_SUBBAND_4;
} else {
log::error(
"cannot match number of sub-bands: local caps = 0x{:x} peer info = "
"0x{:x}",
p_a2dp_sbc_caps->num_subbands, peer_info_cie.num_subbands);
goto fail;
}
//
// Select the allocation method
//
alloc_method = p_a2dp_sbc_caps->alloc_method & peer_info_cie.alloc_method;
if (alloc_method & A2DP_SBC_IE_ALLOC_MD_L) {
result_config_cie.alloc_method = A2DP_SBC_IE_ALLOC_MD_L;
} else if (alloc_method & A2DP_SBC_IE_ALLOC_MD_S) {
result_config_cie.alloc_method = A2DP_SBC_IE_ALLOC_MD_S;
} else {
log::error(
"cannot match allocation method: local caps = 0x{:x} peer info = "
"0x{:x}",
p_a2dp_sbc_caps->alloc_method, peer_info_cie.alloc_method);
goto fail;
}
//
// Select the min/max bitpool
//
result_config_cie.min_bitpool = p_a2dp_sbc_caps->min_bitpool;
if (result_config_cie.min_bitpool < peer_info_cie.min_bitpool)
result_config_cie.min_bitpool = peer_info_cie.min_bitpool;
result_config_cie.max_bitpool = p_a2dp_sbc_caps->max_bitpool;
if (result_config_cie.max_bitpool > peer_info_cie.max_bitpool)
result_config_cie.max_bitpool = peer_info_cie.max_bitpool;
if (result_config_cie.min_bitpool > result_config_cie.max_bitpool) {
log::error(
"cannot match min/max bitpool: local caps min/max = 0x{:x}/0x{:x} peer "
"info min/max = 0x{:x}/0x{:x}",
p_a2dp_sbc_caps->min_bitpool, p_a2dp_sbc_caps->max_bitpool,
peer_info_cie.min_bitpool, peer_info_cie.max_bitpool);
goto fail;
}
if (A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
p_result_codec_config) != A2DP_SUCCESS) {
goto fail;
}
//
// Copy the codec-specific fields if they are not zero
//
if (codec_user_config_.codec_specific_1 != 0)
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
if (codec_user_config_.codec_specific_2 != 0)
codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2;
if (codec_user_config_.codec_specific_3 != 0)
codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3;
if (codec_user_config_.codec_specific_4 != 0)
codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4;
// Create a local copy of the peer codec capability/config, and the
// result codec config.
if (is_capability) {
status = A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_capability_);
} else {
status = A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_config_);
}
CHECK(status == A2DP_SUCCESS);
status = A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
ota_codec_config_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_config_ = saved_codec_config;
codec_capability_ = saved_codec_capability;
codec_selectable_capability_ = saved_codec_selectable_capability;
codec_user_config_ = saved_codec_user_config;
codec_audio_config_ = saved_codec_audio_config;
memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_));
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config,
sizeof(ota_codec_peer_config_));
return false;
}
bool A2dpCodecConfigSbcBase::setPeerCodecCapabilities(
const uint8_t* p_peer_codec_capabilities) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_SBC_CIE peer_info_cie;
uint8_t samp_freq;
uint8_t ch_mode;
const tA2DP_SBC_CIE* p_a2dp_sbc_caps =
(is_source_) ? &a2dp_sbc_source_caps : &a2dp_sbc_sink_caps;
// Save the internal state
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
tA2DP_STATUS status =
A2DP_ParseInfoSbc(&peer_info_cie, p_peer_codec_capabilities, true);
if (status != A2DP_SUCCESS) {
log::error("can't parse peer's capabilities: error = {}", status);
goto fail;
}
// Compute the selectable capability - sample rate
samp_freq = p_a2dp_sbc_caps->samp_freq & peer_info_cie.samp_freq;
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_44) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (samp_freq & A2DP_SBC_IE_SAMP_FREQ_48) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
// Compute the selectable capability - bits per sample
codec_selectable_capability_.bits_per_sample =
p_a2dp_sbc_caps->bits_per_sample;
// Compute the selectable capability - channel mode
ch_mode = p_a2dp_sbc_caps->ch_mode & peer_info_cie.ch_mode;
if (ch_mode & A2DP_SBC_IE_CH_MD_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_JOINT) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (ch_mode & A2DP_SBC_IE_CH_MD_DUAL) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
status = A2DP_BuildInfoSbc(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie,
ota_codec_peer_capability_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_selectable_capability_ = saved_codec_selectable_capability;
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
return false;
}
A2dpCodecConfigSbcSink::A2dpCodecConfigSbcSink(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfigSbcBase(BTAV_A2DP_CODEC_INDEX_SINK_SBC,
A2DP_CodecIndexStrSbcSink(), codec_priority,
false) {}
A2dpCodecConfigSbcSink::~A2dpCodecConfigSbcSink() {}
bool A2dpCodecConfigSbcSink::init() {
if (!isValid()) return false;
// Load the decoder
if (!A2DP_LoadDecoderSbc()) {
log::error("cannot load the decoder");
return false;
}
return true;
}
bool A2dpCodecConfigSbcSink::useRtpHeaderMarkerBit() const {
// TODO: This method applies only to Source codecs
return false;
}