blob: c89daaad9a768a2b4ca1afe0f1ba2b6494fa8a9d [file] [log] [blame]
/******************************************************************************
*
* Copyright 2006-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* This file contains action functions for BTA JV APIs.
*
******************************************************************************/
#define LOG_TAG "bluetooth"
#include <android_bluetooth_flags.h>
#include <base/logging.h>
#include <cstdint>
#include <unordered_set>
#include "bta/include/bta_jv_co.h"
#include "bta/include/bta_rfcomm_scn.h"
#include "bta/jv/bta_jv_int.h"
#include "bta/sys/bta_sys.h"
#include "internal_include/bt_target.h"
#include "internal_include/bt_trace.h"
#include "osi/include/allocator.h"
#include "osi/include/osi.h" // UNUSED_ATTR
#include "osi/include/properties.h"
#include "stack/btm/btm_sec.h"
#include "stack/include/avct_api.h" // AVCT_PSM
#include "stack/include/avdt_api.h" // AVDT_PSM
#include "stack/include/bt_hdr.h"
#include "stack/include/bt_psm_types.h"
#include "stack/include/bt_types.h"
#include "stack/include/bt_uuid16.h"
#include "stack/include/btm_client_interface.h"
#include "stack/include/gap_api.h"
#include "stack/include/l2cdefs.h"
#include "stack/include/port_api.h"
#include "stack/include/sdp_api.h"
#include "types/bluetooth/uuid.h"
#include "types/raw_address.h"
using namespace bluetooth::legacy::stack::sdp;
tBTA_JV_CB bta_jv_cb;
std::unordered_set<uint16_t> used_l2cap_classic_dynamic_psm;
static tBTA_JV_PCB* bta_jv_add_rfc_port(tBTA_JV_RFC_CB* p_cb,
tBTA_JV_PCB* p_pcb_open);
static tBTA_JV_STATUS bta_jv_free_set_pm_profile_cb(uint32_t jv_handle);
static void bta_jv_pm_conn_busy(tBTA_JV_PM_CB* p_cb);
static void bta_jv_pm_conn_idle(tBTA_JV_PM_CB* p_cb);
static void bta_jv_pm_state_change(tBTA_JV_PM_CB* p_cb,
const tBTA_JV_CONN_STATE state);
static void bta_jv_reset_sniff_timer(tBTA_JV_PM_CB* p_cb);
#ifndef BTA_JV_SDP_DB_SIZE
#define BTA_JV_SDP_DB_SIZE 4500
#endif
#ifndef BTA_JV_SDP_RAW_DATA_SIZE
#define BTA_JV_SDP_RAW_DATA_SIZE 1800
#endif
static uint8_t bta_jv_sdp_raw_data[BTA_JV_SDP_RAW_DATA_SIZE];
static tSDP_DISCOVERY_DB
bta_jv_sdp_db_data[BTA_JV_SDP_DB_SIZE / sizeof(tSDP_DISCOVERY_DB)];
/* JV configuration structure */
struct tBTA_JV_CFG {
uint16_t sdp_raw_size; /* The size of p_sdp_raw_data */
uint16_t sdp_db_size; /* The size of p_sdp_db */
uint8_t* p_sdp_raw_data; /* The data buffer to keep raw data */
tSDP_DISCOVERY_DB* p_sdp_db; /* The data buffer to keep SDP database */
} bta_jv_cfg = {
BTA_JV_SDP_RAW_DATA_SIZE, /* The size of p_sdp_raw_data */
(BTA_JV_SDP_DB_SIZE / sizeof(tSDP_DISCOVERY_DB)) *
sizeof(tSDP_DISCOVERY_DB), /* The size of p_sdp_db_data */
bta_jv_sdp_raw_data, /* The data buffer to keep raw data */
bta_jv_sdp_db_data /* The data buffer to keep SDP database */
};
tBTA_JV_CFG* p_bta_jv_cfg = &bta_jv_cfg;
/*******************************************************************************
*
* Function bta_jv_alloc_sec_id
*
* Description allocate a security id
*
* Returns
*
******************************************************************************/
uint8_t bta_jv_alloc_sec_id(void) {
uint8_t ret = 0;
int i;
for (i = 0; i < BTA_JV_NUM_SERVICE_ID; i++) {
if (0 == bta_jv_cb.sec_id[i]) {
bta_jv_cb.sec_id[i] = BTA_JV_FIRST_SERVICE_ID + i;
ret = bta_jv_cb.sec_id[i];
break;
}
}
return ret;
}
static int get_sec_id_used(void) {
int i;
int used = 0;
for (i = 0; i < BTA_JV_NUM_SERVICE_ID; i++) {
if (bta_jv_cb.sec_id[i]) used++;
}
if (used == BTA_JV_NUM_SERVICE_ID)
LOG(ERROR) << __func__
<< ": sec id exceeds the limit=" << BTA_JV_NUM_SERVICE_ID;
return used;
}
static int get_rfc_cb_used(void) {
int i;
int used = 0;
for (i = 0; i < BTA_JV_MAX_RFC_CONN; i++) {
if (bta_jv_cb.rfc_cb[i].handle) used++;
}
if (used == BTA_JV_MAX_RFC_CONN)
LOG(ERROR) << __func__
<< ": rfc ctrl block exceeds the limit=" << BTA_JV_MAX_RFC_CONN;
return used;
}
/*******************************************************************************
*
* Function bta_jv_free_sec_id
*
* Description free the given security id
*
* Returns
*
******************************************************************************/
static void bta_jv_free_sec_id(uint8_t* p_sec_id) {
uint8_t sec_id = *p_sec_id;
*p_sec_id = 0;
if (sec_id >= BTA_JV_FIRST_SERVICE_ID && sec_id <= BTA_JV_LAST_SERVICE_ID) {
BTM_SecClrService(sec_id);
bta_jv_cb.sec_id[sec_id - BTA_JV_FIRST_SERVICE_ID] = 0;
}
}
/*******************************************************************************
*
* Function bta_jv_from_gap_l2cap_err
*
* Description Convert the L2CAP error result propagated from GAP to BTA JV
* L2CAP close reason code.
*
* Params l2cap_result: The L2CAP result propagated from GAP error.
*
* Returns Appropriate l2cap error reason value
* or BTA_JV_L2CAP_REASON_UNKNOWN if reason isn't defined yet.
*
******************************************************************************/
static tBTA_JV_L2CAP_REASON bta_jv_from_gap_l2cap_err(uint16_t l2cap_result) {
switch (l2cap_result) {
case L2CAP_CONN_ACL_CONNECTION_FAILED:
return BTA_JV_L2CAP_REASON_ACL_FAILURE;
case L2CAP_CONN_CLIENT_SECURITY_CLEARANCE_FAILED:
return BTA_JV_L2CAP_REASON_CL_SEC_FAILURE;
case L2CAP_CONN_INSUFFICIENT_AUTHENTICATION:
return BTA_JV_L2CAP_REASON_INSUFFICIENT_AUTHENTICATION;
case L2CAP_CONN_INSUFFICIENT_AUTHORIZATION:
return BTA_JV_L2CAP_REASON_INSUFFICIENT_AUTHORIZATION;
case L2CAP_CONN_INSUFFICIENT_ENCRYP_KEY_SIZE:
return BTA_JV_L2CAP_REASON_INSUFFICIENT_ENCRYP_KEY_SIZE;
case L2CAP_CONN_INSUFFICIENT_ENCRYP:
return BTA_JV_L2CAP_REASON_INSUFFICIENT_ENCRYP;
case L2CAP_CONN_INVALID_SOURCE_CID:
return BTA_JV_L2CAP_REASON_INVALID_SOURCE_CID;
case L2CAP_CONN_SOURCE_CID_ALREADY_ALLOCATED:
return BTA_JV_L2CAP_REASON_SOURCE_CID_ALREADY_ALLOCATED;
case L2CAP_CONN_UNACCEPTABLE_PARAMETERS:
return BTA_JV_L2CAP_REASON_UNACCEPTABLE_PARAMETERS;
case L2CAP_CONN_INVALID_PARAMETERS:
return BTA_JV_L2CAP_REASON_INVALID_PARAMETERS;
case L2CAP_CONN_NO_RESOURCES:
return BTA_JV_L2CAP_REASON_NO_RESOURCES;
case L2CAP_CONN_NO_PSM:
return BTA_JV_L2CAP_REASON_NO_PSM;
case L2CAP_CONN_TIMEOUT:
return BTA_JV_L2CAP_REASON_TIMEOUT;
default:
return BTA_JV_L2CAP_REASON_UNKNOWN;
}
}
/******************************************************************************/
/*******************************************************************************
*
* Function bta_jv_alloc_rfc_cb
*
* Description allocate a control block for the given port handle
*
* Returns
*
******************************************************************************/
tBTA_JV_RFC_CB* bta_jv_alloc_rfc_cb(uint16_t port_handle,
tBTA_JV_PCB** pp_pcb) {
tBTA_JV_RFC_CB* p_cb = NULL;
tBTA_JV_PCB* p_pcb;
int i, j;
for (i = 0; i < BTA_JV_MAX_RFC_CONN; i++) {
if (0 == bta_jv_cb.rfc_cb[i].handle) {
p_cb = &bta_jv_cb.rfc_cb[i];
/* mask handle to distinguish it with L2CAP handle */
p_cb->handle = (i + 1) | BTA_JV_RFCOMM_MASK;
p_cb->max_sess = 1;
p_cb->curr_sess = 1;
for (j = 0; j < BTA_JV_MAX_RFC_SR_SESSION; j++) p_cb->rfc_hdl[j] = 0;
p_cb->rfc_hdl[0] = port_handle;
VLOG(2) << __func__ << "port_handle=" << +port_handle
<< ", handle=" << loghex(p_cb->handle);
p_pcb = &bta_jv_cb.port_cb[port_handle - 1];
p_pcb->handle = p_cb->handle;
p_pcb->port_handle = port_handle;
p_pcb->p_pm_cb = NULL;
*pp_pcb = p_pcb;
break;
}
}
if (p_cb == NULL) {
LOG(ERROR) << __func__ << "port_handle=" << port_handle << " ctrl block exceeds limit:" << BTA_JV_MAX_RFC_CONN;
}
return p_cb;
}
/*******************************************************************************
*
* Function bta_jv_rfc_port_to_pcb
*
* Description find the port control block associated with the given port
* handle
*
* Returns
*
******************************************************************************/
tBTA_JV_PCB* bta_jv_rfc_port_to_pcb(uint16_t port_handle) {
tBTA_JV_PCB* p_pcb = NULL;
if ((port_handle > 0) && (port_handle <= MAX_RFC_PORTS) &&
bta_jv_cb.port_cb[port_handle - 1].handle) {
p_pcb = &bta_jv_cb.port_cb[port_handle - 1];
}
return p_pcb;
}
/*******************************************************************************
*
* Function bta_jv_rfc_port_to_cb
*
* Description find the RFCOMM control block associated with the given port
* handle
*
* Returns
*
******************************************************************************/
tBTA_JV_RFC_CB* bta_jv_rfc_port_to_cb(uint16_t port_handle) {
tBTA_JV_RFC_CB* p_cb = NULL;
uint32_t handle;
if ((port_handle > 0) && (port_handle <= MAX_RFC_PORTS) &&
bta_jv_cb.port_cb[port_handle - 1].handle) {
handle = bta_jv_cb.port_cb[port_handle - 1].handle;
handle &= BTA_JV_RFC_HDL_MASK;
handle &= ~BTA_JV_RFCOMM_MASK;
if (handle) p_cb = &bta_jv_cb.rfc_cb[handle - 1];
} else {
LOG(WARNING) << __func__
<< ": jv handle not found port_handle:" << port_handle;
}
return p_cb;
}
static tBTA_JV_STATUS bta_jv_free_rfc_cb(tBTA_JV_RFC_CB* p_cb,
tBTA_JV_PCB* p_pcb) {
tBTA_JV_STATUS status = BTA_JV_SUCCESS;
bool remove_server = false;
int close_pending = 0;
if (!p_cb || !p_pcb) {
LOG(ERROR) << __func__ << " p_cb or p_pcb cannot be null";
return BTA_JV_FAILURE;
}
VLOG(2) << __func__ << ": max_sess=" << p_cb->max_sess
<< ", curr_sess=" << p_cb->curr_sess << ", p_pcb=" << p_pcb
<< ", user=" << p_pcb->rfcomm_slot_id << ", state=" << p_pcb->state
<< ", jv handle=" << loghex(p_pcb->handle);
if (p_cb->curr_sess <= 0) return BTA_JV_SUCCESS;
switch (p_pcb->state) {
case BTA_JV_ST_CL_CLOSING:
case BTA_JV_ST_SR_CLOSING:
LOG(WARNING) << __func__
<< ": return on closing, port state=" << p_pcb->state
<< ", scn=" << p_cb->scn << ", p_pcb=" << p_pcb
<< ", user_data=" << p_pcb->rfcomm_slot_id;
status = BTA_JV_FAILURE;
return status;
case BTA_JV_ST_CL_OPEN:
case BTA_JV_ST_CL_OPENING:
VLOG(2) << __func__ << ": state=" << p_pcb->state << ", scn=" << p_cb->scn
<< ", user_data=" << p_pcb->rfcomm_slot_id;
p_pcb->state = BTA_JV_ST_CL_CLOSING;
break;
case BTA_JV_ST_SR_LISTEN:
p_pcb->state = BTA_JV_ST_SR_CLOSING;
remove_server = true;
VLOG(2) << __func__ << ": state: BTA_JV_ST_SR_LISTEN, scn=" << p_cb->scn
<< ", user_data=" << p_pcb->rfcomm_slot_id;
break;
case BTA_JV_ST_SR_OPEN:
p_pcb->state = BTA_JV_ST_SR_CLOSING;
VLOG(2) << ": state: BTA_JV_ST_SR_OPEN, scn=" << p_cb->scn
<< " user_data=" << p_pcb->rfcomm_slot_id;
break;
default:
LOG(WARNING) << __func__ << ":failed, ignore port state= " << p_pcb->state
<< ", scn=" << p_cb->scn << ", p_pcb= " << p_pcb
<< ", jv handle=" << loghex(p_pcb->handle)
<< ", port_handle=" << p_pcb->port_handle
<< ", user_data=" << p_pcb->rfcomm_slot_id;
status = BTA_JV_FAILURE;
break;
}
if (BTA_JV_SUCCESS == status) {
int port_status;
if (!remove_server)
port_status = RFCOMM_RemoveConnection(p_pcb->port_handle);
else
port_status = RFCOMM_RemoveServer(p_pcb->port_handle);
if (port_status != PORT_SUCCESS) {
status = BTA_JV_FAILURE;
LOG(WARNING) << __func__ << ": Remove jv handle=" << loghex(p_pcb->handle)
<< ", state=" << p_pcb->state
<< ", port_status=" << port_status
<< ", port_handle=" << p_pcb->port_handle
<< ", close_pending=" << close_pending;
}
}
if (!close_pending) {
p_pcb->port_handle = 0;
p_pcb->state = BTA_JV_ST_NONE;
bta_jv_free_set_pm_profile_cb(p_pcb->handle);
// Initialize congestion flags
p_pcb->cong = false;
p_pcb->rfcomm_slot_id = 0;
int si = BTA_JV_RFC_HDL_TO_SIDX(p_pcb->handle);
if (0 <= si && si < BTA_JV_MAX_RFC_SR_SESSION) p_cb->rfc_hdl[si] = 0;
p_pcb->handle = 0;
p_cb->curr_sess--;
if (p_cb->curr_sess == 0) {
p_cb->scn = 0;
p_cb->p_cback = NULL;
p_cb->handle = 0;
p_cb->curr_sess = -1;
}
}
return status;
}
/*******************************************************************************
*
* Function bta_jv_free_l2c_cb
*
* Description free the given L2CAP control block
*
* Returns
*
******************************************************************************/
tBTA_JV_STATUS bta_jv_free_l2c_cb(tBTA_JV_L2C_CB* p_cb) {
tBTA_JV_STATUS status = BTA_JV_SUCCESS;
if (BTA_JV_ST_NONE != p_cb->state) {
bta_jv_free_set_pm_profile_cb((uint32_t)p_cb->handle);
if (GAP_ConnClose(p_cb->handle) != BT_PASS) status = BTA_JV_FAILURE;
}
p_cb->psm = 0;
p_cb->state = BTA_JV_ST_NONE;
p_cb->cong = false;
bta_jv_free_sec_id(&p_cb->sec_id);
p_cb->p_cback = NULL;
p_cb->handle = 0;
p_cb->l2cap_socket_id = 0;
return status;
}
/*******************************************************************************
*
*
* Function bta_jv_clear_pm_cb
*
* Description clears jv pm control block and optionally calls
* bta_sys_conn_close()
* In general close_conn should be set to true to remove registering
* with dm pm!
*
* WARNING: Make sure to clear pointer form port or l2c to this control block
* too!
*
******************************************************************************/
static void bta_jv_clear_pm_cb(tBTA_JV_PM_CB* p_pm_cb, bool close_conn) {
/* needs to be called if registered with bta pm, otherwise we may run out of
* dm pm slots! */
if (close_conn)
bta_sys_conn_close(BTA_ID_JV, p_pm_cb->app_id, p_pm_cb->peer_bd_addr);
p_pm_cb->state = BTA_JV_PM_FREE_ST;
p_pm_cb->app_id = BTA_JV_PM_ALL;
p_pm_cb->handle = BTA_JV_PM_HANDLE_CLEAR;
p_pm_cb->peer_bd_addr = RawAddress::kEmpty;
}
/*******************************************************************************
*
* Function bta_jv_free_set_pm_profile_cb
*
* Description free pm profile control block
*
* Returns BTA_JV_SUCCESS if cb has been freed correctly,
* BTA_JV_FAILURE in case of no profile has been registered or
* already freed
*
******************************************************************************/
static tBTA_JV_STATUS bta_jv_free_set_pm_profile_cb(uint32_t jv_handle) {
tBTA_JV_STATUS status = BTA_JV_FAILURE;
tBTA_JV_PM_CB** p_cb;
int i, j, bd_counter = 0, appid_counter = 0;
for (i = 0; i < BTA_JV_PM_MAX_NUM; i++) {
p_cb = NULL;
if ((bta_jv_cb.pm_cb[i].state != BTA_JV_PM_FREE_ST) &&
(jv_handle == bta_jv_cb.pm_cb[i].handle)) {
for (j = 0; j < BTA_JV_PM_MAX_NUM; j++) {
if (bta_jv_cb.pm_cb[j].peer_bd_addr == bta_jv_cb.pm_cb[i].peer_bd_addr)
bd_counter++;
if (bta_jv_cb.pm_cb[j].app_id == bta_jv_cb.pm_cb[i].app_id)
appid_counter++;
}
VLOG(2) << __func__ << ": jv_handle=" << loghex(jv_handle)
<< ", idx=" << i << "app_id=" << bta_jv_cb.pm_cb[i].app_id
<< ", bd_counter=" << bd_counter
<< ", appid_counter=" << appid_counter;
if (bd_counter > 1) {
bta_jv_pm_conn_idle(&bta_jv_cb.pm_cb[i]);
}
if (bd_counter <= 1 || (appid_counter <= 1)) {
bta_jv_clear_pm_cb(&bta_jv_cb.pm_cb[i], true);
} else {
bta_jv_clear_pm_cb(&bta_jv_cb.pm_cb[i], false);
}
if (BTA_JV_RFCOMM_MASK & jv_handle) {
uint32_t hi =
((jv_handle & BTA_JV_RFC_HDL_MASK) & ~BTA_JV_RFCOMM_MASK) - 1;
uint32_t si = BTA_JV_RFC_HDL_TO_SIDX(jv_handle);
if (hi < BTA_JV_MAX_RFC_CONN && bta_jv_cb.rfc_cb[hi].p_cback &&
si < BTA_JV_MAX_RFC_SR_SESSION &&
bta_jv_cb.rfc_cb[hi].rfc_hdl[si]) {
tBTA_JV_PCB* p_pcb =
bta_jv_rfc_port_to_pcb(bta_jv_cb.rfc_cb[hi].rfc_hdl[si]);
if (p_pcb) {
if (NULL == p_pcb->p_pm_cb)
LOG(WARNING) << __func__ << ": jv_handle=" << loghex(jv_handle)
<< ", port_handle=" << p_pcb->port_handle
<< ", i=" << i << ", no link to pm_cb?";
p_cb = &p_pcb->p_pm_cb;
}
}
} else {
if (jv_handle < BTA_JV_MAX_L2C_CONN) {
tBTA_JV_L2C_CB* p_l2c_cb = &bta_jv_cb.l2c_cb[jv_handle];
if (NULL == p_l2c_cb->p_pm_cb)
LOG(WARNING) << __func__ << ": jv_handle=" << loghex(jv_handle)
<< ", i=" << i << " no link to pm_cb?";
p_cb = &p_l2c_cb->p_pm_cb;
}
}
if (p_cb) {
*p_cb = NULL;
status = BTA_JV_SUCCESS;
}
}
}
return status;
}
/*******************************************************************************
*
* Function bta_jv_alloc_set_pm_profile_cb
*
* Description set PM profile control block
*
* Returns pointer to allocated cb or NULL in case of failure
*
******************************************************************************/
static tBTA_JV_PM_CB* bta_jv_alloc_set_pm_profile_cb(uint32_t jv_handle,
tBTA_JV_PM_ID app_id) {
bool bRfcHandle = (jv_handle & BTA_JV_RFCOMM_MASK) != 0;
RawAddress peer_bd_addr = RawAddress::kEmpty;
int i, j;
tBTA_JV_PM_CB** pp_cb;
for (i = 0; i < BTA_JV_PM_MAX_NUM; i++) {
pp_cb = NULL;
if (bta_jv_cb.pm_cb[i].state == BTA_JV_PM_FREE_ST) {
/* rfc handle bd addr retrieval requires core stack handle */
if (bRfcHandle) {
for (j = 0; j < BTA_JV_MAX_RFC_CONN; j++) {
if (jv_handle == bta_jv_cb.port_cb[j].handle) {
pp_cb = &bta_jv_cb.port_cb[j].p_pm_cb;
if (PORT_SUCCESS !=
PORT_CheckConnection(bta_jv_cb.port_cb[j].port_handle,
&peer_bd_addr, NULL)) {
i = BTA_JV_PM_MAX_NUM;
}
break;
}
}
} else {
/* use jv handle for l2cap bd address retrieval */
for (j = 0; j < BTA_JV_MAX_L2C_CONN; j++) {
if (jv_handle == bta_jv_cb.l2c_cb[j].handle) {
pp_cb = &bta_jv_cb.l2c_cb[j].p_pm_cb;
const RawAddress* p_bd_addr =
GAP_ConnGetRemoteAddr((uint16_t)jv_handle);
if (p_bd_addr)
peer_bd_addr = *p_bd_addr;
else
i = BTA_JV_PM_MAX_NUM;
break;
}
}
}
VLOG(2) << __func__ << ": handle=" << loghex(jv_handle)
<< ", app_id=" << app_id << ", idx=" << i
<< ", BTA_JV_PM_MAX_NUM=" << BTA_JV_PM_MAX_NUM
<< ", pp_cb=" << pp_cb;
break;
}
}
if ((i != BTA_JV_PM_MAX_NUM) && (NULL != pp_cb)) {
*pp_cb = &bta_jv_cb.pm_cb[i];
bta_jv_cb.pm_cb[i].handle = jv_handle;
bta_jv_cb.pm_cb[i].app_id = app_id;
bta_jv_cb.pm_cb[i].peer_bd_addr = peer_bd_addr;
bta_jv_cb.pm_cb[i].state = BTA_JV_PM_IDLE_ST;
return &bta_jv_cb.pm_cb[i];
}
LOG(WARNING) << __func__ << ": handle=" << loghex(jv_handle)
<< ", app_id=" << app_id << ", return NULL";
return NULL;
}
/*******************************************************************************
*
* Function bta_jv_check_psm
*
* Description for now use only the legal PSM per JSR82 spec
*
* Returns true, if allowed
*
******************************************************************************/
bool bta_jv_check_psm(uint16_t psm) {
bool ret = false;
if (L2C_IS_VALID_PSM(psm)) {
if (psm < 0x1001) {
/* see if this is defined by spec */
switch (psm) {
case BT_PSM_SDP:
case BT_PSM_RFCOMM: /* 3 */
/* do not allow java app to use these 2 PSMs */
break;
case BT_PSM_TCS:
case BT_PSM_CTP:
if (!bta_sys_is_register(BTA_ID_CT) &&
!bta_sys_is_register(BTA_ID_CG))
ret = true;
break;
case BT_PSM_BNEP: /* F */
if (!bta_sys_is_register(BTA_ID_PAN)) ret = true;
break;
case BT_PSM_HIDC:
case BT_PSM_HIDI:
// FIX: allow HID Device and HID Host to coexist
if (!bta_sys_is_register(BTA_ID_HD) ||
!bta_sys_is_register(BTA_ID_HH))
ret = true;
break;
case AVCT_PSM: /* 0x17 */
case AVDT_PSM: /* 0x19 */
if (!bta_sys_is_register(BTA_ID_AV)) ret = true;
break;
default:
ret = true;
break;
}
} else {
ret = true;
}
}
return ret;
}
/* Initialises the JAVA I/F */
void bta_jv_enable(tBTA_JV_DM_CBACK* p_cback) {
tBTA_JV_STATUS status = BTA_JV_SUCCESS;
bta_jv_cb.p_dm_cback = p_cback;
tBTA_JV bta_jv;
bta_jv.status = status;
bta_jv_cb.p_dm_cback(BTA_JV_ENABLE_EVT, &bta_jv, 0);
memset(bta_jv_cb.free_psm_list, 0, sizeof(bta_jv_cb.free_psm_list));
memset(bta_jv_cb.scn_in_use, 0, sizeof(bta_jv_cb.scn_in_use));
bta_jv_cb.scn_search_index = 1;
}
/** Disables the BT device manager free the resources used by java */
void bta_jv_disable() { LOG(INFO) << __func__; }
/**
* We keep a list of PSM's that have been freed from JAVA, for reuse.
* This function will return a free PSM, and delete it from the free
* list.
* If no free PSMs exist, 0 will be returned.
*/
static uint16_t bta_jv_get_free_psm() {
const int cnt =
sizeof(bta_jv_cb.free_psm_list) / sizeof(bta_jv_cb.free_psm_list[0]);
for (int i = 0; i < cnt; i++) {
uint16_t psm = bta_jv_cb.free_psm_list[i];
if (psm != 0) {
VLOG(2) << __func__ << ": Reusing PSM=" << loghex(psm);
bta_jv_cb.free_psm_list[i] = 0;
return psm;
}
}
return 0;
}
static void bta_jv_set_free_psm(uint16_t psm) {
int free_index = -1;
const int cnt =
sizeof(bta_jv_cb.free_psm_list) / sizeof(bta_jv_cb.free_psm_list[0]);
for (int i = 0; i < cnt; i++) {
if (bta_jv_cb.free_psm_list[i] == 0) {
free_index = i;
} else if (psm == bta_jv_cb.free_psm_list[i]) {
return; // PSM already freed?
}
}
if (free_index != -1) {
bta_jv_cb.free_psm_list[free_index] = psm;
VLOG(2) << __func__ << ": Recycling PSM=" << loghex(psm);
} else {
LOG(ERROR) << __func__ << ": unable to free psm=" << loghex(psm)
<< " no more free slots";
}
}
static uint16_t bta_jv_allocate_l2cap_classic_psm() {
bool done = false;
uint16_t psm = bta_jv_cb.dyn_psm;
while (!done) {
psm += 2;
if (psm > 0xfeff) {
psm = 0x1001;
} else if (psm & 0x0100) {
/* the upper byte must be even */
psm += 0x0100;
}
/* if psm is in range of reserved BRCM Aware features */
if ((BRCM_RESERVED_PSM_START <= psm) && (psm <= BRCM_RESERVED_PSM_END))
continue;
/* make sure the newlly allocated psm is not used right now */
if (used_l2cap_classic_dynamic_psm.count(psm) == 0) done = true;
}
bta_jv_cb.dyn_psm = psm;
return (psm);
}
/** Obtain a free SCN (Server Channel Number) (RFCOMM channel or L2CAP PSM) */
void bta_jv_get_channel_id(
int32_t type /* One of BTA_JV_CONN_TYPE_ */,
int32_t channel /* optionally request a specific channel */,
uint32_t l2cap_socket_id, uint32_t rfcomm_slot_id) {
uint16_t psm = 0;
switch (type) {
case BTA_JV_CONN_TYPE_RFCOMM: {
uint8_t scn = 0;
if (channel > 0) {
if (BTA_TryAllocateSCN(channel)) {
scn = static_cast<uint8_t>(channel);
} else {
LOG_ERROR("rfc channel %u already in use or invalid", channel);
}
} else {
scn = BTA_AllocateSCN();
if (scn == 0) {
LOG_ERROR("out of rfc channels");
}
}
if (bta_jv_cb.p_dm_cback) {
tBTA_JV bta_jv;
bta_jv.scn = scn;
bta_jv_cb.p_dm_cback(BTA_JV_GET_SCN_EVT, &bta_jv, rfcomm_slot_id);
}
return;
}
case BTA_JV_CONN_TYPE_L2CAP:
psm = bta_jv_get_free_psm();
if (psm == 0) {
psm = bta_jv_allocate_l2cap_classic_psm();
VLOG(2) << __func__ << ": returned PSM=" << loghex(psm);
}
break;
case BTA_JV_CONN_TYPE_L2CAP_LE:
psm = L2CA_AllocateLePSM();
if (psm == 0) {
LOG(ERROR) << __func__ << ": Error: No free LE PSM available";
}
break;
default:
break;
}
if (bta_jv_cb.p_dm_cback) {
tBTA_JV bta_jv;
bta_jv.psm = psm;
bta_jv_cb.p_dm_cback(BTA_JV_GET_PSM_EVT, &bta_jv, l2cap_socket_id);
}
}
/** free a SCN */
void bta_jv_free_scn(int32_t type /* One of BTA_JV_CONN_TYPE_ */,
uint16_t scn) {
switch (type) {
case BTA_JV_CONN_TYPE_RFCOMM:
BTA_FreeSCN(scn);
break;
case BTA_JV_CONN_TYPE_L2CAP:
bta_jv_set_free_psm(scn);
break;
case BTA_JV_CONN_TYPE_L2CAP_LE:
VLOG(2) << __func__ << ": type=BTA_JV_CONN_TYPE_L2CAP_LE. psm=" << scn;
L2CA_FreeLePSM(scn);
break;
default:
break;
}
}
/*******************************************************************************
*
* Function bta_jv_start_discovery_cback
*
* Description Callback for Start Discovery
*
* Returns void
*
******************************************************************************/
static void bta_jv_start_discovery_cback(UNUSED_ATTR const RawAddress& bd_addr,
tSDP_RESULT result,
const void* user_data) {
tBTA_JV_STATUS status;
uint32_t* p_rfcomm_slot_id =
static_cast<uint32_t*>(const_cast<void*>(user_data));
VLOG(2) << __func__ << ": res=" << loghex(static_cast<uint16_t>(result));
bta_jv_cb.sdp_active = BTA_JV_SDP_ACT_NONE;
if (bta_jv_cb.p_dm_cback) {
tBTA_JV_DISCOVERY_COMP dcomp;
dcomp.scn = 0;
status = BTA_JV_FAILURE;
if (result == SDP_SUCCESS || result == SDP_DB_FULL) {
tSDP_DISC_REC* p_sdp_rec = NULL;
tSDP_PROTOCOL_ELEM pe;
VLOG(2) << __func__ << ": bta_jv_cb.uuid=" << bta_jv_cb.uuid;
p_sdp_rec = get_legacy_stack_sdp_api()->db.SDP_FindServiceUUIDInDb(
p_bta_jv_cfg->p_sdp_db, bta_jv_cb.uuid, p_sdp_rec);
VLOG(2) << __func__ << ": p_sdp_rec=" << p_sdp_rec;
if (p_sdp_rec &&
get_legacy_stack_sdp_api()->record.SDP_FindProtocolListElemInRec(
p_sdp_rec, UUID_PROTOCOL_RFCOMM, &pe)) {
dcomp.scn = (uint8_t)pe.params[0];
status = BTA_JV_SUCCESS;
}
}
dcomp.status = status;
tBTA_JV bta_jv;
bta_jv.disc_comp = dcomp;
bta_jv_cb.p_dm_cback(BTA_JV_DISCOVERY_COMP_EVT, &bta_jv, *p_rfcomm_slot_id);
osi_free(p_rfcomm_slot_id);
}
}
/* Discovers services on a remote device */
void bta_jv_start_discovery(const RawAddress& bd_addr, uint16_t num_uuid,
bluetooth::Uuid* uuid_list,
uint32_t rfcomm_slot_id) {
tBTA_JV_STATUS status = BTA_JV_FAILURE;
VLOG(2) << __func__ << ": in, sdp_active=" << bta_jv_cb.sdp_active;
if (bta_jv_cb.sdp_active != BTA_JV_SDP_ACT_NONE) {
/* SDP is still in progress */
status = BTA_JV_BUSY;
if (bta_jv_cb.p_dm_cback) {
tBTA_JV bta_jv;
bta_jv.status = status;
bta_jv_cb.p_dm_cback(BTA_JV_DISCOVERY_COMP_EVT, &bta_jv, rfcomm_slot_id);
}
return;
}
/* init the database/set up the filter */
VLOG(2) << __func__ << ": call SDP_InitDiscoveryDb, num_uuid=" << num_uuid;
get_legacy_stack_sdp_api()->service.SDP_InitDiscoveryDb(
p_bta_jv_cfg->p_sdp_db, p_bta_jv_cfg->sdp_db_size, num_uuid, uuid_list, 0,
NULL);
/* tell SDP to keep the raw data */
p_bta_jv_cfg->p_sdp_db->raw_data = p_bta_jv_cfg->p_sdp_raw_data;
p_bta_jv_cfg->p_sdp_db->raw_size = p_bta_jv_cfg->sdp_raw_size;
bta_jv_cb.p_sel_raw_data = 0;
bta_jv_cb.uuid = uuid_list[0];
bta_jv_cb.sdp_active = BTA_JV_SDP_ACT_YES;
uint32_t* rfcomm_slot_id_copy = (uint32_t*)osi_malloc(sizeof(uint32_t));
*rfcomm_slot_id_copy = rfcomm_slot_id;
if (!get_legacy_stack_sdp_api()->service.SDP_ServiceSearchAttributeRequest2(
bd_addr, p_bta_jv_cfg->p_sdp_db, bta_jv_start_discovery_cback,
(void*)rfcomm_slot_id_copy)) {
bta_jv_cb.sdp_active = BTA_JV_SDP_ACT_NONE;
/* failed to start SDP. report the failure right away */
if (bta_jv_cb.p_dm_cback) {
tBTA_JV bta_jv;
bta_jv.status = status;
bta_jv_cb.p_dm_cback(BTA_JV_DISCOVERY_COMP_EVT, &bta_jv, rfcomm_slot_id);
}
}
/*
else report the result when the cback is called
*/
}
/* Create an SDP record with the given attributes */
void bta_jv_create_record(uint32_t rfcomm_slot_id) {
tBTA_JV_CREATE_RECORD evt_data;
evt_data.status = BTA_JV_SUCCESS;
if (bta_jv_cb.p_dm_cback) {
// callback immediately to create the sdp record in stack thread context
tBTA_JV bta_jv;
bta_jv.create_rec = evt_data;
bta_jv_cb.p_dm_cback(BTA_JV_CREATE_RECORD_EVT, &bta_jv, rfcomm_slot_id);
}
}
/* Delete an SDP record */
void bta_jv_delete_record(uint32_t handle) {
if (handle) {
/* this is a record created by btif layer*/
get_legacy_stack_sdp_api()->handle.SDP_DeleteRecord(handle);
}
}
/*******************************************************************************
*
* Function bta_jv_l2cap_client_cback
*
* Description handles the l2cap client events
*
* Returns void
*
******************************************************************************/
static void bta_jv_l2cap_client_cback(uint16_t gap_handle, uint16_t event,
tGAP_CB_DATA* data) {
tBTA_JV_L2C_CB* p_cb = &bta_jv_cb.l2c_cb[gap_handle];
tBTA_JV evt_data;
if (gap_handle >= BTA_JV_MAX_L2C_CONN && !p_cb->p_cback) return;
VLOG(2) << __func__ << ": gap_handle=" << gap_handle
<< ", evt=" << loghex(event);
evt_data.l2c_open.status = BTA_JV_SUCCESS;
evt_data.l2c_open.handle = gap_handle;
switch (event) {
case GAP_EVT_CONN_OPENED:
evt_data.l2c_open.rem_bda = *GAP_ConnGetRemoteAddr(gap_handle);
evt_data.l2c_open.tx_mtu = GAP_ConnGetRemMtuSize(gap_handle);
p_cb->state = BTA_JV_ST_CL_OPEN;
p_cb->p_cback(BTA_JV_L2CAP_OPEN_EVT, &evt_data, p_cb->l2cap_socket_id);
break;
case GAP_EVT_CONN_CLOSED:
p_cb->state = BTA_JV_ST_NONE;
bta_jv_free_sec_id(&p_cb->sec_id);
evt_data.l2c_close.async = true;
evt_data.l2c_close.reason =
data != nullptr ? bta_jv_from_gap_l2cap_err(data->l2cap_result)
: BTA_JV_L2CAP_REASON_EMPTY;
p_cb->p_cback(BTA_JV_L2CAP_CLOSE_EVT, &evt_data, p_cb->l2cap_socket_id);
p_cb->p_cback = NULL;
break;
case GAP_EVT_CONN_DATA_AVAIL:
evt_data.data_ind.handle = gap_handle;
/* Reset idle timer to avoid requesting sniff mode while receiving data */
bta_jv_pm_conn_busy(p_cb->p_pm_cb);
p_cb->p_cback(BTA_JV_L2CAP_DATA_IND_EVT, &evt_data,
p_cb->l2cap_socket_id);
bta_jv_pm_conn_idle(p_cb->p_pm_cb);
break;
case GAP_EVT_TX_EMPTY:
bta_jv_pm_conn_idle(p_cb->p_pm_cb);
break;
case GAP_EVT_CONN_CONGESTED:
case GAP_EVT_CONN_UNCONGESTED:
p_cb->cong = (event == GAP_EVT_CONN_CONGESTED) ? true : false;
evt_data.l2c_cong.cong = p_cb->cong;
p_cb->p_cback(BTA_JV_L2CAP_CONG_EVT, &evt_data, p_cb->l2cap_socket_id);
break;
default:
break;
}
}
/* makes an l2cap client connection */
void bta_jv_l2cap_connect(int32_t type, tBTA_SEC sec_mask, tBTA_JV_ROLE role,
uint16_t remote_psm, uint16_t rx_mtu,
const RawAddress& peer_bd_addr,
std::unique_ptr<tL2CAP_CFG_INFO> cfg_param,
std::unique_ptr<tL2CAP_ERTM_INFO> ertm_info,
tBTA_JV_L2CAP_CBACK* p_cback,
uint32_t l2cap_socket_id) {
uint16_t handle = GAP_INVALID_HANDLE;
tL2CAP_CFG_INFO cfg;
memset(&cfg, 0, sizeof(tL2CAP_CFG_INFO));
if (cfg_param) {
cfg = *cfg_param;
}
/* We need to use this value for MTU to be able to handle cases where cfg is
* not set in req. */
cfg.mtu_present = true;
cfg.mtu = rx_mtu;
uint8_t sec_id = bta_jv_alloc_sec_id();
tBTA_JV_L2CAP_CL_INIT evt_data;
evt_data.sec_id = sec_id;
evt_data.status = BTA_JV_FAILURE;
if (sec_id) {
/* PSM checking is not required for LE COC */
if ((type != BTA_JV_CONN_TYPE_L2CAP) ||
(bta_jv_check_psm(remote_psm))) /* allowed */
{
uint16_t max_mps = 0xffff; // Let GAP_ConnOpen set the max_mps.
handle = GAP_ConnOpen("", sec_id, 0, &peer_bd_addr, remote_psm, max_mps,
&cfg, ertm_info.get(), sec_mask,
bta_jv_l2cap_client_cback, type);
if (handle != GAP_INVALID_HANDLE) {
evt_data.status = BTA_JV_SUCCESS;
}
}
}
if (evt_data.status == BTA_JV_SUCCESS) {
tBTA_JV_L2C_CB* p_cb;
p_cb = &bta_jv_cb.l2c_cb[handle];
p_cb->handle = handle;
p_cb->p_cback = p_cback;
p_cb->l2cap_socket_id = l2cap_socket_id;
p_cb->psm = 0; /* not a server */
p_cb->sec_id = sec_id;
p_cb->state = BTA_JV_ST_CL_OPENING;
} else {
bta_jv_free_sec_id(&sec_id);
}
evt_data.handle = handle;
if (p_cback) {
tBTA_JV bta_jv;
bta_jv.l2c_cl_init = evt_data;
p_cback(BTA_JV_L2CAP_CL_INIT_EVT, &bta_jv, l2cap_socket_id);
}
}
/** Close an L2CAP client connection */
void bta_jv_l2cap_close(uint32_t handle, tBTA_JV_L2C_CB* p_cb) {
tBTA_JV_L2CAP_CLOSE evt_data;
tBTA_JV_L2CAP_CBACK* p_cback = p_cb->p_cback;
uint32_t l2cap_socket_id = p_cb->l2cap_socket_id;
evt_data.handle = handle;
evt_data.status = bta_jv_free_l2c_cb(p_cb);
evt_data.async = false;
if (p_cback) {
tBTA_JV bta_jv;
bta_jv.l2c_close = evt_data;
p_cback(BTA_JV_L2CAP_CLOSE_EVT, &bta_jv, l2cap_socket_id);
}
}
/*******************************************************************************
*
* Function bta_jv_l2cap_server_cback
*
* Description handles the l2cap server callback
*
* Returns void
*
******************************************************************************/
static void bta_jv_l2cap_server_cback(uint16_t gap_handle, uint16_t event,
tGAP_CB_DATA* data) {
tBTA_JV_L2C_CB* p_cb = &bta_jv_cb.l2c_cb[gap_handle];
tBTA_JV evt_data;
tBTA_JV_L2CAP_CBACK* p_cback;
uint32_t socket_id;
if (gap_handle >= BTA_JV_MAX_L2C_CONN && !p_cb->p_cback) return;
VLOG(2) << __func__ << ": gap_handle=" << gap_handle
<< ", evt=" << loghex(event);
evt_data.l2c_open.status = BTA_JV_SUCCESS;
evt_data.l2c_open.handle = gap_handle;
switch (event) {
case GAP_EVT_CONN_OPENED:
evt_data.l2c_open.rem_bda = *GAP_ConnGetRemoteAddr(gap_handle);
evt_data.l2c_open.tx_mtu = GAP_ConnGetRemMtuSize(gap_handle);
p_cb->state = BTA_JV_ST_SR_OPEN;
p_cb->p_cback(BTA_JV_L2CAP_OPEN_EVT, &evt_data, p_cb->l2cap_socket_id);
break;
case GAP_EVT_CONN_CLOSED:
evt_data.l2c_close.async = true;
evt_data.l2c_close.handle = p_cb->handle;
p_cback = p_cb->p_cback;
socket_id = p_cb->l2cap_socket_id;
evt_data.l2c_close.status = bta_jv_free_l2c_cb(p_cb);
p_cback(BTA_JV_L2CAP_CLOSE_EVT, &evt_data, socket_id);
break;
case GAP_EVT_CONN_DATA_AVAIL:
evt_data.data_ind.handle = gap_handle;
/* Reset idle timer to avoid requesting sniff mode while receiving data */
bta_jv_pm_conn_busy(p_cb->p_pm_cb);
p_cb->p_cback(BTA_JV_L2CAP_DATA_IND_EVT, &evt_data,
p_cb->l2cap_socket_id);
bta_jv_pm_conn_idle(p_cb->p_pm_cb);
break;
case GAP_EVT_TX_EMPTY:
bta_jv_pm_conn_idle(p_cb->p_pm_cb);
break;
case GAP_EVT_CONN_CONGESTED:
case GAP_EVT_CONN_UNCONGESTED:
p_cb->cong = (event == GAP_EVT_CONN_CONGESTED) ? true : false;
evt_data.l2c_cong.cong = p_cb->cong;
p_cb->p_cback(BTA_JV_L2CAP_CONG_EVT, &evt_data, p_cb->l2cap_socket_id);
break;
default:
break;
}
}
/** starts an L2CAP server */
void bta_jv_l2cap_start_server(int32_t type, tBTA_SEC sec_mask,
tBTA_JV_ROLE role, uint16_t local_psm,
uint16_t rx_mtu,
std::unique_ptr<tL2CAP_CFG_INFO> cfg_param,
std::unique_ptr<tL2CAP_ERTM_INFO> ertm_info,
tBTA_JV_L2CAP_CBACK* p_cback,
uint32_t l2cap_socket_id) {
uint16_t handle;
tBTA_JV_L2CAP_START evt_data;
tL2CAP_CFG_INFO cfg;
memset(&cfg, 0, sizeof(tL2CAP_CFG_INFO));
if (cfg_param) {
cfg = *cfg_param;
}
// FIX: MTU=0 means not present
if (rx_mtu > 0) {
cfg.mtu_present = true;
cfg.mtu = rx_mtu;
} else {
cfg.mtu_present = false;
cfg.mtu = 0;
}
uint8_t sec_id = bta_jv_alloc_sec_id();
uint16_t max_mps = 0xffff; // Let GAP_ConnOpen set the max_mps.
/* PSM checking is not required for LE COC */
if (0 == sec_id ||
((type == BTA_JV_CONN_TYPE_L2CAP) && (!bta_jv_check_psm(local_psm))) ||
(handle = GAP_ConnOpen("JV L2CAP", sec_id, 1, nullptr, local_psm, max_mps,
&cfg, ertm_info.get(), sec_mask,
bta_jv_l2cap_server_cback, type)) ==
GAP_INVALID_HANDLE) {
bta_jv_free_sec_id(&sec_id);
evt_data.status = BTA_JV_FAILURE;
} else {
tBTA_JV_L2C_CB* p_cb = &bta_jv_cb.l2c_cb[handle];
evt_data.status = BTA_JV_SUCCESS;
evt_data.handle = handle;
evt_data.sec_id = sec_id;
p_cb->p_cback = p_cback;
p_cb->l2cap_socket_id = l2cap_socket_id;
p_cb->handle = handle;
p_cb->sec_id = sec_id;
p_cb->state = BTA_JV_ST_SR_LISTEN;
p_cb->psm = local_psm;
}
if (p_cback) {
tBTA_JV bta_jv;
bta_jv.l2c_start = evt_data;
p_cback(BTA_JV_L2CAP_START_EVT, &bta_jv, l2cap_socket_id);
}
}
/* stops an L2CAP server */
void bta_jv_l2cap_stop_server(uint16_t local_psm, uint32_t l2cap_socket_id) {
for (int i = 0; i < BTA_JV_MAX_L2C_CONN; i++) {
if (bta_jv_cb.l2c_cb[i].l2cap_socket_id == l2cap_socket_id) {
tBTA_JV_L2C_CB* p_cb = &bta_jv_cb.l2c_cb[i];
tBTA_JV_L2CAP_CBACK* p_cback = p_cb->p_cback;
tBTA_JV_L2CAP_CLOSE evt_data;
evt_data.handle = p_cb->handle;
evt_data.status = bta_jv_free_l2c_cb(p_cb);
evt_data.async = false;
if (p_cback) {
tBTA_JV bta_jv;
bta_jv.l2c_close = evt_data;
p_cback(BTA_JV_L2CAP_CLOSE_EVT, &bta_jv, l2cap_socket_id);
}
break;
}
}
}
/* Write data to an L2CAP connection */
void bta_jv_l2cap_write(uint32_t handle, uint32_t req_id, BT_HDR* msg,
uint32_t user_id, tBTA_JV_L2C_CB* p_cb) {
/* As we check this callback exists before the tBTA_JV_API_L2CAP_WRITE can be
* send through the API this check should not be needed. But the API is not
* designed to be used (safely at least) in a multi-threaded scheduler, hence
* if the peer device disconnects the l2cap link after the API is called, but
* before this message is handled, the ->p_cback will be cleared at this
* point. At first glanch this seems highly unlikely, but for all
* obex-profiles with two channels connected - e.g. MAP, this happens around 1
* of 4 disconnects, as a disconnect on the server channel causes a disconnect
* to be send on the client (notification) channel, but at the peer typically
* disconnects both the OBEX disconnect request crosses the incoming l2cap
* disconnect. If p_cback is cleared, we simply discard the data. RISK: The
* caller must handle any cleanup based on another signal than
* BTA_JV_L2CAP_WRITE_EVT, which is typically not possible, as the pointer to
* the allocated buffer is stored in this message, and can therefore not be
* freed, hence we have a mem-leak-by-design.*/
if (!p_cb->p_cback) {
/* As this pointer is checked in the API function, this occurs only when the
* channel is disconnected after the API function is called, but before the
* message is handled. */
LOG(ERROR) << __func__ << ": p_cb->p_cback == NULL";
osi_free(msg);
return;
}
tBTA_JV_L2CAP_WRITE evt_data;
evt_data.status = BTA_JV_FAILURE;
evt_data.handle = handle;
evt_data.req_id = req_id;
evt_data.cong = p_cb->cong;
evt_data.len = msg->len;
bta_jv_pm_conn_busy(p_cb->p_pm_cb);
// TODO: this was set only for non-fixed channel packets. Is that needed ?
msg->event = BT_EVT_TO_BTU_SP_DATA;
if (evt_data.cong) {
osi_free(msg);
} else {
if (GAP_ConnWriteData(handle, msg) == BT_PASS)
evt_data.status = BTA_JV_SUCCESS;
}
tBTA_JV bta_jv;
bta_jv.l2c_write = evt_data;
p_cb->p_cback(BTA_JV_L2CAP_WRITE_EVT, &bta_jv, user_id);
}
/*******************************************************************************
*
* Function bta_jv_port_data_co_cback
*
* Description port data callback function of rfcomm
* connections
*
* Returns void
*
******************************************************************************/
static int bta_jv_port_data_co_cback(uint16_t port_handle, uint8_t* buf,
uint16_t len, int type) {
tBTA_JV_RFC_CB* p_cb = bta_jv_rfc_port_to_cb(port_handle);
tBTA_JV_PCB* p_pcb = bta_jv_rfc_port_to_pcb(port_handle);
VLOG(2) << __func__ << ": p_cb=" << p_cb << ", p_pcb=" << p_pcb
<< ", len=" << len << ", type=" << type;
if (p_pcb != NULL) {
switch (type) {
case DATA_CO_CALLBACK_TYPE_INCOMING:
// Reset sniff timer when receiving data by sysproxy
if (osi_property_get_bool("bluetooth.rfcomm.sysproxy.rx.exit_sniff",
false)) {
bta_jv_reset_sniff_timer(p_pcb->p_pm_cb);
}
return bta_co_rfc_data_incoming(p_pcb->rfcomm_slot_id, (BT_HDR*)buf);
case DATA_CO_CALLBACK_TYPE_OUTGOING_SIZE:
return bta_co_rfc_data_outgoing_size(p_pcb->rfcomm_slot_id, (int*)buf);
case DATA_CO_CALLBACK_TYPE_OUTGOING:
return bta_co_rfc_data_outgoing(p_pcb->rfcomm_slot_id, buf, len);
default:
LOG(ERROR) << __func__ << ": unknown callout type=" << type;
break;
}
}
return 0;
}
/*******************************************************************************
*
* Function bta_jv_port_mgmt_cl_cback
*
* Description callback for port mamangement function of rfcomm
* client connections
*
* Returns void
*
******************************************************************************/
static void bta_jv_port_mgmt_cl_cback(uint32_t code, uint16_t port_handle) {
tBTA_JV_RFC_CB* p_cb = bta_jv_rfc_port_to_cb(port_handle);
tBTA_JV_PCB* p_pcb = bta_jv_rfc_port_to_pcb(port_handle);
tBTA_JV evt_data;
RawAddress rem_bda = RawAddress::kEmpty;
uint16_t lcid;
tBTA_JV_RFCOMM_CBACK* p_cback; /* the callback function */
VLOG(2) << __func__ << ": code=" << code << ", port_handle=" << port_handle;
if (NULL == p_cb || NULL == p_cb->p_cback) return;
VLOG(2) << __func__ << ": code=" << code << ", port_handle=" << port_handle
<< ", handle=" << p_cb->handle;
PORT_CheckConnection(port_handle, &rem_bda, &lcid);
if (code == PORT_SUCCESS) {
evt_data.rfc_open.handle = p_cb->handle;
evt_data.rfc_open.status = BTA_JV_SUCCESS;
evt_data.rfc_open.rem_bda = rem_bda;
p_pcb->state = BTA_JV_ST_CL_OPEN;
p_cb->p_cback(BTA_JV_RFCOMM_OPEN_EVT, &evt_data, p_pcb->rfcomm_slot_id);
} else {
evt_data.rfc_close.handle = p_cb->handle;
evt_data.rfc_close.status = BTA_JV_FAILURE;
evt_data.rfc_close.port_status = code;
evt_data.rfc_close.async = true;
if (p_pcb->state == BTA_JV_ST_CL_CLOSING) {
evt_data.rfc_close.async = false;
}
// p_pcb->state = BTA_JV_ST_NONE;
// p_pcb->cong = false;
p_cback = p_cb->p_cback;
p_cback(BTA_JV_RFCOMM_CLOSE_EVT, &evt_data, p_pcb->rfcomm_slot_id);
// bta_jv_free_rfc_cb(p_cb, p_pcb);
}
}
/*******************************************************************************
*
* Function bta_jv_port_event_cl_cback
*
* Description Callback for RFCOMM client port events
*
* Returns void
*
******************************************************************************/
static void bta_jv_port_event_cl_cback(uint32_t code, uint16_t port_handle) {
tBTA_JV_RFC_CB* p_cb = bta_jv_rfc_port_to_cb(port_handle);
tBTA_JV_PCB* p_pcb = bta_jv_rfc_port_to_pcb(port_handle);
tBTA_JV evt_data;
VLOG(2) << __func__ << ": port_handle=" << port_handle;
if (NULL == p_cb || NULL == p_cb->p_cback) return;
VLOG(2) << __func__ << ": code=" << loghex(code)
<< ", port_handle=" << port_handle << ", handle=" << p_cb->handle;
if (code & PORT_EV_RXCHAR) {
evt_data.data_ind.handle = p_cb->handle;
p_cb->p_cback(BTA_JV_RFCOMM_DATA_IND_EVT, &evt_data, p_pcb->rfcomm_slot_id);
}
if (code & PORT_EV_FC) {
p_pcb->cong = (code & PORT_EV_FCS) ? false : true;
evt_data.rfc_cong.cong = p_pcb->cong;
evt_data.rfc_cong.handle = p_cb->handle;
evt_data.rfc_cong.status = BTA_JV_SUCCESS;
p_cb->p_cback(BTA_JV_RFCOMM_CONG_EVT, &evt_data, p_pcb->rfcomm_slot_id);
}
if (code & PORT_EV_TXEMPTY) {
bta_jv_pm_conn_idle(p_pcb->p_pm_cb);
}
}
/* Client initiates an RFCOMM connection */
void bta_jv_rfcomm_connect(tBTA_SEC sec_mask, uint8_t remote_scn,
const RawAddress& peer_bd_addr,
tBTA_JV_RFCOMM_CBACK* p_cback,
uint32_t rfcomm_slot_id) {
uint16_t handle = 0;
uint32_t event_mask = BTA_JV_RFC_EV_MASK;
tPORT_STATE port_state;
tBTA_JV_RFCOMM_CL_INIT evt_data;
memset(&evt_data, 0, sizeof(evt_data));
evt_data.status = BTA_JV_SUCCESS;
#ifdef TARGET_FLOSS
if (true)
#else
if (IS_FLAG_ENABLED(rfcomm_always_use_mitm))
#endif
{
// Update security service record for RFCOMM client so that
// secure RFCOMM connection will be authenticated with MTIM protection
// while creating the L2CAP connection.
get_btm_client_interface().security.BTM_SetSecurityLevel(
true, "RFC_MUX", BTM_SEC_SERVICE_RFC_MUX, sec_mask, BT_PSM_RFCOMM,
BTM_SEC_PROTO_RFCOMM, 0);
}
if (evt_data.status == BTA_JV_SUCCESS &&
RFCOMM_CreateConnectionWithSecurity(
UUID_SERVCLASS_SERIAL_PORT, remote_scn, false, BTA_JV_DEF_RFC_MTU,
peer_bd_addr, &handle, bta_jv_port_mgmt_cl_cback,
sec_mask) != PORT_SUCCESS) {
LOG(ERROR) << __func__ << ": RFCOMM_CreateConnection failed";
evt_data.status = BTA_JV_FAILURE;
}
if (evt_data.status == BTA_JV_SUCCESS) {
tBTA_JV_PCB* p_pcb;
tBTA_JV_RFC_CB* p_cb = bta_jv_alloc_rfc_cb(handle, &p_pcb);
if (p_cb) {
p_cb->p_cback = p_cback;
p_cb->scn = 0;
p_pcb->state = BTA_JV_ST_CL_OPENING;
p_pcb->rfcomm_slot_id = rfcomm_slot_id;
evt_data.use_co = true;
PORT_SetEventCallback(handle, bta_jv_port_event_cl_cback);
PORT_SetEventMask(handle, event_mask);
PORT_SetDataCOCallback(handle, bta_jv_port_data_co_cback);
PORT_GetState(handle, &port_state);
port_state.fc_type = (PORT_FC_CTS_ON_INPUT | PORT_FC_CTS_ON_OUTPUT);
PORT_SetState(handle, &port_state);
evt_data.handle = p_cb->handle;
} else {
evt_data.status = BTA_JV_FAILURE;
LOG(ERROR) << __func__ << ": run out of rfc control block";
}
}
tBTA_JV bta_jv;
bta_jv.rfc_cl_init = evt_data;
p_cback(BTA_JV_RFCOMM_CL_INIT_EVT, &bta_jv, rfcomm_slot_id);
if (bta_jv.rfc_cl_init.status == BTA_JV_FAILURE) {
if (handle) RFCOMM_RemoveConnection(handle);
}
}
static int find_rfc_pcb(uint32_t rfcomm_slot_id, tBTA_JV_RFC_CB** cb,
tBTA_JV_PCB** pcb) {
*cb = NULL;
*pcb = NULL;
int i;
for (i = 0; i < MAX_RFC_PORTS; i++) {
uint32_t rfc_handle = bta_jv_cb.port_cb[i].handle & BTA_JV_RFC_HDL_MASK;
rfc_handle &= ~BTA_JV_RFCOMM_MASK;
if (rfc_handle && bta_jv_cb.port_cb[i].rfcomm_slot_id == rfcomm_slot_id) {
*pcb = &bta_jv_cb.port_cb[i];
*cb = &bta_jv_cb.rfc_cb[rfc_handle - 1];
VLOG(2) << __func__ << ": FOUND rfc_cb_handle=" << loghex(rfc_handle)
<< ", port.jv_handle=" << loghex((*pcb)->handle)
<< ", state=" << (*pcb)->state
<< ", rfc_cb->handle=" << loghex((*cb)->handle);
return 1;
}
}
VLOG(2) << __func__
<< ": cannot find rfc_cb from user data:" << rfcomm_slot_id;
return 0;
}
/* Close an RFCOMM connection */
void bta_jv_rfcomm_close(uint32_t handle, uint32_t rfcomm_slot_id) {
if (!handle) {
LOG(ERROR) << __func__ << ": rfc handle is null";
return;
}
VLOG(2) << __func__ << ": rfc handle=" << handle;
tBTA_JV_RFC_CB* p_cb = NULL;
tBTA_JV_PCB* p_pcb = NULL;
if (!find_rfc_pcb(rfcomm_slot_id, &p_cb, &p_pcb)) return;
bta_jv_free_rfc_cb(p_cb, p_pcb);
}
/*******************************************************************************
*
* Function bta_jv_port_mgmt_sr_cback
*
* Description callback for port mamangement function of rfcomm
* server connections
*
* Returns void
*
******************************************************************************/
static void bta_jv_port_mgmt_sr_cback(uint32_t code, uint16_t port_handle) {
tBTA_JV_PCB* p_pcb = bta_jv_rfc_port_to_pcb(port_handle);
tBTA_JV_RFC_CB* p_cb = bta_jv_rfc_port_to_cb(port_handle);
tBTA_JV evt_data;
RawAddress rem_bda = RawAddress::kEmpty;
uint16_t lcid;
VLOG(2) << __func__ << ": code=" << code << ", port_handle=" << port_handle;
if (NULL == p_cb || NULL == p_cb->p_cback) {
LOG(ERROR) << __func__ << ": p_cb=" << p_cb
<< ", p_cb->p_cback=" << (p_cb ? p_cb->p_cback : 0);
return;
}
uint32_t rfcomm_slot_id = p_pcb->rfcomm_slot_id;
VLOG(2) << __func__ << ": code=" << code
<< ", port_handle=" << loghex(port_handle)
<< ", handle=" << loghex(p_cb->handle) << ", p_pcb" << p_pcb
<< ", user=" << p_pcb->rfcomm_slot_id;
int status = PORT_CheckConnection(port_handle, &rem_bda, &lcid);
int failed = true;
if (code == PORT_SUCCESS) {
if (status != PORT_SUCCESS) {
LOG(ERROR) << __func__ << ": PORT_CheckConnection returned " << status
<< ", although port is supposed to be connected";
}
evt_data.rfc_srv_open.handle = p_pcb->handle;
evt_data.rfc_srv_open.status = BTA_JV_SUCCESS;
evt_data.rfc_srv_open.rem_bda = rem_bda;
tBTA_JV_PCB* p_pcb_new_listen = bta_jv_add_rfc_port(p_cb, p_pcb);
if (p_pcb_new_listen) {
evt_data.rfc_srv_open.new_listen_handle = p_pcb_new_listen->handle;
p_pcb_new_listen->rfcomm_slot_id =
p_cb->p_cback(BTA_JV_RFCOMM_SRV_OPEN_EVT, &evt_data, rfcomm_slot_id);
VLOG(2) << __func__ << ": curr_sess=" << p_cb->curr_sess
<< ", max_sess=" << p_cb->max_sess;
failed = false;
} else
LOG(ERROR) << __func__ << ": failed to create new listen port";
}
if (failed) {
evt_data.rfc_close.handle = p_cb->handle;
evt_data.rfc_close.status = BTA_JV_FAILURE;
evt_data.rfc_close.async = true;
evt_data.rfc_close.port_status = code;
p_pcb->cong = false;
tBTA_JV_RFCOMM_CBACK* p_cback = p_cb->p_cback;
VLOG(2) << __func__
<< ": PORT_CLOSED before BTA_JV_RFCOMM_CLOSE_EVT: curr_sess="
<< p_cb->curr_sess << ", max_sess=" << p_cb->max_sess;
if (BTA_JV_ST_SR_CLOSING == p_pcb->state) {
evt_data.rfc_close.async = false;
evt_data.rfc_close.status = BTA_JV_SUCCESS;
}
// p_pcb->state = BTA_JV_ST_NONE;
p_cback(BTA_JV_RFCOMM_CLOSE_EVT, &evt_data, rfcomm_slot_id);
// bta_jv_free_rfc_cb(p_cb, p_pcb);
VLOG(2) << __func__
<< ": PORT_CLOSED after BTA_JV_RFCOMM_CLOSE_EVT: curr_sess="
<< p_cb->curr_sess << ", max_sess=" << p_cb->max_sess;
}
}
/*******************************************************************************
*
* Function bta_jv_port_event_sr_cback
*
* Description Callback for RFCOMM server port events
*
* Returns void
*
******************************************************************************/
static void bta_jv_port_event_sr_cback(uint32_t code, uint16_t port_handle) {
tBTA_JV_PCB* p_pcb = bta_jv_rfc_port_to_pcb(port_handle);
tBTA_JV_RFC_CB* p_cb = bta_jv_rfc_port_to_cb(port_handle);
tBTA_JV evt_data;
if (NULL == p_cb || NULL == p_cb->p_cback) {
LOG(ERROR) << __func__ << ": p_cb=" << p_cb
<< ", p_cb->p_cback=" << (p_cb ? p_cb->p_cback : 0);
return;
}
VLOG(2) << __func__ << ": code=" << loghex(code)
<< ", port_handle=" << port_handle << ", handle=" << p_cb->handle;
uint32_t user_data = p_pcb->rfcomm_slot_id;
if (code & PORT_EV_RXCHAR) {
evt_data.data_ind.handle = p_cb->handle;
p_cb->p_cback(BTA_JV_RFCOMM_DATA_IND_EVT, &evt_data, user_data);
}
if (code & PORT_EV_FC) {
p_pcb->cong = (code & PORT_EV_FCS) ? false : true;
evt_data.rfc_cong.cong = p_pcb->cong;
evt_data.rfc_cong.handle = p_cb->handle;
evt_data.rfc_cong.status = BTA_JV_SUCCESS;
p_cb->p_cback(BTA_JV_RFCOMM_CONG_EVT, &evt_data, user_data);
}
if (code & PORT_EV_TXEMPTY) {
bta_jv_pm_conn_idle(p_pcb->p_pm_cb);
}
}
/*******************************************************************************
*
* Function bta_jv_add_rfc_port
*
* Description add a port for server when the existing posts is open
*
* Returns return a pointer to tBTA_JV_PCB just added
*
******************************************************************************/
static tBTA_JV_PCB* bta_jv_add_rfc_port(tBTA_JV_RFC_CB* p_cb,
tBTA_JV_PCB* p_pcb_open) {
uint8_t used = 0, i, listen = 0;
uint32_t si = 0;
tPORT_STATE port_state;
uint32_t event_mask = BTA_JV_RFC_EV_MASK;
tBTA_JV_PCB* p_pcb = NULL;
tBTA_SEC sec_mask;
if (p_cb->max_sess > 1) {
for (i = 0; i < p_cb->max_sess; i++) {
if (p_cb->rfc_hdl[i] != 0) {
p_pcb = &bta_jv_cb.port_cb[p_cb->rfc_hdl[i] - 1];
if (p_pcb->state == BTA_JV_ST_SR_LISTEN) {
listen++;
if (p_pcb_open == p_pcb) {
VLOG(2) << __func__ << ": port_handle=" << p_pcb->port_handle
<< ", change the listen port to open state";
p_pcb->state = BTA_JV_ST_SR_OPEN;
} else {
LOG(ERROR) << __func__
<< ": open pcb not matching listen one, count=" << listen
<< ", listen pcb handle=" << p_pcb->port_handle
<< ", open pcb=" << p_pcb_open->handle;
return NULL;
}
}
used++;
} else if (si == 0) {
si = i + 1;
}
}
VLOG(2) << __func__ << ": max_sess=" << p_cb->max_sess << ", used=" << used
<< ", curr_sess=" << p_cb->curr_sess << ", listen=" << listen
<< ", si=" << si;
if (used < p_cb->max_sess && listen == 1 && si) {
si--;
if (PORT_GetSecurityMask(p_pcb_open->port_handle, &sec_mask) !=
PORT_SUCCESS) {
LOG(ERROR) << __func__
<< ": RFCOMM_CreateConnection failed: invalid port_handle";
}
if (RFCOMM_CreateConnectionWithSecurity(
p_cb->sec_id, p_cb->scn, true, BTA_JV_DEF_RFC_MTU,
RawAddress::kAny, &(p_cb->rfc_hdl[si]), bta_jv_port_mgmt_sr_cback,
sec_mask) == PORT_SUCCESS) {
p_cb->curr_sess++;
p_pcb = &bta_jv_cb.port_cb[p_cb->rfc_hdl[si] - 1];
p_pcb->state = BTA_JV_ST_SR_LISTEN;
p_pcb->port_handle = p_cb->rfc_hdl[si];
p_pcb->rfcomm_slot_id = p_pcb_open->rfcomm_slot_id;
PORT_ClearKeepHandleFlag(p_pcb->port_handle);
PORT_SetEventCallback(p_pcb->port_handle, bta_jv_port_event_sr_cback);
PORT_SetDataCOCallback(p_pcb->port_handle, bta_jv_port_data_co_cback);
PORT_SetEventMask(p_pcb->port_handle, event_mask);
PORT_GetState(p_pcb->port_handle, &port_state);
port_state.fc_type = (PORT_FC_CTS_ON_INPUT | PORT_FC_CTS_ON_OUTPUT);
PORT_SetState(p_pcb->port_handle, &port_state);
p_pcb->handle = BTA_JV_RFC_H_S_TO_HDL(p_cb->handle, si);
VLOG(2) << __func__ << ": p_pcb->handle=" << loghex(p_pcb->handle)
<< ", curr_sess=" << p_cb->curr_sess;
} else {
LOG(ERROR) << __func__ << ": RFCOMM_CreateConnection failed";
return NULL;
}
} else {
LOG(ERROR) << __func__ << ": cannot create new rfc listen port";
return NULL;
}
}
VLOG(2) << __func__ << ": sec id in use=" << get_sec_id_used()
<< ", rfc_cb in use=" << get_rfc_cb_used();
return p_pcb;
}
/* waits for an RFCOMM client to connect */
void bta_jv_rfcomm_start_server(tBTA_SEC sec_mask, uint8_t local_scn,
uint8_t max_session,
tBTA_JV_RFCOMM_CBACK* p_cback,
uint32_t rfcomm_slot_id) {
uint16_t handle = 0;
uint32_t event_mask = BTA_JV_RFC_EV_MASK;
tPORT_STATE port_state;
tBTA_JV_RFC_CB* p_cb = NULL;
tBTA_JV_PCB* p_pcb;
tBTA_JV_RFCOMM_START evt_data;
memset(&evt_data, 0, sizeof(evt_data));
evt_data.status = BTA_JV_FAILURE;
do {
if (RFCOMM_CreateConnectionWithSecurity(
0, local_scn, true, BTA_JV_DEF_RFC_MTU, RawAddress::kAny, &handle,
bta_jv_port_mgmt_sr_cback, sec_mask) != PORT_SUCCESS) {
LOG(ERROR) << __func__ << ": RFCOMM_CreateConnection failed";
break;
}
p_cb = bta_jv_alloc_rfc_cb(handle, &p_pcb);
if (!p_cb) {
LOG(ERROR) << __func__ << ": run out of rfc control block";
break;
}
p_cb->max_sess = max_session;
p_cb->p_cback = p_cback;
p_cb->scn = local_scn;
p_pcb->state = BTA_JV_ST_SR_LISTEN;
p_pcb->rfcomm_slot_id = rfcomm_slot_id;
evt_data.status = BTA_JV_SUCCESS;
evt_data.handle = p_cb->handle;
evt_data.use_co = true;
PORT_ClearKeepHandleFlag(handle);
PORT_SetEventCallback(handle, bta_jv_port_event_sr_cback);
PORT_SetEventMask(handle, event_mask);
PORT_GetState(handle, &port_state);
port_state.fc_type = (PORT_FC_CTS_ON_INPUT | PORT_FC_CTS_ON_OUTPUT);
PORT_SetState(handle, &port_state);
} while (0);
tBTA_JV bta_jv;
bta_jv.rfc_start = evt_data;
p_cback(BTA_JV_RFCOMM_START_EVT, &bta_jv, rfcomm_slot_id);
if (bta_jv.rfc_start.status == BTA_JV_SUCCESS) {
PORT_SetDataCOCallback(handle, bta_jv_port_data_co_cback);
} else {
if (handle) RFCOMM_RemoveConnection(handle);
}
}
/* stops an RFCOMM server */
void bta_jv_rfcomm_stop_server(uint32_t handle, uint32_t rfcomm_slot_id) {
if (!handle) {
LOG(ERROR) << __func__ << ": jv handle is null";
return;
}
VLOG(2) << __func__;
tBTA_JV_RFC_CB* p_cb = NULL;
tBTA_JV_PCB* p_pcb = NULL;
if (!find_rfc_pcb(rfcomm_slot_id, &p_cb, &p_pcb)) return;
VLOG(2) << __func__ << ": p_pcb=" << p_pcb
<< ", p_pcb->port_handle=" << p_pcb->port_handle;
bta_jv_free_rfc_cb(p_cb, p_pcb);
}
/* write data to an RFCOMM connection */
void bta_jv_rfcomm_write(uint32_t handle, uint32_t req_id, tBTA_JV_RFC_CB* p_cb,
tBTA_JV_PCB* p_pcb) {
if (p_pcb->state == BTA_JV_ST_NONE) {
LOG(ERROR) << __func__ << ": in state BTA_JV_ST_NONE - cannot write";
return;
}
tBTA_JV_RFCOMM_WRITE evt_data;
evt_data.status = BTA_JV_FAILURE;
evt_data.handle = handle;
evt_data.req_id = req_id;
evt_data.cong = p_pcb->cong;
evt_data.len = 0;
bta_jv_pm_conn_busy(p_pcb->p_pm_cb);
if (!evt_data.cong &&
PORT_WriteDataCO(p_pcb->port_handle, &evt_data.len) == PORT_SUCCESS) {
evt_data.status = BTA_JV_SUCCESS;
}
// Update congestion flag
evt_data.cong = p_pcb->cong;
if (!p_cb->p_cback) {
LOG(ERROR) << __func__ << ": No JV callback set";
return;
}
tBTA_JV bta_jv;
bta_jv.rfc_write = evt_data;
p_cb->p_cback(BTA_JV_RFCOMM_WRITE_EVT, &bta_jv, p_pcb->rfcomm_slot_id);
}
/* Set or free power mode profile for a JV application */
void bta_jv_set_pm_profile(uint32_t handle, tBTA_JV_PM_ID app_id,
tBTA_JV_CONN_STATE init_st) {
tBTA_JV_STATUS status;
tBTA_JV_PM_CB* p_cb;
VLOG(2) << __func__ << " handle=" << loghex(handle) << ", app_id=" << app_id
<< ", init_st=" << +init_st;
/* clear PM control block */
if (app_id == BTA_JV_PM_ID_CLEAR) {
status = bta_jv_free_set_pm_profile_cb(handle);
if (status != BTA_JV_SUCCESS) {
LOG(WARNING) << __func__ << ": free pm cb failed: reason=" << +status;
}
} else /* set PM control block */
{
p_cb = bta_jv_alloc_set_pm_profile_cb(handle, app_id);
if (NULL != p_cb)
bta_jv_pm_state_change(p_cb, init_st);
else
LOG(WARNING) << __func__ << ": failed";
}
}
/*******************************************************************************
*
* Function bta_jv_pm_conn_busy
*
* Description set pm connection busy state (input param safe)
*
* Params p_cb: pm control block of jv connection
*
* Returns void
*
******************************************************************************/
static void bta_jv_pm_conn_busy(tBTA_JV_PM_CB* p_cb) {
if ((NULL != p_cb) && (BTA_JV_PM_IDLE_ST == p_cb->state))
bta_jv_pm_state_change(p_cb, BTA_JV_CONN_BUSY);
}
/*******************************************************************************
*
* Function bta_jv_pm_conn_idle
*
* Description set pm connection idle state (input param safe)
*
* Params p_cb: pm control block of jv connection
*
* Returns void
*
******************************************************************************/
static void bta_jv_pm_conn_idle(tBTA_JV_PM_CB* p_cb) {
if ((NULL != p_cb) && (BTA_JV_PM_IDLE_ST != p_cb->state))
bta_jv_pm_state_change(p_cb, BTA_JV_CONN_IDLE);
}
/*******************************************************************************
*
* Function bta_jv_pm_state_change
*
* Description Notify power manager there is state change
*
* Params p_cb: must be NONE NULL
*
* Returns void
*
******************************************************************************/
static void bta_jv_pm_state_change(tBTA_JV_PM_CB* p_cb,
const tBTA_JV_CONN_STATE state) {
VLOG(2) << __func__ << ": p_cb=" << p_cb
<< ", handle=" << loghex(p_cb->handle)
<< ", busy/idle_state=" << p_cb->state << ", app_id=" << p_cb->app_id
<< ", conn_state=" << state;
switch (state) {
case BTA_JV_CONN_OPEN:
bta_sys_conn_open(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_CONN_CLOSE:
bta_sys_conn_close(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_APP_OPEN:
bta_sys_app_open(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_APP_CLOSE:
bta_sys_app_close(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_SCO_OPEN:
bta_sys_sco_open(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_SCO_CLOSE:
bta_sys_sco_close(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_CONN_IDLE:
p_cb->state = BTA_JV_PM_IDLE_ST;
bta_sys_idle(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
case BTA_JV_CONN_BUSY:
p_cb->state = BTA_JV_PM_BUSY_ST;
bta_sys_busy(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
break;
default:
LOG(WARNING) << __func__ << ": Invalid state=" << +state;
break;
}
}
/*******************************************************************************
*
* Function bta_jv_reset_sniff_timer
*
* Description reset pm sniff timer state (input param safe)
*
* Params p_cb: pm control block of jv connection
*
* Returns void
*
******************************************************************************/
static void bta_jv_reset_sniff_timer(tBTA_JV_PM_CB* p_cb) {
if (NULL != p_cb) {
p_cb->state = BTA_JV_PM_IDLE_ST;
bta_sys_reset_sniff(BTA_ID_JV, p_cb->app_id, p_cb->peer_bd_addr);
}
}
/******************************************************************************/