blob: a4a8d48b594c1ee5b369a94c02d3d03f61bc5b8e [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.photos.views;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Rect;
import android.graphics.RectF;
import androidx.collection.LongSparseArray;
import android.util.DisplayMetrics;
import android.util.Log;
import android.util.Pools.Pool;
import android.util.Pools.SynchronizedPool;
import android.view.View;
import android.view.WindowManager;
import com.android.gallery3d.common.Utils;
import com.android.gallery3d.glrenderer.BasicTexture;
import com.android.gallery3d.glrenderer.GLCanvas;
import com.android.gallery3d.glrenderer.UploadedTexture;
/**
* Handles laying out, decoding, and drawing of tiles in GL
*/
public class TiledImageRenderer {
public static final int SIZE_UNKNOWN = -1;
private static final String TAG = "TiledImageRenderer";
private static final int UPLOAD_LIMIT = 1;
/*
* This is the tile state in the CPU side.
* Life of a Tile:
* ACTIVATED (initial state)
* --> IN_QUEUE - by queueForDecode()
* --> RECYCLED - by recycleTile()
* IN_QUEUE --> DECODING - by decodeTile()
* --> RECYCLED - by recycleTile)
* DECODING --> RECYCLING - by recycleTile()
* --> DECODED - by decodeTile()
* --> DECODE_FAIL - by decodeTile()
* RECYCLING --> RECYCLED - by decodeTile()
* DECODED --> ACTIVATED - (after the decoded bitmap is uploaded)
* DECODED --> RECYCLED - by recycleTile()
* DECODE_FAIL -> RECYCLED - by recycleTile()
* RECYCLED --> ACTIVATED - by obtainTile()
*/
private static final int STATE_ACTIVATED = 0x01;
private static final int STATE_IN_QUEUE = 0x02;
private static final int STATE_DECODING = 0x04;
private static final int STATE_DECODED = 0x08;
private static final int STATE_DECODE_FAIL = 0x10;
private static final int STATE_RECYCLING = 0x20;
private static final int STATE_RECYCLED = 0x40;
private static Pool<Bitmap> sTilePool = new SynchronizedPool<Bitmap>(64);
// TILE_SIZE must be 2^N
private int mTileSize;
private TileSource mModel;
private BasicTexture mPreview;
protected int mLevelCount; // cache the value of mScaledBitmaps.length
// The mLevel variable indicates which level of bitmap we should use.
// Level 0 means the original full-sized bitmap, and a larger value means
// a smaller scaled bitmap (The width and height of each scaled bitmap is
// half size of the previous one). If the value is in [0, mLevelCount), we
// use the bitmap in mScaledBitmaps[mLevel] for display, otherwise the value
// is mLevelCount
private int mLevel = 0;
private int mOffsetX;
private int mOffsetY;
private int mUploadQuota;
private boolean mRenderComplete;
private final RectF mSourceRect = new RectF();
private final RectF mTargetRect = new RectF();
private final LongSparseArray<Tile> mActiveTiles = new LongSparseArray<Tile>();
// The following three queue are guarded by mQueueLock
private final Object mQueueLock = new Object();
private final TileQueue mRecycledQueue = new TileQueue();
private final TileQueue mUploadQueue = new TileQueue();
private final TileQueue mDecodeQueue = new TileQueue();
// The width and height of the full-sized bitmap
protected int mImageWidth = SIZE_UNKNOWN;
protected int mImageHeight = SIZE_UNKNOWN;
protected int mCenterX;
protected int mCenterY;
protected float mScale;
protected int mRotation;
private boolean mLayoutTiles;
// Temp variables to avoid memory allocation
private final Rect mTileRange = new Rect();
private final Rect mActiveRange[] = {new Rect(), new Rect()};
private TileDecoder mTileDecoder;
private boolean mBackgroundTileUploaded;
private int mViewWidth, mViewHeight;
private View mParent;
/**
* Interface for providing tiles to a {@link TiledImageRenderer}
*/
public static interface TileSource {
/**
* If the source does not care about the tile size, it should use
* {@link TiledImageRenderer#suggestedTileSize(Context)}
*/
public int getTileSize();
public int getImageWidth();
public int getImageHeight();
public int getRotation();
/**
* Return a Preview image if available. This will be used as the base layer
* if higher res tiles are not yet available
*/
public BasicTexture getPreview();
/**
* The tile returned by this method can be specified this way: Assuming
* the image size is (width, height), first take the intersection of (0,
* 0) - (width, height) and (x, y) - (x + tileSize, y + tileSize). If
* in extending the region, we found some part of the region is outside
* the image, those pixels are filled with black.
*
* If level > 0, it does the same operation on a down-scaled version of
* the original image (down-scaled by a factor of 2^level), but (x, y)
* still refers to the coordinate on the original image.
*
* The method would be called by the decoder thread.
*/
public Bitmap getTile(int level, int x, int y, Bitmap reuse);
}
public static int suggestedTileSize(Context context) {
return isHighResolution(context) ? 2048 : 1024;
}
private static boolean isHighResolution(Context context) {
DisplayMetrics metrics = new DisplayMetrics();
WindowManager wm = (WindowManager)
context.getSystemService(Context.WINDOW_SERVICE);
wm.getDefaultDisplay().getMetrics(metrics);
return metrics.heightPixels > 2048 || metrics.widthPixels > 2048;
}
public TiledImageRenderer(View parent) {
mParent = parent;
mTileDecoder = new TileDecoder();
mTileDecoder.start();
}
public int getViewWidth() {
return mViewWidth;
}
public int getViewHeight() {
return mViewHeight;
}
private void invalidate() {
mParent.postInvalidate();
}
public void setModel(TileSource model, int rotation) {
if (mModel != model) {
mModel = model;
notifyModelInvalidated();
}
if (mRotation != rotation) {
mRotation = rotation;
mLayoutTiles = true;
}
}
private void calculateLevelCount() {
if (mPreview != null) {
mLevelCount = Math.max(0, Utils.ceilLog2(
mImageWidth / (float) mPreview.getWidth()));
} else {
int levels = 1;
int maxDim = Math.max(mImageWidth, mImageHeight);
int t = mTileSize;
while (t < maxDim) {
t <<= 1;
levels++;
}
mLevelCount = levels;
}
}
public void notifyModelInvalidated() {
invalidateTiles();
if (mModel == null) {
mImageWidth = 0;
mImageHeight = 0;
mLevelCount = 0;
mPreview = null;
} else {
mImageWidth = mModel.getImageWidth();
mImageHeight = mModel.getImageHeight();
mPreview = mModel.getPreview();
mTileSize = mModel.getTileSize();
calculateLevelCount();
}
mLayoutTiles = true;
}
public void setViewSize(int width, int height) {
mViewWidth = width;
mViewHeight = height;
}
public void setPosition(int centerX, int centerY, float scale) {
if (mCenterX == centerX && mCenterY == centerY
&& mScale == scale) {
return;
}
mCenterX = centerX;
mCenterY = centerY;
mScale = scale;
mLayoutTiles = true;
}
// Prepare the tiles we want to use for display.
//
// 1. Decide the tile level we want to use for display.
// 2. Decide the tile levels we want to keep as texture (in addition to
// the one we use for display).
// 3. Recycle unused tiles.
// 4. Activate the tiles we want.
private void layoutTiles() {
if (mViewWidth == 0 || mViewHeight == 0 || !mLayoutTiles) {
return;
}
mLayoutTiles = false;
// The tile levels we want to keep as texture is in the range
// [fromLevel, endLevel).
int fromLevel;
int endLevel;
// We want to use a texture larger than or equal to the display size.
mLevel = Utils.clamp(Utils.floorLog2(1f / mScale), 0, mLevelCount);
// We want to keep one more tile level as texture in addition to what
// we use for display. So it can be faster when the scale moves to the
// next level. We choose the level closest to the current scale.
if (mLevel != mLevelCount) {
Rect range = mTileRange;
getRange(range, mCenterX, mCenterY, mLevel, mScale, mRotation);
mOffsetX = Math.round(mViewWidth / 2f + (range.left - mCenterX) * mScale);
mOffsetY = Math.round(mViewHeight / 2f + (range.top - mCenterY) * mScale);
fromLevel = mScale * (1 << mLevel) > 0.75f ? mLevel - 1 : mLevel;
} else {
// Activate the tiles of the smallest two levels.
fromLevel = mLevel - 2;
mOffsetX = Math.round(mViewWidth / 2f - mCenterX * mScale);
mOffsetY = Math.round(mViewHeight / 2f - mCenterY * mScale);
}
fromLevel = Math.max(0, Math.min(fromLevel, mLevelCount - 2));
endLevel = Math.min(fromLevel + 2, mLevelCount);
Rect range[] = mActiveRange;
for (int i = fromLevel; i < endLevel; ++i) {
getRange(range[i - fromLevel], mCenterX, mCenterY, i, mRotation);
}
// If rotation is transient, don't update the tile.
if (mRotation % 90 != 0) {
return;
}
synchronized (mQueueLock) {
mDecodeQueue.clean();
mUploadQueue.clean();
mBackgroundTileUploaded = false;
// Recycle unused tiles: if the level of the active tile is outside the
// range [fromLevel, endLevel) or not in the visible range.
int n = mActiveTiles.size();
for (int i = 0; i < n; i++) {
Tile tile = mActiveTiles.valueAt(i);
int level = tile.mTileLevel;
if (level < fromLevel || level >= endLevel
|| !range[level - fromLevel].contains(tile.mX, tile.mY)) {
mActiveTiles.removeAt(i);
i--;
n--;
recycleTile(tile);
}
}
}
for (int i = fromLevel; i < endLevel; ++i) {
int size = mTileSize << i;
Rect r = range[i - fromLevel];
for (int y = r.top, bottom = r.bottom; y < bottom; y += size) {
for (int x = r.left, right = r.right; x < right; x += size) {
activateTile(x, y, i);
}
}
}
invalidate();
}
private void invalidateTiles() {
synchronized (mQueueLock) {
mDecodeQueue.clean();
mUploadQueue.clean();
// TODO(xx): disable decoder
int n = mActiveTiles.size();
for (int i = 0; i < n; i++) {
Tile tile = mActiveTiles.valueAt(i);
recycleTile(tile);
}
mActiveTiles.clear();
}
}
private void getRange(Rect out, int cX, int cY, int level, int rotation) {
getRange(out, cX, cY, level, 1f / (1 << (level + 1)), rotation);
}
// If the bitmap is scaled by the given factor "scale", return the
// rectangle containing visible range. The left-top coordinate returned is
// aligned to the tile boundary.
//
// (cX, cY) is the point on the original bitmap which will be put in the
// center of the ImageViewer.
private void getRange(Rect out,
int cX, int cY, int level, float scale, int rotation) {
double radians = Math.toRadians(-rotation);
double w = mViewWidth;
double h = mViewHeight;
double cos = Math.cos(radians);
double sin = Math.sin(radians);
int width = (int) Math.ceil(Math.max(
Math.abs(cos * w - sin * h), Math.abs(cos * w + sin * h)));
int height = (int) Math.ceil(Math.max(
Math.abs(sin * w + cos * h), Math.abs(sin * w - cos * h)));
int left = (int) Math.floor(cX - width / (2f * scale));
int top = (int) Math.floor(cY - height / (2f * scale));
int right = (int) Math.ceil(left + width / scale);
int bottom = (int) Math.ceil(top + height / scale);
// align the rectangle to tile boundary
int size = mTileSize << level;
left = Math.max(0, size * (left / size));
top = Math.max(0, size * (top / size));
right = Math.min(mImageWidth, right);
bottom = Math.min(mImageHeight, bottom);
out.set(left, top, right, bottom);
}
public void freeTextures() {
mLayoutTiles = true;
mTileDecoder.finishAndWait();
synchronized (mQueueLock) {
mUploadQueue.clean();
mDecodeQueue.clean();
Tile tile = mRecycledQueue.pop();
while (tile != null) {
tile.recycle();
tile = mRecycledQueue.pop();
}
}
int n = mActiveTiles.size();
for (int i = 0; i < n; i++) {
Tile texture = mActiveTiles.valueAt(i);
texture.recycle();
}
mActiveTiles.clear();
mTileRange.set(0, 0, 0, 0);
while (sTilePool.acquire() != null) {}
}
public boolean draw(GLCanvas canvas) {
layoutTiles();
uploadTiles(canvas);
mUploadQuota = UPLOAD_LIMIT;
mRenderComplete = true;
int level = mLevel;
int rotation = mRotation;
int flags = 0;
if (rotation != 0) {
flags |= GLCanvas.SAVE_FLAG_MATRIX;
}
if (flags != 0) {
canvas.save(flags);
if (rotation != 0) {
int centerX = mViewWidth / 2, centerY = mViewHeight / 2;
canvas.translate(centerX, centerY);
canvas.rotate(rotation, 0, 0, 1);
canvas.translate(-centerX, -centerY);
}
}
try {
if (level != mLevelCount) {
int size = (mTileSize << level);
float length = size * mScale;
Rect r = mTileRange;
for (int ty = r.top, i = 0; ty < r.bottom; ty += size, i++) {
float y = mOffsetY + i * length;
for (int tx = r.left, j = 0; tx < r.right; tx += size, j++) {
float x = mOffsetX + j * length;
drawTile(canvas, tx, ty, level, x, y, length);
}
}
} else if (mPreview != null) {
mPreview.draw(canvas, mOffsetX, mOffsetY,
Math.round(mImageWidth * mScale),
Math.round(mImageHeight * mScale));
}
} finally {
if (flags != 0) {
canvas.restore();
}
}
if (mRenderComplete) {
if (!mBackgroundTileUploaded) {
uploadBackgroundTiles(canvas);
}
} else {
invalidate();
}
return mRenderComplete || mPreview != null;
}
private void uploadBackgroundTiles(GLCanvas canvas) {
mBackgroundTileUploaded = true;
int n = mActiveTiles.size();
for (int i = 0; i < n; i++) {
Tile tile = mActiveTiles.valueAt(i);
if (!tile.isContentValid()) {
queueForDecode(tile);
}
}
}
private void queueForDecode(Tile tile) {
synchronized (mQueueLock) {
if (tile.mTileState == STATE_ACTIVATED) {
tile.mTileState = STATE_IN_QUEUE;
if (mDecodeQueue.push(tile)) {
mQueueLock.notifyAll();
}
}
}
}
private void decodeTile(Tile tile) {
synchronized (mQueueLock) {
if (tile.mTileState != STATE_IN_QUEUE) {
return;
}
tile.mTileState = STATE_DECODING;
}
boolean decodeComplete = tile.decode();
synchronized (mQueueLock) {
if (tile.mTileState == STATE_RECYCLING) {
tile.mTileState = STATE_RECYCLED;
if (tile.mDecodedTile != null) {
sTilePool.release(tile.mDecodedTile);
tile.mDecodedTile = null;
}
mRecycledQueue.push(tile);
return;
}
tile.mTileState = decodeComplete ? STATE_DECODED : STATE_DECODE_FAIL;
if (!decodeComplete) {
return;
}
mUploadQueue.push(tile);
}
invalidate();
}
private Tile obtainTile(int x, int y, int level) {
synchronized (mQueueLock) {
Tile tile = mRecycledQueue.pop();
if (tile != null) {
tile.mTileState = STATE_ACTIVATED;
tile.update(x, y, level);
return tile;
}
return new Tile(x, y, level);
}
}
private void recycleTile(Tile tile) {
synchronized (mQueueLock) {
if (tile.mTileState == STATE_DECODING) {
tile.mTileState = STATE_RECYCLING;
return;
}
tile.mTileState = STATE_RECYCLED;
if (tile.mDecodedTile != null) {
sTilePool.release(tile.mDecodedTile);
tile.mDecodedTile = null;
}
mRecycledQueue.push(tile);
}
}
private void activateTile(int x, int y, int level) {
long key = makeTileKey(x, y, level);
Tile tile = mActiveTiles.get(key);
if (tile != null) {
if (tile.mTileState == STATE_IN_QUEUE) {
tile.mTileState = STATE_ACTIVATED;
}
return;
}
tile = obtainTile(x, y, level);
mActiveTiles.put(key, tile);
}
private Tile getTile(int x, int y, int level) {
return mActiveTiles.get(makeTileKey(x, y, level));
}
private static long makeTileKey(int x, int y, int level) {
long result = x;
result = (result << 16) | y;
result = (result << 16) | level;
return result;
}
private void uploadTiles(GLCanvas canvas) {
int quota = UPLOAD_LIMIT;
Tile tile = null;
while (quota > 0) {
synchronized (mQueueLock) {
tile = mUploadQueue.pop();
}
if (tile == null) {
break;
}
if (!tile.isContentValid()) {
if (tile.mTileState == STATE_DECODED) {
tile.updateContent(canvas);
--quota;
} else {
Log.w(TAG, "Tile in upload queue has invalid state: " + tile.mTileState);
}
}
}
if (tile != null) {
invalidate();
}
}
// Draw the tile to a square at canvas that locates at (x, y) and
// has a side length of length.
private void drawTile(GLCanvas canvas,
int tx, int ty, int level, float x, float y, float length) {
RectF source = mSourceRect;
RectF target = mTargetRect;
target.set(x, y, x + length, y + length);
source.set(0, 0, mTileSize, mTileSize);
Tile tile = getTile(tx, ty, level);
if (tile != null) {
if (!tile.isContentValid()) {
if (tile.mTileState == STATE_DECODED) {
if (mUploadQuota > 0) {
--mUploadQuota;
tile.updateContent(canvas);
} else {
mRenderComplete = false;
}
} else if (tile.mTileState != STATE_DECODE_FAIL){
mRenderComplete = false;
queueForDecode(tile);
}
}
if (drawTile(tile, canvas, source, target)) {
return;
}
}
if (mPreview != null) {
int size = mTileSize << level;
float scaleX = (float) mPreview.getWidth() / mImageWidth;
float scaleY = (float) mPreview.getHeight() / mImageHeight;
source.set(tx * scaleX, ty * scaleY, (tx + size) * scaleX,
(ty + size) * scaleY);
canvas.drawTexture(mPreview, source, target);
}
}
private boolean drawTile(
Tile tile, GLCanvas canvas, RectF source, RectF target) {
while (true) {
if (tile.isContentValid()) {
canvas.drawTexture(tile, source, target);
return true;
}
// Parent can be divided to four quads and tile is one of the four.
Tile parent = tile.getParentTile();
if (parent == null) {
return false;
}
if (tile.mX == parent.mX) {
source.left /= 2f;
source.right /= 2f;
} else {
source.left = (mTileSize + source.left) / 2f;
source.right = (mTileSize + source.right) / 2f;
}
if (tile.mY == parent.mY) {
source.top /= 2f;
source.bottom /= 2f;
} else {
source.top = (mTileSize + source.top) / 2f;
source.bottom = (mTileSize + source.bottom) / 2f;
}
tile = parent;
}
}
private class Tile extends UploadedTexture {
public int mX;
public int mY;
public int mTileLevel;
public Tile mNext;
public Bitmap mDecodedTile;
public volatile int mTileState = STATE_ACTIVATED;
public Tile(int x, int y, int level) {
mX = x;
mY = y;
mTileLevel = level;
}
@Override
protected void onFreeBitmap(Bitmap bitmap) {
sTilePool.release(bitmap);
}
boolean decode() {
// Get a tile from the original image. The tile is down-scaled
// by (1 << mTilelevel) from a region in the original image.
try {
Bitmap reuse = sTilePool.acquire();
if (reuse != null && reuse.getWidth() != mTileSize) {
reuse = null;
}
mDecodedTile = mModel.getTile(mTileLevel, mX, mY, reuse);
} catch (Throwable t) {
Log.w(TAG, "fail to decode tile", t);
}
return mDecodedTile != null;
}
@Override
protected Bitmap onGetBitmap() {
Utils.assertTrue(mTileState == STATE_DECODED);
// We need to override the width and height, so that we won't
// draw beyond the boundaries.
int rightEdge = ((mImageWidth - mX) >> mTileLevel);
int bottomEdge = ((mImageHeight - mY) >> mTileLevel);
setSize(Math.min(mTileSize, rightEdge), Math.min(mTileSize, bottomEdge));
Bitmap bitmap = mDecodedTile;
mDecodedTile = null;
mTileState = STATE_ACTIVATED;
return bitmap;
}
// We override getTextureWidth() and getTextureHeight() here, so the
// texture can be re-used for different tiles regardless of the actual
// size of the tile (which may be small because it is a tile at the
// boundary).
@Override
public int getTextureWidth() {
return mTileSize;
}
@Override
public int getTextureHeight() {
return mTileSize;
}
public void update(int x, int y, int level) {
mX = x;
mY = y;
mTileLevel = level;
invalidateContent();
}
public Tile getParentTile() {
if (mTileLevel + 1 == mLevelCount) {
return null;
}
int size = mTileSize << (mTileLevel + 1);
int x = size * (mX / size);
int y = size * (mY / size);
return getTile(x, y, mTileLevel + 1);
}
@Override
public String toString() {
return String.format("tile(%s, %s, %s / %s)",
mX / mTileSize, mY / mTileSize, mLevel, mLevelCount);
}
}
private static class TileQueue {
private Tile mHead;
public Tile pop() {
Tile tile = mHead;
if (tile != null) {
mHead = tile.mNext;
}
return tile;
}
public boolean push(Tile tile) {
if (contains(tile)) {
Log.w(TAG, "Attempting to add a tile already in the queue!");
return false;
}
boolean wasEmpty = mHead == null;
tile.mNext = mHead;
mHead = tile;
return wasEmpty;
}
private boolean contains(Tile tile) {
Tile other = mHead;
while (other != null) {
if (other == tile) {
return true;
}
other = other.mNext;
}
return false;
}
public void clean() {
mHead = null;
}
}
private class TileDecoder extends Thread {
public void finishAndWait() {
interrupt();
try {
join();
} catch (InterruptedException e) {
Log.w(TAG, "Interrupted while waiting for TileDecoder thread to finish!");
}
}
private Tile waitForTile() throws InterruptedException {
synchronized (mQueueLock) {
while (true) {
Tile tile = mDecodeQueue.pop();
if (tile != null) {
return tile;
}
mQueueLock.wait();
}
}
}
@Override
public void run() {
try {
while (!isInterrupted()) {
Tile tile = waitForTile();
decodeTile(tile);
}
} catch (InterruptedException ex) {
// We were finished
}
}
}
}