blob: f5c425b2fda99a0767fca7a03d7ac5570bb6f68e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Changes from Qualcomm Innovation Center are provided under the following license:
*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted (subject to the limitations in the
* disclaimer below) provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Qualcomm Innovation Center, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
* GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
* HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sync.h"
#include <utils/Log.h>
#include "wifi_hal.h"
#include "nan_i.h"
#include "nancommand.h"
wifi_error NanCommand::putNanEnable(transaction_id id, const NanEnableRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_ENABLE");
size_t message_len = NAN_MAX_ENABLE_REQ_SIZE;
int freq_24g;
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (pReq->config_24g_channel == 0)
freq_24g = 2437;
else
freq_24g = pReq->channel_24g_val;
message_len += \
(
pReq->config_support_5g ? (SIZEOF_TLV_HDR + \
sizeof(pReq->support_5g_val)) : 0 \
) + \
(
pReq->config_sid_beacon ? (SIZEOF_TLV_HDR + \
sizeof(pReq->sid_beacon_val)) : 0 \
) + \
(
pReq->config_2dot4g_rssi_close ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_close_2dot4g_val)) : 0 \
) + \
(
pReq->config_2dot4g_rssi_middle ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_middle_2dot4g_val)) : 0 \
) + \
(
pReq->config_hop_count_limit ? (SIZEOF_TLV_HDR + \
sizeof(pReq->hop_count_limit_val)) : 0 \
) + \
(
pReq->config_2dot4g_support ? (SIZEOF_TLV_HDR + \
sizeof(pReq->support_2dot4g_val)) : 0 \
) + \
(
pReq->config_2dot4g_beacons ? (SIZEOF_TLV_HDR + \
sizeof(pReq->beacon_2dot4g_val)) : 0 \
) + \
(
pReq->config_2dot4g_sdf ? (SIZEOF_TLV_HDR + \
sizeof(pReq->sdf_2dot4g_val)) : 0 \
) + \
(
pReq->config_5g_beacons ? (SIZEOF_TLV_HDR + \
sizeof(pReq->beacon_5g_val)) : 0 \
) + \
(
pReq->config_5g_sdf ? (SIZEOF_TLV_HDR + \
sizeof(pReq->sdf_5g_val)) : 0 \
) + \
(
pReq->config_5g_rssi_close ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_close_5g_val)) : 0 \
) + \
(
pReq->config_5g_rssi_middle ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_middle_5g_val)) : 0 \
) + \
(
pReq->config_2dot4g_rssi_proximity ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_proximity_2dot4g_val)) : 0 \
) + \
(
pReq->config_5g_rssi_close_proximity ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_close_proximity_5g_val)) : 0 \
) + \
(
pReq->config_rssi_window_size ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_window_size_val)) : 0 \
) + \
(
pReq->config_oui ? (SIZEOF_TLV_HDR + \
sizeof(pReq->oui_val)) : 0 \
) + \
(
pReq->config_intf_addr ? (SIZEOF_TLV_HDR + \
sizeof(pReq->intf_addr_val)) : 0 \
) + \
(
pReq->config_cluster_attribute_val ? (SIZEOF_TLV_HDR + \
sizeof(pReq->config_cluster_attribute_val)) : 0 \
) + \
(
pReq->config_scan_params ? NAN_MAX_SOCIAL_CHANNELS *
(SIZEOF_TLV_HDR + sizeof(u32)) : 0 \
) + \
(
pReq->config_random_factor_force ? (SIZEOF_TLV_HDR + \
sizeof(pReq->random_factor_force_val)) : 0 \
) + \
(
pReq->config_hop_count_force ? (SIZEOF_TLV_HDR + \
sizeof(pReq->hop_count_force_val)) : 0 \
) + \
(
/* always include 24g channel/freq */
SIZEOF_TLV_HDR + sizeof(u32) \
) + \
(
pReq->config_5g_channel ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw.config_2dot4g_dw_band ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw.config_5g_dw_band ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_disc_mac_addr_randomization ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
/* Always include cfg discovery indication TLV */
SIZEOF_TLV_HDR + sizeof(u32) \
) + \
(
pReq->config_subscribe_sid_beacon ? (SIZEOF_TLV_HDR + \
sizeof(pReq->subscribe_sid_beacon_val)) : 0 \
) + \
(
pReq->config_discovery_beacon_int ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_nss ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_enable_ranging ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw_early_termination ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
);
pNanEnableReqMsg pFwReq = (pNanEnableReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_ENABLE_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
u8* tlvs = pFwReq->ptlv;
/* Write the TLVs to the message. */
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_ID_LOW, sizeof(pReq->cluster_low),
(const u8*)&pReq->cluster_low, tlvs);
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_ID_HIGH, sizeof(pReq->cluster_high),
(const u8*)&pReq->cluster_high, tlvs);
tlvs = addTlv(NAN_TLV_TYPE_MASTER_PREFERENCE, sizeof(pReq->master_pref),
(const u8*)&pReq->master_pref, tlvs);
if (pReq->config_support_5g) {
tlvs = addTlv(NAN_TLV_TYPE_5G_SUPPORT, sizeof(pReq->support_5g_val),
(const u8*)&pReq->support_5g_val, tlvs);
}
if (pReq->config_sid_beacon) {
tlvs = addTlv(NAN_TLV_TYPE_SID_BEACON, sizeof(pReq->sid_beacon_val),
(const u8*)&pReq->sid_beacon_val, tlvs);
}
if (pReq->config_2dot4g_rssi_close) {
tlvs = addTlv(NAN_TLV_TYPE_24G_RSSI_CLOSE,
sizeof(pReq->rssi_close_2dot4g_val),
(const u8*)&pReq->rssi_close_2dot4g_val, tlvs);
}
if (pReq->config_2dot4g_rssi_middle) {
tlvs = addTlv(NAN_TLV_TYPE_24G_RSSI_MIDDLE,
sizeof(pReq->rssi_middle_2dot4g_val),
(const u8*)&pReq->rssi_middle_2dot4g_val, tlvs);
}
if (pReq->config_hop_count_limit) {
tlvs = addTlv(NAN_TLV_TYPE_HOP_COUNT_LIMIT,
sizeof(pReq->hop_count_limit_val),
(const u8*)&pReq->hop_count_limit_val, tlvs);
}
if (pReq->config_2dot4g_support) {
tlvs = addTlv(NAN_TLV_TYPE_24G_SUPPORT, sizeof(pReq->support_2dot4g_val),
(const u8*)&pReq->support_2dot4g_val, tlvs);
}
if (pReq->config_2dot4g_beacons) {
tlvs = addTlv(NAN_TLV_TYPE_24G_BEACON, sizeof(pReq->beacon_2dot4g_val),
(const u8*)&pReq->beacon_2dot4g_val, tlvs);
}
if (pReq->config_2dot4g_sdf) {
tlvs = addTlv(NAN_TLV_TYPE_24G_SDF, sizeof(pReq->sdf_2dot4g_val),
(const u8*)&pReq->sdf_2dot4g_val, tlvs);
}
if (pReq->config_5g_beacons) {
tlvs = addTlv(NAN_TLV_TYPE_5G_BEACON, sizeof(pReq->beacon_5g_val),
(const u8*)&pReq->beacon_5g_val, tlvs);
}
if (pReq->config_5g_sdf) {
tlvs = addTlv(NAN_TLV_TYPE_5G_SDF, sizeof(pReq->sdf_5g_val),
(const u8*)&pReq->sdf_5g_val, tlvs);
}
if (pReq->config_2dot4g_rssi_proximity) {
tlvs = addTlv(NAN_TLV_TYPE_24G_RSSI_CLOSE_PROXIMITY,
sizeof(pReq->rssi_proximity_2dot4g_val),
(const u8*)&pReq->rssi_proximity_2dot4g_val, tlvs);
}
/* Add the support of sending 5G RSSI values */
if (pReq->config_5g_rssi_close) {
tlvs = addTlv(NAN_TLV_TYPE_5G_RSSI_CLOSE, sizeof(pReq->rssi_close_5g_val),
(const u8*)&pReq->rssi_close_5g_val, tlvs);
}
if (pReq->config_5g_rssi_middle) {
tlvs = addTlv(NAN_TLV_TYPE_5G_RSSI_MIDDLE, sizeof(pReq->rssi_middle_5g_val),
(const u8*)&pReq->rssi_middle_5g_val, tlvs);
}
if (pReq->config_5g_rssi_close_proximity) {
tlvs = addTlv(NAN_TLV_TYPE_5G_RSSI_CLOSE_PROXIMITY,
sizeof(pReq->rssi_close_proximity_5g_val),
(const u8*)&pReq->rssi_close_proximity_5g_val, tlvs);
}
if (pReq->config_rssi_window_size) {
tlvs = addTlv(NAN_TLV_TYPE_RSSI_AVERAGING_WINDOW_SIZE, sizeof(pReq->rssi_window_size_val),
(const u8*)&pReq->rssi_window_size_val, tlvs);
}
if (pReq->config_oui) {
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_OUI_NETWORK_ID, sizeof(pReq->oui_val),
(const u8*)&pReq->oui_val, tlvs);
}
if (pReq->config_intf_addr) {
tlvs = addTlv(NAN_TLV_TYPE_SOURCE_MAC_ADDRESS, sizeof(pReq->intf_addr_val),
(const u8*)&pReq->intf_addr_val[0], tlvs);
}
if (pReq->config_cluster_attribute_val) {
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_ATTRIBUTE_IN_SDF, sizeof(pReq->config_cluster_attribute_val),
(const u8*)&pReq->config_cluster_attribute_val, tlvs);
}
if (pReq->config_scan_params) {
u32 socialChannelParamVal[NAN_MAX_SOCIAL_CHANNELS];
/* Fill the social channel param */
fillNanSocialChannelParamVal(&pReq->scan_params_val,
socialChannelParamVal);
int i;
for (i = 0; i < NAN_MAX_SOCIAL_CHANNELS; i++) {
tlvs = addTlv(NAN_TLV_TYPE_SOCIAL_CHANNEL_SCAN_PARAMS,
sizeof(socialChannelParamVal[i]),
(const u8*)&socialChannelParamVal[i], tlvs);
}
}
if (pReq->config_random_factor_force) {
tlvs = addTlv(NAN_TLV_TYPE_RANDOM_FACTOR_FORCE,
sizeof(pReq->random_factor_force_val),
(const u8*)&pReq->random_factor_force_val, tlvs);
}
if (pReq->config_hop_count_force) {
tlvs = addTlv(NAN_TLV_TYPE_HOP_COUNT_FORCE,
sizeof(pReq->hop_count_force_val),
(const u8*)&pReq->hop_count_force_val, tlvs);
}
tlvs = addTlv(NAN_TLV_TYPE_24G_CHANNEL,
sizeof(u32),
(const u8*)&freq_24g, tlvs);
if (pReq->config_5g_channel) {
tlvs = addTlv(NAN_TLV_TYPE_5G_CHANNEL,
sizeof(u32),
(const u8*)&pReq->channel_5g_val, tlvs);
}
if (pReq->config_dw.config_2dot4g_dw_band) {
tlvs = addTlv(NAN_TLV_TYPE_2G_COMMITTED_DW,
sizeof(pReq->config_dw.dw_2dot4g_interval_val),
(const u8*)&pReq->config_dw.dw_2dot4g_interval_val, tlvs);
}
if (pReq->config_dw.config_5g_dw_band) {
tlvs = addTlv(NAN_TLV_TYPE_5G_COMMITTED_DW,
sizeof(pReq->config_dw.dw_5g_interval_val),
(const u8*)&pReq->config_dw.dw_5g_interval_val, tlvs);
}
if (pReq->config_disc_mac_addr_randomization) {
tlvs = addTlv(NAN_TLV_TYPE_DISC_MAC_ADDR_RANDOM_INTERVAL,
sizeof(u32),
(const u8*)&pReq->disc_mac_addr_rand_interval_sec, tlvs);
}
u32 config_discovery_indications;
config_discovery_indications = (u32)pReq->discovery_indication_cfg;
/* Save the discovery MAC indication config if it is disabled from the
* framework and use it later to decide if the framework to be notified of
* the response. And enable the self MAC discovery indication from firmware
* by resetting the bit in config to get the Self MAC.
*/
if (config_discovery_indications & NAN_DISC_ADDR_IND_DISABLED) {
mNanCommandInstance->mNanDiscAddrIndDisabled = true;
config_discovery_indications &= ~NAN_DISC_ADDR_IND_DISABLED;
} else {
mNanCommandInstance->mNanDiscAddrIndDisabled = false;
}
tlvs = addTlv(NAN_TLV_TYPE_CONFIG_DISCOVERY_INDICATIONS,
sizeof(u32),
(const u8*)&config_discovery_indications, tlvs);
if (pReq->config_subscribe_sid_beacon) {
tlvs = addTlv(NAN_TLV_TYPE_SUBSCRIBE_SID_BEACON,
sizeof(pReq->subscribe_sid_beacon_val),
(const u8*)&pReq->subscribe_sid_beacon_val, tlvs);
}
if (pReq->config_discovery_beacon_int) {
tlvs = addTlv(NAN_TLV_TYPE_DB_INTERVAL, sizeof(u32),
(const u8*)&pReq->discovery_beacon_interval, tlvs);
}
if (pReq->config_nss) {
tlvs = addTlv(NAN_TLV_TYPE_TX_RX_CHAINS, sizeof(u32),
(const u8*)&pReq->nss, tlvs);
}
if (pReq->config_enable_ranging) {
tlvs = addTlv(NAN_TLV_TYPE_ENABLE_DEVICE_RANGING, sizeof(u32),
(const u8*)&pReq->enable_ranging, tlvs);
}
if (pReq->config_dw_early_termination) {
tlvs = addTlv(NAN_TLV_TYPE_DW_EARLY_TERMINATION, sizeof(u32),
(const u8*)&pReq->enable_dw_termination, tlvs);
}
mVendorData = (char*)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
//Insert the vendor specific data
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_u32(QCA_WLAN_VENDOR_ATTR_NAN_SUBCMD_TYPE,
QCA_WLAN_NAN_EXT_SUBCMD_TYPE_ENABLE_REQ) ||
mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_u32(QCA_WLAN_VENDOR_ATTR_NAN_DISC_24GHZ_BAND_FREQ,
freq_24g)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (pReq->config_5g_channel) {
if (mMsg.put_u32(QCA_WLAN_VENDOR_ATTR_NAN_DISC_5GHZ_BAND_FREQ,
pReq->channel_5g_val)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanDisable(transaction_id id)
{
wifi_error ret;
ALOGV("NAN_DISABLE");
size_t message_len = sizeof(NanDisableReqMsg);
pNanDisableReqMsg pFwReq = (pNanDisableReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_DISABLE_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
mVendorData = (char*)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_u32(QCA_WLAN_VENDOR_ATTR_NAN_SUBCMD_TYPE,
QCA_WLAN_NAN_EXT_SUBCMD_TYPE_DISABLE_REQ) ||
mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanConfig(transaction_id id, const NanConfigRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_CONFIG");
size_t message_len = 0;
int idx = 0;
if (pReq == NULL ||
pReq->num_config_discovery_attr > NAN_MAX_POSTDISCOVERY_LEN) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
message_len = sizeof(NanMsgHeader);
message_len += \
(
pReq->config_sid_beacon ? (SIZEOF_TLV_HDR + \
sizeof(pReq->sid_beacon)) : 0 \
) + \
(
pReq->config_master_pref ? (SIZEOF_TLV_HDR + \
sizeof(pReq->master_pref)) : 0 \
) + \
(
pReq->config_rssi_proximity ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_proximity)) : 0 \
) + \
(
pReq->config_5g_rssi_close_proximity ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_close_proximity_5g_val)) : 0 \
) + \
(
pReq->config_rssi_window_size ? (SIZEOF_TLV_HDR + \
sizeof(pReq->rssi_window_size_val)) : 0 \
) + \
(
pReq->config_cluster_attribute_val ? (SIZEOF_TLV_HDR + \
sizeof(pReq->config_cluster_attribute_val)) : 0 \
) + \
(
pReq->config_scan_params ? NAN_MAX_SOCIAL_CHANNELS *
(SIZEOF_TLV_HDR + sizeof(u32)) : 0 \
) + \
(
pReq->config_random_factor_force ? (SIZEOF_TLV_HDR + \
sizeof(pReq->random_factor_force_val)) : 0 \
) + \
(
pReq->config_hop_count_force ? (SIZEOF_TLV_HDR + \
sizeof(pReq->hop_count_force_val)) : 0 \
) + \
(
pReq->config_conn_capability ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw.config_2dot4g_dw_band ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw.config_5g_dw_band ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_disc_mac_addr_randomization ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_subscribe_sid_beacon ? (SIZEOF_TLV_HDR + \
sizeof(pReq->subscribe_sid_beacon_val)) : 0 \
) + \
(
/* Always include cfg discovery indication TLV */
SIZEOF_TLV_HDR + sizeof(u32) \
) + \
(
pReq->config_discovery_beacon_int ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_nss ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_enable_ranging ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
) + \
(
pReq->config_dw_early_termination ? (SIZEOF_TLV_HDR + \
sizeof(u32)) : 0 \
);
if (pReq->num_config_discovery_attr) {
for (idx = 0; idx < pReq->num_config_discovery_attr; idx ++) {
message_len += SIZEOF_TLV_HDR +\
calcNanTransmitPostDiscoverySize(&pReq->discovery_attr_val[idx]);
}
}
if (pReq->config_fam && \
calcNanFurtherAvailabilityMapSize(&pReq->fam_val)) {
message_len += (SIZEOF_TLV_HDR + \
calcNanFurtherAvailabilityMapSize(&pReq->fam_val));
}
pNanConfigurationReqMsg pFwReq = (pNanConfigurationReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_CONFIGURATION_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
u8* tlvs = pFwReq->ptlv;
if (pReq->config_sid_beacon) {
tlvs = addTlv(NAN_TLV_TYPE_SID_BEACON, sizeof(pReq->sid_beacon),
(const u8*)&pReq->sid_beacon, tlvs);
}
if (pReq->config_master_pref) {
tlvs = addTlv(NAN_TLV_TYPE_MASTER_PREFERENCE, sizeof(pReq->master_pref),
(const u8*)&pReq->master_pref, tlvs);
}
if (pReq->config_rssi_window_size) {
tlvs = addTlv(NAN_TLV_TYPE_RSSI_AVERAGING_WINDOW_SIZE, sizeof(pReq->rssi_window_size_val),
(const u8*)&pReq->rssi_window_size_val, tlvs);
}
if (pReq->config_rssi_proximity) {
tlvs = addTlv(NAN_TLV_TYPE_24G_RSSI_CLOSE_PROXIMITY, sizeof(pReq->rssi_proximity),
(const u8*)&pReq->rssi_proximity, tlvs);
}
if (pReq->config_5g_rssi_close_proximity) {
tlvs = addTlv(NAN_TLV_TYPE_5G_RSSI_CLOSE_PROXIMITY,
sizeof(pReq->rssi_close_proximity_5g_val),
(const u8*)&pReq->rssi_close_proximity_5g_val, tlvs);
}
if (pReq->config_cluster_attribute_val) {
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_ATTRIBUTE_IN_SDF, sizeof(pReq->config_cluster_attribute_val),
(const u8*)&pReq->config_cluster_attribute_val, tlvs);
}
if (pReq->config_scan_params) {
u32 socialChannelParamVal[NAN_MAX_SOCIAL_CHANNELS];
/* Fill the social channel param */
fillNanSocialChannelParamVal(&pReq->scan_params_val,
socialChannelParamVal);
int i;
for (i = 0; i < NAN_MAX_SOCIAL_CHANNELS; i++) {
tlvs = addTlv(NAN_TLV_TYPE_SOCIAL_CHANNEL_SCAN_PARAMS,
sizeof(socialChannelParamVal[i]),
(const u8*)&socialChannelParamVal[i], tlvs);
}
}
if (pReq->config_random_factor_force) {
tlvs = addTlv(NAN_TLV_TYPE_RANDOM_FACTOR_FORCE,
sizeof(pReq->random_factor_force_val),
(const u8*)&pReq->random_factor_force_val, tlvs);
}
if (pReq->config_hop_count_force) {
tlvs = addTlv(NAN_TLV_TYPE_HOP_COUNT_FORCE,
sizeof(pReq->hop_count_force_val),
(const u8*)&pReq->hop_count_force_val, tlvs);
}
if (pReq->config_conn_capability) {
u32 val = \
getNanTransmitPostConnectivityCapabilityVal(&pReq->conn_capability_val);
tlvs = addTlv(NAN_TLV_TYPE_POST_NAN_CONNECTIVITY_CAPABILITIES_TRANSMIT,
sizeof(val), (const u8*)&val, tlvs);
}
if (pReq->num_config_discovery_attr) {
for (idx = 0; idx < pReq->num_config_discovery_attr; idx ++) {
fillNanTransmitPostDiscoveryVal(&pReq->discovery_attr_val[idx],
(u8*)(tlvs + SIZEOF_TLV_HDR));
tlvs = addTlv(NAN_TLV_TYPE_POST_NAN_DISCOVERY_ATTRIBUTE_TRANSMIT,
calcNanTransmitPostDiscoverySize(
&pReq->discovery_attr_val[idx]),
(const u8*)(tlvs + SIZEOF_TLV_HDR), tlvs);
}
}
if (pReq->config_fam && \
calcNanFurtherAvailabilityMapSize(&pReq->fam_val)) {
fillNanFurtherAvailabilityMapVal(&pReq->fam_val,
(u8*)(tlvs + SIZEOF_TLV_HDR));
tlvs = addTlv(NAN_TLV_TYPE_FURTHER_AVAILABILITY_MAP,
calcNanFurtherAvailabilityMapSize(&pReq->fam_val),
(const u8*)(tlvs + SIZEOF_TLV_HDR), tlvs);
}
if (pReq->config_dw.config_2dot4g_dw_band) {
tlvs = addTlv(NAN_TLV_TYPE_2G_COMMITTED_DW,
sizeof(pReq->config_dw.dw_2dot4g_interval_val),
(const u8*)&pReq->config_dw.dw_2dot4g_interval_val, tlvs);
}
if (pReq->config_dw.config_5g_dw_band) {
tlvs = addTlv(NAN_TLV_TYPE_5G_COMMITTED_DW,
sizeof(pReq->config_dw.dw_5g_interval_val),
(const u8*)&pReq->config_dw.dw_5g_interval_val, tlvs);
}
if (pReq->config_disc_mac_addr_randomization) {
tlvs = addTlv(NAN_TLV_TYPE_DISC_MAC_ADDR_RANDOM_INTERVAL,
sizeof(u32),
(const u8*)&pReq->disc_mac_addr_rand_interval_sec, tlvs);
}
if (pReq->config_subscribe_sid_beacon) {
tlvs = addTlv(NAN_TLV_TYPE_SUBSCRIBE_SID_BEACON,
sizeof(pReq->subscribe_sid_beacon_val),
(const u8*)&pReq->subscribe_sid_beacon_val, tlvs);
}
if (pReq->config_discovery_beacon_int) {
tlvs = addTlv(NAN_TLV_TYPE_DB_INTERVAL, sizeof(u32),
(const u8*)&pReq->discovery_beacon_interval, tlvs);
}
u32 config_discovery_indications;
config_discovery_indications = (u32)(pReq->discovery_indication_cfg);
/* Save the discovery MAC indication config if it is disabled from the
* framework and use it later to decide if the framework to be notified of
* the response. And enable the self MAC discovery indication from firmware
* by resetting the bit in config to get the Self MAC.
*/
if (config_discovery_indications & NAN_DISC_ADDR_IND_DISABLED) {
mNanCommandInstance->mNanDiscAddrIndDisabled = true;
config_discovery_indications &= ~NAN_DISC_ADDR_IND_DISABLED;
} else {
mNanCommandInstance->mNanDiscAddrIndDisabled = false;
}
/* Always include the discovery cfg TLV as there is no cfg flag */
tlvs = addTlv(NAN_TLV_TYPE_CONFIG_DISCOVERY_INDICATIONS,
sizeof(u32),
(const u8*)&config_discovery_indications, tlvs);
if (pReq->config_nss) {
tlvs = addTlv(NAN_TLV_TYPE_TX_RX_CHAINS, sizeof(u32),
(const u8*)&pReq->nss, tlvs);
}
if (pReq->config_enable_ranging) {
tlvs = addTlv(NAN_TLV_TYPE_ENABLE_DEVICE_RANGING, sizeof(u32),
(const u8*)&pReq->enable_ranging, tlvs);
}
if (pReq->config_dw_early_termination) {
tlvs = addTlv(NAN_TLV_TYPE_DW_EARLY_TERMINATION, sizeof(u32),
(const u8*)&pReq->enable_dw_termination, tlvs);
}
mVendorData = (char*)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanPublish(transaction_id id, const NanPublishRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_PUBLISH");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len =
sizeof(NanMsgHeader) + sizeof(NanPublishServiceReqParams) +
(pReq->service_name_len ? SIZEOF_TLV_HDR + pReq->service_name_len : 0) +
(pReq->service_specific_info_len ? SIZEOF_TLV_HDR + pReq->service_specific_info_len : 0) +
(pReq->rx_match_filter_len ? SIZEOF_TLV_HDR + pReq->rx_match_filter_len : 0) +
(pReq->tx_match_filter_len ? SIZEOF_TLV_HDR + pReq->tx_match_filter_len : 0) +
(SIZEOF_TLV_HDR + sizeof(NanServiceAcceptPolicy)) +
(pReq->cipher_type ? SIZEOF_TLV_HDR + sizeof(NanCsidType) : 0) +
((pReq->sdea_params.config_nan_data_path || pReq->sdea_params.security_cfg ||
pReq->sdea_params.ranging_state || pReq->sdea_params.range_report ||
pReq->sdea_params.qos_cfg) ?
SIZEOF_TLV_HDR + sizeof(NanFWSdeaCtrlParams) : 0) +
((pReq->ranging_cfg.ranging_interval_msec || pReq->ranging_cfg.config_ranging_indications ||
pReq->ranging_cfg.distance_ingress_mm || pReq->ranging_cfg.distance_egress_mm) ?
SIZEOF_TLV_HDR + sizeof(NanFWRangeConfigParams) : 0) +
((pReq->range_response_cfg.publish_id ||
pReq->range_response_cfg.ranging_response) ?
SIZEOF_TLV_HDR + sizeof(NanFWRangeReqMsg) : 0) +
(pReq->sdea_service_specific_info_len ? SIZEOF_TLV_HDR + pReq->sdea_service_specific_info_len : 0);
if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PMK) &&
(pReq->key_info.body.pmk_info.pmk_len == NAN_PMK_INFO_LEN))
message_len += SIZEOF_TLV_HDR + NAN_PMK_INFO_LEN;
else if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PASSPHRASE) &&
(pReq->key_info.body.passphrase_info.passphrase_len >=
NAN_SECURITY_MIN_PASSPHRASE_LEN) &&
(pReq->key_info.body.passphrase_info.passphrase_len <=
NAN_SECURITY_MAX_PASSPHRASE_LEN))
message_len += SIZEOF_TLV_HDR +
pReq->key_info.body.passphrase_info.passphrase_len;
pNanPublishServiceReqMsg pFwReq = (pNanPublishServiceReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_PUBLISH_SERVICE_REQ;
pFwReq->fwHeader.msgLen = message_len;
if (pReq->publish_id == 0) {
pFwReq->fwHeader.handle = 0xFFFF;
} else {
pFwReq->fwHeader.handle = pReq->publish_id;
}
pFwReq->fwHeader.transactionId = id;
pFwReq->publishServiceReqParams.ttl = pReq->ttl;
pFwReq->publishServiceReqParams.period = pReq->period;
pFwReq->publishServiceReqParams.replyIndFlag =
(pReq->recv_indication_cfg & BIT_3) ? 0 : 1;
pFwReq->publishServiceReqParams.publishType = pReq->publish_type;
pFwReq->publishServiceReqParams.txType = pReq->tx_type;
pFwReq->publishServiceReqParams.rssiThresholdFlag = pReq->rssi_threshold_flag;
pFwReq->publishServiceReqParams.matchAlg = pReq->publish_match_indicator;
pFwReq->publishServiceReqParams.count = pReq->publish_count;
pFwReq->publishServiceReqParams.connmap = pReq->connmap;
pFwReq->publishServiceReqParams.pubTerminatedIndDisableFlag =
(pReq->recv_indication_cfg & BIT_0) ? 1 : 0;
pFwReq->publishServiceReqParams.pubMatchExpiredIndDisableFlag =
(pReq->recv_indication_cfg & BIT_1) ? 1 : 0;
pFwReq->publishServiceReqParams.followupRxIndDisableFlag =
(pReq->recv_indication_cfg & BIT_2) ? 1 : 0;
pFwReq->publishServiceReqParams.reserved2 = 0;
u8* tlvs = pFwReq->ptlv;
if (pReq->service_name_len) {
tlvs = addTlv(NAN_TLV_TYPE_SERVICE_NAME, pReq->service_name_len,
(const u8*)&pReq->service_name[0], tlvs);
}
if (pReq->service_specific_info_len) {
tlvs = addTlv(NAN_TLV_TYPE_SERVICE_SPECIFIC_INFO, pReq->service_specific_info_len,
(const u8*)&pReq->service_specific_info[0], tlvs);
}
if (pReq->rx_match_filter_len) {
tlvs = addTlv(NAN_TLV_TYPE_RX_MATCH_FILTER, pReq->rx_match_filter_len,
(const u8*)&pReq->rx_match_filter[0], tlvs);
}
if (pReq->tx_match_filter_len) {
tlvs = addTlv(NAN_TLV_TYPE_TX_MATCH_FILTER, pReq->tx_match_filter_len,
(const u8*)&pReq->tx_match_filter[0], tlvs);
}
/* Pass the Accept policy always */
tlvs = addTlv(NAN_TLV_TYPE_NAN_SERVICE_ACCEPT_POLICY, sizeof(NanServiceAcceptPolicy),
(const u8*)&pReq->service_responder_policy, tlvs);
if (pReq->cipher_type) {
NanCsidType pNanCsidType;
pNanCsidType.csid_type = pReq->cipher_type;
tlvs = addTlv(NAN_TLV_TYPE_NAN_CSID, sizeof(NanCsidType),
(const u8*)&pNanCsidType, tlvs);
}
if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PMK) &&
(pReq->key_info.body.pmk_info.pmk_len == NAN_PMK_INFO_LEN)) {
tlvs = addTlv(NAN_TLV_TYPE_NAN_PMK,
pReq->key_info.body.pmk_info.pmk_len,
(const u8*)&pReq->key_info.body.pmk_info.pmk[0], tlvs);
} else if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PASSPHRASE) &&
(pReq->key_info.body.passphrase_info.passphrase_len >=
NAN_SECURITY_MIN_PASSPHRASE_LEN) &&
(pReq->key_info.body.passphrase_info.passphrase_len <=
NAN_SECURITY_MAX_PASSPHRASE_LEN)) {
tlvs = addTlv(NAN_TLV_TYPE_NAN_PASSPHRASE,
pReq->key_info.body.passphrase_info.passphrase_len,
(const u8*)&pReq->key_info.body.passphrase_info.passphrase[0],
tlvs);
}
if (pReq->sdea_params.config_nan_data_path ||
pReq->sdea_params.security_cfg ||
pReq->sdea_params.ranging_state ||
pReq->sdea_params.range_report ||
pReq->sdea_params.qos_cfg) {
NanFWSdeaCtrlParams pNanFWSdeaCtrlParams;
memset(&pNanFWSdeaCtrlParams, 0, sizeof(NanFWSdeaCtrlParams));
if (pReq->sdea_params.config_nan_data_path) {
pNanFWSdeaCtrlParams.data_path_required = 1;
pNanFWSdeaCtrlParams.data_path_type =
(pReq->sdea_params.ndp_type & BIT_0) ?
NAN_DATA_PATH_MULTICAST_MSG :
NAN_DATA_PATH_UNICAST_MSG;
}
if (pReq->sdea_params.security_cfg) {
pNanFWSdeaCtrlParams.security_required =
pReq->sdea_params.security_cfg;
}
if (pReq->sdea_params.ranging_state) {
pNanFWSdeaCtrlParams.ranging_required =
pReq->sdea_params.ranging_state;
}
if (pReq->sdea_params.range_report) {
pNanFWSdeaCtrlParams.range_report =
(((pReq->sdea_params.range_report & NAN_ENABLE_RANGE_REPORT) >> 1) ? 1 : 0);
}
if (pReq->sdea_params.qos_cfg) {
pNanFWSdeaCtrlParams.qos_required = pReq->sdea_params.qos_cfg;
}
tlvs = addTlv(NAN_TLV_TYPE_SDEA_CTRL_PARAMS, sizeof(NanFWSdeaCtrlParams),
(const u8*)&pNanFWSdeaCtrlParams, tlvs);
}
if (pReq->ranging_cfg.ranging_interval_msec ||
pReq->ranging_cfg.config_ranging_indications ||
pReq->ranging_cfg.distance_ingress_mm ||
pReq->ranging_cfg.distance_egress_mm) {
NanFWRangeConfigParams pNanFWRangingCfg;
memset(&pNanFWRangingCfg, 0, sizeof(NanFWRangeConfigParams));
pNanFWRangingCfg.range_interval =
pReq->ranging_cfg.ranging_interval_msec;
pNanFWRangingCfg.ranging_indication_event =
((pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_CONTINUOUS_MASK) |
(pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_INGRESS_MET_MASK) |
(pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_EGRESS_MET_MASK));
pNanFWRangingCfg.ranging_indication_event = pReq->ranging_cfg.config_ranging_indications;
if (pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_INGRESS_MET_MASK)
pNanFWRangingCfg.geo_fence_threshold.inner_threshold =
pReq->ranging_cfg.distance_ingress_mm;
if (pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_EGRESS_MET_MASK)
pNanFWRangingCfg.geo_fence_threshold.outer_threshold =
pReq->ranging_cfg.distance_egress_mm;
tlvs = addTlv(NAN_TLV_TYPE_NAN_RANGING_CFG, sizeof(NanFWRangeConfigParams),
(const u8*)&pNanFWRangingCfg, tlvs);
}
if (pReq->sdea_service_specific_info_len) {
tlvs = addTlv(NAN_TLV_TYPE_SDEA_SERVICE_SPECIFIC_INFO, pReq->sdea_service_specific_info_len,
(const u8*)&pReq->sdea_service_specific_info[0], tlvs);
}
if (pReq->range_response_cfg.publish_id || pReq->range_response_cfg.ranging_response) {
NanFWRangeReqMsg pNanFWRangeReqMsg;
memset(&pNanFWRangeReqMsg, 0, sizeof(NanFWRangeReqMsg));
pNanFWRangeReqMsg.range_id =
(u16)pReq->range_response_cfg.publish_id;
CHAR_ARRAY_TO_MAC_ADDR(pReq->range_response_cfg.peer_addr, pNanFWRangeReqMsg.range_mac_addr);
pNanFWRangeReqMsg.ranging_accept =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_ACCEPT) ? 1 : 0);
pNanFWRangeReqMsg.ranging_reject =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_REJECT) ? 1 : 0);
pNanFWRangeReqMsg.ranging_cancel =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_CANCEL) ? 1 : 0);
tlvs = addTlv(NAN_TLV_TYPE_NAN20_RANGING_REQUEST, sizeof(NanFWRangeReqMsg),
(const u8*)&pNanFWRangeReqMsg, tlvs);
}
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanPublishCancel(transaction_id id, const NanPublishCancelRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_PUBLISH_CANCEL");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len = sizeof(NanPublishServiceCancelReqMsg);
pNanPublishServiceCancelReqMsg pFwReq =
(pNanPublishServiceCancelReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_PUBLISH_SERVICE_CANCEL_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.handle = pReq->publish_id;
pFwReq->fwHeader.transactionId = id;
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanSubscribe(transaction_id id,
const NanSubscribeRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_SUBSCRIBE");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len =
sizeof(NanMsgHeader) + sizeof(NanSubscribeServiceReqParams) +
(pReq->service_name_len ? SIZEOF_TLV_HDR + pReq->service_name_len : 0) +
(pReq->service_specific_info_len ? SIZEOF_TLV_HDR + pReq->service_specific_info_len : 0) +
(pReq->rx_match_filter_len ? SIZEOF_TLV_HDR + pReq->rx_match_filter_len : 0) +
(pReq->tx_match_filter_len ? SIZEOF_TLV_HDR + pReq->tx_match_filter_len : 0) +
(pReq->cipher_type ? SIZEOF_TLV_HDR + sizeof(NanCsidType) : 0) +
((pReq->sdea_params.config_nan_data_path || pReq->sdea_params.security_cfg ||
pReq->sdea_params.ranging_state || pReq->sdea_params.range_report ||
pReq->sdea_params.qos_cfg) ?
SIZEOF_TLV_HDR + sizeof(NanFWSdeaCtrlParams) : 0) +
((pReq->ranging_cfg.ranging_interval_msec || pReq->ranging_cfg.config_ranging_indications ||
pReq->ranging_cfg.distance_ingress_mm || pReq->ranging_cfg.distance_egress_mm) ?
SIZEOF_TLV_HDR + sizeof(NanFWRangeConfigParams) : 0) +
((pReq->range_response_cfg.requestor_instance_id ||
pReq->range_response_cfg.ranging_response) ?
SIZEOF_TLV_HDR + sizeof(NanFWRangeReqMsg) : 0) +
(pReq->sdea_service_specific_info_len ? SIZEOF_TLV_HDR + pReq->sdea_service_specific_info_len : 0);
message_len += \
(pReq->num_intf_addr_present * (SIZEOF_TLV_HDR + NAN_MAC_ADDR_LEN));
if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PMK) &&
(pReq->key_info.body.pmk_info.pmk_len == NAN_PMK_INFO_LEN))
message_len += SIZEOF_TLV_HDR + NAN_PMK_INFO_LEN;
else if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PASSPHRASE) &&
(pReq->key_info.body.passphrase_info.passphrase_len >=
NAN_SECURITY_MIN_PASSPHRASE_LEN) &&
(pReq->key_info.body.passphrase_info.passphrase_len <=
NAN_SECURITY_MAX_PASSPHRASE_LEN))
message_len += SIZEOF_TLV_HDR +
pReq->key_info.body.passphrase_info.passphrase_len;
pNanSubscribeServiceReqMsg pFwReq = (pNanSubscribeServiceReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_SUBSCRIBE_SERVICE_REQ;
pFwReq->fwHeader.msgLen = message_len;
if (pReq->subscribe_id == 0) {
pFwReq->fwHeader.handle = 0xFFFF;
} else {
pFwReq->fwHeader.handle = pReq->subscribe_id;
}
pFwReq->fwHeader.transactionId = id;
pFwReq->subscribeServiceReqParams.ttl = pReq->ttl;
pFwReq->subscribeServiceReqParams.period = pReq->period;
pFwReq->subscribeServiceReqParams.subscribeType = pReq->subscribe_type;
pFwReq->subscribeServiceReqParams.srfAttr = pReq->serviceResponseFilter;
pFwReq->subscribeServiceReqParams.srfInclude = pReq->serviceResponseInclude;
pFwReq->subscribeServiceReqParams.srfSend = pReq->useServiceResponseFilter;
pFwReq->subscribeServiceReqParams.ssiRequired = pReq->ssiRequiredForMatchIndication;
pFwReq->subscribeServiceReqParams.matchAlg = pReq->subscribe_match_indicator;
pFwReq->subscribeServiceReqParams.count = pReq->subscribe_count;
pFwReq->subscribeServiceReqParams.rssiThresholdFlag = pReq->rssi_threshold_flag;
pFwReq->subscribeServiceReqParams.subTerminatedIndDisableFlag =
(pReq->recv_indication_cfg & BIT_0) ? 1 : 0;
pFwReq->subscribeServiceReqParams.subMatchExpiredIndDisableFlag =
(pReq->recv_indication_cfg & BIT_1) ? 1 : 0;
pFwReq->subscribeServiceReqParams.followupRxIndDisableFlag =
(pReq->recv_indication_cfg & BIT_2) ? 1 : 0;
pFwReq->subscribeServiceReqParams.connmap = pReq->connmap;
pFwReq->subscribeServiceReqParams.reserved = 0;
u8* tlvs = pFwReq->ptlv;
if (pReq->service_name_len) {
tlvs = addTlv(NAN_TLV_TYPE_SERVICE_NAME, pReq->service_name_len,
(const u8*)&pReq->service_name[0], tlvs);
}
if (pReq->service_specific_info_len) {
tlvs = addTlv(NAN_TLV_TYPE_SERVICE_SPECIFIC_INFO, pReq->service_specific_info_len,
(const u8*)&pReq->service_specific_info[0], tlvs);
}
if (pReq->rx_match_filter_len) {
tlvs = addTlv(NAN_TLV_TYPE_RX_MATCH_FILTER, pReq->rx_match_filter_len,
(const u8*)&pReq->rx_match_filter[0], tlvs);
}
if (pReq->tx_match_filter_len) {
tlvs = addTlv(NAN_TLV_TYPE_TX_MATCH_FILTER, pReq->tx_match_filter_len,
(const u8*)&pReq->tx_match_filter[0], tlvs);
}
int i = 0;
for (i = 0; i < pReq->num_intf_addr_present; i++)
{
tlvs = addTlv(NAN_TLV_TYPE_MAC_ADDRESS,
NAN_MAC_ADDR_LEN,
(const u8*)&pReq->intf_addr[i][0], tlvs);
}
if (pReq->cipher_type) {
NanCsidType pNanCsidType;
pNanCsidType.csid_type = pReq->cipher_type;
tlvs = addTlv(NAN_TLV_TYPE_NAN_CSID, sizeof(NanCsidType),
(const u8*)&pNanCsidType, tlvs);
}
if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PMK) &&
(pReq->key_info.body.pmk_info.pmk_len == NAN_PMK_INFO_LEN)) {
tlvs = addTlv(NAN_TLV_TYPE_NAN_PMK,
pReq->key_info.body.pmk_info.pmk_len,
(const u8*)&pReq->key_info.body.pmk_info.pmk[0], tlvs);
} else if ((pReq->key_info.key_type == NAN_SECURITY_KEY_INPUT_PASSPHRASE) &&
(pReq->key_info.body.passphrase_info.passphrase_len >=
NAN_SECURITY_MIN_PASSPHRASE_LEN) &&
(pReq->key_info.body.passphrase_info.passphrase_len <=
NAN_SECURITY_MAX_PASSPHRASE_LEN)) {
tlvs = addTlv(NAN_TLV_TYPE_NAN_PASSPHRASE,
pReq->key_info.body.passphrase_info.passphrase_len,
(const u8*)&pReq->key_info.body.passphrase_info.passphrase[0],
tlvs);
}
if (pReq->sdea_params.config_nan_data_path ||
pReq->sdea_params.security_cfg ||
pReq->sdea_params.ranging_state ||
pReq->sdea_params.range_report ||
pReq->sdea_params.qos_cfg) {
NanFWSdeaCtrlParams pNanFWSdeaCtrlParams;
memset(&pNanFWSdeaCtrlParams, 0, sizeof(NanFWSdeaCtrlParams));
if (pReq->sdea_params.config_nan_data_path) {
pNanFWSdeaCtrlParams.data_path_required = 1;
pNanFWSdeaCtrlParams.data_path_type =
(pReq->sdea_params.ndp_type & BIT_0) ?
NAN_DATA_PATH_MULTICAST_MSG :
NAN_DATA_PATH_UNICAST_MSG;
}
if (pReq->sdea_params.security_cfg) {
pNanFWSdeaCtrlParams.security_required =
pReq->sdea_params.security_cfg;
}
if (pReq->sdea_params.ranging_state) {
pNanFWSdeaCtrlParams.ranging_required =
pReq->sdea_params.ranging_state;
}
if (pReq->sdea_params.range_report) {
pNanFWSdeaCtrlParams.range_report =
((pReq->sdea_params.range_report & NAN_ENABLE_RANGE_REPORT >> 1) ? 1 : 0);
}
if (pReq->sdea_params.qos_cfg) {
pNanFWSdeaCtrlParams.qos_required = pReq->sdea_params.qos_cfg;
}
tlvs = addTlv(NAN_TLV_TYPE_SDEA_CTRL_PARAMS, sizeof(NanFWSdeaCtrlParams),
(const u8*)&pNanFWSdeaCtrlParams, tlvs);
}
if (pReq->ranging_cfg.ranging_interval_msec || pReq->ranging_cfg.config_ranging_indications || pReq->ranging_cfg.distance_ingress_mm
|| pReq->ranging_cfg.distance_egress_mm) {
NanFWRangeConfigParams pNanFWRangingCfg;
memset(&pNanFWRangingCfg, 0, sizeof(NanFWRangeConfigParams));
pNanFWRangingCfg.range_interval =
pReq->ranging_cfg.ranging_interval_msec;
pNanFWRangingCfg.ranging_indication_event =
((pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_CONTINUOUS_MASK) |
(pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_INGRESS_MET_MASK) |
(pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_EGRESS_MET_MASK));
pNanFWRangingCfg.ranging_indication_event =
pReq->ranging_cfg.config_ranging_indications;
if (pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_INGRESS_MET_MASK)
pNanFWRangingCfg.geo_fence_threshold.inner_threshold =
pReq->ranging_cfg.distance_ingress_mm;
if (pReq->ranging_cfg.config_ranging_indications & NAN_RANGING_INDICATE_EGRESS_MET_MASK)
pNanFWRangingCfg.geo_fence_threshold.outer_threshold =
pReq->ranging_cfg.distance_egress_mm;
tlvs = addTlv(NAN_TLV_TYPE_NAN_RANGING_CFG, sizeof(NanFWRangeConfigParams),
(const u8*)&pNanFWRangingCfg, tlvs);
}
if (pReq->sdea_service_specific_info_len) {
tlvs = addTlv(NAN_TLV_TYPE_SDEA_SERVICE_SPECIFIC_INFO, pReq->sdea_service_specific_info_len,
(const u8*)&pReq->sdea_service_specific_info[0], tlvs);
}
if (pReq->range_response_cfg.requestor_instance_id || pReq->range_response_cfg.ranging_response) {
NanFWRangeReqMsg pNanFWRangeReqMsg;
memset(&pNanFWRangeReqMsg, 0, sizeof(NanFWRangeReqMsg));
pNanFWRangeReqMsg.range_id =
pReq->range_response_cfg.requestor_instance_id;
memcpy(&pNanFWRangeReqMsg.range_mac_addr, &pReq->range_response_cfg.peer_addr, NAN_MAC_ADDR_LEN);
pNanFWRangeReqMsg.ranging_accept =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_ACCEPT) ? 1 : 0);
pNanFWRangeReqMsg.ranging_reject =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_REJECT) ? 1 : 0);
pNanFWRangeReqMsg.ranging_cancel =
((pReq->range_response_cfg.ranging_response == NAN_RANGE_REQUEST_CANCEL) ? 1 : 0);
tlvs = addTlv(NAN_TLV_TYPE_NAN20_RANGING_REQUEST, sizeof(NanFWRangeReqMsg),
(const u8*)&pNanFWRangeReqMsg, tlvs);
}
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanSubscribeCancel(transaction_id id,
const NanSubscribeCancelRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_SUBSCRIBE_CANCEL");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len = sizeof(NanSubscribeServiceCancelReqMsg);
pNanSubscribeServiceCancelReqMsg pFwReq =
(pNanSubscribeServiceCancelReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_SUBSCRIBE_SERVICE_CANCEL_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.handle = pReq->subscribe_id;
pFwReq->fwHeader.transactionId = id;
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanTransmitFollowup(transaction_id id,
const NanTransmitFollowupRequest *pReq)
{
wifi_error ret;
ALOGV("TRANSMIT_FOLLOWUP");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len =
sizeof(NanMsgHeader) + sizeof(NanTransmitFollowupReqParams) +
(pReq->service_specific_info_len ? SIZEOF_TLV_HDR +
pReq->service_specific_info_len : 0) +
(pReq->sdea_service_specific_info_len ? SIZEOF_TLV_HDR + pReq->sdea_service_specific_info_len : 0);
/* Mac address needs to be added in TLV */
message_len += (SIZEOF_TLV_HDR + sizeof(pReq->addr));
pNanTransmitFollowupReqMsg pFwReq = (pNanTransmitFollowupReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_TRANSMIT_FOLLOWUP_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.handle = pReq->publish_subscribe_id;
pFwReq->fwHeader.transactionId = id;
pFwReq->transmitFollowupReqParams.matchHandle = pReq->requestor_instance_id;
if (pReq->priority != NAN_TX_PRIORITY_HIGH) {
pFwReq->transmitFollowupReqParams.priority = 1;
} else {
pFwReq->transmitFollowupReqParams.priority = 2;
}
pFwReq->transmitFollowupReqParams.window = pReq->dw_or_faw;
pFwReq->transmitFollowupReqParams.followupTxRspDisableFlag =
(pReq->recv_indication_cfg & BIT_0) ? 1 : 0;
pFwReq->transmitFollowupReqParams.reserved = 0;
u8* tlvs = pFwReq->ptlv;
/* Mac address needs to be added in TLV */
tlvs = addTlv(NAN_TLV_TYPE_MAC_ADDRESS, sizeof(pReq->addr),
(const u8*)&pReq->addr[0], tlvs);
u16 tlv_type = NAN_TLV_TYPE_SERVICE_SPECIFIC_INFO;
if (pReq->service_specific_info_len) {
tlvs = addTlv(tlv_type, pReq->service_specific_info_len,
(const u8*)&pReq->service_specific_info[0], tlvs);
}
if (pReq->sdea_service_specific_info_len) {
tlvs = addTlv(NAN_TLV_TYPE_SDEA_SERVICE_SPECIFIC_INFO, pReq->sdea_service_specific_info_len,
(const u8*)&pReq->sdea_service_specific_info[0], tlvs);
}
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanStats(transaction_id id, const NanStatsRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_STATS");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len = sizeof(NanStatsReqMsg);
pNanStatsReqMsg pFwReq =
(pNanStatsReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_STATS_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
pFwReq->statsReqParams.statsType = pReq->stats_type;
pFwReq->statsReqParams.clear = pReq->clear;
pFwReq->statsReqParams.reserved = 0;
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanTCA(transaction_id id, const NanTCARequest *pReq)
{
wifi_error ret;
ALOGV("NAN_TCA");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len = sizeof(NanTcaReqMsg);
message_len += (SIZEOF_TLV_HDR + 2 * sizeof(u32));
pNanTcaReqMsg pFwReq =
(pNanTcaReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_TCA_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
u32 tcaReqParams[2];
memset (tcaReqParams, 0, sizeof(tcaReqParams));
tcaReqParams[0] = (pReq->rising_direction_evt_flag & 0x01);
tcaReqParams[0] |= (pReq->falling_direction_evt_flag & 0x01) << 1;
tcaReqParams[0] |= (pReq->clear & 0x01) << 2;
tcaReqParams[1] = pReq->threshold;
u8* tlvs = pFwReq->ptlv;
if (pReq->tca_type == NAN_TCA_ID_CLUSTER_SIZE) {
tlvs = addTlv(NAN_TLV_TYPE_CLUSTER_SIZE_REQ, sizeof(tcaReqParams),
(const u8*)&tcaReqParams[0], tlvs);
} else {
ALOGE("%s: Unrecognized tca_type:%u", __FUNCTION__, pReq->tca_type);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanBeaconSdfPayload(transaction_id id,
const NanBeaconSdfPayloadRequest *pReq)
{
wifi_error ret;
ALOGV("NAN_BEACON_SDF_PAYLAOD");
if (pReq == NULL) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
size_t message_len = sizeof(NanMsgHeader) + \
SIZEOF_TLV_HDR + sizeof(u32) + \
pReq->vsa.vsa_len;
pNanBeaconSdfPayloadReqMsg pFwReq =
(pNanBeaconSdfPayloadReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu", message_len);
memset(pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_BEACON_SDF_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
/* Construct First 4 bytes of NanBeaconSdfPayloadReqMsg */
u32 temp = 0;
temp = pReq->vsa.payload_transmit_flag & 0x01;
temp |= (pReq->vsa.tx_in_discovery_beacon & 0x01) << 1;
temp |= (pReq->vsa.tx_in_sync_beacon & 0x01) << 2;
temp |= (pReq->vsa.tx_in_service_discovery & 0x01) << 3;
temp |= (pReq->vsa.vendor_oui & 0x00FFFFFF) << 8;
int tlv_len = sizeof(u32) + pReq->vsa.vsa_len;
u8* tempBuf = (u8*)malloc(tlv_len);
if (tempBuf == NULL) {
ALOGE("%s: Malloc failed", __func__);
free(pFwReq);
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
memset(tempBuf, 0, tlv_len);
memcpy(tempBuf, &temp, sizeof(u32));
memcpy((tempBuf + sizeof(u32)), pReq->vsa.vsa, pReq->vsa.vsa_len);
u8* tlvs = pFwReq->ptlv;
/* Write the TLVs to the message. */
tlvs = addTlv(NAN_TLV_TYPE_VENDOR_SPECIFIC_ATTRIBUTE_TRANSMIT, tlv_len,
(const u8*)tempBuf, tlvs);
free(tempBuf);
mVendorData = (char *)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
//callback handlers registered for nl message send
static int error_handler_nan(struct sockaddr_nl *nla, struct nlmsgerr *err,
void *arg)
{
struct sockaddr_nl * tmp;
int *ret = (int *)arg;
tmp = nla;
*ret = err->error;
ALOGE("%s: Error code:%d (%s)", __func__, *ret, strerror(-(*ret)));
return NL_STOP;
}
//callback handlers registered for nl message send
static int ack_handler_nan(struct nl_msg *msg, void *arg)
{
int *ret = (int *)arg;
struct nl_msg * a;
ALOGE("%s: called", __func__);
a = msg;
*ret = 0;
return NL_STOP;
}
//callback handlers registered for nl message send
static int finish_handler_nan(struct nl_msg *msg, void *arg)
{
int *ret = (int *)arg;
struct nl_msg * a;
ALOGE("%s: called", __func__);
a = msg;
*ret = 0;
return NL_SKIP;
}
//Override base class requestEvent and implement little differently here
//This will send the request message
//We dont wait for any response back in case of Nan as it is asynchronous
//thus no wait for condition.
wifi_error NanCommand::requestEvent()
{
wifi_error res;
int status;
struct nl_cb * cb = NULL;
cb = nl_cb_alloc(NL_CB_DEFAULT);
if (!cb) {
ALOGE("%s: Callback allocation failed",__func__);
res = WIFI_ERROR_OUT_OF_MEMORY;
goto out;
}
if (!mInfo->cmd_sock) {
ALOGE("%s: Command socket is null",__func__);
res = WIFI_ERROR_OUT_OF_MEMORY;
goto out;
}
/* send message */
ALOGV("%s:Handle:%p Socket Value:%p", __func__, mInfo, mInfo->cmd_sock);
status = nl_send_auto_complete(mInfo->cmd_sock, mMsg.getMessage());
if (status < 0) {
res = mapKernelErrortoWifiHalError(status);
goto out;
}
status = 1;
nl_cb_err(cb, NL_CB_CUSTOM, error_handler_nan, &status);
nl_cb_set(cb, NL_CB_FINISH, NL_CB_CUSTOM, finish_handler_nan, &status);
nl_cb_set(cb, NL_CB_ACK, NL_CB_CUSTOM, ack_handler_nan, &status);
// err is populated as part of finish_handler
while (status > 0)
nl_recvmsgs(mInfo->cmd_sock, cb);
res = mapKernelErrortoWifiHalError(status);
out:
nl_cb_put(cb);
//free the VendorData
if (mVendorData) {
free(mVendorData);
}
mVendorData = NULL;
//cleanup the mMsg
mMsg.destroy();
return res;
}
int NanCommand::calcNanTransmitPostDiscoverySize(
const NanTransmitPostDiscovery *pPostDiscovery)
{
/* Fixed size of u32 for Conn Type, Device Role and R flag + Dur + Rsvd*/
int ret = sizeof(u32);
/* size of availability interval bit map is 4 bytes */
ret += sizeof(u32);
/* size of mac address is 6 bytes*/
ret += (SIZEOF_TLV_HDR + NAN_MAC_ADDR_LEN);
if (pPostDiscovery &&
pPostDiscovery->type == NAN_CONN_WLAN_MESH) {
/* size of WLAN_MESH_ID */
ret += (SIZEOF_TLV_HDR + \
pPostDiscovery->mesh_id_len);
}
if (pPostDiscovery &&
pPostDiscovery->type == NAN_CONN_WLAN_INFRA) {
/* size of Infrastructure ssid */
ret += (SIZEOF_TLV_HDR + \
pPostDiscovery->infrastructure_ssid_len);
}
ALOGV("%s:size:%d", __func__, ret);
return ret;
}
void NanCommand::fillNanSocialChannelParamVal(
const NanSocialChannelScanParams *pScanParams,
u32* pChannelParamArr)
{
int i;
if (pChannelParamArr) {
memset(pChannelParamArr, 0,
NAN_MAX_SOCIAL_CHANNELS * sizeof(u32));
for (i= 0; i < NAN_MAX_SOCIAL_CHANNELS; i++) {
pChannelParamArr[i] = pScanParams->scan_period[i] << 16;
pChannelParamArr[i] |= pScanParams->dwell_time[i] << 8;
}
pChannelParamArr[NAN_CHANNEL_24G_BAND] |= 6;
pChannelParamArr[NAN_CHANNEL_5G_BAND_LOW]|= 44;
pChannelParamArr[NAN_CHANNEL_5G_BAND_HIGH]|= 149;
ALOGV("%s: Filled SocialChannelParamVal", __func__);
hexdump((char*)pChannelParamArr, NAN_MAX_SOCIAL_CHANNELS * sizeof(u32));
}
return;
}
u32 NanCommand::getNanTransmitPostConnectivityCapabilityVal(
const NanTransmitPostConnectivityCapability *pCapab)
{
u32 ret = 0;
ret |= (pCapab->payload_transmit_flag? 1:0) << 16;
ret |= (pCapab->is_mesh_supported? 1:0) << 5;
ret |= (pCapab->is_ibss_supported? 1:0) << 4;
ret |= (pCapab->wlan_infra_field? 1:0) << 3;
ret |= (pCapab->is_tdls_supported? 1:0) << 2;
ret |= (pCapab->is_wfds_supported? 1:0) << 1;
ret |= (pCapab->is_wfd_supported? 1:0);
ALOGV("%s: val:%d", __func__, ret);
return ret;
}
void NanCommand::fillNanTransmitPostDiscoveryVal(
const NanTransmitPostDiscovery *pTxDisc,
u8 *pOutValue)
{
if (pTxDisc && pOutValue) {
u8 *tlvs = &pOutValue[8];
pOutValue[0] = pTxDisc->type;
pOutValue[1] = pTxDisc->role;
pOutValue[2] = (pTxDisc->transmit_freq? 1:0);
pOutValue[2] |= ((pTxDisc->duration & 0x03) << 1);
memcpy(&pOutValue[4], &pTxDisc->avail_interval_bitmap,
sizeof(pTxDisc->avail_interval_bitmap));
tlvs = addTlv(NAN_TLV_TYPE_MAC_ADDRESS,
NAN_MAC_ADDR_LEN,
(const u8*)&pTxDisc->addr[0],
tlvs);
if (pTxDisc->type == NAN_CONN_WLAN_MESH) {
tlvs = addTlv(NAN_TLV_TYPE_WLAN_MESH_ID,
pTxDisc->mesh_id_len,
(const u8*)&pTxDisc->mesh_id[0],
tlvs);
}
if (pTxDisc->type == NAN_CONN_WLAN_INFRA) {
tlvs = addTlv(NAN_TLV_TYPE_WLAN_INFRA_SSID,
pTxDisc->infrastructure_ssid_len,
(const u8*)&pTxDisc->infrastructure_ssid_val[0],
tlvs);
}
ALOGV("%s: Filled TransmitPostDiscoveryVal", __func__);
hexdump((char*)pOutValue, calcNanTransmitPostDiscoverySize(pTxDisc));
}
return;
}
void NanCommand::fillNanFurtherAvailabilityMapVal(
const NanFurtherAvailabilityMap *pFam,
u8 *pOutValue)
{
int idx = 0;
if (pFam && pOutValue) {
u32 famsize = calcNanFurtherAvailabilityMapSize(pFam);
pNanFurtherAvailabilityMapAttrTlv pFwReq = \
(pNanFurtherAvailabilityMapAttrTlv)pOutValue;
memset(pOutValue, 0, famsize);
pFwReq->numChan = pFam->numchans;
for (idx = 0; idx < pFam->numchans; idx++) {
const NanFurtherAvailabilityChannel *pFamChan = \
&pFam->famchan[idx];
pNanFurtherAvailabilityChan pFwFamChan = \
(pNanFurtherAvailabilityChan)((u8*)&pFwReq->pFaChan[0] + \
(idx * sizeof(NanFurtherAvailabilityChan)));
pFwFamChan->entryCtrl.availIntDuration = \
pFamChan->entry_control;
pFwFamChan->entryCtrl.mapId = \
pFamChan->mapid;
pFwFamChan->opClass = pFamChan->class_val;
pFwFamChan->channel = pFamChan->channel;
memcpy(&pFwFamChan->availIntBitmap,
&pFamChan->avail_interval_bitmap,
sizeof(pFwFamChan->availIntBitmap));
}
ALOGV("%s: Filled FurtherAvailabilityMapVal", __func__);
hexdump((char*)pOutValue, famsize);
}
return;
}
int NanCommand::calcNanFurtherAvailabilityMapSize(
const NanFurtherAvailabilityMap *pFam)
{
int ret = 0;
if (pFam && pFam->numchans &&
pFam->numchans <= NAN_MAX_FAM_CHANNELS) {
/* Fixed size of u8 for numchans*/
ret = sizeof(u8);
/* numchans * sizeof(FamChannels) */
ret += (pFam->numchans * sizeof(NanFurtherAvailabilityChan));
}
ALOGV("%s:size:%d", __func__, ret);
return ret;
}
wifi_error NanCommand::putNanCapabilities(transaction_id id)
{
wifi_error ret;
ALOGV("NAN_CAPABILITIES");
size_t message_len = sizeof(NanCapabilitiesReqMsg);
pNanCapabilitiesReqMsg pFwReq = (pNanCapabilitiesReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_CAPABILITIES_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = id;
mVendorData = (char*)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}
wifi_error NanCommand::putNanDebugCommand(NanDebugParams debug,
int debug_msg_length)
{
wifi_error ret;
ALOGV("NAN_AVAILABILITY_DEBUG");
size_t message_len = sizeof(NanTestModeReqMsg);
message_len += (SIZEOF_TLV_HDR + debug_msg_length);
pNanTestModeReqMsg pFwReq = (pNanTestModeReqMsg)malloc(message_len);
if (pFwReq == NULL) {
cleanup();
return WIFI_ERROR_OUT_OF_MEMORY;
}
ALOGV("Message Len %zu\n", message_len);
ALOGV("%s: Debug Command Type = 0x%x \n", __func__, debug.cmd);
ALOGV("%s: ** Debug Command Data Start **", __func__);
hexdump(debug.debug_cmd_data, debug_msg_length);
ALOGV("%s: ** Debug Command Data End **", __func__);
memset (pFwReq, 0, message_len);
pFwReq->fwHeader.msgVersion = (u16)NAN_MSG_VERSION1;
pFwReq->fwHeader.msgId = NAN_MSG_ID_TESTMODE_REQ;
pFwReq->fwHeader.msgLen = message_len;
pFwReq->fwHeader.transactionId = 0;
u8* tlvs = pFwReq->ptlv;
tlvs = addTlv(NAN_TLV_TYPE_TESTMODE_GENERIC_CMD, debug_msg_length,
(const u8*)&debug, tlvs);
mVendorData = (char*)pFwReq;
mDataLen = message_len;
ret = WIFI_SUCCESS;
if (mSubcmd == QCA_NL80211_VENDOR_SUBCMD_NAN) {
/* Write the TLVs to the message. */
ret = mMsg.put_bytes(NL80211_ATTR_VENDOR_DATA, mVendorData, mDataLen);
if (ret != WIFI_SUCCESS) {
ALOGE("%s: put_bytes Error:%d",__func__, ret);
cleanup();
return ret;
}
} else {
struct nlattr *nl_data;
nl_data = attr_start(NL80211_ATTR_VENDOR_DATA);
if (!nl_data) {
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
if (mMsg.put_bytes(QCA_WLAN_VENDOR_ATTR_NAN_CMD_DATA,
mVendorData, mDataLen)) {
ALOGE("%s: put attr error", __func__);
cleanup();
return WIFI_ERROR_INVALID_ARGS;
}
attr_end(nl_data);
}
hexdump(mVendorData, mDataLen);
return ret;
}