blob: 45effc06cdea6662a3d11a15edb80b6504ce1b9f [file] [log] [blame]
/*
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
* Not a Contribution.
*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cutils/properties.h>
#include <errno.h>
#include <math.h>
#include <sync/sync.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <utils/constants.h>
#include <utils/debug.h>
#include <utils/formats.h>
#include <utils/rect.h>
#include <qd_utils.h>
#include <algorithm>
#include <iomanip>
#include <map>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "hwc_display.h"
#include "hwc_debugger.h"
#include "hwc_tonemapper.h"
#include "hwc_session.h"
#ifdef QTI_BSP
#include <hardware/display_defs.h>
#endif
#define __CLASS__ "HWCDisplay"
namespace sdm {
HWCColorMode::HWCColorMode(DisplayInterface *display_intf) : display_intf_(display_intf) {}
HWC2::Error HWCColorMode::Init() {
PopulateColorModes();
InitColorCompensation();
return ApplyDefaultColorMode();
}
HWC2::Error HWCColorMode::DeInit() {
color_mode_map_.clear();
return HWC2::Error::None;
}
uint32_t HWCColorMode::GetColorModeCount() {
uint32_t count = UINT32(color_mode_map_.size());
DLOGI("Supported color mode count = %d", count);
return std::max(1U, count);
}
uint32_t HWCColorMode::GetRenderIntentCount(ColorMode mode) {
uint32_t count = UINT32(color_mode_map_[mode].size());
DLOGI("mode: %d supported rendering intent count = %d", mode, count);
return std::max(1U, count);
}
HWC2::Error HWCColorMode::GetColorModes(uint32_t *out_num_modes, ColorMode *out_modes) {
auto it = color_mode_map_.begin();
*out_num_modes = std::min(*out_num_modes, UINT32(color_mode_map_.size()));
for (uint32_t i = 0; i < *out_num_modes; it++, i++) {
out_modes[i] = it->first;
}
return HWC2::Error::None;
}
HWC2::Error HWCColorMode::GetRenderIntents(ColorMode mode, uint32_t *out_num_intents,
RenderIntent *out_intents) {
if (color_mode_map_.find(mode) == color_mode_map_.end()) {
return HWC2::Error::BadParameter;
}
auto it = color_mode_map_[mode].begin();
*out_num_intents = std::min(*out_num_intents, UINT32(color_mode_map_[mode].size()));
for (uint32_t i = 0; i < *out_num_intents; it++, i++) {
out_intents[i] = it->first;
}
return HWC2::Error::None;
}
HWC2::Error HWCColorMode::SetColorModeWithRenderIntent(ColorMode mode, RenderIntent intent) {
DTRACE_SCOPED();
if (mode < ColorMode::NATIVE || mode > ColorMode::BT2100_HLG) {
DLOGE("Could not find mode: %d", mode);
return HWC2::Error::BadParameter;
}
if (color_mode_map_.find(mode) == color_mode_map_.end()) {
return HWC2::Error::Unsupported;
}
if (color_mode_map_[mode].find(intent) == color_mode_map_[mode].end()) {
return HWC2::Error::Unsupported;
}
if (current_color_mode_ == mode && current_render_intent_ == intent) {
return HWC2::Error::None;
}
auto mode_string = color_mode_map_[mode][intent];
DisplayError error = display_intf_->SetColorMode(mode_string);
if (error != kErrorNone) {
DLOGE("failed for mode = %d intent = %d name = %s", mode, intent, mode_string.c_str());
return HWC2::Error::Unsupported;
}
current_color_mode_ = mode;
current_render_intent_ = intent;
// The mode does not have the PCC configured, restore the transform
RestoreColorTransform();
DLOGV_IF(kTagClient, "Successfully applied mode = %d intent = %d name = %s", mode, intent,
mode_string.c_str());
return HWC2::Error::None;
}
HWC2::Error HWCColorMode::SetColorModeById(int32_t color_mode_id) {
DLOGI("Applying mode: %d", color_mode_id);
DisplayError error = display_intf_->SetColorModeById(color_mode_id);
if (error != kErrorNone) {
DLOGI_IF(kTagClient, "Failed to apply mode: %d", color_mode_id);
return HWC2::Error::BadParameter;
}
return HWC2::Error::None;
}
HWC2::Error HWCColorMode::RestoreColorTransform() {
DisplayError error =
display_intf_->SetColorTransform(kColorTransformMatrixCount, PickTransferMatrix());
if (error != kErrorNone) {
DLOGE("Failed to set Color Transform");
return HWC2::Error::BadParameter;
}
return HWC2::Error::None;
}
void HWCColorMode::InitColorCompensation() {
char value[kPropertyMax] = {0};
if (Debug::Get()->GetProperty(ADAPTIVE_WHITE_COEFFICIENT_PROP, value) == kErrorNone) {
adaptive_white_ = std::make_unique<WhiteCompensation>(string(value));
adaptive_white_->SetEnabled(true);
}
std::memset(value, 0, sizeof(value));
if (Debug::Get()->GetProperty(ADAPTIVE_SATURATION_PARAMETER_PROP, value) == kErrorNone) {
adaptive_saturation_ = std::make_unique<SaturationCompensation>(string(value));
adaptive_saturation_->SetEnabled(true);
}
}
const double *HWCColorMode::PickTransferMatrix() {
double matrix[kColorTransformMatrixCount] = {0};
if (current_render_intent_ == RenderIntent::ENHANCE) {
CopyColorTransformMatrix(color_matrix_, matrix);
if (HasSaturationCompensation())
adaptive_saturation_->ApplyToMatrix(matrix);
if (HasWhiteCompensation())
adaptive_white_->ApplyToMatrix(matrix);
CopyColorTransformMatrix(matrix, compensated_color_matrix_);
return compensated_color_matrix_;
} else {
return color_matrix_;
}
}
HWC2::Error HWCColorMode::SetWhiteCompensation(bool enabled) {
if (adaptive_white_ == NULL)
return HWC2::Error::Unsupported;
if (adaptive_white_->SetEnabled(enabled) != HWC2::Error::None) {
return HWC2::Error::NotValidated;
}
RestoreColorTransform();
DLOGI("Set White Compensation: %d", enabled);
return HWC2::Error::None;
}
HWC2::Error HWCColorMatrix::SetEnabled(bool enabled) {
enabled_ = enabled;
return HWC2::Error::None;
}
bool HWCColorMatrix::ParseFloatValueByCommas(const string &values, uint32_t length,
std::vector<float> &elements) const {
std::istringstream data_stream(values);
string data;
uint32_t index = 0;
std::vector<float> temp_elements;
while (std::getline(data_stream, data, ',')) {
temp_elements.push_back(std::move(std::stof(data.c_str())));
index++;
}
if (index != length) {
DLOGW("Insufficient elements defined");
return false;
}
std::move(temp_elements.begin(), temp_elements.end(), elements.begin());
return true;
}
HWC2::Error WhiteCompensation::SetEnabled(bool enabled) {
// re-parse data when set enabled for retry calibration
if (enabled) {
if (!ConfigCoefficients() || !ParseWhitePointCalibrationData()) {
enabled_ = false;
DLOGE("Failed to WhiteCompensation Set");
return HWC2::Error::NotValidated;
}
CalculateRGBRatio();
}
enabled_ = enabled;
return HWC2::Error::None;
}
bool WhiteCompensation::ParseWhitePointCalibrationData() {
static constexpr char kWhitePointCalibrationDataPath[] = "/persist/display/calibrated_rgb";
FILE *fp = fopen(kWhitePointCalibrationDataPath, "r");
int ret;
if (!fp) {
DLOGW("Failed to open white point calibration data file");
return false;
}
ret = fscanf(fp, "%d %d %d", &compensated_red_, &compensated_green_, &compensated_blue_);
fclose(fp);
if ((ret == kNumOfCompensationData) && CheckCompensatedRGB(compensated_red_) &&
CheckCompensatedRGB(compensated_green_) && CheckCompensatedRGB(compensated_blue_)) {
DLOGD("Compensated RGB: %d %d %d", compensated_red_, compensated_green_, compensated_blue_);
return true;
} else {
compensated_red_ = kCompensatedMaxRGB;
compensated_green_ = kCompensatedMaxRGB;
compensated_blue_ = kCompensatedMaxRGB;
DLOGE("Wrong white compensated value");
return false;
}
}
bool WhiteCompensation::ConfigCoefficients() {
std::vector<float> CompensatedCoefficients(kCoefficientElements);
if (!ParseFloatValueByCommas(key_values_, kCoefficientElements, CompensatedCoefficients))
return false;
std::move(CompensatedCoefficients.begin(), CompensatedCoefficients.end(),
white_compensated_Coefficients_);
for (const auto &c : white_compensated_Coefficients_) {
DLOGD("white_compensated_Coefficients_=%f", c);
}
return true;
}
void WhiteCompensation::CalculateRGBRatio() {
// r = r_coeffient2 * R^2 + r_coeffient1 * R + r_coeffient0
// g = g_coeffient2 * G^2 + g_coeffient1 * G + g_coeffient0
// b = b_coeffient2 * B^2 + b_coeffient1 * B + b_coeffient0
// r_ratio = r/kCompensatedMaxRGB
// g_ratio = g/kCompensatedMaxRGB
// b_ratio = b/kCompensatedMaxRGB
auto rgb_ratio = [=](int rgb, float c2, float c1, float c0) {
return ((c2 * rgb * rgb + c1 * rgb + c0) / kCompensatedMaxRGB);
};
compensated_red_ratio_ =
rgb_ratio(compensated_red_, white_compensated_Coefficients_[0],
white_compensated_Coefficients_[1], white_compensated_Coefficients_[2]);
compensated_green_ratio_ =
rgb_ratio(compensated_green_, white_compensated_Coefficients_[3],
white_compensated_Coefficients_[4], white_compensated_Coefficients_[5]);
compensated_blue_ratio_ =
rgb_ratio(compensated_blue_, white_compensated_Coefficients_[6],
white_compensated_Coefficients_[7], white_compensated_Coefficients_[8]);
DLOGI("Compensated ratio %f %f %f", compensated_red_ratio_, compensated_green_ratio_,
compensated_blue_ratio_);
}
void WhiteCompensation::ApplyToMatrix(double *in) {
double matrix[kColorTransformMatrixCount] = {0};
for (uint32_t i = 0; i < kColorTransformMatrixCount; i++) {
if ((i % 4) == 0)
matrix[i] = compensated_red_ratio_ * in[i];
else if ((i % 4) == 1)
matrix[i] = compensated_green_ratio_ * in[i];
else if ((i % 4) == 2)
matrix[i] = compensated_blue_ratio_ * in[i];
else if ((i % 4) == 3)
matrix[i] = in[i];
}
std::move(&matrix[0], &matrix[kColorTransformMatrixCount - 1], in);
}
HWC2::Error SaturationCompensation::SetEnabled(bool enabled) {
if (enabled == enabled_)
return HWC2::Error::None;
if (enabled) {
if (!ConfigSaturationParameter()) {
enabled_ = false;
return HWC2::Error::NotValidated;
}
}
enabled_ = enabled;
return HWC2::Error::None;
}
bool SaturationCompensation::ConfigSaturationParameter() {
std::vector<float> SaturationParameter(kSaturationParameters);
if (!ParseFloatValueByCommas(key_values_, kSaturationParameters, SaturationParameter))
return false;
int32_t matrix_index = 0;
for (uint32_t i = 0; i < SaturationParameter.size(); i++) {
saturated_matrix_[matrix_index] = SaturationParameter.at(i);
// Put parameters to matrix and keep the last row/column identity
if ((i + 1) % 3 == 0) {
matrix_index += 2;
} else {
matrix_index++;
}
DLOGD("SaturationParameter[%d]=%f", i, SaturationParameter.at(i));
}
return true;
}
void SaturationCompensation::ApplyToMatrix(double *in) {
double matrix[kColorTransformMatrixCount] = {0};
// 4 x 4 matrix multiplication
for (uint32_t i = 0; i < kNumOfRows; i++) {
for (uint32_t j = 0; j < kColumnsPerRow; j++) {
for (uint32_t k = 0; k < kColumnsPerRow; k++) {
matrix[j + (i * kColumnsPerRow)] +=
saturated_matrix_[k + (i * kColumnsPerRow)] * in[j + (k * kColumnsPerRow)];
}
}
}
std::move(&matrix[0], &matrix[kColorTransformMatrixCount - 1], in);
}
HWC2::Error HWCColorMode::SetColorTransform(const float *matrix,
android_color_transform_t /*hint*/) {
DTRACE_SCOPED();
auto status = HWC2::Error::None;
double color_matrix_restore[kColorTransformMatrixCount] = {0};
CopyColorTransformMatrix(color_matrix_, color_matrix_restore);
CopyColorTransformMatrix(matrix, color_matrix_);
DisplayError error =
display_intf_->SetColorTransform(kColorTransformMatrixCount, PickTransferMatrix());
if (error != kErrorNone) {
CopyColorTransformMatrix(color_matrix_restore, color_matrix_);
DLOGE("Failed to set Color Transform Matrix");
status = HWC2::Error::Unsupported;
}
return status;
}
void HWCColorMode::FindRenderIntent(const ColorMode &mode, const std::string &mode_string) {
auto intent = RenderIntent::COLORIMETRIC;
if (mode_string.find("enhanced") != std::string::npos) {
intent = RenderIntent::ENHANCE;
}
color_mode_map_[mode][intent] = mode_string;
}
void HWCColorMode::PopulateColorModes() {
uint32_t color_mode_count = 0;
// SDM returns modes which have attributes defining mode and rendering intent
DisplayError error = display_intf_->GetColorModeCount(&color_mode_count);
if (error != kErrorNone || (color_mode_count == 0)) {
DLOGW("GetColorModeCount failed, use native color mode");
color_mode_map_[ColorMode::NATIVE][RenderIntent::COLORIMETRIC] = "hal_native_identity";
return;
}
DLOGV_IF(kTagClient, "Color Modes supported count = %d", color_mode_count);
std::vector<std::string> color_modes(color_mode_count);
error = display_intf_->GetColorModes(&color_mode_count, &color_modes);
for (uint32_t i = 0; i < color_mode_count; i++) {
std::string &mode_string = color_modes.at(i);
DLOGV_IF(kTagClient, "Color Mode[%d] = %s", i, mode_string.c_str());
AttrVal attr;
error = display_intf_->GetColorModeAttr(mode_string, &attr);
std::string color_gamut = kNative, dynamic_range = kSdr, pic_quality = kStandard;
if (!attr.empty()) {
for (auto &it : attr) {
if (it.first.find(kColorGamutAttribute) != std::string::npos) {
color_gamut = it.second;
} else if (it.first.find(kDynamicRangeAttribute) != std::string::npos) {
dynamic_range = it.second;
} else if (it.first.find(kPictureQualityAttribute) != std::string::npos) {
pic_quality = it.second;
}
}
DLOGV_IF(kTagClient, "color_gamut : %s, dynamic_range : %s, pic_quality : %s",
color_gamut.c_str(), dynamic_range.c_str(), pic_quality.c_str());
if (color_gamut == kNative) {
color_mode_map_[ColorMode::NATIVE][RenderIntent::COLORIMETRIC] = mode_string;
}
if (color_gamut == kSrgb && dynamic_range == kSdr) {
if (pic_quality == kStandard) {
color_mode_map_[ColorMode::SRGB][RenderIntent::COLORIMETRIC] = mode_string;
}
if (pic_quality == kEnhanced) {
color_mode_map_[ColorMode::SRGB][RenderIntent::ENHANCE] = mode_string;
}
}
if (color_gamut == kDcip3 && dynamic_range == kSdr) {
if (pic_quality == kStandard) {
color_mode_map_[ColorMode::DISPLAY_P3][RenderIntent::COLORIMETRIC] = mode_string;
}
if (pic_quality == kEnhanced) {
color_mode_map_[ColorMode::DISPLAY_P3][RenderIntent::ENHANCE] = mode_string;
}
}
if (pic_quality == kStandard && dynamic_range == kHdr) {
color_mode_map_[ColorMode::BT2100_PQ][RenderIntent::TONE_MAP_COLORIMETRIC] = mode_string;
color_mode_map_[ColorMode::BT2100_HLG][RenderIntent::TONE_MAP_COLORIMETRIC] = mode_string;
}
} else {
// Look at the mode names, if no attributes are found
if (mode_string.find("hal_native") != std::string::npos) {
color_mode_map_[ColorMode::NATIVE][RenderIntent::COLORIMETRIC] = mode_string;
}
}
}
}
HWC2::Error HWCColorMode::ApplyDefaultColorMode() {
auto color_mode = ColorMode::NATIVE;
if (color_mode_map_.size() == 1U) {
color_mode = color_mode_map_.begin()->first;
} else if (color_mode_map_.size() > 1U) {
std::string default_color_mode;
bool found = false;
DisplayError error = display_intf_->GetDefaultColorMode(&default_color_mode);
if (error == kErrorNone) {
// get the default mode corresponding android_color_mode_t
for (auto &it_mode : color_mode_map_) {
for (auto &it : it_mode.second) {
if (it.second == default_color_mode) {
found = true;
break;
}
}
if (found) {
color_mode = it_mode.first;
break;
}
}
}
// return the first color mode we encounter if not found
if (!found) {
color_mode = color_mode_map_.begin()->first;
}
}
return SetColorModeWithRenderIntent(color_mode, RenderIntent::COLORIMETRIC);
}
PrimariesTransfer HWCColorMode::GetWorkingColorSpace() {
ColorPrimaries primaries = ColorPrimaries_BT709_5;
GammaTransfer transfer = Transfer_sRGB;
switch (current_color_mode_) {
case ColorMode::BT2100_PQ:
primaries = ColorPrimaries_BT2020;
transfer = Transfer_SMPTE_ST2084;
break;
case ColorMode::BT2100_HLG:
primaries = ColorPrimaries_BT2020;
transfer = Transfer_HLG;
break;
case ColorMode::DISPLAY_P3:
primaries = ColorPrimaries_DCIP3;
transfer = Transfer_sRGB;
break;
case ColorMode::NATIVE:
case ColorMode::SRGB:
break;
default:
DLOGW("Invalid color mode: %d", current_color_mode_);
break;
}
return std::make_pair(primaries, transfer);
}
void HWCColorMode::Dump(std::ostringstream* os) {
*os << "color modes supported: \n";
for (auto it : color_mode_map_) {
*os << "mode: " << static_cast<int32_t>(it.first) << " RIs { ";
for (auto rit : color_mode_map_[it.first]) {
*os << static_cast<int32_t>(rit.first) << " ";
}
*os << "} \n";
}
*os << "current mode: " << static_cast<uint32_t>(current_color_mode_) << std::endl;
*os << "current render_intent: " << static_cast<uint32_t>(current_render_intent_) << std::endl;
*os << "Need WhiteCompensation: "
<< (current_render_intent_ == RenderIntent::ENHANCE && HasWhiteCompensation()) << std::endl;
*os << "Need SaturationCompensation: "
<< (current_render_intent_ == RenderIntent::ENHANCE && HasSaturationCompensation())
<< std::endl;
*os << "current transform: ";
double color_matrix[kColorTransformMatrixCount] = {0};
CopyColorTransformMatrix(PickTransferMatrix(), color_matrix);
for (uint32_t i = 0; i < kColorTransformMatrixCount; i++) {
if (i % 4 == 0) {
*os << std::endl;
}
*os << std::fixed << std::setprecision(4) << std::setw(8) << std::setfill(' ')
<< color_matrix[i] << " ";
}
*os << std::endl;
}
HWCDisplay::HWCDisplay(CoreInterface *core_intf, HWCCallbacks *callbacks, DisplayType type,
hwc2_display_t id, bool needs_blit, qService::QService *qservice,
DisplayClass display_class, BufferAllocator *buffer_allocator)
: core_intf_(core_intf),
callbacks_(callbacks),
type_(type),
id_(id),
needs_blit_(needs_blit),
qservice_(qservice),
display_class_(display_class) {
buffer_allocator_ = static_cast<HWCBufferAllocator *>(buffer_allocator);
}
int HWCDisplay::Init() {
DisplayError error = core_intf_->CreateDisplay(type_, this, &display_intf_);
if (error != kErrorNone) {
DLOGE("Display create failed. Error = %d display_type %d event_handler %p disp_intf %p", error,
type_, this, &display_intf_);
return -EINVAL;
}
validated_ = false;
HWCDebugHandler::Get()->GetProperty(DISABLE_HDR, &disable_hdr_handling_);
if (disable_hdr_handling_) {
DLOGI("HDR Handling disabled");
}
int property_swap_interval = 1;
HWCDebugHandler::Get()->GetProperty("debug.egl.swapinterval", &property_swap_interval);
if (property_swap_interval == 0) {
swap_interval_zero_ = true;
}
client_target_ = new HWCLayer(id_, buffer_allocator_);
int blit_enabled = 0;
HWCDebugHandler::Get()->GetProperty(DISABLE_BLIT_COMPOSITION_PROP, &blit_enabled);
if (needs_blit_ && blit_enabled) {
// TODO(user): Add blit engine when needed
}
error = display_intf_->GetNumVariableInfoConfigs(&num_configs_);
if (error != kErrorNone) {
DLOGE("Getting config count failed. Error = %d", error);
return -EINVAL;
}
display_intf_->GetRefreshRateRange(&min_refresh_rate_, &max_refresh_rate_);
current_refresh_rate_ = max_refresh_rate_;
GetUnderScanConfig();
DisplayConfigFixedInfo fixed_info = {};
display_intf_->GetConfig(&fixed_info);
partial_update_enabled_ = fixed_info.partial_update || (!fixed_info.is_cmdmode);
client_target_->SetPartialUpdate(partial_update_enabled_);
DLOGI("Display created with id: %d", id_);
return 0;
}
int HWCDisplay::Deinit() {
DisplayError error = core_intf_->DestroyDisplay(display_intf_);
if (error != kErrorNone) {
DLOGE("Display destroy failed. Error = %d", error);
return -EINVAL;
}
delete client_target_;
for (auto hwc_layer : layer_set_) {
delete hwc_layer;
}
if (color_mode_) {
color_mode_->DeInit();
delete color_mode_;
}
return 0;
}
// LayerStack operations
HWC2::Error HWCDisplay::CreateLayer(hwc2_layer_t *out_layer_id) {
HWCLayer *layer = *layer_set_.emplace(new HWCLayer(id_, buffer_allocator_));
layer_map_.emplace(std::make_pair(layer->GetId(), layer));
*out_layer_id = layer->GetId();
geometry_changes_ |= GeometryChanges::kAdded;
validated_ = false;
layer_stack_invalid_ = true;
layer->SetPartialUpdate(partial_update_enabled_);
return HWC2::Error::None;
}
HWCLayer *HWCDisplay::GetHWCLayer(hwc2_layer_t layer_id) {
const auto map_layer = layer_map_.find(layer_id);
if (map_layer == layer_map_.end()) {
DLOGE("[%" PRIu64 "] GetLayer(%" PRIu64 ") failed: no such layer", id_, layer_id);
return nullptr;
} else {
return map_layer->second;
}
}
HWC2::Error HWCDisplay::DestroyLayer(hwc2_layer_t layer_id) {
const auto map_layer = layer_map_.find(layer_id);
if (map_layer == layer_map_.end()) {
DLOGE("[%" PRIu64 "] destroyLayer(%" PRIu64 ") failed: no such layer", id_, layer_id);
return HWC2::Error::BadLayer;
}
const auto layer = map_layer->second;
layer_map_.erase(map_layer);
const auto z_range = layer_set_.equal_range(layer);
for (auto current = z_range.first; current != z_range.second; ++current) {
if (*current == layer) {
current = layer_set_.erase(current);
delete layer;
break;
}
}
geometry_changes_ |= GeometryChanges::kRemoved;
validated_ = false;
layer_stack_invalid_ = true;
return HWC2::Error::None;
}
void HWCDisplay::BuildLayerStack() {
layer_stack_ = LayerStack();
display_rect_ = LayerRect();
metadata_refresh_rate_ = 0;
bool secure_display_active = false;
layer_stack_.flags.animating = animating_;
uint32_t color_mode_count = 0;
display_intf_->GetColorModeCount(&color_mode_count);
hdr_largest_layer_px_ = 0.0f;
// Add one layer for fb target
// TODO(user): Add blit target layers
for (auto hwc_layer : layer_set_) {
// Reset layer data which SDM may change
hwc_layer->ResetPerFrameData();
Layer *layer = hwc_layer->GetSDMLayer();
layer->flags = {}; // Reset earlier flags
if (hwc_layer->GetClientRequestedCompositionType() == HWC2::Composition::Client) {
layer->flags.skip = true;
} else if (hwc_layer->GetClientRequestedCompositionType() == HWC2::Composition::SolidColor) {
layer->flags.solid_fill = true;
}
if (!hwc_layer->ValidateAndSetCSC()) {
layer->flags.skip = true;
}
auto range = hwc_layer->GetLayerDataspace() & HAL_DATASPACE_RANGE_MASK;
if (range == HAL_DATASPACE_RANGE_EXTENDED) {
layer->flags.skip = true;
}
// set default composition as GPU for SDM
layer->composition = kCompositionGPU;
if (swap_interval_zero_) {
if (layer->input_buffer.acquire_fence_fd >= 0) {
close(layer->input_buffer.acquire_fence_fd);
layer->input_buffer.acquire_fence_fd = -1;
}
}
bool is_secure = false;
bool is_video = false;
const private_handle_t *handle =
reinterpret_cast<const private_handle_t *>(layer->input_buffer.buffer_id);
if (handle) {
if (handle->buffer_type == BUFFER_TYPE_VIDEO) {
layer_stack_.flags.video_present = true;
is_video = true;
} else if (layer->transform.rotation != 0.0f) {
layer->flags.skip = true;
}
// TZ Protected Buffer - L1
// Gralloc Usage Protected Buffer - L3 - which needs to be treated as Secure & avoid fallback
if (handle->flags & private_handle_t::PRIV_FLAGS_PROTECTED_BUFFER ||
handle->flags & private_handle_t::PRIV_FLAGS_SECURE_BUFFER) {
layer_stack_.flags.secure_present = true;
is_secure = true;
}
}
if (layer->input_buffer.flags.secure_display) {
secure_display_active = true;
is_secure = true;
}
if (hwc_layer->IsSingleBuffered() &&
!(hwc_layer->IsRotationPresent() || hwc_layer->IsScalingPresent())) {
layer->flags.single_buffer = true;
layer_stack_.flags.single_buffered_layer_present = true;
}
if (hwc_layer->GetClientRequestedCompositionType() == HWC2::Composition::Cursor) {
// Currently we support only one HWCursor & only at top most z-order
if ((*layer_set_.rbegin())->GetId() == hwc_layer->GetId()) {
layer->flags.cursor = true;
layer_stack_.flags.cursor_present = true;
}
}
bool hdr_layer = layer->input_buffer.color_metadata.colorPrimaries == ColorPrimaries_BT2020 &&
(layer->input_buffer.color_metadata.transfer == Transfer_SMPTE_ST2084 ||
layer->input_buffer.color_metadata.transfer == Transfer_HLG);
if (hdr_layer && !disable_hdr_handling_ &&
current_color_mode_ != ColorMode::NATIVE) {
// Dont honor HDR when its handling is disabled
// Also, when the color mode is native, it implies that
// SF has not correctly set the mode to BT2100_PQ in the presence of an HDR layer
// In such cases, we should not handle HDR as the HDR mode isn't applied
layer->input_buffer.flags.hdr = true;
layer_stack_.flags.hdr_present = true;
// HDR area
auto hdr_layer_area = (layer->dst_rect.right - layer->dst_rect.left) *
(layer->dst_rect.bottom - layer->dst_rect.top);
hdr_largest_layer_px_ = std::max(hdr_largest_layer_px_, hdr_layer_area);
}
if (hwc_layer->IsNonIntegralSourceCrop() && !is_secure && !layer->flags.solid_fill &&
!is_video) {
layer->flags.skip = true;
}
if (layer->flags.skip) {
layer_stack_.flags.skip_present = true;
}
// TODO(user): Move to a getter if this is needed at other places
hwc_rect_t scaled_display_frame = {INT(layer->dst_rect.left), INT(layer->dst_rect.top),
INT(layer->dst_rect.right), INT(layer->dst_rect.bottom)};
if (hwc_layer->GetGeometryChanges() & kDisplayFrame) {
ApplyScanAdjustment(&scaled_display_frame);
}
hwc_layer->SetLayerDisplayFrame(scaled_display_frame);
hwc_layer->ResetPerFrameData();
// SDM requires these details even for solid fill
if (layer->flags.solid_fill) {
LayerBuffer *layer_buffer = &layer->input_buffer;
layer_buffer->width = UINT32(layer->dst_rect.right - layer->dst_rect.left);
layer_buffer->height = UINT32(layer->dst_rect.bottom - layer->dst_rect.top);
layer_buffer->unaligned_width = layer_buffer->width;
layer_buffer->unaligned_height = layer_buffer->height;
layer_buffer->acquire_fence_fd = -1;
layer_buffer->release_fence_fd = -1;
layer->src_rect.left = 0;
layer->src_rect.top = 0;
layer->src_rect.right = layer_buffer->width;
layer->src_rect.bottom = layer_buffer->height;
}
if (hwc_layer->HasMetaDataRefreshRate() && layer->frame_rate > metadata_refresh_rate_) {
metadata_refresh_rate_ = SanitizeRefreshRate(layer->frame_rate);
}
display_rect_ = Union(display_rect_, layer->dst_rect);
geometry_changes_ |= hwc_layer->GetGeometryChanges();
layer->flags.updating = true;
if (layer_set_.size() <= kMaxLayerCount) {
layer->flags.updating = IsLayerUpdating(hwc_layer);
}
layer_stack_.layers.push_back(layer);
}
for (auto hwc_layer : layer_set_) {
auto layer = hwc_layer->GetSDMLayer();
if (layer->input_buffer.color_metadata.colorPrimaries != working_primaries_ &&
!hwc_layer->SupportLocalConversion(working_primaries_)) {
layer->flags.skip = true;
}
if (layer->flags.skip) {
layer_stack_.flags.skip_present = true;
}
}
// TODO(user): Set correctly when SDM supports geometry_changes as bitmask
layer_stack_.flags.geometry_changed = UINT32(geometry_changes_ > 0);
// Append client target to the layer stack
Layer *sdm_client_target = client_target_->GetSDMLayer();
sdm_client_target->flags.updating = IsLayerUpdating(client_target_);
layer_stack_.layers.push_back(sdm_client_target);
// fall back frame composition to GPU when client target is 10bit
// TODO(user): clarify the behaviour from Client(SF) and SDM Extn -
// when handling 10bit FBT, as it would affect blending
if (Is10BitFormat(sdm_client_target->input_buffer.format)) {
// Must fall back to client composition
MarkLayersForClientComposition();
}
// set secure display
SetSecureDisplay(secure_display_active);
}
void HWCDisplay::BuildSolidFillStack() {
layer_stack_ = LayerStack();
display_rect_ = LayerRect();
layer_stack_.layers.push_back(solid_fill_layer_);
layer_stack_.flags.geometry_changed = 1U;
// Append client target to the layer stack
layer_stack_.layers.push_back(client_target_->GetSDMLayer());
}
HWC2::Error HWCDisplay::SetLayerZOrder(hwc2_layer_t layer_id, uint32_t z) {
const auto map_layer = layer_map_.find(layer_id);
if (map_layer == layer_map_.end()) {
DLOGE("[%" PRIu64 "] updateLayerZ failed to find layer", id_);
return HWC2::Error::BadLayer;
}
const auto layer = map_layer->second;
const auto z_range = layer_set_.equal_range(layer);
bool layer_on_display = false;
for (auto current = z_range.first; current != z_range.second; ++current) {
if (*current == layer) {
if ((*current)->GetZ() == z) {
// Don't change anything if the Z hasn't changed
return HWC2::Error::None;
}
current = layer_set_.erase(current);
layer_on_display = true;
break;
}
}
if (!layer_on_display) {
DLOGE("[%" PRIu64 "] updateLayerZ failed to find layer on display", id_);
return HWC2::Error::BadLayer;
}
layer->SetLayerZOrder(z);
layer_set_.emplace(layer);
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::SetVsyncEnabled(HWC2::Vsync enabled) {
DLOGV("Display ID: %d enabled: %s", id_, to_string(enabled).c_str());
ATRACE_INT("SetVsyncState ", enabled == HWC2::Vsync::Enable ? 1 : 0);
DisplayError error = kErrorNone;
if (shutdown_pending_ || !callbacks_->VsyncCallbackRegistered()) {
return HWC2::Error::None;
}
bool state;
if (enabled == HWC2::Vsync::Enable)
state = true;
else if (enabled == HWC2::Vsync::Disable)
state = false;
else
return HWC2::Error::BadParameter;
error = display_intf_->SetVSyncState(state);
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return HWC2::Error::None;
}
DLOGE("Failed. enabled = %s, error = %d", to_string(enabled).c_str(), error);
return HWC2::Error::BadDisplay;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::SetPowerMode(HWC2::PowerMode mode) {
DLOGV("display = %d, mode = %s", id_, to_string(mode).c_str());
DisplayState state = kStateOff;
bool flush_on_error = flush_on_error_;
if (shutdown_pending_) {
return HWC2::Error::None;
}
switch (mode) {
case HWC2::PowerMode::Off:
// During power off, all of the buffers are released.
// Do not flush until a buffer is successfully submitted again.
flush_on_error = false;
state = kStateOff;
if (tone_mapper_) {
tone_mapper_->Terminate();
}
break;
case HWC2::PowerMode::On:
state = kStateOn;
last_power_mode_ = HWC2::PowerMode::On;
break;
case HWC2::PowerMode::Doze:
state = kStateDoze;
last_power_mode_ = HWC2::PowerMode::Doze;
break;
case HWC2::PowerMode::DozeSuspend:
state = kStateDozeSuspend;
last_power_mode_ = HWC2::PowerMode::DozeSuspend;
break;
default:
return HWC2::Error::BadParameter;
}
int release_fence = -1;
ATRACE_INT("SetPowerMode ", state);
DisplayError error = display_intf_->SetDisplayState(state, &release_fence);
validated_ = false;
if (error == kErrorNone) {
flush_on_error_ = flush_on_error;
} else {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return HWC2::Error::None;
}
DLOGE("Set state failed. Error = %d", error);
return HWC2::Error::BadParameter;
}
if (release_fence >= 0) {
for (auto hwc_layer : layer_set_) {
auto fence = hwc_layer->PopBackReleaseFence();
auto merged_fence = -1;
if (fence >= 0) {
merged_fence = sync_merge("sync_merge", release_fence, fence);
::close(fence);
} else {
merged_fence = ::dup(release_fence);
}
hwc_layer->PushBackReleaseFence(merged_fence);
}
::close(release_fence);
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetClientTargetSupport(uint32_t width, uint32_t height, int32_t format,
int32_t dataspace) {
ColorMetaData color_metadata = {};
if (dataspace != HAL_DATASPACE_UNKNOWN) {
GetColorPrimary(dataspace, &(color_metadata.colorPrimaries));
GetTransfer(dataspace, &(color_metadata.transfer));
GetRange(dataspace, &(color_metadata.range));
}
LayerBufferFormat sdm_format = GetSDMFormat(format, 0);
if (display_intf_->GetClientTargetSupport(width, height, sdm_format,
color_metadata) != kErrorNone) {
return HWC2::Error::Unsupported;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetColorModes(uint32_t *out_num_modes, ColorMode *out_modes) {
if (out_modes == nullptr) {
*out_num_modes = 1;
} else if (out_modes && *out_num_modes > 0) {
*out_num_modes = 1;
out_modes[0] = ColorMode::NATIVE;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetRenderIntents(ColorMode mode, uint32_t *out_num_intents,
RenderIntent *out_intents) {
if (mode != ColorMode::NATIVE) {
return HWC2::Error::Unsupported;
}
if (out_intents == nullptr) {
*out_num_intents = 1;
} else if (out_intents && *out_num_intents > 0) {
*out_num_intents = 1;
out_intents[0] = RenderIntent::COLORIMETRIC;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetDisplayConfigs(uint32_t *out_num_configs, hwc2_config_t *out_configs) {
if (out_num_configs == nullptr) {
return HWC2::Error::BadParameter;
}
if (out_configs == nullptr) {
*out_num_configs = num_configs_;
return HWC2::Error::None;
}
*out_num_configs = std::min(*out_num_configs, num_configs_);
for (uint32_t i = 0; i < *out_num_configs; i++) {
out_configs[i] = i;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetDisplayAttribute(hwc2_config_t config, HWC2::Attribute attribute,
int32_t *out_value) {
DisplayConfigVariableInfo variable_config;
// Get display attributes from config index only if resolution switch is supported.
// Otherwise always send mixer attributes. This is to support destination scaler.
if (num_configs_ > 1) {
if (GetDisplayAttributesForConfig(INT(config), &variable_config) != kErrorNone) {
DLOGE("Get variable config failed");
return HWC2::Error::BadDisplay;
}
} else {
if (display_intf_->GetFrameBufferConfig(&variable_config) != kErrorNone) {
DLOGV("Get variable config failed");
return HWC2::Error::BadDisplay;
}
}
switch (attribute) {
case HWC2::Attribute::VsyncPeriod:
*out_value = INT32(variable_config.vsync_period_ns);
break;
case HWC2::Attribute::Width:
*out_value = INT32(variable_config.x_pixels);
break;
case HWC2::Attribute::Height:
*out_value = INT32(variable_config.y_pixels);
break;
case HWC2::Attribute::DpiX:
*out_value = INT32(variable_config.x_dpi * 1000.0f);
break;
case HWC2::Attribute::DpiY:
*out_value = INT32(variable_config.y_dpi * 1000.0f);
break;
default:
DLOGW("Spurious attribute type = %s", to_string(attribute).c_str());
*out_value = -1;
return HWC2::Error::BadConfig;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetDisplayName(uint32_t *out_size, char *out_name) {
// TODO(user): Get panel name and EDID name and populate it here
if (out_size == nullptr) {
return HWC2::Error::BadParameter;
}
std::string name;
switch (id_) {
case HWC_DISPLAY_PRIMARY:
name = "Primary Display";
break;
case HWC_DISPLAY_EXTERNAL:
name = "External Display";
break;
case HWC_DISPLAY_VIRTUAL:
name = "Virtual Display";
break;
default:
name = "Unknown";
break;
}
if (out_name == nullptr) {
*out_size = UINT32(name.size()) + 1;
} else {
*out_size = std::min((UINT32(name.size()) + 1), *out_size);
if (*out_size > 0) {
std::strncpy(out_name, name.c_str(), *out_size);
out_name[*out_size - 1] = '\0';
} else {
DLOGW("Invalid size requested");
}
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetDisplayType(int32_t *out_type) {
if (out_type != nullptr) {
if (id_ == HWC_DISPLAY_VIRTUAL) {
*out_type = HWC2_DISPLAY_TYPE_VIRTUAL;
} else {
*out_type = HWC2_DISPLAY_TYPE_PHYSICAL;
}
return HWC2::Error::None;
} else {
return HWC2::Error::BadParameter;
}
}
HWC2::Error HWCDisplay::GetPerFrameMetadataKeys(uint32_t *out_num_keys,
PerFrameMetadataKey *out_keys) {
if (out_num_keys == nullptr) {
return HWC2::Error::BadParameter;
}
*out_num_keys = UINT32(PerFrameMetadataKey::MAX_FRAME_AVERAGE_LIGHT_LEVEL) + 1;
if (out_keys != nullptr) {
out_keys[0] = PerFrameMetadataKey::DISPLAY_RED_PRIMARY_X;
out_keys[1] = PerFrameMetadataKey::DISPLAY_RED_PRIMARY_Y;
out_keys[2] = PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_X;
out_keys[3] = PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_Y;
out_keys[4] = PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_X;
out_keys[5] = PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_Y;
out_keys[6] = PerFrameMetadataKey::WHITE_POINT_X;
out_keys[7] = PerFrameMetadataKey::WHITE_POINT_Y;
out_keys[8] = PerFrameMetadataKey::MAX_LUMINANCE;
out_keys[9] = PerFrameMetadataKey::MIN_LUMINANCE;
out_keys[10] = PerFrameMetadataKey::MAX_CONTENT_LIGHT_LEVEL;
out_keys[11] = PerFrameMetadataKey::MAX_FRAME_AVERAGE_LIGHT_LEVEL;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetActiveConfig(hwc2_config_t *out_config) {
if (out_config == nullptr) {
return HWC2::Error::BadDisplay;
}
uint32_t active_index = 0;
if (GetActiveDisplayConfig(&active_index) != kErrorNone) {
return HWC2::Error::BadConfig;
}
*out_config = active_index;
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::SetClientTarget(buffer_handle_t target, int32_t acquire_fence,
int32_t dataspace, hwc_region_t damage) {
// TODO(user): SurfaceFlinger gives us a null pointer here when doing full SDE composition
// The error is problematic for layer caching as it would overwrite our cached client target.
// Reported bug 28569722 to resolve this.
// For now, continue to use the last valid buffer reported to us for layer caching.
if (target == nullptr) {
return HWC2::Error::None;
}
if (acquire_fence == 0) {
DLOGE("acquire_fence is zero");
return HWC2::Error::BadParameter;
}
Layer *sdm_layer = client_target_->GetSDMLayer();
sdm_layer->frame_rate = current_refresh_rate_;
client_target_->SetLayerBuffer(target, acquire_fence);
client_target_->SetLayerSurfaceDamage(damage);
if (client_target_->GetLayerDataspace() != dataspace) {
client_target_->SetLayerDataspace(dataspace);
Layer *sdm_layer = client_target_->GetSDMLayer();
// Data space would be validated at GetClientTargetSupport, so just use here.
sdm::GetSDMColorSpace(dataspace, &sdm_layer->input_buffer.color_metadata);
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::SetActiveConfig(hwc2_config_t config) {
if (SetActiveDisplayConfig(config) != kErrorNone) {
return HWC2::Error::BadConfig;
}
validated_ = false;
return HWC2::Error::None;
}
DisplayError HWCDisplay::SetMixerResolution(uint32_t width, uint32_t height) {
return kErrorNotSupported;
}
HWC2::Error HWCDisplay::SetFrameDumpConfig(uint32_t count, uint32_t bit_mask_layer_type,
int32_t format, bool post_processed) {
dump_frame_count_ = count;
dump_frame_index_ = 0;
dump_input_layers_ = ((bit_mask_layer_type & (1 << INPUT_LAYER_DUMP)) != 0);
if (tone_mapper_) {
tone_mapper_->SetFrameDumpConfig(count);
}
DLOGI("num_frame_dump %d, input_layer_dump_enable %d", dump_frame_count_, dump_input_layers_);
validated_ = false;
return HWC2::Error::None;
}
HWC2::PowerMode HWCDisplay::GetLastPowerMode() {
return last_power_mode_;
}
DisplayError HWCDisplay::VSync(const DisplayEventVSync &vsync) {
callbacks_->Vsync(id_, vsync.timestamp);
return kErrorNone;
}
DisplayError HWCDisplay::Refresh() {
return kErrorNotSupported;
}
DisplayError HWCDisplay::CECMessage(char *message) {
if (qservice_) {
qservice_->onCECMessageReceived(message, 0);
} else {
DLOGW("Qservice instance not available.");
}
return kErrorNone;
}
DisplayError HWCDisplay::HandleEvent(DisplayEvent event) {
switch (event) {
case kIdleTimeout: {
SCOPE_LOCK(HWCSession::locker_[type_]);
if (pending_commit_) {
// If idle timeout event comes in between prepare
// and commit, drop it since device is not really
// idle.
return kErrorNotSupported;
}
validated_ = false;
break;
}
case kThermalEvent:
case kIdlePowerCollapse:
case kPanelDeadEvent: {
SEQUENCE_WAIT_SCOPE_LOCK(HWCSession::locker_[type_]);
validated_ = false;
} break;
default:
DLOGW("Unknown event: %d", event);
break;
}
return kErrorNone;
}
HWC2::Error HWCDisplay::PrepareLayerStack(uint32_t *out_num_types, uint32_t *out_num_requests) {
layer_changes_.clear();
layer_requests_.clear();
has_client_composition_ = false;
if (shutdown_pending_) {
validated_ = false;
return HWC2::Error::BadDisplay;
}
UpdateRefreshRate();
if (CanSkipSdmPrepare(out_num_types, out_num_requests)) {
return ((*out_num_types > 0) ? HWC2::Error::HasChanges : HWC2::Error::None);
}
if (!skip_prepare_) {
DisplayError error = display_intf_->Prepare(&layer_stack_);
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
} else if (error != kErrorPermission) {
DLOGE("Prepare failed. Error = %d", error);
// To prevent surfaceflinger infinite wait, flush the previous frame during Commit()
// so that previous buffer and fences are released, and override the error.
flush_ = true;
}
validated_ = false;
return HWC2::Error::BadDisplay;
}
} else {
// Skip is not set
MarkLayersForGPUBypass();
skip_prepare_ = false;
DLOGI("SecureDisplay %s, Skip Prepare/Commit and Flush",
secure_display_active_ ? "Starting" : "Stopping");
flush_ = true;
}
for (auto hwc_layer : layer_set_) {
Layer *layer = hwc_layer->GetSDMLayer();
LayerComposition &composition = layer->composition;
if ((composition == kCompositionSDE) || (composition == kCompositionHybrid) ||
(composition == kCompositionBlit)) {
layer_requests_[hwc_layer->GetId()] = HWC2::LayerRequest::ClearClientTarget;
}
HWC2::Composition requested_composition = hwc_layer->GetClientRequestedCompositionType();
// Set SDM composition to HWC2 type in HWCLayer
hwc_layer->SetComposition(composition);
HWC2::Composition device_composition = hwc_layer->GetDeviceSelectedCompositionType();
if (device_composition == HWC2::Composition::Client) {
has_client_composition_ = true;
}
// Update the changes list only if the requested composition is different from SDM comp type
// TODO(user): Take Care of other comptypes(BLIT)
if (requested_composition != device_composition) {
layer_changes_[hwc_layer->GetId()] = device_composition;
}
hwc_layer->ResetValidation();
}
client_target_->ResetValidation();
*out_num_types = UINT32(layer_changes_.size());
*out_num_requests = UINT32(layer_requests_.size());
validate_state_ = kNormalValidate;
validated_ = true;
layer_stack_invalid_ = false;
return ((*out_num_types > 0) ? HWC2::Error::HasChanges : HWC2::Error::None);
}
HWC2::Error HWCDisplay::AcceptDisplayChanges() {
if (layer_set_.empty()) {
return HWC2::Error::None;
}
if (!validated_) {
return HWC2::Error::NotValidated;
}
for (const auto& change : layer_changes_) {
auto hwc_layer = layer_map_[change.first];
auto composition = change.second;
if (hwc_layer != nullptr) {
hwc_layer->UpdateClientCompositionType(composition);
} else {
DLOGW("Invalid layer: %" PRIu64, change.first);
}
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetChangedCompositionTypes(uint32_t *out_num_elements,
hwc2_layer_t *out_layers, int32_t *out_types) {
if (layer_set_.empty()) {
return HWC2::Error::None;
}
if (!validated_) {
DLOGW("Display is not validated");
return HWC2::Error::NotValidated;
}
*out_num_elements = UINT32(layer_changes_.size());
if (out_layers != nullptr && out_types != nullptr) {
int i = 0;
for (auto change : layer_changes_) {
out_layers[i] = change.first;
out_types[i] = INT32(change.second);
i++;
}
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetReleaseFences(uint32_t *out_num_elements, hwc2_layer_t *out_layers,
int32_t *out_fences) {
if (out_num_elements == nullptr) {
return HWC2::Error::BadParameter;
}
if (out_layers != nullptr && out_fences != nullptr) {
*out_num_elements = std::min(*out_num_elements, UINT32(layer_set_.size()));
auto it = layer_set_.begin();
for (uint32_t i = 0; i < *out_num_elements; i++, it++) {
auto hwc_layer = *it;
out_layers[i] = hwc_layer->GetId();
out_fences[i] = hwc_layer->PopFrontReleaseFence();
}
} else {
*out_num_elements = UINT32(layer_set_.size());
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetDisplayRequests(int32_t *out_display_requests,
uint32_t *out_num_elements, hwc2_layer_t *out_layers,
int32_t *out_layer_requests) {
if (layer_set_.empty()) {
return HWC2::Error::None;
}
if (out_display_requests == nullptr || out_num_elements == nullptr) {
return HWC2::Error::BadParameter;
}
// No display requests for now
// Use for sharing blit buffers and
// writing wfd buffer directly to output if there is full GPU composition
// and no color conversion needed
if (!validated_) {
DLOGW("Display is not validated");
return HWC2::Error::NotValidated;
}
*out_display_requests = 0;
if (out_layers != nullptr && out_layer_requests != nullptr) {
*out_num_elements = std::min(*out_num_elements, UINT32(layer_requests_.size()));
auto it = layer_requests_.begin();
for (uint32_t i = 0; i < *out_num_elements; i++, it++) {
out_layers[i] = it->first;
out_layer_requests[i] = INT32(it->second);
}
} else {
*out_num_elements = UINT32(layer_requests_.size());
}
auto client_target_layer = client_target_->GetSDMLayer();
if (client_target_layer->request.flags.flip_buffer) {
*out_display_requests = INT32(HWC2::DisplayRequest::FlipClientTarget);
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::GetHdrCapabilities(uint32_t *out_num_types, int32_t *out_types,
float *out_max_luminance,
float *out_max_average_luminance,
float *out_min_luminance) {
if (out_num_types == nullptr || out_max_luminance == nullptr ||
out_max_average_luminance == nullptr || out_min_luminance == nullptr) {
return HWC2::Error::BadParameter;
}
DisplayConfigFixedInfo fixed_info = {};
display_intf_->GetConfig(&fixed_info);
if (!fixed_info.hdr_supported) {
*out_num_types = 0;
DLOGI("HDR is not supported");
return HWC2::Error::None;
}
if (out_types == nullptr) {
// We support HDR10 and HLG
*out_num_types = 2;
} else {
// HDR10 and HLG are supported
out_types[0] = HAL_HDR_HDR10;
out_types[1] = HAL_HDR_HLG;
static const float kLuminanceFactor = 10000.0;
// luminance is expressed in the unit of 0.0001 cd/m2, convert it to 1cd/m2.
*out_max_luminance = FLOAT(fixed_info.max_luminance)/kLuminanceFactor;
*out_max_average_luminance = FLOAT(fixed_info.average_luminance)/kLuminanceFactor;
*out_min_luminance = FLOAT(fixed_info.min_luminance)/kLuminanceFactor;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::CommitLayerStack(void) {
if (!validated_) {
DLOGV_IF(kTagClient, "Display %d is not validated", id_);
return HWC2::Error::NotValidated;
}
if (shutdown_pending_ || layer_set_.empty()) {
return HWC2::Error::None;
}
DumpInputBuffers();
if (!flush_) {
DisplayError error = kErrorUndefined;
int status = 0;
if (tone_mapper_) {
if (layer_stack_.flags.hdr_present) {
status = tone_mapper_->HandleToneMap(&layer_stack_);
if (status != 0) {
DLOGE("Error handling HDR in ToneMapper");
}
} else {
tone_mapper_->Terminate();
}
}
error = display_intf_->Commit(&layer_stack_);
if (error == kErrorNone) {
// A commit is successfully submitted, start flushing on failure now onwards.
flush_on_error_ = true;
} else {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return HWC2::Error::Unsupported;
} else if (error == kErrorNotValidated) {
validated_ = false;
return HWC2::Error::NotValidated;
} else if (error != kErrorPermission) {
DLOGE("Commit failed. Error = %d", error);
// To prevent surfaceflinger infinite wait, flush the previous frame during Commit()
// so that previous buffer and fences are released, and override the error.
flush_ = true;
}
}
}
validate_state_ = kSkipValidate;
return HWC2::Error::None;
}
HWC2::Error HWCDisplay::PostCommitLayerStack(int32_t *out_retire_fence) {
auto status = HWC2::Error::None;
// Do no call flush on errors, if a successful buffer is never submitted.
if (flush_ && flush_on_error_) {
display_intf_->Flush();
validated_ = false;
}
if (tone_mapper_ && tone_mapper_->IsActive()) {
tone_mapper_->PostCommit(&layer_stack_);
}
// TODO(user): No way to set the client target release fence on SF
int32_t &client_target_release_fence =
client_target_->GetSDMLayer()->input_buffer.release_fence_fd;
if (client_target_release_fence >= 0) {
close(client_target_release_fence);
client_target_release_fence = -1;
}
client_target_->ResetGeometryChanges();
for (auto hwc_layer : layer_set_) {
hwc_layer->ResetGeometryChanges();
Layer *layer = hwc_layer->GetSDMLayer();
LayerBuffer *layer_buffer = &layer->input_buffer;
if (!flush_) {
// If swapinterval property is set to 0 or for single buffer layers, do not update f/w
// release fences and discard fences from driver
if (swap_interval_zero_ || layer->flags.single_buffer) {
close(layer_buffer->release_fence_fd);
} else if (layer->composition != kCompositionGPU) {
hwc_layer->PushBackReleaseFence(layer_buffer->release_fence_fd);
} else {
hwc_layer->PushBackReleaseFence(-1);
}
} else {
// In case of flush, we don't return an error to f/w, so it will get a release fence out of
// the hwc_layer's release fence queue. We should push a -1 to preserve release fence
// circulation semantics.
hwc_layer->PushBackReleaseFence(-1);
}
layer_buffer->release_fence_fd = -1;
if (layer_buffer->acquire_fence_fd >= 0) {
close(layer_buffer->acquire_fence_fd);
layer_buffer->acquire_fence_fd = -1;
}
layer->request.flags = {};
}
client_target_->GetSDMLayer()->request.flags = {};
*out_retire_fence = -1;
if (!flush_) {
// if swapinterval property is set to 0 then close and reset the list retire fence
if (swap_interval_zero_) {
close(layer_stack_.retire_fence_fd);
layer_stack_.retire_fence_fd = -1;
}
*out_retire_fence = layer_stack_.retire_fence_fd;
layer_stack_.retire_fence_fd = -1;
if (dump_frame_count_) {
dump_frame_count_--;
dump_frame_index_++;
}
}
config_pending_ = false;
geometry_changes_ = GeometryChanges::kNone;
flush_ = false;
return status;
}
void HWCDisplay::SetIdleTimeoutMs(uint32_t timeout_ms) {
return;
}
DisplayError HWCDisplay::SetMaxMixerStages(uint32_t max_mixer_stages) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->SetMaxMixerStages(max_mixer_stages);
validated_ = false;
}
return error;
}
LayerBufferFormat HWCDisplay::GetSDMFormat(const int32_t &source, const int flags) {
LayerBufferFormat format = kFormatInvalid;
if (flags & private_handle_t::PRIV_FLAGS_UBWC_ALIGNED) {
switch (source) {
case HAL_PIXEL_FORMAT_RGBA_8888:
format = kFormatRGBA8888Ubwc;
break;
case HAL_PIXEL_FORMAT_RGBX_8888:
format = kFormatRGBX8888Ubwc;
break;
case HAL_PIXEL_FORMAT_BGR_565:
format = kFormatBGR565Ubwc;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC:
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
format = kFormatYCbCr420SPVenusUbwc;
break;
case HAL_PIXEL_FORMAT_RGBA_1010102:
format = kFormatRGBA1010102Ubwc;
break;
case HAL_PIXEL_FORMAT_RGBX_1010102:
format = kFormatRGBX1010102Ubwc;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_TP10_UBWC:
format = kFormatYCbCr420TP10Ubwc;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_P010_UBWC:
format = kFormatYCbCr420P010Ubwc;
break;
default:
DLOGE("Unsupported format type for UBWC %d", source);
return kFormatInvalid;
}
return format;
}
switch (source) {
case HAL_PIXEL_FORMAT_RGBA_8888:
format = kFormatRGBA8888;
break;
case HAL_PIXEL_FORMAT_RGBA_5551:
format = kFormatRGBA5551;
break;
case HAL_PIXEL_FORMAT_RGBA_4444:
format = kFormatRGBA4444;
break;
case HAL_PIXEL_FORMAT_BGRA_8888:
format = kFormatBGRA8888;
break;
case HAL_PIXEL_FORMAT_RGBX_8888:
format = kFormatRGBX8888;
break;
case HAL_PIXEL_FORMAT_BGRX_8888:
format = kFormatBGRX8888;
break;
case HAL_PIXEL_FORMAT_RGB_888:
format = kFormatRGB888;
break;
case HAL_PIXEL_FORMAT_RGB_565:
format = kFormatRGB565;
break;
case HAL_PIXEL_FORMAT_BGR_565:
format = kFormatBGR565;
break;
case HAL_PIXEL_FORMAT_BGR_888:
format = kFormatBGR888;
break;
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS:
format = kFormatYCbCr420SemiPlanarVenus;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP_VENUS:
format = kFormatYCrCb420SemiPlanarVenus;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_VENUS_UBWC:
format = kFormatYCbCr420SPVenusUbwc;
break;
case HAL_PIXEL_FORMAT_YV12:
format = kFormatYCrCb420PlanarStride16;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
format = kFormatYCrCb420SemiPlanar;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
format = kFormatYCbCr420SemiPlanar;
break;
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
format = kFormatYCbCr422H2V1SemiPlanar;
break;
case HAL_PIXEL_FORMAT_YCbCr_422_I:
format = kFormatYCbCr422H2V1Packed;
break;
case HAL_PIXEL_FORMAT_CbYCrY_422_I:
format = kFormatCbYCrY422H2V1Packed;
break;
case HAL_PIXEL_FORMAT_RGBA_1010102:
format = kFormatRGBA1010102;
break;
case HAL_PIXEL_FORMAT_ARGB_2101010:
format = kFormatARGB2101010;
break;
case HAL_PIXEL_FORMAT_RGBX_1010102:
format = kFormatRGBX1010102;
break;
case HAL_PIXEL_FORMAT_XRGB_2101010:
format = kFormatXRGB2101010;
break;
case HAL_PIXEL_FORMAT_BGRA_1010102:
format = kFormatBGRA1010102;
break;
case HAL_PIXEL_FORMAT_ABGR_2101010:
format = kFormatABGR2101010;
break;
case HAL_PIXEL_FORMAT_BGRX_1010102:
format = kFormatBGRX1010102;
break;
case HAL_PIXEL_FORMAT_XBGR_2101010:
format = kFormatXBGR2101010;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_P010:
format = kFormatYCbCr420P010;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_TP10_UBWC:
format = kFormatYCbCr420TP10Ubwc;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_P010_UBWC:
format = kFormatYCbCr420P010Ubwc;
break;
case HAL_PIXEL_FORMAT_YCbCr_420_P010_VENUS:
format = kFormatYCbCr420P010Venus;
break;
default:
DLOGW("Unsupported format type = %d", source);
return kFormatInvalid;
}
return format;
}
void HWCDisplay::DumpInputBuffers() {
char dir_path[PATH_MAX];
int status;
if (!dump_frame_count_ || flush_ || !dump_input_layers_) {
return;
}
DLOGI("dump_frame_count %d dump_input_layers %d", dump_frame_count_, dump_input_layers_);
snprintf(dir_path, sizeof(dir_path), "%s/frame_dump_%s", HWCDebugHandler::DumpDir(),
GetDisplayString());
status = mkdir(dir_path, 777);
if ((status != 0) && errno != EEXIST) {
DLOGW("Failed to create %s directory errno = %d, desc = %s", dir_path, errno, strerror(errno));
return;
}
// Even if directory exists already, need to explicitly change the permission.
if (chmod(dir_path, 0777) != 0) {
DLOGW("Failed to change permissions on %s directory", dir_path);
return;
}
for (uint32_t i = 0; i < layer_stack_.layers.size(); i++) {
auto layer = layer_stack_.layers.at(i);
const private_handle_t *pvt_handle =
reinterpret_cast<const private_handle_t *>(layer->input_buffer.buffer_id);
auto acquire_fence_fd = layer->input_buffer.acquire_fence_fd;
if (acquire_fence_fd >= 0) {
int error = sync_wait(acquire_fence_fd, 1000);
if (error < 0) {
DLOGW("sync_wait error errno = %d, desc = %s", errno, strerror(errno));
return;
}
}
DLOGI("Dump layer[%d] of %d pvt_handle %x pvt_handle->base %x", i, layer_stack_.layers.size(),
pvt_handle, pvt_handle? pvt_handle->base : 0);
if (!pvt_handle) {
DLOGE("Buffer handle is null");
return;
}
if (!pvt_handle->base) {
DisplayError error = buffer_allocator_->MapBuffer(pvt_handle, -1);
if (error != kErrorNone) {
DLOGE("Failed to map buffer, error = %d", error);
return;
}
}
char dump_file_name[PATH_MAX];
size_t result = 0;
snprintf(dump_file_name, sizeof(dump_file_name), "%s/input_layer%d_%dx%d_%s_frame%d.raw",
dir_path, i, pvt_handle->width, pvt_handle->height,
qdutils::GetHALPixelFormatString(pvt_handle->format), dump_frame_index_);
FILE *fp = fopen(dump_file_name, "w+");
if (fp) {
result = fwrite(reinterpret_cast<void *>(pvt_handle->base), pvt_handle->size, 1, fp);
fclose(fp);
}
int release_fence = -1;
DisplayError error = buffer_allocator_->UnmapBuffer(pvt_handle, &release_fence);
if (error != kErrorNone) {
DLOGE("Failed to unmap buffer, error = %d", error);
return;
}
DLOGI("Frame Dump %s: is %s", dump_file_name, result ? "Successful" : "Failed");
}
}
void HWCDisplay::DumpOutputBuffer(const BufferInfo &buffer_info, void *base, int fence) {
char dir_path[PATH_MAX];
int status;
snprintf(dir_path, sizeof(dir_path), "%s/frame_dump_%s", HWCDebugHandler::DumpDir(),
GetDisplayString());
status = mkdir(dir_path, 777);
if ((status != 0) && errno != EEXIST) {
DLOGW("Failed to create %s directory errno = %d, desc = %s", dir_path, errno, strerror(errno));
return;
}
// Even if directory exists already, need to explicitly change the permission.
if (chmod(dir_path, 0777) != 0) {
DLOGW("Failed to change permissions on %s directory", dir_path);
return;
}
if (base) {
char dump_file_name[PATH_MAX];
size_t result = 0;
if (fence >= 0) {
int error = sync_wait(fence, 1000);
if (error < 0) {
DLOGW("sync_wait error errno = %d, desc = %s", errno, strerror(errno));
return;
}
}
snprintf(dump_file_name, sizeof(dump_file_name), "%s/output_layer_%dx%d_%s_frame%d.raw",
dir_path, buffer_info.alloc_buffer_info.aligned_width,
buffer_info.alloc_buffer_info.aligned_height,
GetFormatString(buffer_info.buffer_config.format), dump_frame_index_);
FILE *fp = fopen(dump_file_name, "w+");
if (fp) {
result = fwrite(base, buffer_info.alloc_buffer_info.size, 1, fp);
fclose(fp);
}
DLOGI("Frame Dump of %s is %s", dump_file_name, result ? "Successful" : "Failed");
}
}
const char *HWCDisplay::GetDisplayString() {
switch (type_) {
case kPrimary:
return "primary";
case kHDMI:
return "hdmi";
case kVirtual:
return "virtual";
default:
return "invalid";
}
}
int HWCDisplay::SetFrameBufferResolution(uint32_t x_pixels, uint32_t y_pixels) {
if (x_pixels <= 0 || y_pixels <= 0) {
DLOGW("Unsupported config: x_pixels=%d, y_pixels=%d", x_pixels, y_pixels);
return -EINVAL;
}
DisplayConfigVariableInfo fb_config;
DisplayError error = display_intf_->GetFrameBufferConfig(&fb_config);
if (error != kErrorNone) {
DLOGV("Get frame buffer config failed. Error = %d", error);
return -EINVAL;
}
fb_config.x_pixels = x_pixels;
fb_config.y_pixels = y_pixels;
error = display_intf_->SetFrameBufferConfig(fb_config);
if (error != kErrorNone) {
DLOGV("Set frame buffer config failed. Error = %d", error);
return -EINVAL;
}
// Create rects to represent the new source and destination crops
LayerRect crop = LayerRect(0, 0, FLOAT(x_pixels), FLOAT(y_pixels));
hwc_rect_t scaled_display_frame = {0, 0, INT(x_pixels), INT(y_pixels)};
ApplyScanAdjustment(&scaled_display_frame);
client_target_->SetLayerDisplayFrame(scaled_display_frame);
client_target_->ResetPerFrameData();
auto client_target_layer = client_target_->GetSDMLayer();
client_target_layer->src_rect = crop;
int aligned_width;
int aligned_height;
uint32_t usage = GRALLOC_USAGE_HW_FB;
int format = HAL_PIXEL_FORMAT_RGBA_8888;
int ubwc_disabled = 0;
int flags = 0;
// By default UBWC is enabled and below property is global enable/disable for all
// buffers allocated through gralloc , including framebuffer targets.
HWCDebugHandler::Get()->GetProperty(DISABLE_UBWC_PROP, &ubwc_disabled);
if (!ubwc_disabled) {
usage |= GRALLOC_USAGE_PRIVATE_ALLOC_UBWC;
flags |= private_handle_t::PRIV_FLAGS_UBWC_ALIGNED;
}
buffer_allocator_->GetAlignedWidthAndHeight(INT(x_pixels), INT(y_pixels), format, usage,
&aligned_width, &aligned_height);
// TODO(user): How does the dirty region get set on the client target? File bug on Google
client_target_layer->composition = kCompositionGPUTarget;
client_target_layer->input_buffer.format = GetSDMFormat(format, flags);
client_target_layer->input_buffer.width = UINT32(aligned_width);
client_target_layer->input_buffer.height = UINT32(aligned_height);
client_target_layer->input_buffer.unaligned_width = x_pixels;
client_target_layer->input_buffer.unaligned_height = y_pixels;
client_target_layer->plane_alpha = 255;
DLOGI("New framebuffer resolution (%dx%d)", fb_config.x_pixels, fb_config.y_pixels);
return 0;
}
void HWCDisplay::GetFrameBufferResolution(uint32_t *x_pixels, uint32_t *y_pixels) {
DisplayConfigVariableInfo fb_config;
display_intf_->GetFrameBufferConfig(&fb_config);
*x_pixels = fb_config.x_pixels;
*y_pixels = fb_config.y_pixels;
}
DisplayError HWCDisplay::GetMixerResolution(uint32_t *x_pixels, uint32_t *y_pixels) {
return display_intf_->GetMixerResolution(x_pixels, y_pixels);
}
void HWCDisplay::GetPanelResolution(uint32_t *x_pixels, uint32_t *y_pixels) {
DisplayConfigVariableInfo display_config;
uint32_t active_index = 0;
display_intf_->GetActiveConfig(&active_index);
display_intf_->GetConfig(active_index, &display_config);
*x_pixels = display_config.x_pixels;
*y_pixels = display_config.y_pixels;
}
int HWCDisplay::SetDisplayStatus(DisplayStatus display_status) {
int status = 0;
switch (display_status) {
case kDisplayStatusResume:
display_paused_ = false;
status = INT32(SetPowerMode(HWC2::PowerMode::On));
break;
case kDisplayStatusOnline:
status = INT32(SetPowerMode(HWC2::PowerMode::On));
break;
case kDisplayStatusPause:
display_paused_ = true;
status = INT32(SetPowerMode(HWC2::PowerMode::Off));
break;
case kDisplayStatusOffline:
status = INT32(SetPowerMode(HWC2::PowerMode::Off));
break;
default:
DLOGW("Invalid display status %d", display_status);
return -EINVAL;
}
if (display_status == kDisplayStatusResume || display_status == kDisplayStatusPause) {
callbacks_->Refresh(HWC_DISPLAY_PRIMARY);
validated_ = false;
}
return status;
}
HWC2::Error HWCDisplay::SetCursorPosition(hwc2_layer_t layer, int x, int y) {
if (shutdown_pending_) {
return HWC2::Error::None;
}
HWCLayer *hwc_layer = GetHWCLayer(layer);
if (hwc_layer == nullptr) {
return HWC2::Error::BadLayer;
}
if (hwc_layer->GetDeviceSelectedCompositionType() != HWC2::Composition::Cursor) {
return HWC2::Error::None;
}
if ((validate_state_ != kSkipValidate) && validated_) {
// the device is currently in the middle of the validate/present sequence,
// cannot set the Position(as per HWC2 spec)
return HWC2::Error::NotValidated;
}
DisplayState state;
if (display_intf_->GetDisplayState(&state) == kErrorNone) {
if (state != kStateOn) {
return HWC2::Error::None;
}
}
// TODO(user): HWC1.5 was not letting SetCursorPosition before validateDisplay,
// but HWC2.0 doesn't let setting cursor position after validate before present.
// Need to revisit.
auto error = display_intf_->SetCursorPosition(x, y);
if (error != kErrorNone) {
if (error == kErrorShutDown) {
shutdown_pending_ = true;
return HWC2::Error::None;
}
DLOGE("Failed for x = %d y = %d, Error = %d", x, y, error);
return HWC2::Error::BadDisplay;
}
return HWC2::Error::None;
}
int HWCDisplay::OnMinHdcpEncryptionLevelChange(uint32_t min_enc_level) {
DisplayError error = display_intf_->OnMinHdcpEncryptionLevelChange(min_enc_level);
if (error != kErrorNone) {
DLOGE("Failed. Error = %d", error);
return -1;
}
validated_ = false;
return 0;
}
void HWCDisplay::MarkLayersForGPUBypass() {
for (auto hwc_layer : layer_set_) {
auto layer = hwc_layer->GetSDMLayer();
layer->composition = kCompositionSDE;
}
validated_ = true;
}
void HWCDisplay::MarkLayersForClientComposition() {
// ClientComposition - GPU comp, to acheive this, set skip flag so that
// SDM does not handle this layer and hwc_layer composition will be
// set correctly at the end of Prepare.
DLOGV_IF(kTagClient, "HWC Layers marked for GPU comp");
for (auto hwc_layer : layer_set_) {
Layer *layer = hwc_layer->GetSDMLayer();
layer->flags.skip = true;
}
layer_stack_.flags.skip_present = true;
}
void HWCDisplay::ApplyScanAdjustment(hwc_rect_t *display_frame) {
}
int HWCDisplay::SetPanelBrightness(int level) {
int ret = 0;
if (display_intf_) {
ret = display_intf_->SetPanelBrightness(level);
validated_ = false;
} else {
ret = -EINVAL;
}
return ret;
}
int HWCDisplay::GetPanelBrightness(int *level) {
return display_intf_->GetPanelBrightness(level);
}
int HWCDisplay::ToggleScreenUpdates(bool enable) {
display_paused_ = enable ? false : true;
callbacks_->Refresh(HWC_DISPLAY_PRIMARY);
validated_ = false;
return 0;
}
int HWCDisplay::ColorSVCRequestRoute(const PPDisplayAPIPayload &in_payload,
PPDisplayAPIPayload *out_payload,
PPPendingParams *pending_action) {
int ret = 0;
if (display_intf_)
ret = display_intf_->ColorSVCRequestRoute(in_payload, out_payload, pending_action);
else
ret = -EINVAL;
return ret;
}
void HWCDisplay::SolidFillPrepare() {
if (solid_fill_enable_) {
if (solid_fill_layer_ == NULL) {
// Create a dummy layer here
solid_fill_layer_ = new Layer();
}
uint32_t primary_width = 0, primary_height = 0;
GetMixerResolution(&primary_width, &primary_height);
LayerBuffer *layer_buffer = &solid_fill_layer_->input_buffer;
layer_buffer->width = primary_width;
layer_buffer->height = primary_height;
layer_buffer->unaligned_width = primary_width;
layer_buffer->unaligned_height = primary_height;
layer_buffer->acquire_fence_fd = -1;
layer_buffer->release_fence_fd = -1;
solid_fill_layer_->composition = kCompositionGPU;
solid_fill_layer_->src_rect = solid_fill_rect_;
solid_fill_layer_->dst_rect = solid_fill_rect_;
solid_fill_layer_->blending = kBlendingPremultiplied;
solid_fill_layer_->solid_fill_color = 0;
solid_fill_layer_->solid_fill_info.bit_depth = solid_fill_color_.bit_depth;
solid_fill_layer_->solid_fill_info.red = solid_fill_color_.red;
solid_fill_layer_->solid_fill_info.blue = solid_fill_color_.blue;
solid_fill_layer_->solid_fill_info.green = solid_fill_color_.green;
solid_fill_layer_->solid_fill_info.alpha = solid_fill_color_.alpha;
solid_fill_layer_->frame_rate = 60;
solid_fill_layer_->visible_regions.push_back(solid_fill_layer_->dst_rect);
solid_fill_layer_->flags.updating = 1;
solid_fill_layer_->flags.solid_fill = true;
} else {
// delete the dummy layer
delete solid_fill_layer_;
solid_fill_layer_ = NULL;
}
if (solid_fill_enable_ && solid_fill_layer_) {
BuildSolidFillStack();
MarkLayersForGPUBypass();
}
return;
}
void HWCDisplay::SolidFillCommit() {
if (solid_fill_enable_ && solid_fill_layer_) {
LayerBuffer *layer_buffer = &solid_fill_layer_->input_buffer;
if (layer_buffer->release_fence_fd > 0) {
close(layer_buffer->release_fence_fd);
layer_buffer->release_fence_fd = -1;
}
if (layer_stack_.retire_fence_fd > 0) {
close(layer_stack_.retire_fence_fd);
layer_stack_.retire_fence_fd = -1;
}
}
}
int HWCDisplay::GetVisibleDisplayRect(hwc_rect_t *visible_rect) {
if (!IsValid(display_rect_)) {
return -EINVAL;
}
visible_rect->left = INT(display_rect_.left);
visible_rect->top = INT(display_rect_.top);
visible_rect->right = INT(display_rect_.right);
visible_rect->bottom = INT(display_rect_.bottom);
DLOGI("Dpy = %d Visible Display Rect(%d %d %d %d)", visible_rect->left, visible_rect->top,
visible_rect->right, visible_rect->bottom);
return 0;
}
void HWCDisplay::SetSecureDisplay(bool secure_display_active) {
if (secure_display_active_ != secure_display_active) {
DLOGI("SecureDisplay state changed from %d to %d Needs Flush!!", secure_display_active_,
secure_display_active);
secure_display_active_ = secure_display_active;
skip_prepare_ = true;
}
return;
}
int HWCDisplay::SetActiveDisplayConfig(uint32_t config) {
if (display_config_ == config) {
return 0;
}
display_config_ = config;
config_pending_ = true;
validated_ = false;
callbacks_->Refresh(id_);
return 0;
}
int HWCDisplay::GetActiveDisplayConfig(uint32_t *config) {
if (config_pending_) {
*config = display_config_;
return 0;
}
return display_intf_->GetActiveConfig(config) == kErrorNone ? 0 : -1;
}
int HWCDisplay::GetDisplayConfigCount(uint32_t *count) {
return display_intf_->GetNumVariableInfoConfigs(count) == kErrorNone ? 0 : -1;
}
int HWCDisplay::GetDisplayAttributesForConfig(int config,
DisplayConfigVariableInfo *display_attributes) {
return display_intf_->GetConfig(UINT32(config), display_attributes) == kErrorNone ? 0 : -1;
}
uint32_t HWCDisplay::GetUpdatingLayersCount(void) {
uint32_t updating_count = 0;
for (uint i = 0; i < layer_stack_.layers.size(); i++) {
auto layer = layer_stack_.layers.at(i);
if (layer->flags.updating) {
updating_count++;
}
}
return updating_count;
}
bool HWCDisplay::IsLayerUpdating(HWCLayer *hwc_layer) {
auto layer = hwc_layer->GetSDMLayer();
// Layer should be considered updating if
// a) layer is in single buffer mode, or
// b) valid dirty_regions(android specific hint for updating status), or
// c) layer stack geometry has changed (TODO(user): Remove when SDM accepts
// geometry_changed as bit fields).
return (layer->flags.single_buffer || hwc_layer->IsSurfaceUpdated() ||
geometry_changes_);
}
uint32_t HWCDisplay::SanitizeRefreshRate(uint32_t req_refresh_rate) {
uint32_t refresh_rate = req_refresh_rate;
if (refresh_rate < min_refresh_rate_) {
// Pick the next multiple of request which is within the range
refresh_rate =
(((min_refresh_rate_ / refresh_rate) + ((min_refresh_rate_ % refresh_rate) ? 1 : 0)) *
refresh_rate);
}
if (refresh_rate > max_refresh_rate_) {
refresh_rate = max_refresh_rate_;
}
return refresh_rate;
}
DisplayClass HWCDisplay::GetDisplayClass() {
return display_class_;
}
std::string HWCDisplay::Dump() {
std::ostringstream os;
os << "\n------------HWC----------------\n";
os << "HWC2 display_id: " << id_ << std::endl;
for (auto layer : layer_set_) {
auto sdm_layer = layer->GetSDMLayer();
auto transform = sdm_layer->transform;
os << "layer: " << std::setw(4) << layer->GetId();
os << " z: " << layer->GetZ();
os << " composition: " <<
to_string(layer->GetClientRequestedCompositionType()).c_str();
os << "/" <<
to_string(layer->GetDeviceSelectedCompositionType()).c_str();
os << " alpha: " << std::to_string(sdm_layer->plane_alpha).c_str();
os << " format: " << std::setw(22) << GetFormatString(sdm_layer->input_buffer.format);
os << " dataspace:" << std::hex << "0x" << std::setw(8) << std::setfill('0')
<< layer->GetLayerDataspace() << std::dec << std::setfill(' ');
os << " transform: " << transform.rotation << "/" << transform.flip_horizontal <<
"/"<< transform.flip_vertical;
os << " buffer_id: " << std::hex << "0x" << sdm_layer->input_buffer.buffer_id << std::dec
<< std::endl;
}
if (layer_stack_invalid_) {
os << "\n Layers added or removed but not reflected to SDM's layer stack yet\n";
return os.str();
}
if (color_mode_) {
os << "\n----------Color Modes---------\n";
color_mode_->Dump(&os);
}
if (display_intf_) {
os << "\n------------SDM----------------\n";
os << display_intf_->Dump();
}
os << "\n";
return os.str();
}
bool HWCDisplay::CanSkipValidate() {
if (!validated_ || solid_fill_enable_) {
return false;
}
// Layer Stack checks
if ((layer_stack_.flags.hdr_present && (tone_mapper_ && tone_mapper_->IsActive())) ||
layer_stack_.flags.single_buffered_layer_present) {
DLOGV_IF(kTagClient, "HDR content present with tone mapping enabled. Returning false.");
return false;
}
if (client_target_->NeedsValidation()) {
DLOGV_IF(kTagClient, "Framebuffer target needs validation. Returning false.");
return false;
}
for (auto hwc_layer : layer_set_) {
if (hwc_layer->NeedsValidation()) {
DLOGV_IF(kTagClient, "hwc_layer[%d] needs validation. Returning false.",
hwc_layer->GetId());
return false;
}
// Do not allow Skip Validate, if any layer needs GPU Composition.
if (hwc_layer->GetDeviceSelectedCompositionType() == HWC2::Composition::Client) {
DLOGV_IF(kTagClient, "hwc_layer[%d] is GPU composed. Returning false.",
hwc_layer->GetId());
return false;
}
}
return true;
}
HWC2::Error HWCDisplay::GetValidateDisplayOutput(uint32_t *out_num_types,
uint32_t *out_num_requests) {
*out_num_types = UINT32(layer_changes_.size());
*out_num_requests = UINT32(layer_requests_.size());
return ((*out_num_types > 0) ? HWC2::Error::HasChanges : HWC2::Error::None);
}
HWC2::Error HWCDisplay::SetDisplayedContentSamplingEnabledVndService(bool enabled) {
return HWC2::Error::Unsupported;
}
HWC2::Error HWCDisplay::SetDisplayedContentSamplingEnabled(int32_t enabled,
uint8_t component_mask, uint64_t max_frames) {
DLOGV("Request to start/stop histogram thread not supported on this display");
return HWC2::Error::Unsupported;
}
HWC2::Error HWCDisplay::GetDisplayedContentSamplingAttributes(int32_t* format,
int32_t* dataspace,
uint8_t* supported_components) {
return HWC2::Error::Unsupported;
}
HWC2::Error HWCDisplay::GetDisplayedContentSample(uint64_t max_frames,
uint64_t timestamp,
uint64_t* numFrames,
int32_t samples_size[NUM_HISTOGRAM_COLOR_COMPONENTS],
uint64_t* samples[NUM_HISTOGRAM_COLOR_COMPONENTS]) {
return HWC2::Error::Unsupported;
}
void HWCDisplay::UpdateRefreshRate() {
for (auto hwc_layer : layer_set_) {
if (hwc_layer->HasMetaDataRefreshRate()) {
continue;
}
auto layer = hwc_layer->GetSDMLayer();
layer->frame_rate = current_refresh_rate_;
}
Layer *sdm_client_target = client_target_->GetSDMLayer();
sdm_client_target->frame_rate = current_refresh_rate_;
}
// Skip SDM prepare if all the layers in the current draw cycle are marked as Skip and
// previous draw cycle had GPU Composition, as the resources for GPU Target layer have
// already been validated and configured to the driver.
bool HWCDisplay::CanSkipSdmPrepare(uint32_t *num_types, uint32_t *num_requests) {
if (!validated_ || layer_set_.empty()) {
return false;
}
bool skip_prepare = true;
for (auto hwc_layer : layer_set_) {
if (!hwc_layer->GetSDMLayer()->flags.skip ||
(hwc_layer->GetDeviceSelectedCompositionType() != HWC2::Composition::Client)) {
skip_prepare = false;
layer_changes_.clear();
break;
}
if (hwc_layer->GetClientRequestedCompositionType() != HWC2::Composition::Client) {
layer_changes_[hwc_layer->GetId()] = HWC2::Composition::Client;
}
}
if (skip_prepare) {
*num_types = UINT32(layer_changes_.size());
*num_requests = 0;
layer_stack_invalid_ = false;
has_client_composition_ = true;
client_target_->ResetValidation();
validate_state_ = kNormalValidate;
}
return skip_prepare;
}
} // namespace sdm