blob: f11eed5eb17477c58c3f8f4fd87a558db50d0c23 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C)2012-2014, The Linux Foundation. All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HWC_UTILS_H
#define HWC_UTILS_H
#define DEBUG_MDPDOWNSCALE 0
#define HWC_REMOVE_DEPRECATED_VERSIONS 1
#include <fcntl.h>
#include <math.h>
#include <hardware/hwcomposer.h>
#include <gr.h>
#include <gralloc_priv.h>
#include <utils/String8.h>
#include "qdMetaData.h"
#include "mdp_version.h"
#include <overlayUtils.h>
#include <overlayRotator.h>
#include <EGL/egl.h>
#define ALIGN_TO(x, align) (((x) + ((align)-1)) & ~((align)-1))
#define LIKELY( exp ) (__builtin_expect( (exp) != 0, true ))
#define UNLIKELY( exp ) (__builtin_expect( (exp) != 0, false ))
#define MAX_NUM_APP_LAYERS 32
#define MAX_NUM_BLEND_STAGES 16
#define MIN_DISPLAY_XRES 200
#define MIN_DISPLAY_YRES 200
#define HWC_WFDDISPSYNC_LOG 0
#define STR(f) #f;
// Max number of PTOR layers handled
#define MAX_PTOR_LAYERS 2
//Fwrd decls
struct hwc_context_t;
namespace ovutils = overlay::utils;
namespace overlay {
class Overlay;
class Rotator;
class RotMgr;
}
namespace qhwc {
//fwrd decl
class QueuedBufferStore;
class HDMIDisplay;
class VirtualDisplay;
class IFBUpdate;
class IVideoOverlay;
class MDPComp;
class CopyBit;
class HwcDebug;
class AssertiveDisplay;
class HWCVirtualVDS;
struct MDPInfo {
int version;
char panel;
bool hasOverlay;
};
struct DisplayAttributes {
uint32_t refreshRate;
uint32_t dynRefreshRate;
uint32_t vsync_period; //nanos
uint32_t xres;
uint32_t yres;
uint32_t stride;
float xdpi;
float ydpi;
bool secure;
int fd;
bool connected; //Applies only to pluggable disp.
//Connected does not mean it ready to use.
//It should be active also. (UNBLANKED)
bool isActive;
// In pause state, composition is bypassed
// used for WFD displays and in QDCM calibration mode
bool isPause;
// To trigger padding round to clean up mdp
// pipes
bool isConfiguring;
// Indicates whether external/virtual display is in MDP scaling mode
bool mMDPScalingMode;
// Ext dst Rect
hwc_rect_t mDstRect;
//Action safe attributes
// Flag to indicate the presence of action safe dimensions for external
bool mActionSafePresent;
int mAsWidthRatio;
int mAsHeightRatio;
//If property fbsize set via adb shell debug.hwc.fbsize = XRESxYRES
//following fields are used.
bool customFBSize;
uint32_t xres_new;
uint32_t yres_new;
// This is the 3D mode to which the TV is set
// The mode may be set via the appearance of a layer with 3D format
// or by forcing the mode via binder.
// If the mode is set via binder, the s3dModeForced flag is set, so that the
// mode is not changed back when the 3D video layer drops out.
// If the forced mode is different from the one in 3D video, the results
// are unpredictable. The assumption is made here that the caller forcing
// the mode via binder knows the right formats to use.
// The s3dModeForced flag is also used to force 2D if the s3dMode is
// HDMI_S3D_NONE
int s3dMode;
bool s3dModeForced;
};
struct ListStats {
int numAppLayers; //Total - 1, excluding FB layer.
int skipCount;
int fbLayerIndex; //Always last for now. = numAppLayers
//Video specific
int yuvCount;
int yuvIndices[MAX_NUM_APP_LAYERS];
bool preMultipliedAlpha;
int yuv4k2kIndices[MAX_NUM_APP_LAYERS];
int yuv4k2kCount;
// Notifies hwcomposer about the start and end of animation
// This will be set to true during animation, otherwise false.
bool isDisplayAnimating;
bool secureUI; // Secure display layer
bool isSecurePresent;
hwc_rect_t lRoi; //left ROI
hwc_rect_t rRoi; //right ROI. Unused in single DSI panels.
//App Buffer Composition index
int renderBufIndexforABC;
// Secure RGB specific
int secureRGBCount;
int secureRGBIndices[MAX_NUM_APP_LAYERS];
//dyn refresh rate-Client requested refreshrate
uint32_t refreshRateRequest;
// Flag related to windowboxing feature
bool mAIVVideoMode;
};
//PTOR Comp info
struct PtorInfo {
int count;
int layerIndex[MAX_PTOR_LAYERS];
hwc_rect_t displayFrame[MAX_PTOR_LAYERS];
bool isActive() { return (count>0); }
int getPTORArrayIndex(int index) {
int idx = -1;
for(int i = 0; i < count; i++) {
if(index == layerIndex[i])
idx = i;
}
return idx;
}
};
struct LayerProp {
uint32_t mFlags; //qcom specific layer flags
LayerProp():mFlags(0){};
};
struct VsyncState {
bool enable;
bool fakevsync;
bool debug;
};
struct BwcPM {
static void setBwc(const hwc_context_t *ctx, const int& dpy,
const private_handle_t *hnd,
const hwc_rect_t& crop, const hwc_rect_t& dst,
const int& transform, const int& downscale,
ovutils::eMdpFlags& mdpFlags);
};
// LayerProp::flag values
enum {
HWC_MDPCOMP = 0x00000001,
HWC_COPYBIT = 0x00000002,
};
// AIV specific flags
enum {
HWC_AIV_VIDEO = 0x80000000,
HWC_AIV_CC = 0x40000000,
};
// HAL specific features
enum {
HWC_COLOR_FILL = 0x00000008,
HWC_FORMAT_RB_SWAP = 0x00000040,
};
/* External Display states */
enum {
EXTERNAL_OFFLINE = 0,
EXTERNAL_ONLINE,
EXTERNAL_PAUSE,
EXTERNAL_RESUME,
EXTERNAL_MAXSTATES
};
class LayerRotMap {
public:
LayerRotMap() { reset(); }
void add(hwc_layer_1_t* layer, overlay::Rotator *rot);
//Resets the mapping of layer to rotator
void reset();
//Clears mappings and existing rotator fences
//Intended to be used during errors
void clear();
uint32_t getCount() const;
hwc_layer_1_t* getLayer(uint32_t index) const;
overlay::Rotator* getRot(uint32_t index) const;
bool isRotCached(uint32_t index) const;
void setReleaseFd(const int& fence);
private:
hwc_layer_1_t* mLayer[overlay::RotMgr::MAX_ROT_SESS];
overlay::Rotator* mRot[overlay::RotMgr::MAX_ROT_SESS];
uint32_t mCount;
};
inline uint32_t LayerRotMap::getCount() const {
return mCount;
}
inline hwc_layer_1_t* LayerRotMap::getLayer(uint32_t index) const {
if(index >= mCount) return NULL;
return mLayer[index];
}
inline overlay::Rotator* LayerRotMap::getRot(uint32_t index) const {
if(index >= mCount) return NULL;
return mRot[index];
}
inline hwc_rect_t integerizeSourceCrop(const hwc_frect_t& cropF) {
hwc_rect_t cropI = {0,0,0,0};
cropI.left = int(floorf(cropF.left));
cropI.top = int(floorf(cropF.top));
cropI.right = int(ceilf(cropF.right));
cropI.bottom = int(ceilf(cropF.bottom));
return cropI;
}
inline bool isNonIntegralSourceCrop(const hwc_frect_t& cropF) {
if(cropF.left - roundf(cropF.left) ||
cropF.top - roundf(cropF.top) ||
cropF.right - roundf(cropF.right) ||
cropF.bottom - roundf(cropF.bottom))
return true;
else
return false;
}
// -----------------------------------------------------------------------------
// Utility functions - implemented in hwc_utils.cpp
void dumpLayer(hwc_layer_1_t const* l);
void setListStats(hwc_context_t *ctx, hwc_display_contents_1_t *list,
int dpy);
void initContext(hwc_context_t *ctx);
void closeContext(hwc_context_t *ctx);
//Crops source buffer against destination and FB boundaries
void calculate_crop_rects(hwc_rect_t& crop, hwc_rect_t& dst,
const hwc_rect_t& scissor, int orient);
void getNonWormholeRegion(hwc_display_contents_1_t* list,
hwc_rect_t& nwr);
bool isSecuring(hwc_context_t* ctx, hwc_layer_1_t const* layer);
bool isSecureModePolicy(int mdpVersion);
// Returns true, if the input layer format is supported by rotator
bool isRotatorSupportedFormat(private_handle_t *hnd);
//Returns true, if the layer is YUV or the layer has been rendered by CPU
bool isRotationDoable(hwc_context_t *ctx, private_handle_t *hnd);
bool isAlphaScaled(hwc_layer_1_t const* layer);
bool needsScaling(hwc_layer_1_t const* layer);
bool isDownscaleRequired(hwc_layer_1_t const* layer);
bool needsScalingWithSplit(hwc_context_t* ctx, hwc_layer_1_t const* layer,
const int& dpy);
void sanitizeSourceCrop(hwc_rect_t& cropL, hwc_rect_t& cropR,
private_handle_t *hnd);
bool isAlphaPresent(hwc_layer_1_t const* layer);
int hwc_vsync_control(hwc_context_t* ctx, int dpy, int enable);
int getBlending(int blending);
bool isGLESOnlyComp(hwc_context_t *ctx, const int& dpy);
void reset_layer_prop(hwc_context_t* ctx, int dpy, int numAppLayers);
bool isAbcInUse(hwc_context_t *ctx);
void dumpBuffer(private_handle_t *ohnd, char *bufferName);
void updateDisplayInfo(hwc_context_t* ctx, int dpy);
void resetDisplayInfo(hwc_context_t* ctx, int dpy);
void initCompositionResources(hwc_context_t* ctx, int dpy);
void destroyCompositionResources(hwc_context_t* ctx, int dpy);
void clearPipeResources(hwc_context_t* ctx, int dpy);
//Helper function to dump logs
void dumpsys_log(android::String8& buf, const char* fmt, ...);
int getExtOrientation(hwc_context_t* ctx);
bool isValidRect(const hwc_rect_t& rect);
hwc_rect_t deductRect(const hwc_rect_t& rect1, const hwc_rect_t& rect2);
bool isSameRect(const hwc_rect& rect1, const hwc_rect& rect2);
hwc_rect_t moveRect(const hwc_rect_t& rect, const int& x_off, const int& y_off);
hwc_rect_t getIntersection(const hwc_rect_t& rect1, const hwc_rect_t& rect2);
hwc_rect_t getUnion(const hwc_rect_t& rect1, const hwc_rect_t& rect2);
void optimizeLayerRects(const hwc_display_contents_1_t *list);
bool areLayersIntersecting(const hwc_layer_1_t* layer1,
const hwc_layer_1_t* layer2);
bool operator ==(const hwc_rect_t& lhs, const hwc_rect_t& rhs);
// returns true if Action safe dimensions are set and target supports Actionsafe
bool isActionSafePresent(hwc_context_t *ctx, int dpy);
/* Calculates the destination position based on the action safe rectangle */
void getActionSafePosition(hwc_context_t *ctx, int dpy, hwc_rect_t& dst);
void getAspectRatioPosition(hwc_context_t* ctx, int dpy, int extOrientation,
hwc_rect_t& inRect, hwc_rect_t& outRect);
uint32_t roundOff(uint32_t refreshRate);
void setRefreshRate(hwc_context_t *ctx, int dpy, uint32_t refreshRate);
bool isPrimaryPortrait(hwc_context_t *ctx);
bool isOrientationPortrait(hwc_context_t *ctx);
void calcExtDisplayPosition(hwc_context_t *ctx,
private_handle_t *hnd,
int dpy,
hwc_rect_t& sourceCrop,
hwc_rect_t& displayFrame,
int& transform,
ovutils::eTransform& orient);
// Returns the orientation that needs to be set on external for
// BufferMirrirMode(Sidesync)
int getMirrorModeOrientation(hwc_context_t *ctx);
/* Get External State names */
const char* getExternalDisplayState(uint32_t external_state);
// Resets display ROI to full panel resoluion
void resetROI(hwc_context_t *ctx, const int dpy);
// Modifies ROI even from middle of the screen
hwc_rect expandROIFromMidPoint(hwc_rect roi, hwc_rect fullFrame);
// Aligns updating ROI to panel restrictions
hwc_rect_t getSanitizeROI(struct hwc_rect roi, hwc_rect boundary);
// Handles wfd Pause and resume events
void handle_pause(hwc_context_t *ctx, int dpy);
void handle_resume(hwc_context_t *ctx, int dpy);
// Handle ONLINE/OFFLINE for HDMI display
void handle_online(hwc_context_t* ctx, int dpy);
void handle_offline(hwc_context_t* ctx, int dpy);
//Close acquireFenceFds of all layers of incoming list
void closeAcquireFds(hwc_display_contents_1_t* list);
//Sync point impl.
int hwc_sync(hwc_context_t *ctx, hwc_display_contents_1_t* list, int dpy,
int fd);
//Sets appropriate mdp flags for a layer.
void setMdpFlags(hwc_context_t *ctx, hwc_layer_1_t *layer,
ovutils::eMdpFlags &mdpFlags,
int rotDownscale, int transform);
int configRotator(overlay::Rotator *rot, ovutils::Whf& whf,
hwc_rect_t& crop, const ovutils::eMdpFlags& mdpFlags,
const ovutils::eTransform& orient, const int& downscale);
int configMdp(overlay::Overlay *ov, const ovutils::PipeArgs& parg,
const ovutils::eTransform& orient, const hwc_rect_t& crop,
const hwc_rect_t& pos, const MetaData_t *metadata,
const ovutils::eDest& dest);
int configColorLayer(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy,
ovutils::eMdpFlags& mdpFlags, ovutils::eZorder& z,
const ovutils::eDest& dest);
void updateSource(ovutils::eTransform& orient, ovutils::Whf& whf,
hwc_rect_t& crop, overlay::Rotator *rot);
bool isZoomModeEnabled(hwc_rect_t crop);
void updateCropAIVVideoMode(hwc_context_t *ctx, hwc_rect_t& crop, int dpy);
void updateDestAIVVideoMode(hwc_context_t *ctx, hwc_rect_t& dst, int dpy);
void updateCoordinates(hwc_context_t *ctx, hwc_rect_t& crop,
hwc_rect_t& dst, int dpy);
//Routine to configure low resolution panels (<= 2048 width)
int configureNonSplit(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy,
ovutils::eMdpFlags& mdpFlags, ovutils::eZorder& z,
const ovutils::eDest& dest,
overlay::Rotator **rot);
//Routine to configure high resolution panels (> 2048 width)
int configureSplit(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy,
ovutils::eMdpFlags& mdpFlags, ovutils::eZorder& z,
const ovutils::eDest& lDest,
const ovutils::eDest& rDest, overlay::Rotator **rot);
//Check if the current round needs 3D composition
bool needs3DComposition(hwc_context_t* ctx, int dpy);
//Routine to configure 3D video
int configure3DVideo(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy,
ovutils::eMdpFlags& mdpFlags, ovutils::eZorder& z,
const ovutils::eDest& lDest,
const ovutils::eDest& rDest, overlay::Rotator **rot);
//Routine to split and configure high resolution YUV layer (> 2048 width)
int configureSourceSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy,
ovutils::eMdpFlags& mdpFlags, ovutils::eZorder& z,
const ovutils::eDest& lDest,
const ovutils::eDest& rDest, overlay::Rotator **rot);
//On certain targets DMA pipes are used for rotation and they won't be available
//for line operations. On a per-target basis we can restrict certain use cases
//from using rotator, since we know before-hand that such scenarios can lead to
//extreme unavailability of pipes. This can also be done via hybrid calculations
//also involving many more variables like number of write-back interfaces etc,
//but the variety of scenarios is too high to warrant that.
bool canUseRotator(hwc_context_t *ctx, int dpy);
int getLeftSplit(hwc_context_t *ctx, const int& dpy);
bool isDisplaySplit(hwc_context_t* ctx, int dpy);
int getRotDownscale(hwc_context_t *ctx, const hwc_layer_1_t *layer);
// Set the GPU hint flag to high for MIXED/GPU composition only for
// first frame after MDP to GPU/MIXED mode transition.
// Set the GPU hint to default if the current composition type is GPU
// due to idle fallback or MDP composition.
void setGPUHint(hwc_context_t* ctx, hwc_display_contents_1_t* list);
// Returns true if rect1 is peripheral to rect2, false otherwise.
bool isPeripheral(const hwc_rect_t& rect1, const hwc_rect_t& rect2);
// Checks if boot animation has completed and applies default mode
void processBootAnimCompleted(hwc_context_t *ctx);
//The gralloc API and driver have different formats
//The format needs to be converted before passing to libhdmi
int convertS3DFormatToMode(int s3DFormat);
//Configure resources for 3D mode
void setup3DMode(hwc_context_t* ctx, int dpy, int s3dMode);
//Checks if this display supports 3D
bool displaySupports3D(hwc_context_t* ctx, int dpy);
// Inline utility functions
static inline bool isSkipLayer(const hwc_layer_1_t* l) {
return (UNLIKELY(l && (l->flags & HWC_SKIP_LAYER)));
}
static inline bool isAIVVideoLayer(const hwc_layer_1_t* l) {
return (UNLIKELY(l && (l->flags & HWC_AIV_VIDEO)));
}
static inline bool isAIVCCLayer(const hwc_layer_1_t* l) {
return (UNLIKELY(l && (l->flags & HWC_AIV_CC)));
}
// Returns true if the buffer is yuv
static inline bool isYuvBuffer(const private_handle_t* hnd) {
return (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO));
}
// Returns true if the buffer is yuv and exceeds the mixer width
static inline bool isYUVSplitNeeded(const private_handle_t* hnd) {
int maxPipeWidth = qdutils::MDPVersion::getInstance().getMaxPipeWidth();
return (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO) &&
(hnd->width > maxPipeWidth));
}
// Returns true if the buffer is secure
static inline bool isSecureBuffer(const private_handle_t* hnd) {
return (hnd && (private_handle_t::PRIV_FLAGS_SECURE_BUFFER & hnd->flags));
}
// Returns true if the buffer is protected
static inline bool isProtectedBuffer(const private_handle_t* hnd) {
return (hnd && (private_handle_t::PRIV_FLAGS_PROTECTED_BUFFER & hnd->flags));
}
static inline bool isTileRendered(const private_handle_t* hnd) {
return (hnd && (private_handle_t::PRIV_FLAGS_TILE_RENDERED & hnd->flags));
}
//Return true if the buffer is intended for Secure Display
static inline bool isSecureDisplayBuffer(const private_handle_t* hnd) {
return (hnd && (hnd->flags & private_handle_t::PRIV_FLAGS_SECURE_DISPLAY));
}
static inline uint32_t get3DFormat(const private_handle_t* hnd) {
MetaData_t *metadata = reinterpret_cast<MetaData_t*>(hnd->base_metadata);
if(isYuvBuffer(hnd) && metadata && metadata->operation & S3D_FORMAT) {
return metadata->s3dFormat;
}
return HAL_NO_3D;
}
static inline int getWidth(const private_handle_t* hnd) {
MetaData_t *metadata = reinterpret_cast<MetaData_t*>(hnd->base_metadata);
if(metadata && metadata->operation & UPDATE_BUFFER_GEOMETRY) {
return metadata->bufferDim.sliceWidth;
}
return hnd->width;
}
static inline int getHeight(const private_handle_t* hnd) {
MetaData_t *metadata = reinterpret_cast<MetaData_t*>(hnd->base_metadata);
if(metadata && metadata->operation & UPDATE_BUFFER_GEOMETRY) {
return metadata->bufferDim.sliceHeight;
}
return hnd->height;
}
template<typename T> inline T max(T a, T b) { return (a > b) ? a : b; }
template<typename T> inline T min(T a, T b) { return (a < b) ? a : b; }
// Initialize uevent thread
void init_uevent_thread(hwc_context_t* ctx);
// Initialize vsync thread
void init_vsync_thread(hwc_context_t* ctx);
inline void getLayerResolution(const hwc_layer_1_t* layer,
int& width, int& height) {
hwc_rect_t displayFrame = layer->displayFrame;
width = displayFrame.right - displayFrame.left;
height = displayFrame.bottom - displayFrame.top;
}
static inline int openFb(int dpy) {
int fd = -1;
const char *devtmpl = "/dev/graphics/fb%u";
char name[64] = {0};
snprintf(name, 64, devtmpl, dpy);
fd = open(name, O_RDWR);
return fd;
}
template <class T>
inline void swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
}; //qhwc namespace
enum eAnimationState{
ANIMATION_STOPPED,
ANIMATION_STARTED,
};
enum eCompositionState {
COMPOSITION_STATE_MDP = 0, // Set if composition type is MDP
COMPOSITION_STATE_GPU, // Set if composition type is GPU or MIXED
COMPOSITION_STATE_IDLE_FALLBACK, // Set if it is idlefallback
};
// Structure holds the information about the GPU hint.
struct gpu_hint_info {
// system level flag to enable gpu_perf_mode
bool mGpuPerfModeEnable;
// Stores the current GPU performance mode DEFAULT/HIGH
bool mCurrGPUPerfMode;
// Stores the compositon state GPU, MDP or IDLE_FALLBACK
bool mCompositionState;
// Stores the EGLContext of current process
EGLContext mEGLContext;
// Stores the EGLDisplay of current process
EGLDisplay mEGLDisplay;
};
// -----------------------------------------------------------------------------
// HWC context
// This structure contains overall state
struct hwc_context_t {
hwc_composer_device_1_t device;
const hwc_procs_t* proc;
//CopyBit objects
qhwc::CopyBit *mCopyBit[HWC_NUM_DISPLAY_TYPES];
//Overlay object - NULL for non overlay devices
overlay::Overlay *mOverlay;
//Holds a few rot objects
overlay::RotMgr *mRotMgr;
//Primary and external FB updater
qhwc::IFBUpdate *mFBUpdate[HWC_NUM_DISPLAY_TYPES];
// HDMI display related object. Used to configure/teardown
// HDMI when it is connected as primary or external.
qhwc::HDMIDisplay *mHDMIDisplay;
qhwc::MDPInfo mMDP;
qhwc::VsyncState vstate;
qhwc::DisplayAttributes dpyAttr[HWC_NUM_DISPLAY_TYPES];
qhwc::ListStats listStats[HWC_NUM_DISPLAY_TYPES];
qhwc::LayerProp *layerProp[HWC_NUM_DISPLAY_TYPES];
qhwc::MDPComp *mMDPComp[HWC_NUM_DISPLAY_TYPES];
qhwc::HwcDebug *mHwcDebug[HWC_NUM_DISPLAY_TYPES];
hwc_rect_t mViewFrame[HWC_NUM_DISPLAY_TYPES];
qhwc::AssertiveDisplay *mAD;
eAnimationState mAnimationState[HWC_NUM_DISPLAY_TYPES];
qhwc::HWCVirtualVDS *mHWCVirtual;
// stores the #numHwLayers of the previous frame
// for each display device
int mPrevHwLayerCount[HWC_NUM_DISPLAY_TYPES];
// stores the primary device orientation
int deviceOrientation;
//Securing in progress indicator
bool mSecuring;
//Display in secure mode indicator
bool mSecureMode;
//Lock to protect drawing data structures
mutable Locker mDrawLock;
//Drawing round when we use GPU
bool isPaddingRound;
// Used to mark composition cycle when DMA state change is required
bool isDMAStateChanging;
// External Orientation
int mExtOrientation;
//Flags the transition of a video session
bool mVideoTransFlag;
//Used for SideSync feature
//which overrides the mExtOrientation
bool mBufferMirrorMode;
// Used to synchronize between WFD and Display modules
mutable Locker mWfdSyncLock;
qhwc::LayerRotMap *mLayerRotMap[HWC_NUM_DISPLAY_TYPES];
// Panel reset flag will be set if BTA check fails
bool mPanelResetStatus;
// number of active Displays
int numActiveDisplays;
struct gpu_hint_info mGPUHintInfo;
//App Buffer Composition
bool enableABC;
// PTOR Info
qhwc::PtorInfo mPtorInfo;
//Running in Thermal burst mode
bool mThermalBurstMode;
//Layers out of ROI
bool copybitDrop[MAX_NUM_APP_LAYERS];
// Flag related to windowboxing feature
bool mWindowboxFeature;
// This denotes the tolerance between video layer and external display
// aspect ratio
float mAspectRatioToleranceLevel;
// Runtime switch for BWC for targets that support it
bool mBWCEnabled;
// Provides a way for OEM's to disable setting dynfps via metadata.
bool mUseMetaDataRefreshRate;
// Stores the hpd enabled status- avoids re-enabling HDP on suspend resume.
bool mHPDEnabled;
//Used to notify that boot has completed
bool mBootAnimCompleted;
};
namespace qhwc {
static inline bool isSkipPresent (hwc_context_t *ctx, int dpy) {
return ctx->listStats[dpy].skipCount;
}
static inline bool isYuvPresent (hwc_context_t *ctx, int dpy) {
return ctx->listStats[dpy].yuvCount;
}
static inline bool has90Transform(hwc_layer_1_t const* layer) {
return ((layer->transform & HWC_TRANSFORM_ROT_90) &&
!(layer->flags & HWC_COLOR_FILL));
}
inline bool isSecurePresent(hwc_context_t *ctx, int dpy) {
return ctx->listStats[dpy].isSecurePresent;
}
static inline bool isSecondaryConfiguring(hwc_context_t* ctx) {
return (ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isConfiguring ||
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isConfiguring);
}
static inline bool isSecondaryConnected(hwc_context_t* ctx) {
return (ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].connected ||
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected);
}
/* Return Virtual Display connection status */
static inline bool isVDConnected(hwc_context_t* ctx) {
return ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected;
}
inline uint32_t getLayerClock(const uint32_t& dstW, const uint32_t& dstH,
const uint32_t& srcH) {
return max(dstW, (srcH * dstW) / dstH);
}
};
#endif //HWC_UTILS_H