blob: 9ea8246eb058152bb079a2b2d693ef204ca8d8e2 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C) 2012-2014, The Linux Foundation All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL)
#define HWC_UTILS_DEBUG 0
#include <math.h>
#include <sys/ioctl.h>
#include <linux/fb.h>
#include <binder/IServiceManager.h>
#include <EGL/egl.h>
#include <cutils/properties.h>
#include <utils/Trace.h>
#include <gralloc_priv.h>
#include <overlay.h>
#include <overlayRotator.h>
#include <overlayWriteback.h>
#include "hwc_utils.h"
#include "hwc_mdpcomp.h"
#include "hwc_fbupdate.h"
#include "hwc_ad.h"
#include "mdp_version.h"
#include "hwc_copybit.h"
#include "hwc_dump_layers.h"
#include "hdmi.h"
#include "hwc_qclient.h"
#include "QService.h"
#include "comptype.h"
#include "hwc_virtual.h"
#include "qd_utils.h"
#include <sys/sysinfo.h>
#include <dlfcn.h>
using namespace qClient;
using namespace qService;
using namespace android;
using namespace overlay;
using namespace overlay::utils;
namespace ovutils = overlay::utils;
#ifdef QCOM_BSP
#ifdef __cplusplus
extern "C" {
#endif
EGLAPI EGLBoolean eglGpuPerfHintQCOM(EGLDisplay dpy, EGLContext ctx,
EGLint *attrib_list);
#define EGL_GPU_HINT_1 0x32D0
#define EGL_GPU_HINT_2 0x32D1
#define EGL_GPU_LEVEL_0 0x0
#define EGL_GPU_LEVEL_1 0x1
#define EGL_GPU_LEVEL_2 0x2
#define EGL_GPU_LEVEL_3 0x3
#define EGL_GPU_LEVEL_4 0x4
#define EGL_GPU_LEVEL_5 0x5
#ifdef __cplusplus
}
#endif
#endif
#define PROP_DEFAULT_APPBUFFER "sf.default.app_buffer_count"
#define MAX_RAM_SIZE 512*1024*1024
#define qHD_WIDTH 540
namespace qhwc {
// Std refresh rates for digital videos- 24p, 30p, 48p and 60p
uint32_t stdRefreshRates[] = { 30, 24, 48, 60 };
bool isValidResolution(hwc_context_t *ctx, uint32_t xres, uint32_t yres)
{
return !((xres > qdutils::MDPVersion::getInstance().getMaxPipeWidth() &&
!isDisplaySplit(ctx, HWC_DISPLAY_PRIMARY)) ||
(xres < MIN_DISPLAY_XRES || yres < MIN_DISPLAY_YRES));
}
void changeResolution(hwc_context_t *ctx, int xres_orig, int yres_orig,
int width, int height) {
//Store original display resolution.
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres_new = xres_orig;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres_new = yres_orig;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].customFBSize = false;
char property[PROPERTY_VALUE_MAX] = {'\0'};
char *yptr = NULL;
if (property_get("debug.hwc.fbsize", property, NULL) > 0) {
yptr = strcasestr(property,"x");
if(yptr) {
int xres_new = atoi(property);
int yres_new = atoi(yptr + 1);
if (isValidResolution(ctx,xres_new,yres_new) &&
xres_new != xres_orig && yres_new != yres_orig) {
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres_new = xres_new;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres_new = yres_new;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].customFBSize = true;
//Caluculate DPI according to changed resolution.
float xdpi = ((float)xres_new * 25.4f) / (float)width;
float ydpi = ((float)yres_new * 25.4f) / (float)height;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xdpi = xdpi;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].ydpi = ydpi;
}
}
}
}
// Initialize hdmi display attributes based on
// hdmi display class state
void updateDisplayInfo(hwc_context_t* ctx, int dpy) {
ctx->dpyAttr[dpy].fd = ctx->mHDMIDisplay->getFd();
ctx->dpyAttr[dpy].xres = ctx->mHDMIDisplay->getWidth();
ctx->dpyAttr[dpy].yres = ctx->mHDMIDisplay->getHeight();
ctx->dpyAttr[dpy].mMDPScalingMode = ctx->mHDMIDisplay->getMDPScalingMode();
ctx->dpyAttr[dpy].vsync_period = ctx->mHDMIDisplay->getVsyncPeriod();
//FIXME: for now assume HDMI as secure
//Will need to read the HDCP status from the driver
//and update this accordingly
ctx->dpyAttr[dpy].secure = true;
ctx->mViewFrame[dpy].left = 0;
ctx->mViewFrame[dpy].top = 0;
ctx->mViewFrame[dpy].right = ctx->dpyAttr[dpy].xres;
ctx->mViewFrame[dpy].bottom = ctx->dpyAttr[dpy].yres;
}
// Reset hdmi display attributes and list stats structures
void resetDisplayInfo(hwc_context_t* ctx, int dpy) {
memset(&(ctx->dpyAttr[dpy]), 0, sizeof(ctx->dpyAttr[dpy]));
memset(&(ctx->listStats[dpy]), 0, sizeof(ctx->listStats[dpy]));
// We reset the fd to -1 here but External display class is responsible
// for it when the display is disconnected. This is handled as part of
// EXTERNAL_OFFLINE event.
ctx->dpyAttr[dpy].fd = -1;
}
// Initialize composition resources
void initCompositionResources(hwc_context_t* ctx, int dpy) {
ctx->mFBUpdate[dpy] = IFBUpdate::getObject(ctx, dpy);
ctx->mMDPComp[dpy] = MDPComp::getObject(ctx, dpy);
}
void destroyCompositionResources(hwc_context_t* ctx, int dpy) {
if(ctx->mFBUpdate[dpy]) {
delete ctx->mFBUpdate[dpy];
ctx->mFBUpdate[dpy] = NULL;
}
if(ctx->mMDPComp[dpy]) {
delete ctx->mMDPComp[dpy];
ctx->mMDPComp[dpy] = NULL;
}
}
static int openFramebufferDevice(hwc_context_t *ctx)
{
struct fb_fix_screeninfo finfo;
struct fb_var_screeninfo info;
int fb_fd = openFb(HWC_DISPLAY_PRIMARY);
if(fb_fd < 0) {
ALOGE("%s: Error Opening FB : %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (ioctl(fb_fd, FBIOGET_VSCREENINFO, &info) == -1) {
ALOGE("%s:Error in ioctl FBIOGET_VSCREENINFO: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
if (int(info.width) <= 0 || int(info.height) <= 0) {
// the driver doesn't return that information
// default to 160 dpi
info.width = (int)(((float)info.xres * 25.4f)/160.0f + 0.5f);
info.height = (int)(((float)info.yres * 25.4f)/160.0f + 0.5f);
}
float xdpi = ((float)info.xres * 25.4f) / (float)info.width;
float ydpi = ((float)info.yres * 25.4f) / (float)info.height;
#ifdef MSMFB_METADATA_GET
struct msmfb_metadata metadata;
memset(&metadata, 0 , sizeof(metadata));
metadata.op = metadata_op_frame_rate;
if (ioctl(fb_fd, MSMFB_METADATA_GET, &metadata) == -1) {
ALOGE("%s:Error retrieving panel frame rate: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
float fps = (float)metadata.data.panel_frame_rate;
#else
//XXX: Remove reserved field usage on all baselines
//The reserved[3] field is used to store FPS by the driver.
float fps = info.reserved[3] & 0xFF;
#endif
if (ioctl(fb_fd, FBIOGET_FSCREENINFO, &finfo) == -1) {
ALOGE("%s:Error in ioctl FBIOGET_FSCREENINFO: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = fb_fd;
//xres, yres may not be 32 aligned
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].stride = finfo.line_length /(info.xres/8);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres = info.xres;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres = info.yres;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xdpi = xdpi;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].ydpi = ydpi;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].refreshRate = (uint32_t)fps;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].dynRefreshRate = (uint32_t)fps;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].secure = true;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period =
(uint32_t)(1000000000l / fps);
//To change resolution of primary display
changeResolution(ctx, info.xres, info.yres, info.width, info.height);
//Unblank primary on first boot
if(ioctl(fb_fd, FBIOBLANK,FB_BLANK_UNBLANK) < 0) {
ALOGE("%s: Failed to unblank display", __FUNCTION__);
return -errno;
}
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].isActive = true;
return 0;
}
static void changeDefaultAppBufferCount() {
struct sysinfo info;
unsigned long int ramSize = 0;
if (!sysinfo(&info)) {
ramSize = info.totalram ;
}
int fb_fd = -1;
struct fb_var_screeninfo sInfo ={0};
fb_fd = open("/dev/graphics/fb0", O_RDONLY);
if (fb_fd >=0) {
ioctl(fb_fd, FBIOGET_VSCREENINFO, &sInfo);
close(fb_fd);
}
if ((ramSize && ramSize < MAX_RAM_SIZE) &&
(sInfo.xres && sInfo.xres <= qHD_WIDTH )) {
property_set(PROP_DEFAULT_APPBUFFER, "2");
}
}
void initContext(hwc_context_t *ctx)
{
overlay::Overlay::initOverlay();
ctx->mHDMIDisplay = new HDMIDisplay();
uint32_t priW = 0, priH = 0;
// 1. HDMI as Primary
// -If HDMI cable is connected, read display configs from edid data
// -If HDMI cable is not connected then use default data in vscreeninfo
// 2. HDMI as External
// -Initialize HDMI class for use with external display
// -Use vscreeninfo to populate display configs
if(ctx->mHDMIDisplay->isHDMIPrimaryDisplay()) {
int connected = ctx->mHDMIDisplay->getConnectedState();
if(connected == 1) {
ctx->mHDMIDisplay->configure();
updateDisplayInfo(ctx, HWC_DISPLAY_PRIMARY);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = true;
} else {
openFramebufferDevice(ctx);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = false;
}
} else {
openFramebufferDevice(ctx);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = true;
// Send the primary resolution to the hdmi display class
// to be used for MDP scaling functionality
priW = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
priH = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
ctx->mHDMIDisplay->setPrimaryAttributes(priW, priH);
}
char value[PROPERTY_VALUE_MAX];
ctx->mMDP.version = qdutils::MDPVersion::getInstance().getMDPVersion();
ctx->mMDP.hasOverlay = qdutils::MDPVersion::getInstance().hasOverlay();
ctx->mMDP.panel = qdutils::MDPVersion::getInstance().getPanelType();
ctx->mOverlay = overlay::Overlay::getInstance();
ctx->mRotMgr = RotMgr::getInstance();
ctx->mBWCEnabled = qdutils::MDPVersion::getInstance().supportsBWC();
//default_app_buffer for ferrum
if (ctx->mMDP.version == qdutils::MDP_V3_0_5) {
changeDefaultAppBufferCount();
}
// Initialize composition objects for the primary display
initCompositionResources(ctx, HWC_DISPLAY_PRIMARY);
// Check if the target supports copybit compostion (dyn/mdp) to
// decide if we need to open the copybit module.
int compositionType =
qdutils::QCCompositionType::getInstance().getCompositionType();
// Only MDP copybit is used
if ((compositionType & (qdutils::COMPOSITION_TYPE_DYN |
qdutils::COMPOSITION_TYPE_MDP)) &&
((qdutils::MDPVersion::getInstance().getMDPVersion() ==
qdutils::MDP_V3_0_4) ||
(qdutils::MDPVersion::getInstance().getMDPVersion() ==
qdutils::MDP_V3_0_5))) {
ctx->mCopyBit[HWC_DISPLAY_PRIMARY] = new CopyBit(ctx,
HWC_DISPLAY_PRIMARY);
}
ctx->mHWCVirtual = new HWCVirtualVDS();
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isActive = false;
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].connected = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isActive = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected = false;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].mMDPScalingMode= false;
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].mMDPScalingMode = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].mMDPScalingMode = false;
//Initialize the primary display viewFrame info
ctx->mViewFrame[HWC_DISPLAY_PRIMARY].left = 0;
ctx->mViewFrame[HWC_DISPLAY_PRIMARY].top = 0;
ctx->mViewFrame[HWC_DISPLAY_PRIMARY].right =
(int)ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
ctx->mViewFrame[HWC_DISPLAY_PRIMARY].bottom =
(int)ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
for (uint32_t i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
ctx->mHwcDebug[i] = new HwcDebug(i);
ctx->mLayerRotMap[i] = new LayerRotMap();
ctx->mAnimationState[i] = ANIMATION_STOPPED;
ctx->dpyAttr[i].mActionSafePresent = false;
ctx->dpyAttr[i].mAsWidthRatio = 0;
ctx->dpyAttr[i].mAsHeightRatio = 0;
}
for (uint32_t i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
ctx->mPrevHwLayerCount[i] = 0;
}
MDPComp::init(ctx);
ctx->mAD = new AssertiveDisplay(ctx);
ctx->vstate.enable = false;
ctx->vstate.fakevsync = false;
ctx->mExtOrientation = 0;
ctx->numActiveDisplays = 1;
//Right now hwc starts the service but anybody could do it, or it could be
//independent process as well.
QService::init();
sp<IQClient> client = new QClient(ctx);
android::sp<qService::IQService> qservice_sp = interface_cast<IQService>(
defaultServiceManager()->getService(
String16("display.qservice")));
if (qservice_sp.get()) {
qservice_sp->connect(client);
} else {
ALOGE("%s: Failed to acquire service pointer", __FUNCTION__);
return ;
}
// Initialize device orientation to its default orientation
ctx->deviceOrientation = 0;
ctx->mBufferMirrorMode = false;
property_get("sys.hwc.windowbox_aspect_ratio_tolerance", value, "0");
ctx->mAspectRatioToleranceLevel = (((float)atoi(value)) / 100.0f);
ctx->enableABC = false;
property_get("debug.sf.hwc.canUseABC", value, "0");
ctx->enableABC = atoi(value) ? true : false;
// Initializing boot anim completed check to false
ctx->mBootAnimCompleted = false;
// Initialize gpu perfomance hint related parameters
property_get("sys.hwc.gpu_perf_mode", value, "0");
#ifdef QCOM_BSP
ctx->mGPUHintInfo.mGpuPerfModeEnable = atoi(value)? true : false;
ctx->mGPUHintInfo.mEGLDisplay = NULL;
ctx->mGPUHintInfo.mEGLContext = NULL;
ctx->mGPUHintInfo.mCompositionState = COMPOSITION_STATE_MDP;
ctx->mGPUHintInfo.mCurrGPUPerfMode = EGL_GPU_LEVEL_0;
#endif
// Read the system property to determine if windowboxing feature is enabled.
ctx->mWindowboxFeature = false;
if(property_get("sys.hwc.windowbox_feature", value, "false")
&& !strcmp(value, "true")) {
ctx->mWindowboxFeature = true;
}
ctx->mUseMetaDataRefreshRate = true;
if(property_get("persist.metadata_dynfps.disable", value, "false")
&& !strcmp(value, "true")) {
ctx->mUseMetaDataRefreshRate = false;
}
memset(&(ctx->mPtorInfo), 0, sizeof(ctx->mPtorInfo));
ctx->mHPDEnabled = false;
ALOGI("Initializing Qualcomm Hardware Composer");
ALOGI("MDP version: %d", ctx->mMDP.version);
}
void closeContext(hwc_context_t *ctx)
{
if(ctx->mOverlay) {
delete ctx->mOverlay;
ctx->mOverlay = NULL;
}
if(ctx->mRotMgr) {
delete ctx->mRotMgr;
ctx->mRotMgr = NULL;
}
for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
if(ctx->mCopyBit[i]) {
delete ctx->mCopyBit[i];
ctx->mCopyBit[i] = NULL;
}
}
if(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd) {
close(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = -1;
}
if(ctx->mHDMIDisplay) {
delete ctx->mHDMIDisplay;
ctx->mHDMIDisplay = NULL;
}
for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
destroyCompositionResources(ctx, i);
if(ctx->mHwcDebug[i]) {
delete ctx->mHwcDebug[i];
ctx->mHwcDebug[i] = NULL;
}
if(ctx->mLayerRotMap[i]) {
delete ctx->mLayerRotMap[i];
ctx->mLayerRotMap[i] = NULL;
}
}
if(ctx->mHWCVirtual) {
delete ctx->mHWCVirtual;
ctx->mHWCVirtual = NULL;
}
if(ctx->mAD) {
delete ctx->mAD;
ctx->mAD = NULL;
}
}
//Helper to roundoff the refreshrates
uint32_t roundOff(uint32_t refreshRate) {
int count = (int) (sizeof(stdRefreshRates)/sizeof(stdRefreshRates[0]));
uint32_t rate = refreshRate;
for(int i=0; i< count; i++) {
if(abs(stdRefreshRates[i] - refreshRate) < 2) {
// Most likely used for video, the fps can fluctuate
// Ex: b/w 29 and 30 for 30 fps clip
rate = stdRefreshRates[i];
break;
}
}
return rate;
}
//Helper func to set the dyn fps
void setRefreshRate(hwc_context_t* ctx, int dpy, uint32_t refreshRate) {
//Update only if different
if(!ctx || refreshRate == ctx->dpyAttr[dpy].dynRefreshRate)
return;
const int fbNum = Overlay::getFbForDpy(dpy);
char sysfsPath[qdutils::MAX_SYSFS_FILE_PATH];
snprintf (sysfsPath, sizeof(sysfsPath),
"/sys/devices/virtual/graphics/fb%d/dynamic_fps", fbNum);
int fd = open(sysfsPath, O_WRONLY);
if(fd >= 0) {
char str[64];
snprintf(str, sizeof(str), "%d", refreshRate);
ssize_t ret = write(fd, str, strlen(str));
if(ret < 0) {
ALOGE("%s: Failed to write %d with error %s",
__FUNCTION__, refreshRate, strerror(errno));
} else {
ctx->dpyAttr[dpy].dynRefreshRate = refreshRate;
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Wrote %d to dynamic_fps",
__FUNCTION__, refreshRate);
}
close(fd);
} else {
ALOGE("%s: Failed to open %s with error %s", __FUNCTION__, sysfsPath,
strerror(errno));
}
}
void dumpsys_log(android::String8& buf, const char* fmt, ...)
{
va_list varargs;
va_start(varargs, fmt);
buf.appendFormatV(fmt, varargs);
va_end(varargs);
}
int getExtOrientation(hwc_context_t* ctx) {
int extOrient = ctx->mExtOrientation;
if(ctx->mBufferMirrorMode)
extOrient = getMirrorModeOrientation(ctx);
return extOrient;
}
/* Calculates the destination position based on the action safe rectangle */
void getActionSafePosition(hwc_context_t *ctx, int dpy, hwc_rect_t& rect) {
// Position
int x = rect.left, y = rect.top;
int w = rect.right - rect.left;
int h = rect.bottom - rect.top;
if(!ctx->dpyAttr[dpy].mActionSafePresent)
return;
// Read action safe properties
int asWidthRatio = ctx->dpyAttr[dpy].mAsWidthRatio;
int asHeightRatio = ctx->dpyAttr[dpy].mAsHeightRatio;
float wRatio = 1.0;
float hRatio = 1.0;
float xRatio = 1.0;
float yRatio = 1.0;
uint32_t fbWidth = ctx->dpyAttr[dpy].xres;
uint32_t fbHeight = ctx->dpyAttr[dpy].yres;
if(ctx->dpyAttr[dpy].mMDPScalingMode) {
// if MDP scaling mode is enabled for external, need to query
// the actual width and height, as that is the physical w & h
ctx->mHDMIDisplay->getAttributes(fbWidth, fbHeight);
}
// Since external is rotated 90, need to swap width/height
int extOrient = getExtOrientation(ctx);
if(extOrient & HWC_TRANSFORM_ROT_90)
swap(fbWidth, fbHeight);
float asX = 0;
float asY = 0;
float asW = (float)fbWidth;
float asH = (float)fbHeight;
// based on the action safe ratio, get the Action safe rectangle
asW = ((float)fbWidth * (1.0f - (float)asWidthRatio / 100.0f));
asH = ((float)fbHeight * (1.0f - (float)asHeightRatio / 100.0f));
asX = ((float)fbWidth - asW) / 2;
asY = ((float)fbHeight - asH) / 2;
// calculate the position ratio
xRatio = (float)x/(float)fbWidth;
yRatio = (float)y/(float)fbHeight;
wRatio = (float)w/(float)fbWidth;
hRatio = (float)h/(float)fbHeight;
//Calculate the position...
x = int((xRatio * asW) + asX);
y = int((yRatio * asH) + asY);
w = int(wRatio * asW);
h = int(hRatio * asH);
// Convert it back to hwc_rect_t
rect.left = x;
rect.top = y;
rect.right = w + rect.left;
rect.bottom = h + rect.top;
return;
}
// This function gets the destination position for Seconday display
// based on the position and aspect ratio with orientation
void getAspectRatioPosition(hwc_context_t* ctx, int dpy, int extOrientation,
hwc_rect_t& inRect, hwc_rect_t& outRect) {
// Physical display resolution
float fbWidth = (float)ctx->dpyAttr[dpy].xres;
float fbHeight = (float)ctx->dpyAttr[dpy].yres;
//display position(x,y,w,h) in correct aspectratio after rotation
int xPos = 0;
int yPos = 0;
float width = fbWidth;
float height = fbHeight;
// Width/Height used for calculation, after rotation
float actualWidth = fbWidth;
float actualHeight = fbHeight;
float wRatio = 1.0;
float hRatio = 1.0;
float xRatio = 1.0;
float yRatio = 1.0;
hwc_rect_t rect = {0, 0, (int)fbWidth, (int)fbHeight};
Dim inPos(inRect.left, inRect.top, inRect.right - inRect.left,
inRect.bottom - inRect.top);
Dim outPos(outRect.left, outRect.top, outRect.right - outRect.left,
outRect.bottom - outRect.top);
Whf whf((uint32_t)fbWidth, (uint32_t)fbHeight, 0);
eTransform extorient = static_cast<eTransform>(extOrientation);
// To calculate the destination co-ordinates in the new orientation
preRotateSource(extorient, whf, inPos);
if(extOrientation & HAL_TRANSFORM_ROT_90) {
// Swap width/height for input position
swapWidthHeight(actualWidth, actualHeight);
qdutils::getAspectRatioPosition((int)fbWidth, (int)fbHeight,
(int)actualWidth, (int)actualHeight, rect);
xPos = rect.left;
yPos = rect.top;
width = float(rect.right - rect.left);
height = float(rect.bottom - rect.top);
}
xRatio = (float)((float)inPos.x/actualWidth);
yRatio = (float)((float)inPos.y/actualHeight);
wRatio = (float)((float)inPos.w/actualWidth);
hRatio = (float)((float)inPos.h/actualHeight);
//Calculate the pos9ition...
outPos.x = uint32_t((xRatio * width) + (float)xPos);
outPos.y = uint32_t((yRatio * height) + (float)yPos);
outPos.w = uint32_t(wRatio * width);
outPos.h = uint32_t(hRatio * height);
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio Position: x = %d,"
"y = %d w = %d h = %d", __FUNCTION__, outPos.x, outPos.y,
outPos.w, outPos.h);
// For sidesync, the dest fb will be in portrait orientation, and the crop
// will be updated to avoid the black side bands, and it will be upscaled
// to fit the dest RB, so recalculate
// the position based on the new width and height
if ((extOrientation & HWC_TRANSFORM_ROT_90) &&
isOrientationPortrait(ctx)) {
hwc_rect_t r = {0, 0, 0, 0};
//Calculate the position
xRatio = (float)(outPos.x - xPos)/width;
// GetaspectRatio -- tricky to get the correct aspect ratio
// But we need to do this.
qdutils::getAspectRatioPosition((int)width, (int)height,
(int)width,(int)height, r);
xPos = r.left;
yPos = r.top;
float tempHeight = float(r.bottom - r.top);
yRatio = (float)yPos/height;
wRatio = (float)outPos.w/width;
hRatio = tempHeight/height;
//Map the coordinates back to Framebuffer domain
outPos.x = uint32_t(xRatio * fbWidth);
outPos.y = uint32_t(yRatio * fbHeight);
outPos.w = uint32_t(wRatio * fbWidth);
outPos.h = uint32_t(hRatio * fbHeight);
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio for device in"
"portrait: x = %d,y = %d w = %d h = %d", __FUNCTION__,
outPos.x, outPos.y,
outPos.w, outPos.h);
}
if(ctx->dpyAttr[dpy].mMDPScalingMode) {
uint32_t extW = 0, extH = 0;
if(dpy == HWC_DISPLAY_EXTERNAL) {
ctx->mHDMIDisplay->getAttributes(extW, extH);
} else if(dpy == HWC_DISPLAY_VIRTUAL) {
extW = ctx->mHWCVirtual->getScalingWidth();
extH = ctx->mHWCVirtual->getScalingHeight();
}
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Scaling mode extW=%d extH=%d",
__FUNCTION__, extW, extH);
fbWidth = (float)ctx->dpyAttr[dpy].xres;
fbHeight = (float)ctx->dpyAttr[dpy].yres;
//Calculate the position...
xRatio = (float)outPos.x/fbWidth;
yRatio = (float)outPos.y/fbHeight;
wRatio = (float)outPos.w/fbWidth;
hRatio = (float)outPos.h/fbHeight;
outPos.x = uint32_t(xRatio * (float)extW);
outPos.y = uint32_t(yRatio * (float)extH);
outPos.w = uint32_t(wRatio * (float)extW);
outPos.h = uint32_t(hRatio * (float)extH);
}
// Convert Dim to hwc_rect_t
outRect.left = outPos.x;
outRect.top = outPos.y;
outRect.right = outPos.x + outPos.w;
outRect.bottom = outPos.y + outPos.h;
return;
}
bool isPrimaryPortrait(hwc_context_t *ctx) {
int fbWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
int fbHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
if(fbWidth < fbHeight) {
return true;
}
return false;
}
bool isOrientationPortrait(hwc_context_t *ctx) {
if(isPrimaryPortrait(ctx)) {
return !(ctx->deviceOrientation & 0x1);
}
return (ctx->deviceOrientation & 0x1);
}
void calcExtDisplayPosition(hwc_context_t *ctx,
private_handle_t *hnd,
int dpy,
hwc_rect_t& sourceCrop,
hwc_rect_t& displayFrame,
int& transform,
ovutils::eTransform& orient) {
// Swap width and height when there is a 90deg transform
int extOrient = getExtOrientation(ctx);
if(dpy && ctx->mOverlay->isUIScalingOnExternalSupported()) {
if(!isYuvBuffer(hnd)) {
if(extOrient & HWC_TRANSFORM_ROT_90) {
int dstWidth = ctx->dpyAttr[dpy].xres;
int dstHeight = ctx->dpyAttr[dpy].yres;;
int srcWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
int srcHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
if(!isPrimaryPortrait(ctx)) {
swap(srcWidth, srcHeight);
} // Get Aspect Ratio for external
qdutils::getAspectRatioPosition(dstWidth, dstHeight, srcWidth,
srcHeight, displayFrame);
// Crop - this is needed, because for sidesync, the dest fb will
// be in portrait orientation, so update the crop to not show the
// black side bands.
if (isOrientationPortrait(ctx)) {
sourceCrop = displayFrame;
displayFrame.left = 0;
displayFrame.top = 0;
displayFrame.right = dstWidth;
displayFrame.bottom = dstHeight;
}
}
if(ctx->dpyAttr[dpy].mMDPScalingMode) {
uint32_t extW = 0, extH = 0;
// if MDP scaling mode is enabled, map the co-ordinates to new
// domain(downscaled)
float fbWidth = (float)ctx->dpyAttr[dpy].xres;
float fbHeight = (float)ctx->dpyAttr[dpy].yres;
// query MDP configured attributes
if(dpy == HWC_DISPLAY_EXTERNAL) {
ctx->mHDMIDisplay->getAttributes(extW, extH);
} else if(dpy == HWC_DISPLAY_VIRTUAL) {
extW = ctx->mHWCVirtual->getScalingWidth();
extH = ctx->mHWCVirtual->getScalingHeight();
}
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Scaling mode extW=%d extH=%d",
__FUNCTION__, extW, extH);
//Calculate the ratio...
float wRatio = ((float)extW)/fbWidth;
float hRatio = ((float)extH)/fbHeight;
//convert Dim to hwc_rect_t
displayFrame.left = int(wRatio*(float)displayFrame.left);
displayFrame.top = int(hRatio*(float)displayFrame.top);
displayFrame.right = int(wRatio*(float)displayFrame.right);
displayFrame.bottom = int(hRatio*(float)displayFrame.bottom);
ALOGD_IF(DEBUG_MDPDOWNSCALE, "Calculated external display frame"
" for MDPDownscale feature [%d %d %d %d]",
displayFrame.left, displayFrame.top,
displayFrame.right, displayFrame.bottom);
}
}else {
if(extOrient || ctx->dpyAttr[dpy].mMDPScalingMode) {
getAspectRatioPosition(ctx, dpy, extOrient,
displayFrame, displayFrame);
}
}
// If there is a external orientation set, use that
if(extOrient) {
transform = extOrient;
orient = static_cast<ovutils::eTransform >(extOrient);
}
// Calculate the actionsafe dimensions for External(dpy = 1 or 2)
getActionSafePosition(ctx, dpy, displayFrame);
}
}
/* Returns the orientation which needs to be set on External for
* SideSync/Buffer Mirrormode
*/
int getMirrorModeOrientation(hwc_context_t *ctx) {
int extOrientation = 0;
int deviceOrientation = ctx->deviceOrientation;
if(!isPrimaryPortrait(ctx))
deviceOrientation = (deviceOrientation + 1) % 4;
if (deviceOrientation == 0)
extOrientation = HWC_TRANSFORM_ROT_270;
else if (deviceOrientation == 1)//90
extOrientation = 0;
else if (deviceOrientation == 2)//180
extOrientation = HWC_TRANSFORM_ROT_90;
else if (deviceOrientation == 3)//270
extOrientation = HWC_TRANSFORM_FLIP_V | HWC_TRANSFORM_FLIP_H;
return extOrientation;
}
/* Get External State names */
const char* getExternalDisplayState(uint32_t external_state) {
static const char* externalStates[EXTERNAL_MAXSTATES] = {0};
externalStates[EXTERNAL_OFFLINE] = STR(EXTERNAL_OFFLINE);
externalStates[EXTERNAL_ONLINE] = STR(EXTERNAL_ONLINE);
externalStates[EXTERNAL_PAUSE] = STR(EXTERNAL_PAUSE);
externalStates[EXTERNAL_RESUME] = STR(EXTERNAL_RESUME);
if(external_state >= EXTERNAL_MAXSTATES) {
return "EXTERNAL_INVALID";
}
return externalStates[external_state];
}
bool isDownscaleRequired(hwc_layer_1_t const* layer) {
hwc_rect_t displayFrame = layer->displayFrame;
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
int dst_w, dst_h, src_w, src_h;
dst_w = displayFrame.right - displayFrame.left;
dst_h = displayFrame.bottom - displayFrame.top;
src_w = sourceCrop.right - sourceCrop.left;
src_h = sourceCrop.bottom - sourceCrop.top;
if(((src_w > dst_w) || (src_h > dst_h)))
return true;
return false;
}
bool needsScaling(hwc_layer_1_t const* layer) {
int dst_w, dst_h, src_w, src_h;
hwc_rect_t displayFrame = layer->displayFrame;
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
dst_w = displayFrame.right - displayFrame.left;
dst_h = displayFrame.bottom - displayFrame.top;
src_w = sourceCrop.right - sourceCrop.left;
src_h = sourceCrop.bottom - sourceCrop.top;
if(layer->transform & HWC_TRANSFORM_ROT_90)
swap(src_w, src_h);
if(((src_w != dst_w) || (src_h != dst_h)))
return true;
return false;
}
// Checks if layer needs scaling with split
bool needsScalingWithSplit(hwc_context_t* ctx, hwc_layer_1_t const* layer,
const int& dpy) {
int src_width_l, src_height_l;
int src_width_r, src_height_r;
int dst_width_l, dst_height_l;
int dst_width_r, dst_height_r;
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
hwc_rect_t cropL, dstL, cropR, dstR;
const int lSplit = getLeftSplit(ctx, dpy);
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t displayFrame = layer->displayFrame;
private_handle_t *hnd = (private_handle_t *)layer->handle;
cropL = sourceCrop;
dstL = displayFrame;
hwc_rect_t scissorL = { 0, 0, lSplit, hw_h };
scissorL = getIntersection(ctx->mViewFrame[dpy], scissorL);
qhwc::calculate_crop_rects(cropL, dstL, scissorL, 0);
cropR = sourceCrop;
dstR = displayFrame;
hwc_rect_t scissorR = { lSplit, 0, hw_w, hw_h };
scissorR = getIntersection(ctx->mViewFrame[dpy], scissorR);
qhwc::calculate_crop_rects(cropR, dstR, scissorR, 0);
// Sanitize Crop to stitch
sanitizeSourceCrop(cropL, cropR, hnd);
// Calculate the left dst
dst_width_l = dstL.right - dstL.left;
dst_height_l = dstL.bottom - dstL.top;
src_width_l = cropL.right - cropL.left;
src_height_l = cropL.bottom - cropL.top;
// check if there is any scaling on the left
if(((src_width_l != dst_width_l) || (src_height_l != dst_height_l)))
return true;
// Calculate the right dst
dst_width_r = dstR.right - dstR.left;
dst_height_r = dstR.bottom - dstR.top;
src_width_r = cropR.right - cropR.left;
src_height_r = cropR.bottom - cropR.top;
// check if there is any scaling on the right
if(((src_width_r != dst_width_r) || (src_height_r != dst_height_r)))
return true;
return false;
}
bool isAlphaScaled(hwc_layer_1_t const* layer) {
if(needsScaling(layer) && isAlphaPresent(layer)) {
return true;
}
return false;
}
bool isAlphaPresent(hwc_layer_1_t const* layer) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(hnd) {
int format = hnd->format;
switch(format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
// In any more formats with Alpha go here..
return true;
default : return false;
}
}
return false;
}
static void trimLayer(hwc_context_t *ctx, const int& dpy, const int& transform,
hwc_rect_t& crop, hwc_rect_t& dst) {
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
if(dst.left < 0 || dst.top < 0 ||
dst.right > hw_w || dst.bottom > hw_h) {
hwc_rect_t scissor = {0, 0, hw_w, hw_h };
scissor = getIntersection(ctx->mViewFrame[dpy], scissor);
qhwc::calculate_crop_rects(crop, dst, scissor, transform);
}
}
static void trimList(hwc_context_t *ctx, hwc_display_contents_1_t *list,
const int& dpy) {
for(uint32_t i = 0; i < list->numHwLayers - 1; i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
int transform = (list->hwLayers[i].flags & HWC_COLOR_FILL) ? 0 :
list->hwLayers[i].transform;
trimLayer(ctx, dpy,
transform,
(hwc_rect_t&)crop,
(hwc_rect_t&)list->hwLayers[i].displayFrame);
layer->sourceCropf.left = (float)crop.left;
layer->sourceCropf.right = (float)crop.right;
layer->sourceCropf.top = (float)crop.top;
layer->sourceCropf.bottom = (float)crop.bottom;
}
}
void setListStats(hwc_context_t *ctx,
hwc_display_contents_1_t *list, int dpy) {
const int prevYuvCount = ctx->listStats[dpy].yuvCount;
memset(&ctx->listStats[dpy], 0, sizeof(ListStats));
ctx->listStats[dpy].numAppLayers = (int)list->numHwLayers - 1;
ctx->listStats[dpy].fbLayerIndex = (int)list->numHwLayers - 1;
ctx->listStats[dpy].skipCount = 0;
ctx->listStats[dpy].preMultipliedAlpha = false;
ctx->listStats[dpy].isSecurePresent = false;
ctx->listStats[dpy].yuvCount = 0;
char property[PROPERTY_VALUE_MAX];
ctx->listStats[dpy].isDisplayAnimating = false;
ctx->listStats[dpy].secureUI = false;
ctx->listStats[dpy].yuv4k2kCount = 0;
ctx->dpyAttr[dpy].mActionSafePresent = isActionSafePresent(ctx, dpy);
ctx->listStats[dpy].renderBufIndexforABC = -1;
ctx->listStats[dpy].secureRGBCount = 0;
ctx->listStats[dpy].refreshRateRequest = ctx->dpyAttr[dpy].refreshRate;
uint32_t refreshRate = 0;
qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance();
ctx->listStats[dpy].mAIVVideoMode = false;
resetROI(ctx, dpy);
trimList(ctx, list, dpy);
optimizeLayerRects(list);
for (size_t i = 0; i < (size_t)ctx->listStats[dpy].numAppLayers; i++) {
hwc_layer_1_t const* layer = &list->hwLayers[i];
private_handle_t *hnd = (private_handle_t *)layer->handle;
#ifdef QCOM_BSP
// Window boxing feature is applicable obly for external display, So
// enable mAIVVideoMode only for external display
if(ctx->mWindowboxFeature && dpy && isAIVVideoLayer(layer)) {
ctx->listStats[dpy].mAIVVideoMode = true;
}
if (layer->flags & HWC_SCREENSHOT_ANIMATOR_LAYER) {
ctx->listStats[dpy].isDisplayAnimating = true;
}
if(isSecureDisplayBuffer(hnd)) {
ctx->listStats[dpy].secureUI = true;
}
#endif
// continue if number of app layers exceeds MAX_NUM_APP_LAYERS
if(ctx->listStats[dpy].numAppLayers > MAX_NUM_APP_LAYERS)
continue;
//reset yuv indices
ctx->listStats[dpy].yuvIndices[i] = -1;
ctx->listStats[dpy].yuv4k2kIndices[i] = -1;
if (isSecureBuffer(hnd)) {
ctx->listStats[dpy].isSecurePresent = true;
if(not isYuvBuffer(hnd)) {
// cache secureRGB layer parameters like we cache for YUV layers
int& secureRGBCount = ctx->listStats[dpy].secureRGBCount;
ctx->listStats[dpy].secureRGBIndices[secureRGBCount] = (int)i;
secureRGBCount++;
}
}
if (isSkipLayer(&list->hwLayers[i])) {
ctx->listStats[dpy].skipCount++;
}
if (UNLIKELY(isYuvBuffer(hnd))) {
int& yuvCount = ctx->listStats[dpy].yuvCount;
ctx->listStats[dpy].yuvIndices[yuvCount] = (int)i;
yuvCount++;
if(UNLIKELY(isYUVSplitNeeded(hnd))){
int& yuv4k2kCount = ctx->listStats[dpy].yuv4k2kCount;
ctx->listStats[dpy].yuv4k2kIndices[yuv4k2kCount] = (int)i;
yuv4k2kCount++;
}
}
if(layer->blending == HWC_BLENDING_PREMULT)
ctx->listStats[dpy].preMultipliedAlpha = true;
#ifdef DYNAMIC_FPS
if (!dpy && mdpHw.isDynFpsSupported() && ctx->mUseMetaDataRefreshRate){
//dyn fps: get refreshrate from metadata
//Support multiple refresh rates if they are same
//else set to default
MetaData_t *mdata = hnd ? (MetaData_t *)hnd->base_metadata : NULL;
if (mdata && (mdata->operation & UPDATE_REFRESH_RATE)) {
// Valid refreshRate in metadata and within the range
uint32_t rate = roundOff(mdata->refreshrate);
if((rate >= mdpHw.getMinFpsSupported() &&
rate <= mdpHw.getMaxFpsSupported())) {
if (!refreshRate) {
refreshRate = rate;
} else if(refreshRate != rate) {
// multiple refreshrate requests, set to default
refreshRate = ctx->dpyAttr[dpy].refreshRate;
}
}
}
}
#endif
}
if(ctx->listStats[dpy].yuvCount > 0) {
if (property_get("hw.cabl.yuv", property, NULL) > 0) {
if (atoi(property) != 1) {
property_set("hw.cabl.yuv", "1");
}
}
} else {
if (property_get("hw.cabl.yuv", property, NULL) > 0) {
if (atoi(property) != 0) {
property_set("hw.cabl.yuv", "0");
}
}
}
//The marking of video begin/end is useful on some targets where we need
//to have a padding round to be able to shift pipes across mixers.
if(prevYuvCount != ctx->listStats[dpy].yuvCount) {
ctx->mVideoTransFlag = true;
}
if(dpy == HWC_DISPLAY_PRIMARY) {
ctx->mAD->markDoable(ctx, list);
//Store the requested fresh rate
ctx->listStats[dpy].refreshRateRequest = refreshRate ?
refreshRate : ctx->dpyAttr[dpy].refreshRate;
}
}
static void calc_cut(double& leftCutRatio, double& topCutRatio,
double& rightCutRatio, double& bottomCutRatio, int orient) {
if(orient & HAL_TRANSFORM_FLIP_H) {
swap(leftCutRatio, rightCutRatio);
}
if(orient & HAL_TRANSFORM_FLIP_V) {
swap(topCutRatio, bottomCutRatio);
}
if(orient & HAL_TRANSFORM_ROT_90) {
//Anti clock swapping
double tmpCutRatio = leftCutRatio;
leftCutRatio = topCutRatio;
topCutRatio = rightCutRatio;
rightCutRatio = bottomCutRatio;
bottomCutRatio = tmpCutRatio;
}
}
bool isSecuring(hwc_context_t* ctx, hwc_layer_1_t const* layer) {
if((ctx->mMDP.version < qdutils::MDSS_V5) &&
(ctx->mMDP.version > qdutils::MDP_V3_0) &&
ctx->mSecuring) {
return true;
}
if (isSecureModePolicy(ctx->mMDP.version)) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(ctx->mSecureMode) {
if (! isSecureBuffer(hnd)) {
ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning ON ...",
__FUNCTION__);
return true;
}
} else {
if (isSecureBuffer(hnd)) {
ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning OFF ...",
__FUNCTION__);
return true;
}
}
}
return false;
}
bool isSecureModePolicy(int mdpVersion) {
if (mdpVersion < qdutils::MDSS_V5)
return true;
else
return false;
}
bool isRotatorSupportedFormat(private_handle_t *hnd) {
// Following rotator src formats are supported by mdp driver
// TODO: Add more formats in future, if mdp driver adds support
if(hnd != NULL) {
switch(hnd->format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGBA_5551:
case HAL_PIXEL_FORMAT_RGBA_4444:
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_RGB_888:
case HAL_PIXEL_FORMAT_BGRA_8888:
return true;
default:
return false;
}
}
return false;
}
bool isRotationDoable(hwc_context_t *ctx, private_handle_t *hnd) {
// Rotate layers, if it is not secure display buffer and not
// for the MDP versions below MDP5
if((!isSecureDisplayBuffer(hnd) && isRotatorSupportedFormat(hnd) &&
!ctx->mMDP.version < qdutils::MDSS_V5)
|| isYuvBuffer(hnd)) {
return true;
}
return false;
}
// returns true if Action safe dimensions are set and target supports Actionsafe
bool isActionSafePresent(hwc_context_t *ctx, int dpy) {
// if external supports underscan, do nothing
// it will be taken care in the driver
// Disable Action safe for 8974 due to HW limitation for downscaling
// layers with overlapped region
// Disable Actionsafe for non HDMI displays.
if(!(dpy == HWC_DISPLAY_EXTERNAL) ||
qdutils::MDPVersion::getInstance().is8x74v2() ||
ctx->mHDMIDisplay->isCEUnderscanSupported()) {
return false;
}
char value[PROPERTY_VALUE_MAX];
// Read action safe properties
property_get("persist.sys.actionsafe.width", value, "0");
ctx->dpyAttr[dpy].mAsWidthRatio = atoi(value);
property_get("persist.sys.actionsafe.height", value, "0");
ctx->dpyAttr[dpy].mAsHeightRatio = atoi(value);
if(!ctx->dpyAttr[dpy].mAsWidthRatio && !ctx->dpyAttr[dpy].mAsHeightRatio) {
//No action safe ratio set, return
return false;
}
return true;
}
int getBlending(int blending) {
switch(blending) {
case HWC_BLENDING_NONE:
return overlay::utils::OVERLAY_BLENDING_OPAQUE;
case HWC_BLENDING_PREMULT:
return overlay::utils::OVERLAY_BLENDING_PREMULT;
case HWC_BLENDING_COVERAGE :
default:
return overlay::utils::OVERLAY_BLENDING_COVERAGE;
}
}
//Crops source buffer against destination and FB boundaries
void calculate_crop_rects(hwc_rect_t& crop, hwc_rect_t& dst,
const hwc_rect_t& scissor, int orient) {
int& crop_l = crop.left;
int& crop_t = crop.top;
int& crop_r = crop.right;
int& crop_b = crop.bottom;
int crop_w = crop.right - crop.left;
int crop_h = crop.bottom - crop.top;
int& dst_l = dst.left;
int& dst_t = dst.top;
int& dst_r = dst.right;
int& dst_b = dst.bottom;
int dst_w = abs(dst.right - dst.left);
int dst_h = abs(dst.bottom - dst.top);
const int& sci_l = scissor.left;
const int& sci_t = scissor.top;
const int& sci_r = scissor.right;
const int& sci_b = scissor.bottom;
double leftCutRatio = 0.0, rightCutRatio = 0.0, topCutRatio = 0.0,
bottomCutRatio = 0.0;
if(dst_l < sci_l) {
leftCutRatio = (double)(sci_l - dst_l) / (double)dst_w;
dst_l = sci_l;
}
if(dst_r > sci_r) {
rightCutRatio = (double)(dst_r - sci_r) / (double)dst_w;
dst_r = sci_r;
}
if(dst_t < sci_t) {
topCutRatio = (double)(sci_t - dst_t) / (double)dst_h;
dst_t = sci_t;
}
if(dst_b > sci_b) {
bottomCutRatio = (double)(dst_b - sci_b) / (double)dst_h;
dst_b = sci_b;
}
calc_cut(leftCutRatio, topCutRatio, rightCutRatio, bottomCutRatio, orient);
crop_l += (int)round((double)crop_w * leftCutRatio);
crop_t += (int)round((double)crop_h * topCutRatio);
crop_r -= (int)round((double)crop_w * rightCutRatio);
crop_b -= (int)round((double)crop_h * bottomCutRatio);
}
bool areLayersIntersecting(const hwc_layer_1_t* layer1,
const hwc_layer_1_t* layer2) {
hwc_rect_t irect = getIntersection(layer1->displayFrame,
layer2->displayFrame);
return isValidRect(irect);
}
bool isSameRect(const hwc_rect& rect1, const hwc_rect& rect2)
{
return ((rect1.left == rect2.left) && (rect1.top == rect2.top) &&
(rect1.right == rect2.right) && (rect1.bottom == rect2.bottom));
}
bool isValidRect(const hwc_rect& rect)
{
return ((rect.bottom > rect.top) && (rect.right > rect.left)) ;
}
bool operator ==(const hwc_rect_t& lhs, const hwc_rect_t& rhs) {
if(lhs.left == rhs.left && lhs.top == rhs.top &&
lhs.right == rhs.right && lhs.bottom == rhs.bottom )
return true ;
return false;
}
hwc_rect_t moveRect(const hwc_rect_t& rect, const int& x_off, const int& y_off)
{
hwc_rect_t res;
if(!isValidRect(rect))
return (hwc_rect_t){0, 0, 0, 0};
res.left = rect.left + x_off;
res.top = rect.top + y_off;
res.right = rect.right + x_off;
res.bottom = rect.bottom + y_off;
return res;
}
/* computes the intersection of two rects */
hwc_rect_t getIntersection(const hwc_rect_t& rect1, const hwc_rect_t& rect2)
{
hwc_rect_t res;
if(!isValidRect(rect1) || !isValidRect(rect2)){
return (hwc_rect_t){0, 0, 0, 0};
}
res.left = max(rect1.left, rect2.left);
res.top = max(rect1.top, rect2.top);
res.right = min(rect1.right, rect2.right);
res.bottom = min(rect1.bottom, rect2.bottom);
if(!isValidRect(res))
return (hwc_rect_t){0, 0, 0, 0};
return res;
}
/* computes the union of two rects */
hwc_rect_t getUnion(const hwc_rect &rect1, const hwc_rect &rect2)
{
hwc_rect_t res;
if(!isValidRect(rect1)){
return rect2;
}
if(!isValidRect(rect2)){
return rect1;
}
res.left = min(rect1.left, rect2.left);
res.top = min(rect1.top, rect2.top);
res.right = max(rect1.right, rect2.right);
res.bottom = max(rect1.bottom, rect2.bottom);
return res;
}
/* Not a geometrical rect deduction. Deducts rect2 from rect1 only if it results
* a single rect */
hwc_rect_t deductRect(const hwc_rect_t& rect1, const hwc_rect_t& rect2) {
hwc_rect_t res = rect1;
if((rect1.left == rect2.left) && (rect1.right == rect2.right)) {
if((rect1.top == rect2.top) && (rect2.bottom <= rect1.bottom))
res.top = rect2.bottom;
else if((rect1.bottom == rect2.bottom)&& (rect2.top >= rect1.top))
res.bottom = rect2.top;
}
else if((rect1.top == rect2.top) && (rect1.bottom == rect2.bottom)) {
if((rect1.left == rect2.left) && (rect2.right <= rect1.right))
res.left = rect2.right;
else if((rect1.right == rect2.right)&& (rect2.left >= rect1.left))
res.right = rect2.left;
}
return res;
}
void optimizeLayerRects(const hwc_display_contents_1_t *list) {
int i= (int)list->numHwLayers-2;
while(i > 0) {
//see if there is no blending required.
//If it is opaque see if we can substract this region from below
//layers.
if(list->hwLayers[i].blending == HWC_BLENDING_NONE &&
list->hwLayers[i].planeAlpha == 0xFF) {
int j= i-1;
hwc_rect_t& topframe =
(hwc_rect_t&)list->hwLayers[i].displayFrame;
while(j >= 0) {
if(!needsScaling(&list->hwLayers[j])) {
hwc_layer_1_t* layer = (hwc_layer_1_t*)&list->hwLayers[j];
hwc_rect_t& bottomframe = layer->displayFrame;
hwc_rect_t bottomCrop =
integerizeSourceCrop(layer->sourceCropf);
int transform = (layer->flags & HWC_COLOR_FILL) ? 0 :
layer->transform;
hwc_rect_t irect = getIntersection(bottomframe, topframe);
if(isValidRect(irect)) {
hwc_rect_t dest_rect;
//if intersection is valid rect, deduct it
dest_rect = deductRect(bottomframe, irect);
qhwc::calculate_crop_rects(bottomCrop, bottomframe,
dest_rect, transform);
//Update layer sourceCropf
layer->sourceCropf.left =(float)bottomCrop.left;
layer->sourceCropf.top = (float)bottomCrop.top;
layer->sourceCropf.right = (float)bottomCrop.right;
layer->sourceCropf.bottom = (float)bottomCrop.bottom;
#ifdef QCOM_BSP
//Update layer dirtyRect
layer->dirtyRect = getIntersection(bottomCrop,
layer->dirtyRect);
#endif
}
}
j--;
}
}
i--;
}
}
void getNonWormholeRegion(hwc_display_contents_1_t* list,
hwc_rect_t& nwr)
{
size_t last = list->numHwLayers - 1;
hwc_rect_t fbDisplayFrame = list->hwLayers[last].displayFrame;
//Initiliaze nwr to first frame
nwr.left = list->hwLayers[0].displayFrame.left;
nwr.top = list->hwLayers[0].displayFrame.top;
nwr.right = list->hwLayers[0].displayFrame.right;
nwr.bottom = list->hwLayers[0].displayFrame.bottom;
for (size_t i = 1; i < last; i++) {
hwc_rect_t displayFrame = list->hwLayers[i].displayFrame;
nwr = getUnion(nwr, displayFrame);
}
//Intersect with the framebuffer
nwr = getIntersection(nwr, fbDisplayFrame);
}
void closeAcquireFds(hwc_display_contents_1_t* list) {
if(LIKELY(list)) {
for(uint32_t i = 0; i < list->numHwLayers; i++) {
//Close the acquireFenceFds
//HWC_FRAMEBUFFER are -1 already by SF, rest we close.
if(list->hwLayers[i].acquireFenceFd >= 0) {
close(list->hwLayers[i].acquireFenceFd);
list->hwLayers[i].acquireFenceFd = -1;
}
}
//Writeback
if(list->outbufAcquireFenceFd >= 0) {
close(list->outbufAcquireFenceFd);
list->outbufAcquireFenceFd = -1;
}
}
}
int hwc_sync(hwc_context_t *ctx, hwc_display_contents_1_t* list, int dpy,
int fd) {
ATRACE_CALL();
int ret = 0;
int acquireFd[MAX_NUM_APP_LAYERS];
int count = 0;
int releaseFd = -1;
int retireFd = -1;
int fbFd = -1;
bool swapzero = false;
struct mdp_buf_sync data;
memset(&data, 0, sizeof(data));
data.acq_fen_fd = acquireFd;
data.rel_fen_fd = &releaseFd;
data.retire_fen_fd = &retireFd;
data.flags = MDP_BUF_SYNC_FLAG_RETIRE_FENCE;
char property[PROPERTY_VALUE_MAX];
if(property_get("debug.egl.swapinterval", property, "1") > 0) {
if(atoi(property) == 0)
swapzero = true;
}
bool isExtAnimating = false;
if(dpy)
isExtAnimating = ctx->listStats[dpy].isDisplayAnimating;
//Send acquireFenceFds to rotator
for(uint32_t i = 0; i < ctx->mLayerRotMap[dpy]->getCount(); i++) {
int rotFd = ctx->mRotMgr->getRotDevFd();
int rotReleaseFd = -1;
overlay::Rotator* currRot = ctx->mLayerRotMap[dpy]->getRot(i);
hwc_layer_1_t* currLayer = ctx->mLayerRotMap[dpy]->getLayer(i);
if((currRot == NULL) || (currLayer == NULL)) {
continue;
}
struct mdp_buf_sync rotData;
memset(&rotData, 0, sizeof(rotData));
rotData.acq_fen_fd =
&currLayer->acquireFenceFd;
rotData.rel_fen_fd = &rotReleaseFd; //driver to populate this
rotData.session_id = currRot->getSessId();
if(currLayer->acquireFenceFd >= 0) {
rotData.acq_fen_fd_cnt = 1; //1 ioctl call per rot session
}
int ret = 0;
if(LIKELY(!swapzero) and (not ctx->mLayerRotMap[dpy]->isRotCached(i)))
ret = ioctl(rotFd, MSMFB_BUFFER_SYNC, &rotData);
if(ret < 0) {
ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed for rot sync, err=%s",
__FUNCTION__, strerror(errno));
close(rotReleaseFd);
} else {
close(currLayer->acquireFenceFd);
//For MDP to wait on.
currLayer->acquireFenceFd =
dup(rotReleaseFd);
//A buffer is free to be used by producer as soon as its copied to
//rotator
currLayer->releaseFenceFd =
rotReleaseFd;
}
}
//Accumulate acquireFenceFds for MDP Overlays
if(list->outbufAcquireFenceFd >= 0) {
//Writeback output buffer
if(LIKELY(!swapzero) )
acquireFd[count++] = list->outbufAcquireFenceFd;
}
for(uint32_t i = 0; i < list->numHwLayers; i++) {
if(((isAbcInUse(ctx)== true ) ||
(list->hwLayers[i].compositionType == HWC_OVERLAY)) &&
list->hwLayers[i].acquireFenceFd >= 0) {
if(LIKELY(!swapzero) ) {
// if ABC is enabled for more than one layer.
// renderBufIndexforABC will work as FB.Hence
// set the acquireFD from fd - which is coming from copybit
if(fd >= 0 && (isAbcInUse(ctx) == true)) {
if(ctx->listStats[dpy].renderBufIndexforABC ==(int32_t)i)
acquireFd[count++] = fd;
else
continue;
} else
acquireFd[count++] = list->hwLayers[i].acquireFenceFd;
}
}
if(list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) {
if(LIKELY(!swapzero) ) {
if(fd >= 0) {
//set the acquireFD from fd - which is coming from c2d
acquireFd[count++] = fd;
// Buffer sync IOCTL should be async when using c2d fence is
// used
data.flags &= ~MDP_BUF_SYNC_FLAG_WAIT;
} else if(list->hwLayers[i].acquireFenceFd >= 0)
acquireFd[count++] = list->hwLayers[i].acquireFenceFd;
}
}
}
if ((fd >= 0) && !dpy && ctx->mPtorInfo.isActive()) {
// Acquire c2d fence of Overlap render buffer
if(LIKELY(!swapzero) )
acquireFd[count++] = fd;
}
data.acq_fen_fd_cnt = count;
fbFd = ctx->dpyAttr[dpy].fd;
//Waits for acquire fences, returns a release fence
if(LIKELY(!swapzero)) {
ret = ioctl(fbFd, MSMFB_BUFFER_SYNC, &data);
}
if(ret < 0) {
ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed, err=%s",
__FUNCTION__, strerror(errno));
ALOGE("%s: acq_fen_fd_cnt=%d flags=%d fd=%d dpy=%d numHwLayers=%zu",
__FUNCTION__, data.acq_fen_fd_cnt, data.flags, fbFd,
dpy, list->numHwLayers);
close(releaseFd);
releaseFd = -1;
close(retireFd);
retireFd = -1;
}
for(uint32_t i = 0; i < list->numHwLayers; i++) {
if(list->hwLayers[i].compositionType == HWC_OVERLAY ||
#ifdef QCOM_BSP
list->hwLayers[i].compositionType == HWC_BLIT ||
#endif
list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) {
//Populate releaseFenceFds.
if(UNLIKELY(swapzero)) {
list->hwLayers[i].releaseFenceFd = -1;
} else if(isExtAnimating) {
// Release all the app layer fds immediately,
// if animation is in progress.
list->hwLayers[i].releaseFenceFd = -1;
} else if(list->hwLayers[i].releaseFenceFd < 0 ) {
#ifdef QCOM_BSP
//If rotator has not already populated this field
// & if it's a not VPU layer
// if ABC is enabled for more than one layer
if(fd >= 0 && (isAbcInUse(ctx) == true) &&
ctx->listStats[dpy].renderBufIndexforABC !=(int32_t)i){
list->hwLayers[i].releaseFenceFd = dup(fd);
} else if((list->hwLayers[i].compositionType == HWC_BLIT)&&
(isAbcInUse(ctx) == false)){
//For Blit, the app layers should be released when the Blit
//is complete. This fd was passed from copybit->draw
list->hwLayers[i].releaseFenceFd = dup(fd);
} else
#endif
{
list->hwLayers[i].releaseFenceFd = dup(releaseFd);
}
}
}
}
if(fd >= 0) {
close(fd);
fd = -1;
}
if (ctx->mCopyBit[dpy]) {
if (!dpy && ctx->mPtorInfo.isActive())
ctx->mCopyBit[dpy]->setReleaseFdSync(releaseFd);
else
ctx->mCopyBit[dpy]->setReleaseFd(releaseFd);
}
//Signals when MDP finishes reading rotator buffers.
ctx->mLayerRotMap[dpy]->setReleaseFd(releaseFd);
close(releaseFd);
releaseFd = -1;
if(UNLIKELY(swapzero)) {
list->retireFenceFd = -1;
} else {
list->retireFenceFd = retireFd;
}
return ret;
}
void setMdpFlags(hwc_context_t *ctx, hwc_layer_1_t *layer,
ovutils::eMdpFlags &mdpFlags,
int rotDownscale, int transform) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
MetaData_t *metadata = hnd ? (MetaData_t *)hnd->base_metadata : NULL;
if(layer->blending == HWC_BLENDING_PREMULT) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_BLEND_FG_PREMULT);
}
if(metadata && (metadata->operation & PP_PARAM_INTERLACED) &&
metadata->interlaced) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_DEINTERLACE);
}
// Mark MDP flags with SECURE_OVERLAY_SESSION for driver
if(isSecureBuffer(hnd)) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SECURE_OVERLAY_SESSION);
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SMP_FORCE_ALLOC);
}
if(isProtectedBuffer(hnd)) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SMP_FORCE_ALLOC);
}
if(isSecureDisplayBuffer(hnd)) {
// Mark MDP flags with SECURE_DISPLAY_OVERLAY_SESSION for driver
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SECURE_DISPLAY_OVERLAY_SESSION);
}
//Pre-rotation will be used using rotator.
if(has90Transform(layer) && isRotationDoable(ctx, hnd)) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SOURCE_ROTATED_90);
}
//No 90 component and no rot-downscale then flips done by MDP
//If we use rot then it might as well do flips
if(!(transform & HWC_TRANSFORM_ROT_90) && !rotDownscale) {
if(transform & HWC_TRANSFORM_FLIP_H) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_H);
}
if(transform & HWC_TRANSFORM_FLIP_V) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_V);
}
}
if(metadata &&
((metadata->operation & PP_PARAM_HSIC)
|| (metadata->operation & PP_PARAM_IGC)
|| (metadata->operation & PP_PARAM_SHARP2))) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_PP_EN);
}
}
int configRotator(Rotator *rot, Whf& whf,
hwc_rect_t& crop, const eMdpFlags& mdpFlags,
const eTransform& orient, const int& downscale) {
// Fix alignments for TILED format
if(whf.format == MDP_Y_CRCB_H2V2_TILE ||
whf.format == MDP_Y_CBCR_H2V2_TILE) {
whf.w = utils::alignup(whf.w, 64);
whf.h = utils::alignup(whf.h, 32);
}
rot->setSource(whf);
if (qdutils::MDPVersion::getInstance().getMDPVersion() >=
qdutils::MDSS_V5) {
Dim rotCrop(crop.left, crop.top, crop.right - crop.left,
crop.bottom - crop.top);
rot->setCrop(rotCrop);
}
rot->setFlags(mdpFlags);
rot->setTransform(orient);
rot->setDownscale(downscale);
if(!rot->commit()) return -1;
return 0;
}
int configMdp(Overlay *ov, const PipeArgs& parg,
const eTransform& orient, const hwc_rect_t& crop,
const hwc_rect_t& pos, const MetaData_t *metadata,
const eDest& dest) {
ov->setSource(parg, dest);
ov->setTransform(orient, dest);
int crop_w = crop.right - crop.left;
int crop_h = crop.bottom - crop.top;
Dim dcrop(crop.left, crop.top, crop_w, crop_h);
ov->setCrop(dcrop, dest);
int posW = pos.right - pos.left;
int posH = pos.bottom - pos.top;
Dim position(pos.left, pos.top, posW, posH);
ov->setPosition(position, dest);
if (metadata)
ov->setVisualParams(*metadata, dest);
if (!ov->commit(dest)) {
return -1;
}
return 0;
}
int configColorLayer(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlags, eZorder& z,
const eDest& dest) {
hwc_rect_t dst = layer->displayFrame;
trimLayer(ctx, dpy, 0, dst, dst);
int w = ctx->dpyAttr[dpy].xres;
int h = ctx->dpyAttr[dpy].yres;
int dst_w = dst.right - dst.left;
int dst_h = dst.bottom - dst.top;
uint32_t color = layer->transform;
Whf whf(w, h, getMdpFormat(HAL_PIXEL_FORMAT_RGBA_8888));
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SOLID_FILL);
if (layer->blending == HWC_BLENDING_PREMULT)
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_BLEND_FG_PREMULT);
PipeArgs parg(mdpFlags, whf, z, static_cast<eRotFlags>(0),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
// Configure MDP pipe for Color layer
Dim pos(dst.left, dst.top, dst_w, dst_h);
ctx->mOverlay->setSource(parg, dest);
ctx->mOverlay->setColor(color, dest);
ctx->mOverlay->setTransform(0, dest);
ctx->mOverlay->setCrop(pos, dest);
ctx->mOverlay->setPosition(pos, dest);
if (!ctx->mOverlay->commit(dest)) {
ALOGE("%s: Configure color layer failed!", __FUNCTION__);
return -1;
}
return 0;
}
void updateSource(eTransform& orient, Whf& whf,
hwc_rect_t& crop, Rotator *rot) {
Dim transformedCrop(crop.left, crop.top,
crop.right - crop.left,
crop.bottom - crop.top);
if (qdutils::MDPVersion::getInstance().getMDPVersion() >=
qdutils::MDSS_V5) {
//B-family rotator internally could modify destination dimensions if
//downscaling is supported
whf = rot->getDstWhf();
transformedCrop = rot->getDstDimensions();
} else {
//A-family rotator rotates entire buffer irrespective of crop, forcing
//us to recompute the crop based on transform
orient = static_cast<eTransform>(ovutils::getMdpOrient(orient));
preRotateSource(orient, whf, transformedCrop);
}
crop.left = transformedCrop.x;
crop.top = transformedCrop.y;
crop.right = transformedCrop.x + transformedCrop.w;
crop.bottom = transformedCrop.y + transformedCrop.h;
}
int getRotDownscale(hwc_context_t *ctx, const hwc_layer_1_t *layer) {
if(not qdutils::MDPVersion::getInstance().isRotDownscaleEnabled()) {
return 0;
}
int downscale = 0;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t dst = layer->displayFrame;
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(not hnd) {
return 0;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
bool isInterlaced = metadata && (metadata->operation & PP_PARAM_INTERLACED)
&& metadata->interlaced;
int transform = layer->transform;
uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags);
if(isYuvBuffer(hnd)) {
if(ctx->mMDP.version >= qdutils::MDP_V4_2 &&
ctx->mMDP.version < qdutils::MDSS_V5) {
downscale = Rotator::getDownscaleFactor(crop.right - crop.left,
crop.bottom - crop.top, dst.right - dst.left,
dst.bottom - dst.top, format, isInterlaced);
} else {
Dim adjCrop(crop.left, crop.top, crop.right - crop.left,
crop.bottom - crop.top);
Dim pos(dst.left, dst.top, dst.right - dst.left,
dst.bottom - dst.top);
if(transform & HAL_TRANSFORM_ROT_90) {
swap(adjCrop.w, adjCrop.h);
}
downscale = Rotator::getDownscaleFactor(adjCrop.w, adjCrop.h, pos.w,
pos.h, format, isInterlaced);
}
}
return downscale;
}
bool isZoomModeEnabled(hwc_rect_t crop) {
// This does not work for zooming in top left corner of the image
return(crop.top > 0 || crop.left > 0);
}
void updateCropAIVVideoMode(hwc_context_t *ctx, hwc_rect_t& crop, int dpy) {
ALOGD_IF(HWC_UTILS_DEBUG, "dpy %d Source crop [%d %d %d %d]", dpy,
crop.left, crop.top, crop.right, crop.bottom);
if(isZoomModeEnabled(crop)) {
Dim srcCrop(crop.left, crop.top,
crop.right - crop.left,
crop.bottom - crop.top);
int extW = ctx->dpyAttr[dpy].xres;
int extH = ctx->dpyAttr[dpy].yres;
//Crop the original video in order to fit external display aspect ratio
if(srcCrop.w * extH < extW * srcCrop.h) {
int offset = (srcCrop.h - ((srcCrop.w * extH) / extW)) / 2;
crop.top += offset;
crop.bottom -= offset;
} else {
int offset = (srcCrop.w - ((extW * srcCrop.h) / extH)) / 2;
crop.left += offset;
crop.right -= offset;
}
ALOGD_IF(HWC_UTILS_DEBUG, "External Resolution [%d %d] dpy %d Modified"
" source crop [%d %d %d %d]", extW, extH, dpy,
crop.left, crop.top, crop.right, crop.bottom);
}
}
void updateDestAIVVideoMode(hwc_context_t *ctx, hwc_rect_t crop,
hwc_rect_t& dst, int dpy) {
ALOGD_IF(HWC_UTILS_DEBUG, "dpy %d Destination position [%d %d %d %d]", dpy,
dst.left, dst.top, dst.right, dst.bottom);
Dim srcCrop(crop.left, crop.top,
crop.right - crop.left,
crop.bottom - crop.top);
int extW = ctx->dpyAttr[dpy].xres;
int extH = ctx->dpyAttr[dpy].yres;
// Set the destination coordinates of external display to full screen,
// when zoom in mode is enabled or the ratio between video aspect ratio
// and external display aspect ratio is below the minimum tolerance level
// and above maximum tolerance level
float videoAspectRatio = ((float)srcCrop.w / (float)srcCrop.h);
float extDisplayAspectRatio = ((float)extW / (float)extH);
float videoToExternalRatio = videoAspectRatio / extDisplayAspectRatio;
if((fabs(1.0f - videoToExternalRatio) <= ctx->mAspectRatioToleranceLevel) ||
(isZoomModeEnabled(crop))) {
dst.left = 0;
dst.top = 0;
dst.right = extW;
dst.bottom = extH;
}
ALOGD_IF(HWC_UTILS_DEBUG, "External Resolution [%d %d] dpy %d Modified"
" Destination position [%d %d %d %d] Source crop [%d %d %d %d]",
extW, extH, dpy, dst.left, dst.top, dst.right, dst.bottom,
crop.left, crop.top, crop.right, crop.bottom);
}
void updateCoordinates(hwc_context_t *ctx, hwc_rect_t& crop,
hwc_rect_t& dst, int dpy) {
updateCropAIVVideoMode(ctx, crop, dpy);
updateDestAIVVideoMode(ctx, crop, dst, dpy);
}
int configureNonSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlags, eZorder& z,
const eDest& dest, Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
if (layer->flags & HWC_COLOR_FILL) {
// Configure Color layer
return configColorLayer(ctx, layer, dpy, mdpFlags, z, dest);
}
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
int rotFlags = ovutils::ROT_FLAGS_NONE;
uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags);
Whf whf(getWidth(hnd), getHeight(hnd), format, (uint32_t)hnd->size);
// Handle R/B swap
if (layer->flags & HWC_FORMAT_RB_SWAP) {
if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888);
else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888);
}
// update source crop and destination position of AIV video layer.
if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) {
updateCoordinates(ctx, crop, dst, dpy);
}
calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient);
int downscale = getRotDownscale(ctx, layer);
setMdpFlags(ctx, layer, mdpFlags, downscale, transform);
//if 90 component or downscale, use rot
if((has90Transform(layer) or downscale) and isRotationDoable(ctx, hnd)) {
*rot = ctx->mRotMgr->getNext();
if(*rot == NULL) return -1;
ctx->mLayerRotMap[dpy]->add(layer, *rot);
BwcPM::setBwc(ctx, dpy, hnd, crop, dst, transform, downscale,
mdpFlags);
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlags, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
return -1;
}
updateSource(orient, whf, crop, *rot);
rotFlags |= ROT_PREROTATED;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
PipeArgs parg(mdpFlags, whf, z,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, parg, orient, crop, dst, metadata, dest) < 0) {
ALOGE("%s: commit failed for low res panel", __FUNCTION__);
return -1;
}
return 0;
}
//Helper to 1) Ensure crops dont have gaps 2) Ensure L and W are even
void sanitizeSourceCrop(hwc_rect_t& cropL, hwc_rect_t& cropR,
private_handle_t *hnd) {
if(cropL.right - cropL.left) {
if(isYuvBuffer(hnd)) {
//Always safe to even down left
ovutils::even_floor(cropL.left);
//If right is even, automatically width is even, since left is
//already even
ovutils::even_floor(cropL.right);
}
//Make sure there are no gaps between left and right splits if the layer
//is spread across BOTH halves
if(cropR.right - cropR.left) {
cropR.left = cropL.right;
}
}
if(cropR.right - cropR.left) {
if(isYuvBuffer(hnd)) {
//Always safe to even down left
ovutils::even_floor(cropR.left);
//If right is even, automatically width is even, since left is
//already even
ovutils::even_floor(cropR.right);
}
}
}
int configureSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z,
const eDest& lDest, const eDest& rDest,
Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
int rotFlags = ROT_FLAGS_NONE;
uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags);
Whf whf(getWidth(hnd), getHeight(hnd), format, (uint32_t)hnd->size);
// Handle R/B swap
if (layer->flags & HWC_FORMAT_RB_SWAP) {
if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888);
else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888);
}
// update source crop and destination position of AIV video layer.
if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) {
updateCoordinates(ctx, crop, dst, dpy);
}
/* Calculate the external display position based on MDP downscale,
ActionSafe, and extorientation features. */
calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient);
int downscale = getRotDownscale(ctx, layer);
setMdpFlags(ctx, layer, mdpFlagsL, downscale, transform);
if(lDest != OV_INVALID && rDest != OV_INVALID) {
//Enable overfetch
setMdpFlags(mdpFlagsL, OV_MDSS_MDP_DUAL_PIPE);
}
//Will do something only if feature enabled and conditions suitable
//hollow call otherwise
if(ctx->mAD->prepare(ctx, crop, whf, hnd)) {
overlay::Writeback *wb = overlay::Writeback::getInstance();
whf.format = wb->getOutputFormat();
}
if((has90Transform(layer) or downscale) and isRotationDoable(ctx, hnd)) {
(*rot) = ctx->mRotMgr->getNext();
if((*rot) == NULL) return -1;
ctx->mLayerRotMap[dpy]->add(layer, *rot);
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
return -1;
}
updateSource(orient, whf, crop, *rot);
rotFlags |= ROT_PREROTATED;
}
eMdpFlags mdpFlagsR = mdpFlagsL;
setMdpFlags(mdpFlagsR, OV_MDSS_MDP_RIGHT_MIXER);
hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0};
hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0};
const int lSplit = getLeftSplit(ctx, dpy);
// Calculate Left rects
if(dst.left < lSplit) {
tmp_cropL = crop;
tmp_dstL = dst;
hwc_rect_t scissor = {0, 0, lSplit, hw_h };
scissor = getIntersection(ctx->mViewFrame[dpy], scissor);
qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0);
}
// Calculate Right rects
if(dst.right > lSplit) {
tmp_cropR = crop;
tmp_dstR = dst;
hwc_rect_t scissor = {lSplit, 0, hw_w, hw_h };
scissor = getIntersection(ctx->mViewFrame[dpy], scissor);
qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0);
}
sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd);
//When buffer is H-flipped, contents of mixer config also needs to swapped
//Not needed if the layer is confined to one half of the screen.
//If rotator has been used then it has also done the flips, so ignore them.
if((orient & OVERLAY_TRANSFORM_FLIP_H) && (dst.left < lSplit) &&
(dst.right > lSplit) && (*rot) == NULL) {
hwc_rect_t new_cropR;
new_cropR.left = tmp_cropL.left;
new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left);
hwc_rect_t new_cropL;
new_cropL.left = new_cropR.right;
new_cropL.right = tmp_cropR.right;
tmp_cropL.left = new_cropL.left;
tmp_cropL.right = new_cropL.right;
tmp_cropR.left = new_cropR.left;
tmp_cropR.right = new_cropR.right;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
//configure left mixer
if(lDest != OV_INVALID) {
PipeArgs pargL(mdpFlagsL, whf, z,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargL, orient,
tmp_cropL, tmp_dstL, metadata, lDest) < 0) {
ALOGE("%s: commit failed for left mixer config", __FUNCTION__);
return -1;
}
}
//configure right mixer
if(rDest != OV_INVALID) {
PipeArgs pargR(mdpFlagsR, whf, z,
static_cast<eRotFlags>(rotFlags),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
tmp_dstR.right = tmp_dstR.right - lSplit;
tmp_dstR.left = tmp_dstR.left - lSplit;
if(configMdp(ctx->mOverlay, pargR, orient,
tmp_cropR, tmp_dstR, metadata, rDest) < 0) {
ALOGE("%s: commit failed for right mixer config", __FUNCTION__);
return -1;
}
}
return 0;
}
int configureSourceSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z,
const eDest& lDest, const eDest& rDest,
Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);;
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
const int downscale = 0;
int rotFlags = ROT_FLAGS_NONE;
//Splitting only YUV layer on primary panel needs different zorders
//for both layers as both the layers are configured to single mixer
eZorder lz = z;
eZorder rz = (eZorder)(z + 1);
Whf whf(getWidth(hnd), getHeight(hnd),
getMdpFormat(hnd->format), (uint32_t)hnd->size);
// update source crop and destination position of AIV video layer.
if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) {
updateCoordinates(ctx, crop, dst, dpy);
}
/* Calculate the external display position based on MDP downscale,
ActionSafe, and extorientation features. */
calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient);
setMdpFlags(ctx, layer, mdpFlagsL, 0, transform);
trimLayer(ctx, dpy, transform, crop, dst);
if(has90Transform(layer) && isRotationDoable(ctx, hnd)) {
(*rot) = ctx->mRotMgr->getNext();
if((*rot) == NULL) return -1;
ctx->mLayerRotMap[dpy]->add(layer, *rot);
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
return -1;
}
updateSource(orient, whf, crop, *rot);
rotFlags |= ROT_PREROTATED;
}
eMdpFlags mdpFlagsR = mdpFlagsL;
int lSplit = dst.left + (dst.right - dst.left)/2;
hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0};
hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0};
if(lDest != OV_INVALID) {
tmp_cropL = crop;
tmp_dstL = dst;
hwc_rect_t scissor = {dst.left, dst.top, lSplit, dst.bottom };
qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0);
}
if(rDest != OV_INVALID) {
tmp_cropR = crop;
tmp_dstR = dst;
hwc_rect_t scissor = {lSplit, dst.top, dst.right, dst.bottom };
qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0);
}
sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd);
//When buffer is H-flipped, contents of mixer config also needs to swapped
//Not needed if the layer is confined to one half of the screen.
//If rotator has been used then it has also done the flips, so ignore them.
if((orient & OVERLAY_TRANSFORM_FLIP_H) && lDest != OV_INVALID
&& rDest != OV_INVALID && (*rot) == NULL) {
hwc_rect_t new_cropR;
new_cropR.left = tmp_cropL.left;
new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left);
hwc_rect_t new_cropL;
new_cropL.left = new_cropR.right;
new_cropL.right = tmp_cropR.right;
tmp_cropL.left = new_cropL.left;
tmp_cropL.right = new_cropL.right;
tmp_cropR.left = new_cropR.left;
tmp_cropR.right = new_cropR.right;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
//configure left half
if(lDest != OV_INVALID) {
PipeArgs pargL(mdpFlagsL, whf, lz,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargL, orient,
tmp_cropL, tmp_dstL, metadata, lDest) < 0) {
ALOGE("%s: commit failed for left half config", __FUNCTION__);
return -1;
}
}
//configure right half
if(rDest != OV_INVALID) {
PipeArgs pargR(mdpFlagsR, whf, rz,
static_cast<eRotFlags>(rotFlags),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargR, orient,
tmp_cropR, tmp_dstR, metadata, rDest) < 0) {
ALOGE("%s: commit failed for right half config", __FUNCTION__);
return -1;
}
}
return 0;
}
bool canUseRotator(hwc_context_t *ctx, int dpy) {
if(ctx->mOverlay->isDMAMultiplexingSupported() &&
isSecondaryConnected(ctx) &&
!ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isPause) {
/* mdss driver on certain targets support multiplexing of DMA pipe
* in LINE and BLOCK modes for writeback panels.
*/
if(dpy == HWC_DISPLAY_PRIMARY)
return false;
}
if((ctx->mMDP.version == qdutils::MDP_V3_0_4)
||(ctx->mMDP.version == qdutils::MDP_V3_0_5))
return false;
return true;
}
int getLeftSplit(hwc_context_t *ctx, const int& dpy) {
//Default even split for all displays with high res
int lSplit = ctx->dpyAttr[dpy].xres / 2;
if(dpy == HWC_DISPLAY_PRIMARY &&
qdutils::MDPVersion::getInstance().getLeftSplit()) {
//Override if split published by driver for primary
lSplit = qdutils::MDPVersion::getInstance().getLeftSplit();
}
return lSplit;
}
bool isDisplaySplit(hwc_context_t* ctx, int dpy) {
qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance();
if(ctx->dpyAttr[dpy].xres > mdpHw.getMaxMixerWidth()) {
return true;
}
if(dpy == HWC_DISPLAY_PRIMARY && mdpHw.getRightSplit()) {
return true;
}
return false;
}
//clear prev layer prop flags and realloc for current frame
void reset_layer_prop(hwc_context_t* ctx, int dpy, int numAppLayers) {
if(ctx->layerProp[dpy]) {
delete[] ctx->layerProp[dpy];
ctx->layerProp[dpy] = NULL;
}
ctx->layerProp[dpy] = new LayerProp[numAppLayers];
}
bool isAbcInUse(hwc_context_t *ctx){
return (ctx->enableABC && ctx->listStats[0].renderBufIndexforABC == 0);
}
void dumpBuffer(private_handle_t *ohnd, char *bufferName) {
if (ohnd != NULL && ohnd->base) {
char dumpFilename[PATH_MAX];
bool bResult = false;
int width = getWidth(ohnd);
int height = getHeight(ohnd);
int format = ohnd->format;
//dummy aligned w & h.
int alW = 0, alH = 0;
int size = getBufferSizeAndDimensions(width, height, format, alW, alH);
snprintf(dumpFilename, sizeof(dumpFilename), "/data/%s.%s.%dx%d.raw",
bufferName,
overlay::utils::getFormatString(utils::getMdpFormat(format)),
width, height);
FILE* fp = fopen(dumpFilename, "w+");
if (NULL != fp) {
bResult = (bool) fwrite((void*)ohnd->base, size, 1, fp);
fclose(fp);
}
ALOGD("Buffer[%s] Dump to %s: %s",
bufferName, dumpFilename, bResult ? "Success" : "Fail");
}
}
bool isGLESComp(hwc_context_t *ctx,
hwc_display_contents_1_t* list) {
int numAppLayers = ctx->listStats[HWC_DISPLAY_PRIMARY].numAppLayers;
for(int index = 0; index < numAppLayers; index++) {
hwc_layer_1_t* layer = &(list->hwLayers[index]);
if(layer->compositionType == HWC_FRAMEBUFFER)
return true;
}
return false;
}
void setGPUHint(hwc_context_t* ctx, hwc_display_contents_1_t* list) {
struct gpu_hint_info *gpuHint = &ctx->mGPUHintInfo;
if(!gpuHint->mGpuPerfModeEnable || !ctx || !list)
return;
#ifdef QCOM_BSP
/* Set the GPU hint flag to high for MIXED/GPU composition only for
first frame after MDP -> GPU/MIXED mode transition. Set the GPU
hint to default if the previous composition is GPU or current GPU
composition is due to idle fallback */
if(!gpuHint->mEGLDisplay || !gpuHint->mEGLContext) {
gpuHint->mEGLDisplay = eglGetCurrentDisplay();
if(!gpuHint->mEGLDisplay) {
ALOGW("%s Warning: EGL current display is NULL", __FUNCTION__);
return;
}
gpuHint->mEGLContext = eglGetCurrentContext();
if(!gpuHint->mEGLContext) {
ALOGW("%s Warning: EGL current context is NULL", __FUNCTION__);
return;
}
}
if(isGLESComp(ctx, list)) {
if(gpuHint->mCompositionState != COMPOSITION_STATE_GPU
&& !MDPComp::isIdleFallback()) {
EGLint attr_list[] = {EGL_GPU_HINT_1,
EGL_GPU_LEVEL_3,
EGL_NONE };
if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_3) &&
!eglGpuPerfHintQCOM(gpuHint->mEGLDisplay,
gpuHint->mEGLContext, attr_list)) {
ALOGW("eglGpuPerfHintQCOM failed for Built in display");
} else {
gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_3;
gpuHint->mCompositionState = COMPOSITION_STATE_GPU;
}
} else {
EGLint attr_list[] = {EGL_GPU_HINT_1,
EGL_GPU_LEVEL_0,
EGL_NONE };
if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_0) &&
!eglGpuPerfHintQCOM(gpuHint->mEGLDisplay,
gpuHint->mEGLContext, attr_list)) {
ALOGW("eglGpuPerfHintQCOM failed for Built in display");
} else {
gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_0;
}
if(MDPComp::isIdleFallback()) {
gpuHint->mCompositionState = COMPOSITION_STATE_IDLE_FALLBACK;
}
}
} else {
/* set the GPU hint flag to default for MDP composition */
EGLint attr_list[] = {EGL_GPU_HINT_1,
EGL_GPU_LEVEL_0,
EGL_NONE };
if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_0) &&
!eglGpuPerfHintQCOM(gpuHint->mEGLDisplay,
gpuHint->mEGLContext, attr_list)) {
ALOGW("eglGpuPerfHintQCOM failed for Built in display");
} else {
gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_0;
}
gpuHint->mCompositionState = COMPOSITION_STATE_MDP;
}
#endif
}
bool isPeripheral(const hwc_rect_t& rect1, const hwc_rect_t& rect2) {
// To be peripheral, 3 boundaries should match.
uint8_t eqBounds = 0;
if (rect1.left == rect2.left)
eqBounds++;
if (rect1.top == rect2.top)
eqBounds++;
if (rect1.right == rect2.right)
eqBounds++;
if (rect1.bottom == rect2.bottom)
eqBounds++;
return (eqBounds == 3);
}
void processBootAnimCompleted(hwc_context_t *ctx) {
char value[PROPERTY_VALUE_MAX];
int boot_finished = 0, ret = -1;
int (*applyMode)(int) = NULL;
void *modeHandle = NULL;
// Reading property set on boot finish in SF
property_get("service.bootanim.exit", value, "0");
boot_finished = atoi(value);
if (!boot_finished)
return;
modeHandle = dlopen("libmm-qdcm.so", RTLD_NOW);
if (modeHandle) {
*(void **)&applyMode = dlsym(modeHandle, "applyDefaults");
if (applyMode) {
ret = applyMode(HWC_DISPLAY_PRIMARY);
if (ret)
ALOGD("%s: Not able to apply default mode", __FUNCTION__);
} else {
ALOGE("%s: No symbol applyDefaults found", __FUNCTION__);
}
dlclose(modeHandle);
} else {
ALOGE("%s: Not able to load libmm-qdcm.so", __FUNCTION__);
}
ctx->mBootAnimCompleted = true;
}
void BwcPM::setBwc(const hwc_context_t *ctx, const int& dpy,
const private_handle_t *hnd,
const hwc_rect_t& crop, const hwc_rect_t& dst,
const int& transform,const int& downscale,
ovutils::eMdpFlags& mdpFlags) {
//Target doesnt support Bwc
qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance();
if(not mdpHw.supportsBWC()) {
return;
}
//Disabled at runtime
if(not ctx->mBWCEnabled) return;
//BWC not supported with rot-downscale
if(downscale) return;
//Not enabled for secondary displays
if(dpy) return;
//Not enabled for non-video buffers
if(not isYuvBuffer(hnd)) return;
int src_w = crop.right - crop.left;
int src_h = crop.bottom - crop.top;
int dst_w = dst.right - dst.left;
int dst_h = dst.bottom - dst.top;
if(transform & HAL_TRANSFORM_ROT_90) {
swap(src_w, src_h);
}
//src width > MAX mixer supported dim
if(src_w > (int) qdutils::MDPVersion::getInstance().getMaxPipeWidth()) {
return;
}
//Decimation necessary, cannot use BWC. H/W requirement.
if(qdutils::MDPVersion::getInstance().supportsDecimation()) {
uint8_t horzDeci = 0;
uint8_t vertDeci = 0;
ovutils::getDecimationFactor(src_w, src_h, dst_w, dst_h, horzDeci,
vertDeci);
if(horzDeci || vertDeci) return;
}
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDSS_MDP_BWC_EN);
}
void LayerRotMap::add(hwc_layer_1_t* layer, Rotator *rot) {
if(mCount >= RotMgr::MAX_ROT_SESS) return;
mLayer[mCount] = layer;
mRot[mCount] = rot;
mCount++;
}
void LayerRotMap::reset() {
for (int i = 0; i < RotMgr::MAX_ROT_SESS; i++) {
mLayer[i] = 0;
mRot[i] = 0;
}
mCount = 0;
}
void LayerRotMap::clear() {
RotMgr::getInstance()->markUnusedTop(mCount);
reset();
}
bool LayerRotMap::isRotCached(uint32_t index) const {
overlay::Rotator* rot = getRot(index);
hwc_layer_1_t* layer = getLayer(index);
if(rot and layer and layer->handle) {
private_handle_t *hnd = (private_handle_t *)(layer->handle);
return (rot->isRotCached(hnd->fd,(uint32_t)(hnd->offset)));
}
return false;
}
void LayerRotMap::setReleaseFd(const int& fence) {
for(uint32_t i = 0; i < mCount; i++) {
if(mRot[i] and mLayer[i] and mLayer[i]->handle) {
/* Ensure that none of the above (Rotator-instance,
* layer and layer-handle) are NULL*/
if(isRotCached(i))
mRot[i]->setPrevBufReleaseFd(dup(fence));
else
mRot[i]->setCurrBufReleaseFd(dup(fence));
}
}
}
hwc_rect expandROIFromMidPoint(hwc_rect roi, hwc_rect fullFrame) {
int lRoiWidth = 0, rRoiWidth = 0;
int half_frame_width = fullFrame.right/2;
hwc_rect lFrame = fullFrame;
hwc_rect rFrame = fullFrame;
lFrame.right = (lFrame.right - lFrame.left)/2;
rFrame.left = lFrame.right;
hwc_rect lRoi = getIntersection(roi, lFrame);
hwc_rect rRoi = getIntersection(roi, rFrame);
lRoiWidth = lRoi.right - lRoi.left;
rRoiWidth = rRoi.right - rRoi.left;
if(lRoiWidth && rRoiWidth) {
if(lRoiWidth < rRoiWidth)
roi.left = half_frame_width - rRoiWidth;
else
roi.right = half_frame_width + lRoiWidth;
}
return roi;
}
void resetROI(hwc_context_t *ctx, const int dpy) {
const int fbXRes = (int)ctx->dpyAttr[dpy].xres;
const int fbYRes = (int)ctx->dpyAttr[dpy].yres;
if(isDisplaySplit(ctx, dpy)) {
const int lSplit = getLeftSplit(ctx, dpy);
ctx->listStats[dpy].lRoi = (struct hwc_rect){0, 0, lSplit, fbYRes};
ctx->listStats[dpy].rRoi = (struct hwc_rect){lSplit, 0, fbXRes, fbYRes};
} else {
ctx->listStats[dpy].lRoi = (struct hwc_rect){0, 0,fbXRes, fbYRes};
ctx->listStats[dpy].rRoi = (struct hwc_rect){0, 0, 0, 0};
}
}
hwc_rect_t getSanitizeROI(struct hwc_rect roi, hwc_rect boundary)
{
if(!isValidRect(roi))
return roi;
struct hwc_rect t_roi = roi;
const int LEFT_ALIGN = qdutils::MDPVersion::getInstance().getLeftAlign();
const int WIDTH_ALIGN = qdutils::MDPVersion::getInstance().getWidthAlign();
const int TOP_ALIGN = qdutils::MDPVersion::getInstance().getTopAlign();
const int HEIGHT_ALIGN = qdutils::MDPVersion::getInstance().getHeightAlign();
const int MIN_WIDTH = qdutils::MDPVersion::getInstance().getMinROIWidth();
const int MIN_HEIGHT = qdutils::MDPVersion::getInstance().getMinROIHeight();
/* Align to minimum width recommended by the panel */
if((t_roi.right - t_roi.left) < MIN_WIDTH) {
if((t_roi.left + MIN_WIDTH) > boundary.right)
t_roi.left = t_roi.right - MIN_WIDTH;
else
t_roi.right = t_roi.left + MIN_WIDTH;
}
/* Align to minimum height recommended by the panel */
if((t_roi.bottom - t_roi.top) < MIN_HEIGHT) {
if((t_roi.top + MIN_HEIGHT) > boundary.bottom)
t_roi.top = t_roi.bottom - MIN_HEIGHT;
else
t_roi.bottom = t_roi.top + MIN_HEIGHT;
}
/* Align left and width to meet panel restrictions */
if(LEFT_ALIGN)
t_roi.left = t_roi.left - (t_roi.left % LEFT_ALIGN);
if(WIDTH_ALIGN) {
int width = t_roi.right - t_roi.left;
width = WIDTH_ALIGN * ((width + (WIDTH_ALIGN - 1)) / WIDTH_ALIGN);
t_roi.right = t_roi.left + width;
if(t_roi.right > boundary.right) {
t_roi.right = boundary.right;
t_roi.left = t_roi.right - width;
if(LEFT_ALIGN)
t_roi.left = t_roi.left - (t_roi.left % LEFT_ALIGN);
}
}
/* Align top and height to meet panel restrictions */
if(TOP_ALIGN)
t_roi.top = t_roi.top - (t_roi.top % TOP_ALIGN);
if(HEIGHT_ALIGN) {
int height = t_roi.bottom - t_roi.top;
height = HEIGHT_ALIGN * ((height + (HEIGHT_ALIGN - 1)) / HEIGHT_ALIGN);
t_roi.bottom = t_roi.top + height;
if(t_roi.bottom > boundary.bottom) {
t_roi.bottom = boundary.bottom;
t_roi.top = t_roi.bottom - height;
if(TOP_ALIGN)
t_roi.top = t_roi.top - (t_roi.top % TOP_ALIGN);
}
}
return t_roi;
}
void handle_pause(hwc_context_t* ctx, int dpy) {
if(ctx->dpyAttr[dpy].connected) {
ctx->mDrawLock.lock();
ctx->dpyAttr[dpy].isActive = true;
ctx->dpyAttr[dpy].isPause = true;
ctx->mDrawLock.unlock();
ctx->proc->invalidate(ctx->proc);
usleep(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period
* 2 / 1000);
// At this point all the pipes used by External have been
// marked as UNSET.
ctx->mDrawLock.lock();
// Perform commit to unstage the pipes.
if (!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail! for %d dpy",
__FUNCTION__, dpy);
}
ctx->mDrawLock.unlock();
ctx->proc->invalidate(ctx->proc);
}
return;
}
void handle_resume(hwc_context_t* ctx, int dpy) {
if(ctx->dpyAttr[dpy].connected) {
ctx->mDrawLock.lock();
ctx->dpyAttr[dpy].isConfiguring = true;
ctx->dpyAttr[dpy].isActive = true;
ctx->mDrawLock.unlock();
ctx->proc->invalidate(ctx->proc);
usleep(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period
* 2 / 1000);
//At this point external has all the pipes it would need.
ctx->mDrawLock.lock();
ctx->dpyAttr[dpy].isPause = false;
ctx->mDrawLock.unlock();
ctx->proc->invalidate(ctx->proc);
}
return;
}
void clearPipeResources(hwc_context_t* ctx, int dpy) {
if(ctx->mOverlay) {
ctx->mOverlay->configBegin();
ctx->mOverlay->configDone();
}
if(ctx->mRotMgr) {
ctx->mRotMgr->clear();
}
// Call a display commit to ensure that pipes and associated
// fd's are cleaned up.
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit failed for %d", __FUNCTION__, dpy);
}
}
// Handles online events when HDMI is the primary display. In particular,
// online events for hdmi connected before AND after boot up and HWC init.
void handle_online(hwc_context_t* ctx, int dpy) {
// Close the current fd if it was opened earlier on when HWC
// was initialized.
if (ctx->dpyAttr[dpy].fd >= 0) {
close(ctx->dpyAttr[dpy].fd);
ctx->dpyAttr[dpy].fd = -1;
}
// TODO: If HDMI is connected after the display has booted up,
// and the best configuration is different from the default
// then we need to deal with this appropriately.
ctx->mHDMIDisplay->configure();
updateDisplayInfo(ctx, dpy);
initCompositionResources(ctx, dpy);
ctx->dpyAttr[dpy].connected = true;
}
// Handles offline events for HDMI. This can be used for offline events
// initiated by the HDMI driver and the CEC framework.
void handle_offline(hwc_context_t* ctx, int dpy) {
destroyCompositionResources(ctx, dpy);
// Clear all pipe resources and call a display commit to ensure
// that all the fd's are closed. This will ensure that the HDMI
// core turns off and that we receive an event the next time the
// cable is connected.
if (ctx->mHDMIDisplay->isHDMIPrimaryDisplay()) {
clearPipeResources(ctx, dpy);
}
ctx->mHDMIDisplay->teardown();
resetDisplayInfo(ctx, dpy);
ctx->dpyAttr[dpy].connected = false;
ctx->dpyAttr[dpy].isActive = false;
}
};//namespace qhwc