blob: b6952d3a48a2f5bee13a2b93415e48bbf3f267a7 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C) 2012-2013, The Linux Foundation. All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL)
#include <fcntl.h>
#include <errno.h>
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <EGL/egl.h>
#include <utils/Trace.h>
#include <sys/ioctl.h>
#include <overlay.h>
#include <overlayRotator.h>
#include <overlayWriteback.h>
#include <mdp_version.h>
#include "hwc_utils.h"
#include "hwc_fbupdate.h"
#include "hwc_mdpcomp.h"
#include "hwc_dump_layers.h"
#include "external.h"
#include "hwc_copybit.h"
#include "hwc_ad.h"
#include "profiler.h"
#include "hwc_vpuclient.h"
using namespace qhwc;
using namespace overlay;
#define VSYNC_DEBUG 0
#define BLANK_DEBUG 1
static int hwc_device_open(const struct hw_module_t* module,
const char* name,
struct hw_device_t** device);
static struct hw_module_methods_t hwc_module_methods = {
open: hwc_device_open
};
static void reset_panel(struct hwc_composer_device_1* dev);
hwc_module_t HAL_MODULE_INFO_SYM = {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 2,
version_minor: 0,
id: HWC_HARDWARE_MODULE_ID,
name: "Qualcomm Hardware Composer Module",
author: "CodeAurora Forum",
methods: &hwc_module_methods,
dso: 0,
reserved: {0},
}
};
/* In case of non-hybrid WFD session, we are fooling SF by piggybacking on
* HDMI display ID for virtual. This helper is needed to differentiate their
* paths in HAL.
* TODO: Not needed once we have WFD client working on top of Google API's */
static int getDpyforExternalDisplay(hwc_context_t *ctx, int dpy) {
if(dpy == HWC_DISPLAY_EXTERNAL && ctx->mVirtualonExtActive)
return HWC_DISPLAY_VIRTUAL;
return dpy;
}
/*
* Save callback functions registered to HWC
*/
static void hwc_registerProcs(struct hwc_composer_device_1* dev,
hwc_procs_t const* procs)
{
ALOGI("%s", __FUNCTION__);
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
ALOGE("%s: Invalid context", __FUNCTION__);
return;
}
ctx->proc = procs;
// Now that we have the functions needed, kick off
// the uevent & vsync threads
init_uevent_thread(ctx);
init_vsync_thread(ctx);
}
//Helper
static void reset(hwc_context_t *ctx, int numDisplays,
hwc_display_contents_1_t** displays) {
for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
hwc_display_contents_1_t *list = displays[i];
// XXX:SurfaceFlinger no longer guarantees that this
// value is reset on every prepare. However, for the layer
// cache we need to reset it.
// We can probably rethink that later on
if (LIKELY(list && list->numHwLayers > 1)) {
for(uint32_t j = 0; j < list->numHwLayers; j++) {
if(list->hwLayers[j].compositionType != HWC_FRAMEBUFFER_TARGET)
list->hwLayers[j].compositionType = HWC_FRAMEBUFFER;
}
}
if(ctx->mFBUpdate[i])
ctx->mFBUpdate[i]->reset();
if(ctx->mCopyBit[i])
ctx->mCopyBit[i]->reset();
if(ctx->mLayerRotMap[i])
ctx->mLayerRotMap[i]->reset();
}
ctx->mAD->reset();
MDPComp::reset();
}
//clear prev layer prop flags and realloc for current frame
static void reset_layer_prop(hwc_context_t* ctx, int dpy, int numAppLayers) {
if(ctx->layerProp[dpy]) {
delete[] ctx->layerProp[dpy];
ctx->layerProp[dpy] = NULL;
}
ctx->layerProp[dpy] = new LayerProp[numAppLayers];
}
static void handleGeomChange(hwc_context_t *ctx, int dpy,
hwc_display_contents_1_t *list) {
/* No point to calling overlay_set on MDP3 */
if(list->flags & HWC_GEOMETRY_CHANGED &&
ctx->mMDP.version >= qdutils::MDP_V4_0) {
ctx->mOverlay->forceSet(dpy);
}
}
static int hwc_prepare_primary(hwc_composer_device_1 *dev,
hwc_display_contents_1_t *list) {
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
const int dpy = HWC_DISPLAY_PRIMARY;
if (LIKELY(list && list->numHwLayers > 1) &&
ctx->dpyAttr[dpy].isActive) {
reset_layer_prop(ctx, dpy, list->numHwLayers - 1);
handleGeomChange(ctx, dpy, list);
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
if(fbLayer->handle) {
setListStats(ctx, list, dpy);
#ifdef VPU_TARGET
ctx->mVPUClient->prepare(ctx, list);
#endif
if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) {
const int fbZ = 0;
ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ);
}
if (ctx->mMDP.version < qdutils::MDP_V4_0) {
if(ctx->mCopyBit[dpy])
ctx->mCopyBit[dpy]->prepare(ctx, list, dpy);
}
}
}
return 0;
}
static int hwc_prepare_external(hwc_composer_device_1 *dev,
hwc_display_contents_1_t *list) {
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
const int dpy = HWC_DISPLAY_EXTERNAL;
if (LIKELY(list && list->numHwLayers > 1) &&
ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected) {
reset_layer_prop(ctx, dpy, list->numHwLayers - 1);
handleGeomChange(ctx, dpy, list);
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
if(!ctx->dpyAttr[dpy].isPause) {
if(fbLayer->handle) {
ctx->dpyAttr[dpy].isConfiguring = false;
setListStats(ctx, list, dpy);
if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) {
const int fbZ = 0;
ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ);
}
if(ctx->listStats[dpy].isDisplayAnimating) {
// Mark all app layers as HWC_OVERLAY for external during
// animation, so that SF doesnt draw it on FB
for(int i = 0 ;i < ctx->listStats[dpy].numAppLayers; i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
layer->compositionType = HWC_OVERLAY;
}
}
}
} else {
// External Display is in Pause state.
// ToDo:
// Mark all application layers as OVERLAY so that
// GPU will not compose. This is done for power
// optimization
}
}
return 0;
}
static int hwc_prepare_virtual(hwc_composer_device_1 *dev,
hwc_display_contents_1_t *list) {
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
const int dpy = HWC_DISPLAY_VIRTUAL;
if (LIKELY(list && list->numHwLayers > 1) &&
ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected) {
reset_layer_prop(ctx, dpy, list->numHwLayers - 1);
handleGeomChange(ctx, dpy, list);
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
if(!ctx->dpyAttr[dpy].isPause) {
if(fbLayer->handle) {
ctx->dpyAttr[dpy].isConfiguring = false;
setListStats(ctx, list, dpy);
if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) {
const int fbZ = 0;
ctx->mFBUpdate[dpy]->prepare(ctx, list, fbZ);
}
if(ctx->listStats[dpy].isDisplayAnimating) {
// Mark all app layers as HWC_OVERLAY for virtual during
// animation, so that SF doesnt draw it on FB
for(int i = 0 ;i < ctx->listStats[dpy].numAppLayers; i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
layer->compositionType = HWC_OVERLAY;
}
}
}
} else {
// Virtual Display is in Pause state.
// ToDo:
// Mark all application layers as OVERLAY so that
// GPU will not compose. This is done for power
// optimization
}
}
return 0;
}
static int hwc_prepare(hwc_composer_device_1 *dev, size_t numDisplays,
hwc_display_contents_1_t** displays)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
if (ctx->mPanelResetStatus) {
ALOGW("%s: panel is in bad state. reset the panel", __FUNCTION__);
reset_panel(dev);
}
//Will be unlocked at the end of set
ctx->mDrawLock.lock();
reset(ctx, numDisplays, displays);
ctx->mOverlay->configBegin();
ctx->mRotMgr->configBegin();
overlay::Writeback::configBegin();
for (int32_t i = numDisplays; i >= 0; i--) {
hwc_display_contents_1_t *list = displays[i];
int dpy = getDpyforExternalDisplay(ctx, i);
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
ret = hwc_prepare_primary(dev, list);
break;
case HWC_DISPLAY_EXTERNAL:
ret = hwc_prepare_external(dev, list);
break;
case HWC_DISPLAY_VIRTUAL:
ret = hwc_prepare_virtual(dev, list);
break;
default:
ret = -EINVAL;
}
}
ctx->mOverlay->configDone();
ctx->mRotMgr->configDone();
overlay::Writeback::configDone();
return ret;
}
static int hwc_eventControl(struct hwc_composer_device_1* dev, int dpy,
int event, int enable)
{
ATRACE_CALL();
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
switch(event) {
case HWC_EVENT_VSYNC:
if (ctx->vstate.enable == enable)
break;
ret = hwc_vsync_control(ctx, dpy, enable);
if(ret == 0)
ctx->vstate.enable = !!enable;
ALOGD_IF (VSYNC_DEBUG, "VSYNC state changed to %s",
(enable)?"ENABLED":"DISABLED");
break;
#ifdef QCOM_BSP
case HWC_EVENT_ORIENTATION:
if(dpy == HWC_DISPLAY_PRIMARY) {
Locker::Autolock _l(ctx->mDrawLock);
// store the primary display orientation
// will be used in hwc_video::configure to disable
// rotation animation on external display
ctx->deviceOrientation = enable;
}
break;
#endif
default:
ret = -EINVAL;
}
return ret;
}
static int hwc_blank(struct hwc_composer_device_1* dev, int dpy, int blank)
{
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
int ret = 0, value = 0;
/* In case of non-hybrid WFD session, we are fooling SF by
* piggybacking on HDMI display ID for virtual.
* TODO: Not needed once we have WFD client working on top
* of Google API's.
*/
dpy = getDpyforExternalDisplay(ctx,dpy);
ALOGD_IF(BLANK_DEBUG, "%s: %s display: %d", __FUNCTION__,
blank==1 ? "Blanking":"Unblanking", dpy);
if(blank) {
// free up all the overlay pipes in use
// when we get a blank for either display
// makes sure that all pipes are freed
ctx->mOverlay->configBegin();
ctx->mOverlay->configDone();
ctx->mRotMgr->clear();
overlay::Writeback::clear();
}
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
value = blank ? FB_BLANK_POWERDOWN : FB_BLANK_UNBLANK;
if(ioctl(ctx->dpyAttr[dpy].fd, FBIOBLANK, value) < 0 ) {
ALOGE("%s: Failed to handle blank event(%d) for Primary!!",
__FUNCTION__, blank );
return -1;
}
if(!blank) {
// Enable HPD here, as during bootup unblank is called
// when SF is completely initialized
ctx->mExtDisplay->setHPD(1);
}
ctx->dpyAttr[dpy].isActive = !blank;
if(ctx->mVirtualonExtActive) {
/* if mVirtualonExtActive is true, display hal will
* receive unblank calls for non-hybrid WFD solution
* since we piggyback on HDMI.
* TODO: Not needed once we have WFD client working on top
of Google API's */
break;
}
case HWC_DISPLAY_VIRTUAL:
/* There are two ways to reach this block of code.
* Display hal has received unblank call on HWC_DISPLAY_EXTERNAL
and ctx->mVirtualonExtActive is true. In this case, non-hybrid
WFD is active. If so, getDpyforExternalDisplay will return dpy
as HWC_DISPLAY_VIRTUAL.
* Display hal has received unblank call on HWC_DISPLAY_PRIMARY
and since SF is not aware of VIRTUAL DISPLAY being handle by HWC,
it wont send blank / unblank events for it. We piggyback on
PRIMARY DISPLAY events to release mdp pipes and
activate/deactivate VIRTUAL DISPLAY.
* TODO: This separate case statement is not needed once we have
WFD client working on top of Google API's.
*/
if(ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected) {
if(blank and (!ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isPause)) {
int dpy = HWC_DISPLAY_VIRTUAL;
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail for virtual!", __FUNCTION__);
ret = -1;
}
}
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isActive = !blank;
}
break;
case HWC_DISPLAY_EXTERNAL:
if(blank) {
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail for external!", __FUNCTION__);
ret = -1;
}
}
ctx->dpyAttr[dpy].isActive = !blank;
break;
default:
return -EINVAL;
}
ALOGD_IF(BLANK_DEBUG, "%s: Done %s display: %d", __FUNCTION__,
blank ? "blanking":"unblanking", dpy);
return ret;
}
static void reset_panel(struct hwc_composer_device_1* dev)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
if (!ctx->mPanelResetStatus)
return;
ALOGD("%s: calling BLANK DISPLAY", __FUNCTION__);
ret = hwc_blank(dev, HWC_DISPLAY_PRIMARY, 1);
if (ret < 0) {
ALOGE("%s: FBIOBLANK failed to BLANK: %s", __FUNCTION__,
strerror(errno));
}
ALOGD("%s: calling UNBLANK DISPLAY and enabling vsync", __FUNCTION__);
ret = hwc_blank(dev, HWC_DISPLAY_PRIMARY, 0);
if (ret < 0) {
ALOGE("%s: FBIOBLANK failed to UNBLANK : %s", __FUNCTION__,
strerror(errno));
}
hwc_vsync_control(ctx, HWC_DISPLAY_PRIMARY, 1);
ctx->mPanelResetStatus = false;
}
static int hwc_query(struct hwc_composer_device_1* dev,
int param, int* value)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
int supported = HWC_DISPLAY_PRIMARY_BIT;
switch (param) {
case HWC_BACKGROUND_LAYER_SUPPORTED:
// Not supported for now
value[0] = 0;
break;
case HWC_DISPLAY_TYPES_SUPPORTED:
if(ctx->mMDP.hasOverlay)
supported |= HWC_DISPLAY_EXTERNAL_BIT;
value[0] = supported;
break;
case HWC_FORMAT_RB_SWAP:
value[0] = 1;
break;
default:
return -EINVAL;
}
return 0;
}
static int hwc_set_primary(hwc_context_t *ctx, hwc_display_contents_1_t* list) {
ATRACE_CALL();
int ret = 0;
const int dpy = HWC_DISPLAY_PRIMARY;
if (LIKELY(list) && ctx->dpyAttr[dpy].isActive) {
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
int fd = -1; //FenceFD from the Copybit(valid in async mode)
bool copybitDone = false;
if(ctx->mCopyBit[dpy])
copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd);
if(list->numHwLayers > 1)
hwc_sync(ctx, list, dpy, fd);
// Dump the layers for primary
if(ctx->mHwcDebug[dpy])
ctx->mHwcDebug[dpy]->dumpLayers(list);
if (!ctx->mMDPComp[dpy]->draw(ctx, list)) {
ALOGE("%s: MDPComp draw failed", __FUNCTION__);
ret = -1;
}
#ifdef VPU_TARGET
ctx->mVPUClient->draw(ctx, list);
#endif
//TODO We dont check for SKIP flag on this layer because we need PAN
//always. Last layer is always FB
private_handle_t *hnd = (private_handle_t *)fbLayer->handle;
if(copybitDone) {
hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer();
}
if(hnd) {
if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) {
ALOGE("%s: FBUpdate draw failed", __FUNCTION__);
ret = -1;
}
}
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd,
ctx->listStats[dpy].roi)) {
ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy);
ret = -1;
}
}
closeAcquireFds(list);
return ret;
}
static int hwc_set_external(hwc_context_t *ctx,
hwc_display_contents_1_t* list)
{
ATRACE_CALL();
int ret = 0;
const int dpy = HWC_DISPLAY_EXTERNAL;
if (LIKELY(list) && ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected &&
!ctx->dpyAttr[dpy].isPause) {
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
int fd = -1; //FenceFD from the Copybit(valid in async mode)
bool copybitDone = false;
if(ctx->mCopyBit[dpy])
copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd);
if(list->numHwLayers > 1)
hwc_sync(ctx, list, dpy, fd);
// Dump the layers for external
if(ctx->mHwcDebug[dpy])
ctx->mHwcDebug[dpy]->dumpLayers(list);
if (!ctx->mMDPComp[dpy]->draw(ctx, list)) {
ALOGE("%s: MDPComp draw failed", __FUNCTION__);
ret = -1;
}
int extOnlyLayerIndex =
ctx->listStats[dpy].extOnlyLayerIndex;
private_handle_t *hnd = (private_handle_t *)fbLayer->handle;
if(extOnlyLayerIndex!= -1) {
hwc_layer_1_t *extLayer = &list->hwLayers[extOnlyLayerIndex];
hnd = (private_handle_t *)extLayer->handle;
} else if(copybitDone) {
hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer();
}
if(hnd && !isYuvBuffer(hnd)) {
if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) {
ALOGE("%s: FBUpdate::draw fail!", __FUNCTION__);
ret = -1;
}
}
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy);
ret = -1;
}
}
closeAcquireFds(list);
return ret;
}
static int hwc_set_virtual(hwc_context_t *ctx,
hwc_display_contents_1_t* list)
{
ATRACE_CALL();
int ret = 0;
const int dpy = HWC_DISPLAY_VIRTUAL;
if (LIKELY(list) && ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected &&
!ctx->dpyAttr[dpy].isPause) {
uint32_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
int fd = -1; //FenceFD from the Copybit(valid in async mode)
bool copybitDone = false;
if(ctx->mCopyBit[dpy])
copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd);
if(list->numHwLayers > 1)
hwc_sync(ctx, list, dpy, fd);
// Dump the layers for virtual
if(ctx->mHwcDebug[dpy])
ctx->mHwcDebug[dpy]->dumpLayers(list);
if (!ctx->mMDPComp[dpy]->draw(ctx, list)) {
ALOGE("%s: MDPComp draw failed", __FUNCTION__);
ret = -1;
}
int extOnlyLayerIndex =
ctx->listStats[dpy].extOnlyLayerIndex;
private_handle_t *hnd = (private_handle_t *)fbLayer->handle;
if(extOnlyLayerIndex!= -1) {
hwc_layer_1_t *extLayer = &list->hwLayers[extOnlyLayerIndex];
hnd = (private_handle_t *)extLayer->handle;
} else if(copybitDone) {
hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer();
}
if(hnd && !isYuvBuffer(hnd)) {
if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) {
ALOGE("%s: FBUpdate::draw fail!", __FUNCTION__);
ret = -1;
}
}
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy);
ret = -1;
}
}
closeAcquireFds(list);
if (list && !ctx->mVirtualonExtActive && (list->retireFenceFd < 0) ) {
// SF assumes HWC waits for the acquire fence and returns a new fence
// that signals when we're done. Since we don't wait, and also don't
// touch the buffer, we can just handle the acquire fence back to SF
// as the retire fence.
list->retireFenceFd = list->outbufAcquireFenceFd;
}
return ret;
}
static int hwc_set(hwc_composer_device_1 *dev,
size_t numDisplays,
hwc_display_contents_1_t** displays)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
for (uint32_t i = 0; i <= numDisplays; i++) {
hwc_display_contents_1_t* list = displays[i];
int dpy = getDpyforExternalDisplay(ctx, i);
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
ret = hwc_set_primary(ctx, list);
break;
case HWC_DISPLAY_EXTERNAL:
ret = hwc_set_external(ctx, list);
break;
case HWC_DISPLAY_VIRTUAL:
ret = hwc_set_virtual(ctx, list);
break;
default:
ret = -EINVAL;
}
}
// This is only indicative of how many times SurfaceFlinger posts
// frames to the display.
CALC_FPS();
MDPComp::resetIdleFallBack();
ctx->mVideoTransFlag = false;
if(ctx->mRotMgr->getNumActiveSessions() == 0)
Overlay::setDMAMode(Overlay::DMA_LINE_MODE);
//Was locked at the beginning of prepare
ctx->mDrawLock.unlock();
return ret;
}
int hwc_getDisplayConfigs(struct hwc_composer_device_1* dev, int disp,
uint32_t* configs, size_t* numConfigs) {
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
disp = getDpyforExternalDisplay(ctx, disp);
//in 1.1 there is no way to choose a config, report as config id # 0
//This config is passed to getDisplayAttributes. Ignore for now.
switch(disp) {
case HWC_DISPLAY_PRIMARY:
if(*numConfigs > 0) {
configs[0] = 0;
*numConfigs = 1;
}
ret = 0; //NO_ERROR
break;
case HWC_DISPLAY_EXTERNAL:
case HWC_DISPLAY_VIRTUAL:
ret = -1; //Not connected
if(ctx->dpyAttr[disp].connected) {
ret = 0; //NO_ERROR
if(*numConfigs > 0) {
configs[0] = 0;
*numConfigs = 1;
}
}
break;
}
return ret;
}
int hwc_getDisplayAttributes(struct hwc_composer_device_1* dev, int disp,
uint32_t config, const uint32_t* attributes, int32_t* values) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
disp = getDpyforExternalDisplay(ctx, disp);
//If hotpluggable displays(i.e, HDMI, WFD) are inactive return error
if( (disp != HWC_DISPLAY_PRIMARY) && !ctx->dpyAttr[disp].connected) {
return -1;
}
//From HWComposer
static const uint32_t DISPLAY_ATTRIBUTES[] = {
HWC_DISPLAY_VSYNC_PERIOD,
HWC_DISPLAY_WIDTH,
HWC_DISPLAY_HEIGHT,
HWC_DISPLAY_DPI_X,
HWC_DISPLAY_DPI_Y,
HWC_DISPLAY_NO_ATTRIBUTE,
};
const int NUM_DISPLAY_ATTRIBUTES = (sizeof(DISPLAY_ATTRIBUTES) /
sizeof(DISPLAY_ATTRIBUTES)[0]);
for (size_t i = 0; i < NUM_DISPLAY_ATTRIBUTES - 1; i++) {
switch (attributes[i]) {
case HWC_DISPLAY_VSYNC_PERIOD:
values[i] = ctx->dpyAttr[disp].vsync_period;
break;
case HWC_DISPLAY_WIDTH:
values[i] = ctx->dpyAttr[disp].xres;
ALOGD("%s disp = %d, width = %d",__FUNCTION__, disp,
ctx->dpyAttr[disp].xres);
break;
case HWC_DISPLAY_HEIGHT:
values[i] = ctx->dpyAttr[disp].yres;
ALOGD("%s disp = %d, height = %d",__FUNCTION__, disp,
ctx->dpyAttr[disp].yres);
break;
case HWC_DISPLAY_DPI_X:
values[i] = (int32_t) (ctx->dpyAttr[disp].xdpi*1000.0);
break;
case HWC_DISPLAY_DPI_Y:
values[i] = (int32_t) (ctx->dpyAttr[disp].ydpi*1000.0);
break;
default:
ALOGE("Unknown display attribute %d",
attributes[i]);
return -EINVAL;
}
}
return 0;
}
void hwc_dump(struct hwc_composer_device_1* dev, char *buff, int buff_len)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
android::String8 aBuf("");
dumpsys_log(aBuf, "Qualcomm HWC state:\n");
dumpsys_log(aBuf, " MDPVersion=%d\n", ctx->mMDP.version);
dumpsys_log(aBuf, " DisplayPanel=%c\n", ctx->mMDP.panel);
for(int dpy = 0; dpy < HWC_NUM_DISPLAY_TYPES; dpy++) {
if(ctx->mMDPComp[dpy])
ctx->mMDPComp[dpy]->dump(aBuf);
}
char ovDump[2048] = {'\0'};
ctx->mOverlay->getDump(ovDump, 2048);
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
ctx->mRotMgr->getDump(ovDump, 1024);
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
if(Writeback::getDump(ovDump, 1024)) {
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
}
strlcpy(buff, aBuf.string(), buff_len);
}
static int hwc_device_close(struct hw_device_t *dev)
{
if(!dev) {
ALOGE("%s: NULL device pointer", __FUNCTION__);
return -1;
}
closeContext((hwc_context_t*)dev);
free(dev);
return 0;
}
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, HWC_HARDWARE_COMPOSER)) {
struct hwc_context_t *dev;
dev = (hwc_context_t*)malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
//Initialize hwc context
initContext(dev);
//Setup HWC methods
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = HWC_DEVICE_API_VERSION_1_3;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = hwc_device_close;
dev->device.prepare = hwc_prepare;
dev->device.set = hwc_set;
dev->device.eventControl = hwc_eventControl;
dev->device.blank = hwc_blank;
dev->device.query = hwc_query;
dev->device.registerProcs = hwc_registerProcs;
dev->device.dump = hwc_dump;
dev->device.getDisplayConfigs = hwc_getDisplayConfigs;
dev->device.getDisplayAttributes = hwc_getDisplayAttributes;
*device = &dev->device.common;
status = 0;
}
return status;
}