blob: 240ba26c68586a03f66749b704a67f3a3abf0210 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cutils/log.h>
#include <sys/resource.h>
#include <sys/prctl.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <linux/msm_kgsl.h>
#include <EGL/eglplatform.h>
#include <cutils/native_handle.h>
#include <copybit.h>
#include <alloc_controller.h>
#include <memalloc.h>
#include "c2d2.h"
#include "software_converter.h"
#include <dlfcn.h>
using gralloc::IMemAlloc;
using gralloc::IonController;
using gralloc::alloc_data;
C2D_STATUS (*LINK_c2dCreateSurface)( uint32 *surface_id,
uint32 surface_bits,
C2D_SURFACE_TYPE surface_type,
void *surface_definition );
C2D_STATUS (*LINK_c2dUpdateSurface)( uint32 surface_id,
uint32 surface_bits,
C2D_SURFACE_TYPE surface_type,
void *surface_definition );
C2D_STATUS (*LINK_c2dReadSurface)( uint32 surface_id,
C2D_SURFACE_TYPE surface_type,
void *surface_definition,
int32 x, int32 y );
C2D_STATUS (*LINK_c2dDraw)( uint32 target_id,
uint32 target_config, C2D_RECT *target_scissor,
uint32 target_mask_id, uint32 target_color_key,
C2D_OBJECT *objects_list, uint32 num_objects );
C2D_STATUS (*LINK_c2dFinish)( uint32 target_id);
C2D_STATUS (*LINK_c2dFlush)( uint32 target_id, c2d_ts_handle *timestamp);
C2D_STATUS (*LINK_c2dWaitTimestamp)( c2d_ts_handle timestamp );
C2D_STATUS (*LINK_c2dDestroySurface)( uint32 surface_id );
C2D_STATUS (*LINK_c2dMapAddr) ( int mem_fd, void * hostptr, size_t len,
size_t offset, uint32 flags, void ** gpuaddr);
C2D_STATUS (*LINK_c2dUnMapAddr) ( void * gpuaddr);
C2D_STATUS (*LINK_c2dGetDriverCapabilities) ( C2D_DRIVER_INFO * driver_info);
/* create a fence fd for the timestamp */
C2D_STATUS (*LINK_c2dCreateFenceFD) ( uint32 target_id, c2d_ts_handle timestamp,
int32 *fd);
C2D_STATUS (*LINK_c2dFillSurface) ( uint32 surface_id, uint32 fill_color,
C2D_RECT * fill_rect);
/******************************************************************************/
#if defined(COPYBIT_Z180)
#define MAX_SCALE_FACTOR (4096)
#define MAX_DIMENSION (4096)
#else
#error "Unsupported HW version"
#endif
// The following defines can be changed as required i.e. as we encounter
// complex use cases.
#define MAX_RGB_SURFACES 32 // Max. RGB layers currently supported per draw
#define MAX_YUV_2_PLANE_SURFACES 4// Max. 2-plane YUV layers currently supported per draw
#define MAX_YUV_3_PLANE_SURFACES 1// Max. 3-plane YUV layers currently supported per draw
// +1 for the destination surface. We cannot have multiple destination surfaces.
#define MAX_SURFACES (MAX_RGB_SURFACES + MAX_YUV_2_PLANE_SURFACES + MAX_YUV_3_PLANE_SURFACES + 1)
#define NUM_SURFACE_TYPES 3 // RGB_SURFACE + YUV_SURFACE_2_PLANES + YUV_SURFACE_3_PLANES
#define MAX_BLIT_OBJECT_COUNT 50 // Max. blit objects that can be passed per draw
enum {
RGB_SURFACE,
YUV_SURFACE_2_PLANES,
YUV_SURFACE_3_PLANES
};
enum eConversionType {
CONVERT_TO_ANDROID_FORMAT,
CONVERT_TO_C2D_FORMAT
};
enum eC2DFlags {
FLAGS_PREMULTIPLIED_ALPHA = 1<<0,
FLAGS_YUV_DESTINATION = 1<<1,
FLAGS_TEMP_SRC_DST = 1<<2,
FLAGS_UBWC_FORMAT_MODE = 1<<3
};
static gralloc::IAllocController* sAlloc = 0;
/******************************************************************************/
/** State information for each device instance */
struct copybit_context_t {
struct copybit_device_t device;
// Templates for the various source surfaces. These templates are created
// to avoid the expensive create/destroy C2D Surfaces
C2D_OBJECT_STR blit_rgb_object[MAX_RGB_SURFACES];
C2D_OBJECT_STR blit_yuv_2_plane_object[MAX_YUV_2_PLANE_SURFACES];
C2D_OBJECT_STR blit_yuv_3_plane_object[MAX_YUV_3_PLANE_SURFACES];
C2D_OBJECT_STR blit_list[MAX_BLIT_OBJECT_COUNT]; // Z-ordered list of blit objects
C2D_DRIVER_INFO c2d_driver_info;
void *libc2d2;
alloc_data temp_src_buffer;
alloc_data temp_dst_buffer;
unsigned int dst[NUM_SURFACE_TYPES]; // dst surfaces
uintptr_t mapped_gpu_addr[MAX_SURFACES]; // GPU addresses mapped inside copybit
int blit_rgb_count; // Total RGB surfaces being blit
int blit_yuv_2_plane_count; // Total 2 plane YUV surfaces being
int blit_yuv_3_plane_count; // Total 3 plane YUV surfaces being blit
int blit_count; // Total blit objects.
unsigned int trg_transform; /* target transform */
int fb_width;
int fb_height;
int src_global_alpha;
int config_mask;
int dst_surface_type;
bool is_premultiplied_alpha;
void* time_stamp;
bool dst_surface_mapped; // Set when dst surface is mapped to GPU addr
void* dst_surface_base; // Stores the dst surface addr
bool is_src_ubwc_format;
bool is_dst_ubwc_format;
// used for signaling the wait thread
bool wait_timestamp;
pthread_t wait_thread_id;
bool stop_thread;
pthread_mutex_t wait_cleanup_lock;
pthread_cond_t wait_cleanup_cond;
};
struct bufferInfo {
int width;
int height;
int format;
};
struct yuvPlaneInfo {
int yStride; //luma stride
int plane1_stride;
int plane2_stride;
size_t plane1_offset;
size_t plane2_offset;
};
/**
* Common hardware methods
*/
static int open_copybit(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static struct hw_module_methods_t copybit_module_methods = {
.open = open_copybit,
};
/*
* The COPYBIT Module
*/
struct copybit_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = COPYBIT_HARDWARE_MODULE_ID,
.name = "QCT COPYBIT C2D 2.0 Module",
.author = "Qualcomm",
.methods = &copybit_module_methods
}
};
/* thread function which waits on the timeStamp and cleans up the surfaces */
static void* c2d_wait_loop(void* ptr) {
copybit_context_t* ctx = (copybit_context_t*)(ptr);
char thread_name[64] = "copybitWaitThr";
prctl(PR_SET_NAME, (unsigned long) &thread_name, 0, 0, 0);
setpriority(PRIO_PROCESS, 0, HAL_PRIORITY_URGENT_DISPLAY);
while(ctx->stop_thread == false) {
pthread_mutex_lock(&ctx->wait_cleanup_lock);
while(ctx->wait_timestamp == false && !ctx->stop_thread) {
pthread_cond_wait(&(ctx->wait_cleanup_cond),
&(ctx->wait_cleanup_lock));
}
if(ctx->wait_timestamp) {
if(LINK_c2dWaitTimestamp(ctx->time_stamp)) {
ALOGE("%s: LINK_c2dWaitTimeStamp ERROR!!", __FUNCTION__);
}
ctx->wait_timestamp = false;
// Unmap any mapped addresses.
for (int i = 0; i < MAX_SURFACES; i++) {
if (ctx->mapped_gpu_addr[i]) {
LINK_c2dUnMapAddr( (void*)ctx->mapped_gpu_addr[i]);
ctx->mapped_gpu_addr[i] = 0;
}
}
// Reset the counts after the draw.
ctx->blit_rgb_count = 0;
ctx->blit_yuv_2_plane_count = 0;
ctx->blit_yuv_3_plane_count = 0;
ctx->blit_count = 0;
ctx->dst_surface_mapped = false;
ctx->dst_surface_base = 0;
}
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
if(ctx->stop_thread)
break;
}
pthread_exit(NULL);
return NULL;
}
/* convert COPYBIT_FORMAT to C2D format */
static int get_format(int format) {
switch (format) {
case HAL_PIXEL_FORMAT_RGB_565: return C2D_COLOR_FORMAT_565_RGB;
case HAL_PIXEL_FORMAT_RGB_888: return C2D_COLOR_FORMAT_888_RGB |
C2D_FORMAT_SWAP_RB;
case HAL_PIXEL_FORMAT_RGBX_8888: return C2D_COLOR_FORMAT_8888_ARGB |
C2D_FORMAT_SWAP_RB |
C2D_FORMAT_DISABLE_ALPHA;
case HAL_PIXEL_FORMAT_RGBA_8888: return C2D_COLOR_FORMAT_8888_ARGB |
C2D_FORMAT_SWAP_RB;
case HAL_PIXEL_FORMAT_BGRA_8888: return C2D_COLOR_FORMAT_8888_ARGB;
case HAL_PIXEL_FORMAT_RGBA_5551: return C2D_COLOR_FORMAT_5551_RGBA;
case HAL_PIXEL_FORMAT_RGBA_4444: return C2D_COLOR_FORMAT_4444_RGBA;
case HAL_PIXEL_FORMAT_YCbCr_420_SP: return C2D_COLOR_FORMAT_420_NV12;
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:return C2D_COLOR_FORMAT_420_NV12;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: return C2D_COLOR_FORMAT_420_NV21;
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED: return C2D_COLOR_FORMAT_420_NV12 |
C2D_FORMAT_MACROTILED;
default: ALOGE("%s: invalid format (0x%x",
__FUNCTION__, format);
return -EINVAL;
}
return -EINVAL;
}
/* Get the C2D formats needed for conversion to YUV */
static int get_c2d_format_for_yuv_destination(int halFormat) {
switch (halFormat) {
// We do not swap the RB when the target is YUV
case HAL_PIXEL_FORMAT_RGBX_8888: return C2D_COLOR_FORMAT_8888_ARGB |
C2D_FORMAT_DISABLE_ALPHA;
case HAL_PIXEL_FORMAT_RGBA_8888: return C2D_COLOR_FORMAT_8888_ARGB;
// The U and V need to be interchanged when the target is YUV
case HAL_PIXEL_FORMAT_YCbCr_420_SP: return C2D_COLOR_FORMAT_420_NV21;
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:return C2D_COLOR_FORMAT_420_NV21;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: return C2D_COLOR_FORMAT_420_NV12;
default: return get_format(halFormat);
}
return -EINVAL;
}
/* ------------------------------------------------------------------- *//*!
* \internal
* \brief Get the bpp for a particular color format
* \param color format
* \return bits per pixel
*//* ------------------------------------------------------------------- */
int c2diGetBpp(int32 colorformat)
{
int c2dBpp = 0;
switch(colorformat&0xFF)
{
case C2D_COLOR_FORMAT_4444_RGBA:
case C2D_COLOR_FORMAT_4444_ARGB:
case C2D_COLOR_FORMAT_1555_ARGB:
case C2D_COLOR_FORMAT_565_RGB:
case C2D_COLOR_FORMAT_5551_RGBA:
c2dBpp = 16;
break;
case C2D_COLOR_FORMAT_8888_RGBA:
case C2D_COLOR_FORMAT_8888_ARGB:
c2dBpp = 32;
break;
case C2D_COLOR_FORMAT_888_RGB:
c2dBpp = 24;
break;
case C2D_COLOR_FORMAT_8_L:
case C2D_COLOR_FORMAT_8_A:
c2dBpp = 8;
break;
case C2D_COLOR_FORMAT_4_A:
c2dBpp = 4;
break;
case C2D_COLOR_FORMAT_1:
c2dBpp = 1;
break;
default:
ALOGE("%s ERROR", __func__);
break;
}
return c2dBpp;
}
static size_t c2d_get_gpuaddr(copybit_context_t* ctx,
struct private_handle_t *handle, int &mapped_idx)
{
uint32 memtype;
size_t *gpuaddr = 0;
C2D_STATUS rc;
int freeindex = 0;
bool mapaddr = false;
if(!handle)
return 0;
if (handle->flags & private_handle_t::PRIV_FLAGS_USES_ION)
memtype = KGSL_USER_MEM_TYPE_ION;
else {
ALOGE("Invalid handle flags: 0x%x", handle->flags);
return 0;
}
// Check for a freeindex in the mapped_gpu_addr list
for (freeindex = 0; freeindex < MAX_SURFACES; freeindex++) {
if (ctx->mapped_gpu_addr[freeindex] == 0) {
// free index is available
// map GPU addr and use this as mapped_idx
mapaddr = true;
break;
}
}
if(mapaddr) {
rc = LINK_c2dMapAddr(handle->fd, (void*)handle->base, handle->size,
handle->offset, memtype, (void**)&gpuaddr);
if (rc == C2D_STATUS_OK) {
// We have mapped the GPU address inside copybit. We need to unmap
// this address after the blit. Store this address
ctx->mapped_gpu_addr[freeindex] = (size_t)gpuaddr;
mapped_idx = freeindex;
}
}
return (size_t)gpuaddr;
}
static void unmap_gpuaddr(copybit_context_t* ctx, int mapped_idx)
{
if (!ctx || (mapped_idx == -1))
return;
if (ctx->mapped_gpu_addr[mapped_idx]) {
LINK_c2dUnMapAddr( (void*)ctx->mapped_gpu_addr[mapped_idx]);
ctx->mapped_gpu_addr[mapped_idx] = 0;
}
}
static int is_supported_rgb_format(int format)
{
switch(format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGBX_8888:
case HAL_PIXEL_FORMAT_RGB_888:
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_5551:
case HAL_PIXEL_FORMAT_RGBA_4444: {
return COPYBIT_SUCCESS;
}
default:
return COPYBIT_FAILURE;
}
}
static int get_num_planes(int format)
{
switch(format) {
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED: {
return 2;
}
case HAL_PIXEL_FORMAT_YV12: {
return 3;
}
default:
return COPYBIT_FAILURE;
}
}
static int is_supported_yuv_format(int format)
{
switch(format) {
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED: {
return COPYBIT_SUCCESS;
}
default:
return COPYBIT_FAILURE;
}
}
static int is_valid_destination_format(int format)
{
if (format == HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED) {
// C2D does not support NV12Tile as a destination format.
return COPYBIT_FAILURE;
}
return COPYBIT_SUCCESS;
}
static int calculate_yuv_offset_and_stride(const bufferInfo& info,
yuvPlaneInfo& yuvInfo)
{
int width = info.width;
int height = info.height;
int format = info.format;
int aligned_height = 0;
int aligned_width = 0, size = 0;
switch (format) {
case HAL_PIXEL_FORMAT_YCbCr_420_SP_TILED: {
/* NV12 Tile buffers have their luma height aligned to 32bytes and width
* aligned to 128 bytes. The chroma offset starts at an 8K boundary
*/
aligned_height = ALIGN(height, 32);
aligned_width = ALIGN(width, 128);
size = aligned_width * aligned_height;
yuvInfo.plane1_offset = ALIGN(size,8192);
yuvInfo.yStride = aligned_width;
yuvInfo.plane1_stride = aligned_width;
break;
}
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCrCb_420_SP: {
aligned_width = ALIGN(width, 32);
yuvInfo.yStride = aligned_width;
yuvInfo.plane1_stride = aligned_width;
if (HAL_PIXEL_FORMAT_NV12_ENCODEABLE == format) {
// The encoder requires a 2K aligned chroma offset
yuvInfo.plane1_offset = ALIGN(aligned_width * height, 2048);
} else
yuvInfo.plane1_offset = aligned_width * height;
break;
}
default: {
return COPYBIT_FAILURE;
}
}
return COPYBIT_SUCCESS;
}
/** create C2D surface from copybit image */
static int set_image(copybit_context_t* ctx, uint32 surfaceId,
const struct copybit_image_t *rhs,
const eC2DFlags flags, int &mapped_idx)
{
struct private_handle_t* handle = (struct private_handle_t*)rhs->handle;
C2D_SURFACE_TYPE surfaceType;
int status = COPYBIT_SUCCESS;
uint64_t gpuaddr = 0;
int c2d_format;
mapped_idx = -1;
if (flags & FLAGS_YUV_DESTINATION) {
c2d_format = get_c2d_format_for_yuv_destination(rhs->format);
} else {
c2d_format = get_format(rhs->format);
}
if(c2d_format == -EINVAL) {
ALOGE("%s: invalid format", __FUNCTION__);
return -EINVAL;
}
if(handle == NULL) {
ALOGE("%s: invalid handle", __func__);
return -EINVAL;
}
if (handle->gpuaddr == 0) {
gpuaddr = c2d_get_gpuaddr(ctx, handle, mapped_idx);
if(!gpuaddr) {
ALOGE("%s: c2d_get_gpuaddr failed", __FUNCTION__);
return COPYBIT_FAILURE;
}
} else {
gpuaddr = handle->gpuaddr;
}
/* create C2D surface */
if(is_supported_rgb_format(rhs->format) == COPYBIT_SUCCESS) {
/* RGB */
C2D_RGB_SURFACE_DEF surfaceDef;
surfaceType = (C2D_SURFACE_TYPE) (C2D_SURFACE_RGB_HOST | C2D_SURFACE_WITH_PHYS);
surfaceDef.phys = (void*) gpuaddr;
surfaceDef.buffer = (void*) (handle->base);
surfaceDef.format = c2d_format |
((flags & FLAGS_PREMULTIPLIED_ALPHA) ? C2D_FORMAT_PREMULTIPLIED : 0);
surfaceDef.format = surfaceDef.format |
((flags & FLAGS_UBWC_FORMAT_MODE) ? C2D_FORMAT_UBWC_COMPRESSED : 0);
surfaceDef.width = rhs->w;
surfaceDef.height = rhs->h;
int aligned_width = ALIGN((int)surfaceDef.width,32);
surfaceDef.stride = (aligned_width * c2diGetBpp(surfaceDef.format))>>3;
if(LINK_c2dUpdateSurface( surfaceId,C2D_TARGET | C2D_SOURCE, surfaceType,
&surfaceDef)) {
ALOGE("%s: RGB Surface c2dUpdateSurface ERROR", __FUNCTION__);
unmap_gpuaddr(ctx, mapped_idx);
status = COPYBIT_FAILURE;
}
} else if (is_supported_yuv_format(rhs->format) == COPYBIT_SUCCESS) {
C2D_YUV_SURFACE_DEF surfaceDef;
memset(&surfaceDef, 0, sizeof(surfaceDef));
surfaceType = (C2D_SURFACE_TYPE)(C2D_SURFACE_YUV_HOST | C2D_SURFACE_WITH_PHYS);
surfaceDef.format = c2d_format;
bufferInfo info;
info.width = rhs->w;
info.height = rhs->h;
info.format = rhs->format;
yuvPlaneInfo yuvInfo = {0};
status = calculate_yuv_offset_and_stride(info, yuvInfo);
if(status != COPYBIT_SUCCESS) {
ALOGE("%s: calculate_yuv_offset_and_stride error", __FUNCTION__);
unmap_gpuaddr(ctx, mapped_idx);
}
surfaceDef.width = rhs->w;
surfaceDef.height = rhs->h;
surfaceDef.plane0 = (void*) (handle->base);
surfaceDef.phys0 = (void*) (gpuaddr);
surfaceDef.stride0 = yuvInfo.yStride;
surfaceDef.plane1 = (void*) (handle->base + yuvInfo.plane1_offset);
surfaceDef.phys1 = (void*) (gpuaddr + yuvInfo.plane1_offset);
surfaceDef.stride1 = yuvInfo.plane1_stride;
if (3 == get_num_planes(rhs->format)) {
surfaceDef.plane2 = (void*) (handle->base + yuvInfo.plane2_offset);
surfaceDef.phys2 = (void*) (gpuaddr + yuvInfo.plane2_offset);
surfaceDef.stride2 = yuvInfo.plane2_stride;
}
if(LINK_c2dUpdateSurface( surfaceId,C2D_TARGET | C2D_SOURCE, surfaceType,
&surfaceDef)) {
ALOGE("%s: YUV Surface c2dUpdateSurface ERROR", __FUNCTION__);
unmap_gpuaddr(ctx, mapped_idx);
status = COPYBIT_FAILURE;
}
} else {
ALOGE("%s: invalid format 0x%x", __FUNCTION__, rhs->format);
unmap_gpuaddr(ctx, mapped_idx);
status = COPYBIT_FAILURE;
}
return status;
}
/** copy the bits */
static int msm_copybit(struct copybit_context_t *ctx, unsigned int target)
{
if (ctx->blit_count == 0) {
return COPYBIT_SUCCESS;
}
for (int i = 0; i < ctx->blit_count; i++)
{
ctx->blit_list[i].next = &(ctx->blit_list[i+1]);
}
ctx->blit_list[ctx->blit_count-1].next = NULL;
uint32_t target_transform = ctx->trg_transform;
if (ctx->c2d_driver_info.capabilities_mask &
C2D_DRIVER_SUPPORTS_OVERRIDE_TARGET_ROTATE_OP) {
// For A3xx - set 0x0 as the transform is set in the config_mask
target_transform = 0x0;
}
if(LINK_c2dDraw(target, target_transform, 0x0, 0, 0, ctx->blit_list,
ctx->blit_count)) {
ALOGE("%s: LINK_c2dDraw ERROR", __FUNCTION__);
return COPYBIT_FAILURE;
}
return COPYBIT_SUCCESS;
}
static int flush_get_fence_copybit (struct copybit_device_t *dev, int* fd)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
int status = COPYBIT_FAILURE;
if (!ctx)
return COPYBIT_FAILURE;
pthread_mutex_lock(&ctx->wait_cleanup_lock);
status = msm_copybit(ctx, ctx->dst[ctx->dst_surface_type]);
if(LINK_c2dFlush(ctx->dst[ctx->dst_surface_type], &ctx->time_stamp)) {
ALOGE("%s: LINK_c2dFlush ERROR", __FUNCTION__);
// unlock the mutex and return failure
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return COPYBIT_FAILURE;
}
if(LINK_c2dCreateFenceFD(ctx->dst[ctx->dst_surface_type], ctx->time_stamp,
fd)) {
ALOGE("%s: LINK_c2dCreateFenceFD ERROR", __FUNCTION__);
status = COPYBIT_FAILURE;
}
if(status == COPYBIT_SUCCESS) {
//signal the wait_thread
ctx->wait_timestamp = true;
pthread_cond_signal(&ctx->wait_cleanup_cond);
}
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return status;
}
static int finish_copybit(struct copybit_device_t *dev)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
if (!ctx)
return COPYBIT_FAILURE;
int status = msm_copybit(ctx, ctx->dst[ctx->dst_surface_type]);
if(LINK_c2dFinish(ctx->dst[ctx->dst_surface_type])) {
ALOGE("%s: LINK_c2dFinish ERROR", __FUNCTION__);
return COPYBIT_FAILURE;
}
// Unmap any mapped addresses.
for (int i = 0; i < MAX_SURFACES; i++) {
if (ctx->mapped_gpu_addr[i]) {
LINK_c2dUnMapAddr( (void*)ctx->mapped_gpu_addr[i]);
ctx->mapped_gpu_addr[i] = 0;
}
}
// Reset the counts after the draw.
ctx->blit_rgb_count = 0;
ctx->blit_yuv_2_plane_count = 0;
ctx->blit_yuv_3_plane_count = 0;
ctx->blit_count = 0;
ctx->dst_surface_mapped = false;
ctx->dst_surface_base = 0;
return status;
}
static int clear_copybit(struct copybit_device_t *dev,
struct copybit_image_t const *buf,
struct copybit_rect_t *rect)
{
int ret = COPYBIT_SUCCESS;
int flags = FLAGS_PREMULTIPLIED_ALPHA;
int mapped_dst_idx = -1;
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
if (ctx->is_dst_ubwc_format)
flags |= FLAGS_UBWC_FORMAT_MODE;
C2D_RECT c2drect = {rect->l, rect->t, rect->r - rect->l, rect->b - rect->t};
pthread_mutex_lock(&ctx->wait_cleanup_lock);
if(!ctx->dst_surface_mapped) {
ret = set_image(ctx, ctx->dst[RGB_SURFACE], buf,
(eC2DFlags)flags, mapped_dst_idx);
if(ret) {
ALOGE("%s: set_image error", __FUNCTION__);
unmap_gpuaddr(ctx, mapped_dst_idx);
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return COPYBIT_FAILURE;
}
//clear_copybit is the first call made by HWC for each composition
//with the dest surface, hence set dst_surface_mapped.
ctx->dst_surface_mapped = true;
ctx->dst_surface_base = buf->base;
ret = LINK_c2dFillSurface(ctx->dst[RGB_SURFACE], 0x0, &c2drect);
}
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return ret;
}
/** setup rectangles */
static void set_rects(struct copybit_context_t *ctx,
C2D_OBJECT *c2dObject,
const struct copybit_rect_t *dst,
const struct copybit_rect_t *src,
const struct copybit_rect_t *scissor)
{
// Set the target rect.
if((ctx->trg_transform & C2D_TARGET_ROTATE_90) &&
(ctx->trg_transform & C2D_TARGET_ROTATE_180)) {
/* target rotation is 270 */
c2dObject->target_rect.x = (dst->t)<<16;
c2dObject->target_rect.y = ctx->fb_width?
(ALIGN(ctx->fb_width,32)- dst->r):dst->r;
c2dObject->target_rect.y = c2dObject->target_rect.y<<16;
c2dObject->target_rect.height = ((dst->r) - (dst->l))<<16;
c2dObject->target_rect.width = ((dst->b) - (dst->t))<<16;
} else if(ctx->trg_transform & C2D_TARGET_ROTATE_90) {
c2dObject->target_rect.x = ctx->fb_height?(ctx->fb_height - dst->b):dst->b;
c2dObject->target_rect.x = c2dObject->target_rect.x<<16;
c2dObject->target_rect.y = (dst->l)<<16;
c2dObject->target_rect.height = ((dst->r) - (dst->l))<<16;
c2dObject->target_rect.width = ((dst->b) - (dst->t))<<16;
} else if(ctx->trg_transform & C2D_TARGET_ROTATE_180) {
c2dObject->target_rect.y = ctx->fb_height?(ctx->fb_height - dst->b):dst->b;
c2dObject->target_rect.y = c2dObject->target_rect.y<<16;
c2dObject->target_rect.x = ctx->fb_width?
(ALIGN(ctx->fb_width,32) - dst->r):dst->r;
c2dObject->target_rect.x = c2dObject->target_rect.x<<16;
c2dObject->target_rect.height = ((dst->b) - (dst->t))<<16;
c2dObject->target_rect.width = ((dst->r) - (dst->l))<<16;
} else {
c2dObject->target_rect.x = (dst->l)<<16;
c2dObject->target_rect.y = (dst->t)<<16;
c2dObject->target_rect.height = ((dst->b) - (dst->t))<<16;
c2dObject->target_rect.width = ((dst->r) - (dst->l))<<16;
}
c2dObject->config_mask |= C2D_TARGET_RECT_BIT;
// Set the source rect
c2dObject->source_rect.x = (src->l)<<16;
c2dObject->source_rect.y = (src->t)<<16;
c2dObject->source_rect.height = ((src->b) - (src->t))<<16;
c2dObject->source_rect.width = ((src->r) - (src->l))<<16;
c2dObject->config_mask |= C2D_SOURCE_RECT_BIT;
// Set the scissor rect
c2dObject->scissor_rect.x = scissor->l;
c2dObject->scissor_rect.y = scissor->t;
c2dObject->scissor_rect.height = (scissor->b) - (scissor->t);
c2dObject->scissor_rect.width = (scissor->r) - (scissor->l);
c2dObject->config_mask |= C2D_SCISSOR_RECT_BIT;
}
/*****************************************************************************/
/** Set a parameter to value */
static int set_parameter_copybit(
struct copybit_device_t *dev,
int name,
int value)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
int status = COPYBIT_SUCCESS;
if (!ctx) {
ALOGE("%s: null context", __FUNCTION__);
return -EINVAL;
}
pthread_mutex_lock(&ctx->wait_cleanup_lock);
switch(name) {
case COPYBIT_PLANE_ALPHA:
{
if (value < 0) value = 0;
if (value >= 256) value = 255;
ctx->src_global_alpha = value;
if (value < 255)
ctx->config_mask |= C2D_GLOBAL_ALPHA_BIT;
else
ctx->config_mask &= ~C2D_GLOBAL_ALPHA_BIT;
}
break;
case COPYBIT_BLEND_MODE:
{
if (value == COPYBIT_BLENDING_NONE) {
ctx->config_mask |= C2D_ALPHA_BLEND_NONE;
ctx->is_premultiplied_alpha = true;
} else if (value == COPYBIT_BLENDING_PREMULT) {
ctx->is_premultiplied_alpha = true;
} else {
ctx->config_mask &= ~C2D_ALPHA_BLEND_NONE;
}
}
break;
case COPYBIT_TRANSFORM:
{
unsigned int transform = 0;
uint32 config_mask = 0;
config_mask |= C2D_OVERRIDE_GLOBAL_TARGET_ROTATE_CONFIG;
if((value & 0x7) == COPYBIT_TRANSFORM_ROT_180) {
transform = C2D_TARGET_ROTATE_180;
config_mask |= C2D_OVERRIDE_TARGET_ROTATE_180;
} else if((value & 0x7) == COPYBIT_TRANSFORM_ROT_270) {
transform = C2D_TARGET_ROTATE_90;
config_mask |= C2D_OVERRIDE_TARGET_ROTATE_90;
} else if(value == COPYBIT_TRANSFORM_ROT_90) {
transform = C2D_TARGET_ROTATE_270;
config_mask |= C2D_OVERRIDE_TARGET_ROTATE_270;
} else {
config_mask |= C2D_OVERRIDE_TARGET_ROTATE_0;
if(value & COPYBIT_TRANSFORM_FLIP_H) {
config_mask |= C2D_MIRROR_H_BIT;
} else if(value & COPYBIT_TRANSFORM_FLIP_V) {
config_mask |= C2D_MIRROR_V_BIT;
}
}
if (ctx->c2d_driver_info.capabilities_mask &
C2D_DRIVER_SUPPORTS_OVERRIDE_TARGET_ROTATE_OP) {
ctx->config_mask |= config_mask;
} else {
// The transform for this surface does not match the current
// target transform. Draw all previous surfaces. This will be
// changed once we have a new mechanism to send different
// target rotations to c2d.
finish_copybit(dev);
}
ctx->trg_transform = transform;
}
break;
case COPYBIT_FRAMEBUFFER_WIDTH:
ctx->fb_width = value;
break;
case COPYBIT_FRAMEBUFFER_HEIGHT:
ctx->fb_height = value;
break;
case COPYBIT_ROTATION_DEG:
case COPYBIT_DITHER:
case COPYBIT_BLUR:
case COPYBIT_BLIT_TO_FRAMEBUFFER:
// Do nothing
break;
case COPYBIT_SRC_FORMAT_MODE:
ctx->is_src_ubwc_format = (value == COPYBIT_UBWC_COMPRESSED);
break;
case COPYBIT_DST_FORMAT_MODE:
ctx->is_dst_ubwc_format = (value == COPYBIT_UBWC_COMPRESSED);
break;
default:
ALOGE("%s: default case param=0x%x", __FUNCTION__, name);
status = -EINVAL;
break;
}
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return status;
}
/** Get a static info value */
static int get(struct copybit_device_t *dev, int name)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
int value;
if (!ctx) {
ALOGE("%s: null context error", __FUNCTION__);
return -EINVAL;
}
switch(name) {
case COPYBIT_MINIFICATION_LIMIT:
value = MAX_SCALE_FACTOR;
break;
case COPYBIT_MAGNIFICATION_LIMIT:
value = MAX_SCALE_FACTOR;
break;
case COPYBIT_SCALING_FRAC_BITS:
value = 32;
break;
case COPYBIT_ROTATION_STEP_DEG:
value = 1;
break;
case COPYBIT_UBWC_SUPPORT:
value = 0;
if (ctx->c2d_driver_info.capabilities_mask & C2D_DRIVER_SUPPORTS_UBWC_COMPRESSED_OP) {
value = 1;
}
break;
default:
ALOGE("%s: default case param=0x%x", __FUNCTION__, name);
value = -EINVAL;
}
return value;
}
/* Function to check if we need a temporary buffer for the blit.
* This would happen if the requested destination stride and the
* C2D stride do not match. We ignore RGB buffers, since their
* stride is always aligned to 32.
*/
static bool need_temp_buffer(struct copybit_image_t const *img)
{
if (COPYBIT_SUCCESS == is_supported_rgb_format(img->format))
return false;
struct private_handle_t* handle = (struct private_handle_t*)img->handle;
// The width parameter in the handle contains the aligned_w. We check if we
// need to convert based on this param. YUV formats have bpp=1, so checking
// if the requested stride is aligned should suffice.
if (0 == (handle->width)%32) {
return false;
}
return true;
}
/* Function to extract the information from the copybit image and set the corresponding
* values in the bufferInfo struct.
*/
static void populate_buffer_info(struct copybit_image_t const *img, bufferInfo& info)
{
info.width = img->w;
info.height = img->h;
info.format = img->format;
}
/* Function to get the required size for a particular format, inorder for C2D to perform
* the blit operation.
*/
static int get_size(const bufferInfo& info)
{
int size = 0;
int w = info.width;
int h = info.height;
int aligned_w = ALIGN(w, 32);
switch(info.format) {
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
{
// Chroma for this format is aligned to 2K.
size = ALIGN((aligned_w*h), 2048) +
ALIGN(aligned_w/2, 32) * (h/2) *2;
size = ALIGN(size, 4096);
} break;
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
{
size = aligned_w * h +
ALIGN(aligned_w/2, 32) * (h/2) * 2;
size = ALIGN(size, 4096);
} break;
default: break;
}
return size;
}
/* Function to allocate memory for the temporary buffer. This memory is
* allocated from Ashmem. It is the caller's responsibility to free this
* memory.
*/
static int get_temp_buffer(const bufferInfo& info, alloc_data& data)
{
ALOGD("%s E", __FUNCTION__);
// Alloc memory from system heap
data.base = 0;
data.fd = -1;
data.offset = 0;
data.size = get_size(info);
data.align = getpagesize();
data.uncached = true;
int allocFlags = 0;
if (sAlloc == 0) {
sAlloc = gralloc::IAllocController::getInstance();
}
if (sAlloc == 0) {
ALOGE("%s: sAlloc is still NULL", __FUNCTION__);
return COPYBIT_FAILURE;
}
int err = sAlloc->allocate(data, allocFlags);
if (0 != err) {
ALOGE("%s: allocate failed", __FUNCTION__);
return COPYBIT_FAILURE;
}
ALOGD("%s X", __FUNCTION__);
return err;
}
/* Function to free the temporary allocated memory.*/
static void free_temp_buffer(alloc_data &data)
{
if (-1 != data.fd) {
IMemAlloc* memalloc = sAlloc->getAllocator(data.allocType);
memalloc->free_buffer(data.base, data.size, 0, data.fd);
}
}
/* Function to perform the software color conversion. Convert the
* C2D compatible format to the Android compatible format
*/
static int copy_image(private_handle_t *src_handle,
struct copybit_image_t const *rhs,
eConversionType conversionType)
{
if (src_handle->fd == -1) {
ALOGE("%s: src_handle fd is invalid", __FUNCTION__);
return COPYBIT_FAILURE;
}
// Copy the info.
int ret = COPYBIT_SUCCESS;
switch(rhs->format) {
case HAL_PIXEL_FORMAT_NV12_ENCODEABLE:
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
{
if (CONVERT_TO_ANDROID_FORMAT == conversionType) {
return convert_yuv_c2d_to_yuv_android(src_handle, rhs);
} else {
return convert_yuv_android_to_yuv_c2d(src_handle, rhs);
}
} break;
default: {
ALOGE("%s: invalid format 0x%x", __FUNCTION__, rhs->format);
ret = COPYBIT_FAILURE;
} break;
}
return ret;
}
static void delete_handle(private_handle_t *handle)
{
if (handle) {
delete handle;
handle = 0;
}
}
static bool need_to_execute_draw(eC2DFlags flags)
{
if (flags & FLAGS_TEMP_SRC_DST) {
return true;
}
if (flags & FLAGS_YUV_DESTINATION) {
return true;
}
return false;
}
/** do a stretch blit type operation */
static int stretch_copybit_internal(
struct copybit_device_t *dev,
struct copybit_image_t const *dst,
struct copybit_image_t const *src,
struct copybit_rect_t const *dst_rect,
struct copybit_rect_t const *src_rect,
struct copybit_region_t const *region,
bool enableBlend)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
int status = COPYBIT_SUCCESS;
int flags = 0;
int src_surface_type;
int mapped_src_idx = -1, mapped_dst_idx = -1;
C2D_OBJECT_STR src_surface;
if (!ctx) {
ALOGE("%s: null context error", __FUNCTION__);
return -EINVAL;
}
if (src->w > MAX_DIMENSION || src->h > MAX_DIMENSION) {
ALOGE("%s: src dimension error", __FUNCTION__);
return -EINVAL;
}
if (dst->w > MAX_DIMENSION || dst->h > MAX_DIMENSION) {
ALOGE("%s : dst dimension error dst w %d h %d", __FUNCTION__, dst->w,
dst->h);
return -EINVAL;
}
if (is_valid_destination_format(dst->format) == COPYBIT_FAILURE) {
ALOGE("%s: Invalid destination format format = 0x%x", __FUNCTION__,
dst->format);
return COPYBIT_FAILURE;
}
int dst_surface_type;
if (ctx->is_dst_ubwc_format)
flags |= FLAGS_UBWC_FORMAT_MODE;
if (is_supported_rgb_format(dst->format) == COPYBIT_SUCCESS) {
dst_surface_type = RGB_SURFACE;
flags |= FLAGS_PREMULTIPLIED_ALPHA;
} else if (is_supported_yuv_format(dst->format) == COPYBIT_SUCCESS) {
int num_planes = get_num_planes(dst->format);
flags |= FLAGS_YUV_DESTINATION;
if (num_planes == 2) {
dst_surface_type = YUV_SURFACE_2_PLANES;
} else if (num_planes == 3) {
dst_surface_type = YUV_SURFACE_3_PLANES;
} else {
ALOGE("%s: dst number of YUV planes is invalid dst format = 0x%x",
__FUNCTION__, dst->format);
return COPYBIT_FAILURE;
}
} else {
ALOGE("%s: Invalid dst surface format 0x%x", __FUNCTION__,
dst->format);
return COPYBIT_FAILURE;
}
if (ctx->blit_rgb_count == MAX_RGB_SURFACES ||
ctx->blit_yuv_2_plane_count == MAX_YUV_2_PLANE_SURFACES ||
ctx->blit_yuv_3_plane_count == MAX_YUV_2_PLANE_SURFACES ||
ctx->blit_count == MAX_BLIT_OBJECT_COUNT ||
ctx->dst_surface_type != dst_surface_type) {
// we have reached the max. limits of our internal structures or
// changed the target.
// Draw the remaining surfaces. We need to do the finish here since
// we need to free up the surface templates.
finish_copybit(dev);
}
ctx->dst_surface_type = dst_surface_type;
// Update the destination
copybit_image_t dst_image;
dst_image.w = dst->w;
dst_image.h = dst->h;
dst_image.format = dst->format;
dst_image.handle = dst->handle;
// Check if we need a temp. copy for the destination. We'd need this the destination
// width is not aligned to 32. This case occurs for YUV formats. RGB formats are
// aligned to 32.
bool need_temp_dst = need_temp_buffer(dst);
bufferInfo dst_info;
populate_buffer_info(dst, dst_info);
private_handle_t* dst_hnd = new private_handle_t(-1, 0, 0, 0, dst_info.format,
dst_info.width, dst_info.height);
if (dst_hnd == NULL) {
ALOGE("%s: dst_hnd is null", __FUNCTION__);
return COPYBIT_FAILURE;
}
if (need_temp_dst) {
if (get_size(dst_info) != (int) ctx->temp_dst_buffer.size) {
free_temp_buffer(ctx->temp_dst_buffer);
// Create a temp buffer and set that as the destination.
if (COPYBIT_FAILURE == get_temp_buffer(dst_info, ctx->temp_dst_buffer)) {
ALOGE("%s: get_temp_buffer(dst) failed", __FUNCTION__);
delete_handle(dst_hnd);
return COPYBIT_FAILURE;
}
}
dst_hnd->fd = ctx->temp_dst_buffer.fd;
dst_hnd->size = ctx->temp_dst_buffer.size;
dst_hnd->flags = ctx->temp_dst_buffer.allocType;
dst_hnd->base = (uintptr_t)(ctx->temp_dst_buffer.base);
dst_hnd->offset = ctx->temp_dst_buffer.offset;
dst_hnd->gpuaddr = 0;
dst_image.handle = dst_hnd;
}
if(!ctx->dst_surface_mapped) {
//map the destination surface to GPU address
status = set_image(ctx, ctx->dst[ctx->dst_surface_type], &dst_image,
(eC2DFlags)flags, mapped_dst_idx);
if(status) {
ALOGE("%s: dst: set_image error", __FUNCTION__);
delete_handle(dst_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return COPYBIT_FAILURE;
}
ctx->dst_surface_mapped = true;
ctx->dst_surface_base = dst->base;
} else if(ctx->dst_surface_mapped && ctx->dst_surface_base != dst->base) {
// Destination surface for the operation should be same for multiple
// requests, this check is catch if there is any case when the
// destination changes
ALOGE("%s: a different destination surface!!", __FUNCTION__);
}
// Update the source
flags = 0;
if(is_supported_rgb_format(src->format) == COPYBIT_SUCCESS) {
src_surface_type = RGB_SURFACE;
src_surface = ctx->blit_rgb_object[ctx->blit_rgb_count];
} else if (is_supported_yuv_format(src->format) == COPYBIT_SUCCESS) {
int num_planes = get_num_planes(src->format);
if (num_planes == 2) {
src_surface_type = YUV_SURFACE_2_PLANES;
src_surface = ctx->blit_yuv_2_plane_object[ctx->blit_yuv_2_plane_count];
} else if (num_planes == 3) {
src_surface_type = YUV_SURFACE_3_PLANES;
src_surface = ctx->blit_yuv_3_plane_object[ctx->blit_yuv_2_plane_count];
} else {
ALOGE("%s: src number of YUV planes is invalid src format = 0x%x",
__FUNCTION__, src->format);
delete_handle(dst_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return -EINVAL;
}
} else {
ALOGE("%s: Invalid source surface format 0x%x", __FUNCTION__,
src->format);
delete_handle(dst_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return -EINVAL;
}
copybit_image_t src_image;
src_image.w = src->w;
src_image.h = src->h;
src_image.format = src->format;
src_image.handle = src->handle;
bool need_temp_src = need_temp_buffer(src);
bufferInfo src_info;
populate_buffer_info(src, src_info);
private_handle_t* src_hnd = new private_handle_t(-1, 0, 0, 0, src_info.format,
src_info.width, src_info.height);
if (NULL == src_hnd) {
ALOGE("%s: src_hnd is null", __FUNCTION__);
delete_handle(dst_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return COPYBIT_FAILURE;
}
if (need_temp_src) {
if (get_size(src_info) != (int) ctx->temp_src_buffer.size) {
free_temp_buffer(ctx->temp_src_buffer);
// Create a temp buffer and set that as the destination.
if (COPYBIT_SUCCESS != get_temp_buffer(src_info,
ctx->temp_src_buffer)) {
ALOGE("%s: get_temp_buffer(src) failed", __FUNCTION__);
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return COPYBIT_FAILURE;
}
}
src_hnd->fd = ctx->temp_src_buffer.fd;
src_hnd->size = ctx->temp_src_buffer.size;
src_hnd->flags = ctx->temp_src_buffer.allocType;
src_hnd->base = (uintptr_t)(ctx->temp_src_buffer.base);
src_hnd->offset = ctx->temp_src_buffer.offset;
src_hnd->gpuaddr = 0;
src_image.handle = src_hnd;
// Copy the source.
status = copy_image((private_handle_t *)src->handle, &src_image,
CONVERT_TO_C2D_FORMAT);
if (status == COPYBIT_FAILURE) {
ALOGE("%s:copy_image failed in temp source",__FUNCTION__);
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return status;
}
// Clean the cache
IMemAlloc* memalloc = sAlloc->getAllocator(src_hnd->flags);
if (memalloc->clean_buffer((void *)(src_hnd->base), src_hnd->size,
src_hnd->offset, src_hnd->fd,
gralloc::CACHE_CLEAN)) {
ALOGE("%s: clean_buffer failed", __FUNCTION__);
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
return COPYBIT_FAILURE;
}
}
flags |= (ctx->is_premultiplied_alpha) ? FLAGS_PREMULTIPLIED_ALPHA : 0;
flags |= (ctx->dst_surface_type != RGB_SURFACE) ? FLAGS_YUV_DESTINATION : 0;
flags |= (ctx->is_src_ubwc_format) ? FLAGS_UBWC_FORMAT_MODE : 0;
status = set_image(ctx, src_surface.surface_id, &src_image,
(eC2DFlags)flags, mapped_src_idx);
if(status) {
ALOGE("%s: set_image (src) error", __FUNCTION__);
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
unmap_gpuaddr(ctx, mapped_src_idx);
return COPYBIT_FAILURE;
}
src_surface.config_mask = C2D_NO_ANTIALIASING_BIT | ctx->config_mask;
src_surface.global_alpha = ctx->src_global_alpha;
if (enableBlend) {
if(src_surface.config_mask & C2D_GLOBAL_ALPHA_BIT) {
src_surface.config_mask &= ~C2D_ALPHA_BLEND_NONE;
if(!(src_surface.global_alpha)) {
// src alpha is zero
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
unmap_gpuaddr(ctx, mapped_src_idx);
return COPYBIT_FAILURE;
}
}
} else {
src_surface.config_mask |= C2D_ALPHA_BLEND_NONE;
}
if (src_surface_type == RGB_SURFACE) {
ctx->blit_rgb_object[ctx->blit_rgb_count] = src_surface;
ctx->blit_rgb_count++;
} else if (src_surface_type == YUV_SURFACE_2_PLANES) {
ctx->blit_yuv_2_plane_object[ctx->blit_yuv_2_plane_count] = src_surface;
ctx->blit_yuv_2_plane_count++;
} else {
ctx->blit_yuv_3_plane_object[ctx->blit_yuv_3_plane_count] = src_surface;
ctx->blit_yuv_3_plane_count++;
}
struct copybit_rect_t clip;
while ((status == 0) && region->next(region, &clip)) {
set_rects(ctx, &(src_surface), dst_rect, src_rect, &clip);
if (ctx->blit_count == MAX_BLIT_OBJECT_COUNT) {
ALOGW("Reached end of blit count");
finish_copybit(dev);
}
ctx->blit_list[ctx->blit_count] = src_surface;
ctx->blit_count++;
}
// Check if we need to perform an early draw-finish.
flags |= (need_temp_dst || need_temp_src) ? FLAGS_TEMP_SRC_DST : 0;
if (need_to_execute_draw((eC2DFlags)flags))
{
finish_copybit(dev);
}
if (need_temp_dst) {
// copy the temp. destination without the alignment to the actual
// destination.
status = copy_image(dst_hnd, dst, CONVERT_TO_ANDROID_FORMAT);
if (status == COPYBIT_FAILURE) {
ALOGE("%s:copy_image failed in temp Dest",__FUNCTION__);
delete_handle(dst_hnd);
delete_handle(src_hnd);
unmap_gpuaddr(ctx, mapped_dst_idx);
unmap_gpuaddr(ctx, mapped_src_idx);
return status;
}
// Clean the cache.
IMemAlloc* memalloc = sAlloc->getAllocator(dst_hnd->flags);
memalloc->clean_buffer((void *)(dst_hnd->base), dst_hnd->size,
dst_hnd->offset, dst_hnd->fd,
gralloc::CACHE_CLEAN);
}
delete_handle(dst_hnd);
delete_handle(src_hnd);
ctx->is_premultiplied_alpha = false;
ctx->fb_width = 0;
ctx->fb_height = 0;
ctx->config_mask = 0;
return status;
}
static int set_sync_copybit(struct copybit_device_t *dev,
int /*acquireFenceFd*/)
{
if(!dev)
return -EINVAL;
return 0;
}
static int stretch_copybit(
struct copybit_device_t *dev,
struct copybit_image_t const *dst,
struct copybit_image_t const *src,
struct copybit_rect_t const *dst_rect,
struct copybit_rect_t const *src_rect,
struct copybit_region_t const *region)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
int status = COPYBIT_SUCCESS;
bool needsBlending = (ctx->src_global_alpha != 0);
pthread_mutex_lock(&ctx->wait_cleanup_lock);
status = stretch_copybit_internal(dev, dst, src, dst_rect, src_rect,
region, needsBlending);
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return status;
}
/** Perform a blit type operation */
static int blit_copybit(
struct copybit_device_t *dev,
struct copybit_image_t const *dst,
struct copybit_image_t const *src,
struct copybit_region_t const *region)
{
int status = COPYBIT_SUCCESS;
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
struct copybit_rect_t dr = { 0, 0, (int)dst->w, (int)dst->h };
struct copybit_rect_t sr = { 0, 0, (int)src->w, (int)src->h };
pthread_mutex_lock(&ctx->wait_cleanup_lock);
status = stretch_copybit_internal(dev, dst, src, &dr, &sr, region, false);
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
return status;
}
/** Fill the rect on dst with RGBA color **/
static int fill_color(struct copybit_device_t *dev,
struct copybit_image_t const *dst,
struct copybit_rect_t const *rect,
uint32_t /*color*/)
{
// TODO: Implement once c2d driver supports color fill
if(!dev || !dst || !rect)
return -EINVAL;
return -EINVAL;
}
/*****************************************************************************/
static void clean_up(copybit_context_t* ctx)
{
void* ret;
if (!ctx)
return;
// stop the wait_cleanup_thread
pthread_mutex_lock(&ctx->wait_cleanup_lock);
ctx->stop_thread = true;
// Signal waiting thread
pthread_cond_signal(&ctx->wait_cleanup_cond);
pthread_mutex_unlock(&ctx->wait_cleanup_lock);
// waits for the cleanup thread to exit
pthread_join(ctx->wait_thread_id, &ret);
pthread_mutex_destroy(&ctx->wait_cleanup_lock);
pthread_cond_destroy (&ctx->wait_cleanup_cond);
for (int i = 0; i < NUM_SURFACE_TYPES; i++) {
if (ctx->dst[i])
LINK_c2dDestroySurface(ctx->dst[i]);
}
for (int i = 0; i < MAX_RGB_SURFACES; i++) {
if (ctx->blit_rgb_object[i].surface_id)
LINK_c2dDestroySurface(ctx->blit_rgb_object[i].surface_id);
}
for (int i = 0; i < MAX_YUV_2_PLANE_SURFACES; i++) {
if (ctx->blit_yuv_2_plane_object[i].surface_id)
LINK_c2dDestroySurface(ctx->blit_yuv_2_plane_object[i].surface_id);
}
for (int i = 0; i < MAX_YUV_3_PLANE_SURFACES; i++) {
if (ctx->blit_yuv_3_plane_object[i].surface_id)
LINK_c2dDestroySurface(ctx->blit_yuv_3_plane_object[i].surface_id);
}
if (ctx->libc2d2) {
::dlclose(ctx->libc2d2);
ALOGV("dlclose(libc2d2)");
}
free(ctx);
}
/** Close the copybit device */
static int close_copybit(struct hw_device_t *dev)
{
struct copybit_context_t* ctx = (struct copybit_context_t*)dev;
if (ctx) {
free_temp_buffer(ctx->temp_src_buffer);
free_temp_buffer(ctx->temp_dst_buffer);
}
clean_up(ctx);
return 0;
}
/** Open a new instance of a copybit device using name */
static int open_copybit(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = COPYBIT_SUCCESS;
if (strcmp(name, COPYBIT_HARDWARE_COPYBIT0)) {
return COPYBIT_FAILURE;
}
C2D_RGB_SURFACE_DEF surfDefinition = {0};
C2D_YUV_SURFACE_DEF yuvSurfaceDef = {0} ;
struct copybit_context_t *ctx;
ctx = (struct copybit_context_t *)malloc(sizeof(struct copybit_context_t));
if(!ctx) {
ALOGE("%s: malloc failed", __FUNCTION__);
return COPYBIT_FAILURE;
}
/* initialize drawstate */
memset(ctx, 0, sizeof(*ctx));
ctx->libc2d2 = ::dlopen("libC2D2.so", RTLD_NOW);
if (!ctx->libc2d2) {
ALOGE("FATAL ERROR: could not dlopen libc2d2.so: %s", dlerror());
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
*(void **)&LINK_c2dCreateSurface = ::dlsym(ctx->libc2d2,
"c2dCreateSurface");
*(void **)&LINK_c2dUpdateSurface = ::dlsym(ctx->libc2d2,
"c2dUpdateSurface");
*(void **)&LINK_c2dReadSurface = ::dlsym(ctx->libc2d2,
"c2dReadSurface");
*(void **)&LINK_c2dDraw = ::dlsym(ctx->libc2d2, "c2dDraw");
*(void **)&LINK_c2dFlush = ::dlsym(ctx->libc2d2, "c2dFlush");
*(void **)&LINK_c2dFinish = ::dlsym(ctx->libc2d2, "c2dFinish");
*(void **)&LINK_c2dWaitTimestamp = ::dlsym(ctx->libc2d2,
"c2dWaitTimestamp");
*(void **)&LINK_c2dDestroySurface = ::dlsym(ctx->libc2d2,
"c2dDestroySurface");
*(void **)&LINK_c2dMapAddr = ::dlsym(ctx->libc2d2,
"c2dMapAddr");
*(void **)&LINK_c2dUnMapAddr = ::dlsym(ctx->libc2d2,
"c2dUnMapAddr");
*(void **)&LINK_c2dGetDriverCapabilities = ::dlsym(ctx->libc2d2,
"c2dGetDriverCapabilities");
*(void **)&LINK_c2dCreateFenceFD = ::dlsym(ctx->libc2d2,
"c2dCreateFenceFD");
*(void **)&LINK_c2dFillSurface = ::dlsym(ctx->libc2d2,
"c2dFillSurface");
if (!LINK_c2dCreateSurface || !LINK_c2dUpdateSurface || !LINK_c2dReadSurface
|| !LINK_c2dDraw || !LINK_c2dFlush || !LINK_c2dWaitTimestamp ||
!LINK_c2dFinish || !LINK_c2dDestroySurface ||
!LINK_c2dGetDriverCapabilities || !LINK_c2dCreateFenceFD ||
!LINK_c2dFillSurface) {
ALOGE("%s: dlsym ERROR", __FUNCTION__);
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
ctx->device.common.tag = HARDWARE_DEVICE_TAG;
ctx->device.common.version = 1;
ctx->device.common.module = (hw_module_t*)(module);
ctx->device.common.close = close_copybit;
ctx->device.set_parameter = set_parameter_copybit;
ctx->device.get = get;
ctx->device.blit = blit_copybit;
ctx->device.set_sync = set_sync_copybit;
ctx->device.stretch = stretch_copybit;
ctx->device.finish = finish_copybit;
ctx->device.flush_get_fence = flush_get_fence_copybit;
ctx->device.clear = clear_copybit;
ctx->device.fill_color = fill_color;
/* Create RGB Surface */
surfDefinition.buffer = (void*)0xdddddddd;
surfDefinition.phys = (void*)0xdddddddd;
surfDefinition.stride = 1 * 4;
surfDefinition.width = 1;
surfDefinition.height = 1;
surfDefinition.format = C2D_COLOR_FORMAT_8888_ARGB;
if (LINK_c2dCreateSurface(&(ctx->dst[RGB_SURFACE]), C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_RGB_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY ),
&surfDefinition)) {
ALOGE("%s: create ctx->dst_surface[RGB_SURFACE] failed", __FUNCTION__);
ctx->dst[RGB_SURFACE] = 0;
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
unsigned int surface_id = 0;
for (int i = 0; i < MAX_RGB_SURFACES; i++)
{
if (LINK_c2dCreateSurface(&surface_id, C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_RGB_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY ),
&surfDefinition)) {
ALOGE("%s: create RGB source surface %d failed", __FUNCTION__, i);
ctx->blit_rgb_object[i].surface_id = 0;
status = COPYBIT_FAILURE;
break;
} else {
ctx->blit_rgb_object[i].surface_id = surface_id;
ALOGW("%s i = %d surface_id=%d", __FUNCTION__, i,
ctx->blit_rgb_object[i].surface_id);
}
}
if (status == COPYBIT_FAILURE) {
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
// Create 2 plane YUV surfaces
yuvSurfaceDef.format = C2D_COLOR_FORMAT_420_NV12;
yuvSurfaceDef.width = 4;
yuvSurfaceDef.height = 4;
yuvSurfaceDef.plane0 = (void*)0xaaaaaaaa;
yuvSurfaceDef.phys0 = (void*) 0xaaaaaaaa;
yuvSurfaceDef.stride0 = 4;
yuvSurfaceDef.plane1 = (void*)0xaaaaaaaa;
yuvSurfaceDef.phys1 = (void*) 0xaaaaaaaa;
yuvSurfaceDef.stride1 = 4;
if (LINK_c2dCreateSurface(&(ctx->dst[YUV_SURFACE_2_PLANES]),
C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_YUV_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY),
&yuvSurfaceDef)) {
ALOGE("%s: create ctx->dst[YUV_SURFACE_2_PLANES] failed", __FUNCTION__);
ctx->dst[YUV_SURFACE_2_PLANES] = 0;
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
for (int i=0; i < MAX_YUV_2_PLANE_SURFACES; i++)
{
if (LINK_c2dCreateSurface(&surface_id, C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_YUV_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY ),
&yuvSurfaceDef)) {
ALOGE("%s: create YUV source %d failed", __FUNCTION__, i);
ctx->blit_yuv_2_plane_object[i].surface_id = 0;
status = COPYBIT_FAILURE;
break;
} else {
ctx->blit_yuv_2_plane_object[i].surface_id = surface_id;
ALOGW("%s: 2 Plane YUV i=%d surface_id=%d", __FUNCTION__, i,
ctx->blit_yuv_2_plane_object[i].surface_id);
}
}
if (status == COPYBIT_FAILURE) {
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
// Create YUV 3 plane surfaces
yuvSurfaceDef.format = C2D_COLOR_FORMAT_420_YV12;
yuvSurfaceDef.plane2 = (void*)0xaaaaaaaa;
yuvSurfaceDef.phys2 = (void*) 0xaaaaaaaa;
yuvSurfaceDef.stride2 = 4;
if (LINK_c2dCreateSurface(&(ctx->dst[YUV_SURFACE_3_PLANES]),
C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_YUV_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY),
&yuvSurfaceDef)) {
ALOGE("%s: create ctx->dst[YUV_SURFACE_3_PLANES] failed", __FUNCTION__);
ctx->dst[YUV_SURFACE_3_PLANES] = 0;
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
for (int i=0; i < MAX_YUV_3_PLANE_SURFACES; i++)
{
if (LINK_c2dCreateSurface(&(surface_id),
C2D_TARGET | C2D_SOURCE,
(C2D_SURFACE_TYPE)(C2D_SURFACE_YUV_HOST |
C2D_SURFACE_WITH_PHYS |
C2D_SURFACE_WITH_PHYS_DUMMY),
&yuvSurfaceDef)) {
ALOGE("%s: create 3 plane YUV surface %d failed", __FUNCTION__, i);
ctx->blit_yuv_3_plane_object[i].surface_id = 0;
status = COPYBIT_FAILURE;
break;
} else {
ctx->blit_yuv_3_plane_object[i].surface_id = surface_id;
ALOGW("%s: 3 Plane YUV i=%d surface_id=%d", __FUNCTION__, i,
ctx->blit_yuv_3_plane_object[i].surface_id);
}
}
if (status == COPYBIT_FAILURE) {
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
if (LINK_c2dGetDriverCapabilities(&(ctx->c2d_driver_info))) {
ALOGE("%s: LINK_c2dGetDriverCapabilities failed", __FUNCTION__);
clean_up(ctx);
status = COPYBIT_FAILURE;
*device = NULL;
return status;
}
// Initialize context variables.
ctx->trg_transform = C2D_TARGET_ROTATE_0;
ctx->temp_src_buffer.fd = -1;
ctx->temp_src_buffer.base = 0;
ctx->temp_src_buffer.size = 0;
ctx->temp_dst_buffer.fd = -1;
ctx->temp_dst_buffer.base = 0;
ctx->temp_dst_buffer.size = 0;
ctx->fb_width = 0;
ctx->fb_height = 0;
ctx->blit_rgb_count = 0;
ctx->blit_yuv_2_plane_count = 0;
ctx->blit_yuv_3_plane_count = 0;
ctx->blit_count = 0;
ctx->wait_timestamp = false;
ctx->stop_thread = false;
pthread_mutex_init(&(ctx->wait_cleanup_lock), NULL);
pthread_cond_init(&(ctx->wait_cleanup_cond), NULL);
/* Start the wait thread */
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_create(&ctx->wait_thread_id, &attr, &c2d_wait_loop,
(void *)ctx);
pthread_attr_destroy(&attr);
*device = &ctx->device.common;
return status;
}