blob: 0047b1dd6299cbff5c3a22e4271b53853a38a2a0 [file] [log] [blame]
/*
* Copyright (c) 2014-2021, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Changes from Qualcomm Innovation Center are provided under the following license:
*
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#include <cutils/properties.h>
#include <sync/sync.h>
#include <utils/constants.h>
#include <utils/debug.h>
#include <utils/utils.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <map>
#include <string>
#include <vector>
#include "hwc_display_builtin.h"
#include "hwc_color_mode_stc.h"
#include "hwc_debugger.h"
#include "hwc_session.h"
#define __CLASS__ "HWCDisplayBuiltIn"
namespace sdm {
static void SetRect(LayerRect &src_rect, GLRect *target) {
target->left = src_rect.left;
target->top = src_rect.top;
target->right = src_rect.right;
target->bottom = src_rect.bottom;
}
int HWCDisplayBuiltIn::Create(CoreInterface *core_intf, BufferAllocator *buffer_allocator,
HWCCallbacks *callbacks, HWCDisplayEventHandler *event_handler,
qService::QService *qservice, hwc2_display_t id, int32_t sdm_id,
HWCDisplay **hwc_display) {
int status = 0;
uint32_t builtin_width = 0;
uint32_t builtin_height = 0;
HWCDisplay *hwc_display_builtin =
new HWCDisplayBuiltIn(core_intf, static_cast<HWCBufferAllocator *>(buffer_allocator),
callbacks, event_handler, qservice, id, sdm_id);
status = hwc_display_builtin->Init();
if (status) {
delete hwc_display_builtin;
return status;
}
hwc_display_builtin->GetMixerResolution(&builtin_width, &builtin_height);
int width = 0, height = 0;
HWCDebugHandler::Get()->GetProperty(FB_WIDTH_PROP, &width);
HWCDebugHandler::Get()->GetProperty(FB_HEIGHT_PROP, &height);
if (width > 0 && height > 0) {
builtin_width = UINT32(width);
builtin_height = UINT32(height);
}
status = hwc_display_builtin->SetFrameBufferResolution(builtin_width, builtin_height);
if (status) {
Destroy(hwc_display_builtin);
return status;
}
*hwc_display = hwc_display_builtin;
return status;
}
void HWCDisplayBuiltIn::Destroy(HWCDisplay *hwc_display) {
hwc_display->Deinit();
delete hwc_display;
}
HWCDisplayBuiltIn::HWCDisplayBuiltIn(CoreInterface *core_intf, HWCBufferAllocator *buffer_allocator,
HWCCallbacks *callbacks, HWCDisplayEventHandler *event_handler,
qService::QService *qservice, hwc2_display_t id,
int32_t sdm_id)
: HWCDisplay(core_intf, buffer_allocator, callbacks, event_handler, qservice, kBuiltIn, id,
sdm_id, DISPLAY_CLASS_BUILTIN),
buffer_allocator_(buffer_allocator),
cpu_hint_(NULL), layer_stitch_task_(*this) {
}
int HWCDisplayBuiltIn::Init() {
cpu_hint_ = new CPUHint();
if (cpu_hint_->Init(static_cast<HWCDebugHandler *>(HWCDebugHandler::Get())) != kErrorNone) {
delete cpu_hint_;
cpu_hint_ = NULL;
}
layer_stack_.flags.use_metadata_refresh_rate = true;
int disable_metadata_dynfps = 0;
HWCDebugHandler::Get()->GetProperty(DISABLE_METADATA_DYNAMIC_FPS_PROP, &disable_metadata_dynfps);
if (disable_metadata_dynfps) {
layer_stack_.flags.use_metadata_refresh_rate = false;
}
int status = HWCDisplay::Init();
if (status) {
return status;
}
color_mode_ = new HWCColorModeStc(display_intf_);
color_mode_->Init();
int value = 0;
HWCDebugHandler::Get()->GetProperty(ENABLE_OPTIMIZE_REFRESH, &value);
enable_optimize_refresh_ = (value == 1);
if (enable_optimize_refresh_) {
DLOGI("Drop redundant drawcycles %" PRIu64 , id_);
}
int vsyncs = 0;
HWCDebugHandler::Get()->GetProperty(TRANSIENT_FPS_CYCLE_COUNT, &vsyncs);
if (vsyncs > 0) {
SetVsyncsApplyRateChange(UINT32(vsyncs));
}
is_primary_ = display_intf_->IsPrimaryDisplay();
windowed_display_ = Debug::GetWindowRect(is_primary_, &window_rect_.left, &window_rect_.top,
&window_rect_.right, &window_rect_.bottom) == 0;
DLOGI("Window rect : [%f %f %f %f] is_primary_=%d", window_rect_.left, window_rect_.top,
window_rect_.right, window_rect_.bottom, is_primary_);
if (is_primary_) {
value = 0;
HWCDebugHandler::Get()->GetProperty(ENABLE_POMS_DURING_DOZE, &value);
enable_poms_during_doze_ = (value == 1);
if (enable_poms_during_doze_) {
DLOGI("Enable POMS during Doze mode %" PRIu64 , id_);
}
}
HWCDebugHandler::Get()->GetProperty(ENABLE_PERF_HINT_LARGE_COMP_CYCLE,
&perf_hint_large_comp_cycle_);
value = 0;
DebugHandler::Get()->GetProperty(DISABLE_DYNAMIC_FPS, &value);
disable_dyn_fps_ = (value == 1);
value = 0;
DebugHandler::Get()->GetProperty(ENABLE_ROUNDED_CORNER, &value);
enable_round_corner_ = (value == 1);
value = 0;
if (DebugHandler::Get()->GetProperty(LARGE_COMP_HINT_THRESHOLD, &value) == kErrorNone) {
large_comp_hint_threshold_ = value;
}
uint32_t config_index = 0;
GetActiveDisplayConfig(&config_index);
DisplayConfigVariableInfo attr = {};
GetDisplayAttributesForConfig(INT(config_index), &attr);
active_refresh_rate_ = attr.fps;
DLOGI("active_refresh_rate: %d", active_refresh_rate_);
int enhance_idle_time = 0;
HWCDebugHandler::Get()->GetProperty(ENHANCE_IDLE_TIME, &enhance_idle_time);
enhance_idle_time_ = (enhance_idle_time == 1);
DLOGI("enhance_idle_time: %d", enhance_idle_time);
LoadMixedModePerfHintThreshold();
return status;
}
void HWCDisplayBuiltIn::Dump(std::ostringstream *os) {
HWCDisplay::Dump(os);
*os << histogram.Dump();
}
void HWCDisplayBuiltIn::ValidateUiScaling() {
if (is_primary_ || !is_cmd_mode_) {
force_reset_lut_ = false;
return;
}
for (auto &hwc_layer : layer_set_) {
Layer *layer = hwc_layer->GetSDMLayer();
if (hwc_layer->IsScalingPresent() && !layer->input_buffer.flags.video) {
force_reset_lut_ = true;
return;
}
}
force_reset_lut_ = false;
}
HWC2::Error HWCDisplayBuiltIn::PreValidateDisplay(bool *exit_validate) {
DTRACE_SCOPED();
// Draw method gets set as part of first commit.
SetDrawMethod();
auto status = HWC2::Error::None;
bool res_exhausted = false;
// If no resources are available for the current display, mark it for GPU by pass and continue to
// do invalidate until the resources are available
if (display_paused_ || CheckResourceState(&res_exhausted)) {
MarkLayersForGPUBypass();
*exit_validate = true;
return status;
}
if (color_tranform_failed_) {
// Must fall back to client composition
MarkLayersForClientComposition();
}
// Fill in the remaining blanks in the layers and add them to the SDM layerstack
BuildLayerStack();
// Check for scaling layers during Doze mode
ValidateUiScaling();
// Add stitch layer to layer stack.
AppendStitchLayer();
// Checks and replaces layer stack for solid fill
SolidFillPrepare();
// Apply current Color Mode and Render Intent.
if (color_mode_->ApplyCurrentColorModeWithRenderIntent(
static_cast<bool>(layer_stack_.flags.hdr_present)) != HWC2::Error::None) {
// Fallback to GPU Composition, if Color Mode can't be applied.
MarkLayersForClientComposition();
}
uint32_t refresh_rate = 0;
display_intf_->GetRefreshRate(&refresh_rate);
current_refresh_rate_ = refresh_rate;
if (layer_set_.empty()) {
// Avoid flush for Command mode panel.
flush_ = !client_connected_;
*exit_validate = true;
return status;
}
display_idle_ = false;
has_client_composition_ = false;
*exit_validate = false;
return status;
}
HWC2::Error HWCDisplayBuiltIn::CommitLayerStack() {
skip_commit_ = CanSkipCommit();
return HWCDisplay::CommitLayerStack();
}
bool HWCDisplayBuiltIn::CanSkipCommit() {
if (layer_stack_invalid_) {
return false;
}
// Reject repeated drawcycle requests if it satisfies all conditions.
// 1. None of the layerstack attributes changed.
// 2. No new buffer latched.
// 3. No refresh request triggered by HWC.
// 4. This display is not source of vsync.
// 5. No CWB client
bool buffers_latched = false;
bool needs_validation = false;
for (auto &hwc_layer : layer_set_) {
buffers_latched |= hwc_layer->BufferLatched();
hwc_layer->ResetBufferFlip();
needs_validation |= hwc_layer->NeedsValidation();
}
bool vsync_source = (callbacks_->GetVsyncSource() == id_);
bool skip_commit = false;
{
std::unique_lock<std::mutex> lock(cwb_mutex_);
skip_commit = enable_optimize_refresh_ && !pending_commit_ && !buffers_latched &&
!pending_refresh_ && !vsync_source && (cwb_buffer_map_.size() == 0)
&& !needs_validation;
} // releasing the cwb state lock
pending_refresh_ = false;
return skip_commit;
}
HWC2::Error HWCDisplayBuiltIn::CommitStitchLayers() {
if (disable_layer_stitch_) {
return HWC2::Error::None;
}
if (!display_intf_->IsValidated() || skip_commit_) {
return HWC2::Error::None;
}
LayerStitchContext ctx = {};
Layer *stitch_layer = stitch_target_->GetSDMLayer();
LayerBuffer &output_buffer = stitch_layer->input_buffer;
for (auto &layer : layer_stack_.layers) {
LayerComposition &composition = layer->composition;
if (composition != kCompositionStitch) {
continue;
}
StitchParams params = {};
// Stitch target doesn't have an input fence.
// Render all layers at specified destination.
LayerBuffer &input_buffer = layer->input_buffer;
params.src_hnd = reinterpret_cast<const native_handle_t *>(input_buffer.buffer_id);
params.dst_hnd = reinterpret_cast<const native_handle_t *>(output_buffer.buffer_id);
SetRect(layer->stitch_info.dst_rect, &params.dst_rect);
SetRect(layer->stitch_info.slice_rect, &params.scissor_rect);
params.src_acquire_fence = input_buffer.acquire_fence;
ctx.stitch_params.push_back(params);
}
if (!ctx.stitch_params.size()) {
// No layers marked for stitch.
return HWC2::Error::None;
}
layer_stitch_task_.PerformTask(LayerStitchTaskCode::kCodeStitch, &ctx);
// Set release fence.
output_buffer.acquire_fence = ctx.release_fence;
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetPowerMode(HWC2::PowerMode mode, bool teardown) {
auto status = HWCDisplay::SetPowerMode(mode, teardown);
if (status != HWC2::Error::None) {
return status;
}
DLOGV_IF(kTagClient, "Setting Power State as \'%s\' for %d-%d", (mode == HWC2::PowerMode::On)?
"ON": (mode == HWC2::PowerMode::Off)? "OFF": (mode == HWC2::PowerMode::Doze)? "DOZE":
"DOZE_SUSPEND", sdm_id_, type_);
if (cpu_hint_) {
switch (mode) {
case HWC2::PowerMode::Doze:
case HWC2::PowerMode::DozeSuspend:
// Perf hal doesn't differentiate b/w doze and doze-suspend, so send doze hint for both.
cpu_hint_->ReqEvent(kPerfHintDisplayDoze);
break;
case HWC2::PowerMode::On:
cpu_hint_->ReqEvent(kPerfHintDisplayOn);
break;
case HWC2::PowerMode::Off:
cpu_hint_->ReqEvent(kPerfHintDisplayOff);
break;
default:
break;
}
}
DisplayConfigFixedInfo fixed_info = {};
display_intf_->GetConfig(&fixed_info);
is_cmd_mode_ = fixed_info.is_cmdmode;
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::Present(shared_ptr<Fence> *out_retire_fence) {
auto status = HWC2::Error::None;
bool res_exhausted = false;
DTRACE_SCOPED();
// Proceed only if any resources are available to be allocated for the current display,
// Otherwise keep doing invalidate
if (CheckResourceState(&res_exhausted)) {
Refresh();
return status;
}
if (display_paused_ ) {
return status;
} else {
if (status != HWC2::Error::None) {
DLOGE("Stitch failed: %d", status);
return status;
}
status = CommitLayerStack();
if (status == HWC2::Error::None) {
status = PostCommitLayerStack(out_retire_fence);
}
}
// In case of scaling UI layer for command mode, clear LUTs
if (force_reset_lut_) {
display_intf_->ClearLUTs();
}
return status;
}
void HWCDisplayBuiltIn::PostCommitStitchLayers() {
if (disable_layer_stitch_) {
return;
}
// Close Stitch buffer acquire fence.
Layer *stitch_layer = stitch_target_->GetSDMLayer();
LayerBuffer &output_buffer = stitch_layer->input_buffer;
for (auto &layer : layer_stack_.layers) {
LayerComposition &composition = layer->composition;
if (composition != kCompositionStitch) {
continue;
}
LayerBuffer &input_buffer = layer->input_buffer;
input_buffer.release_fence = output_buffer.acquire_fence;
}
}
HWC2::Error HWCDisplayBuiltIn::GetColorModes(uint32_t *out_num_modes, ColorMode *out_modes) {
if (out_modes == nullptr) {
*out_num_modes = color_mode_->GetColorModeCount();
} else {
color_mode_->GetColorModes(out_num_modes, out_modes);
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::GetRenderIntents(ColorMode mode, uint32_t *out_num_intents,
RenderIntent *out_intents) {
if (out_intents == nullptr) {
*out_num_intents = color_mode_->GetRenderIntentCount(mode);
} else {
color_mode_->GetRenderIntents(mode, out_num_intents, out_intents);
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetColorMode(ColorMode mode) {
return SetColorModeWithRenderIntent(mode, RenderIntent::COLORIMETRIC);
}
HWC2::Error HWCDisplayBuiltIn::SetColorModeWithRenderIntent(ColorMode mode, RenderIntent intent) {
auto status = color_mode_->CacheColorModeWithRenderIntent(mode, intent);
if (status != HWC2::Error::None) {
DLOGE("failed for mode = %d intent = %d", mode, intent);
return status;
}
callbacks_->Refresh(id_);
return status;
}
HWC2::Error HWCDisplayBuiltIn::SetColorModeById(int32_t color_mode_id) {
auto status = color_mode_->SetColorModeById(color_mode_id);
if (status != HWC2::Error::None) {
DLOGE("failed for mode = %d", color_mode_id);
return status;
}
callbacks_->Refresh(id_);
return status;
}
HWC2::Error HWCDisplayBuiltIn::SetColorModeFromClientApi(int32_t color_mode_id) {
DisplayError error = kErrorNone;
std::string mode_string;
error = display_intf_->GetColorModeName(color_mode_id, &mode_string);
if (error) {
DLOGE("Failed to get mode name for mode %d", color_mode_id);
return HWC2::Error::BadParameter;
}
auto status = color_mode_->SetColorModeFromClientApi(mode_string);
if (status != HWC2::Error::None) {
DLOGE("Failed to set mode = %d", color_mode_id);
return status;
}
return status;
}
HWC2::Error HWCDisplayBuiltIn::RestoreColorTransform() {
auto status = color_mode_->RestoreColorTransform();
if (status != HWC2::Error::None) {
DLOGE("failed to RestoreColorTransform");
return status;
}
callbacks_->Refresh(id_);
return status;
}
HWC2::Error HWCDisplayBuiltIn::SetColorTransform(const float *matrix,
android_color_transform_t hint) {
if (!matrix) {
return HWC2::Error::BadParameter;
}
auto status = color_mode_->SetColorTransform(matrix, hint);
if (status != HWC2::Error::None) {
DLOGE("failed for hint = %d", hint);
color_tranform_failed_ = true;
return status;
}
callbacks_->Refresh(id_);
color_tranform_failed_ = false;
return status;
}
HWC2::Error HWCDisplayBuiltIn::SetDisplayDppsAdROI(uint32_t h_start, uint32_t h_end,
uint32_t v_start, uint32_t v_end,
uint32_t factor_in, uint32_t factor_out) {
DisplayError error = kErrorNone;
DisplayDppsAd4RoiCfg dpps_ad4_roi_cfg = {};
uint32_t panel_width = 0, panel_height = 0;
constexpr uint16_t kMaxFactorVal = 0xffff;
if (h_start >= h_end || v_start >= v_end || factor_in > kMaxFactorVal ||
factor_out > kMaxFactorVal) {
DLOGE("Invalid roi region = [%u, %u, %u, %u, %u, %u]",
h_start, h_end, v_start, v_end, factor_in, factor_out);
return HWC2::Error::BadParameter;
}
GetPanelResolution(&panel_width, &panel_height);
if (h_start >= panel_width || h_end > panel_width ||
v_start >= panel_height || v_end > panel_height) {
DLOGE("Invalid roi region = [%u, %u, %u, %u], panel resolution = [%u, %u]",
h_start, h_end, v_start, v_end, panel_width, panel_height);
return HWC2::Error::BadParameter;
}
dpps_ad4_roi_cfg.h_start = h_start;
dpps_ad4_roi_cfg.h_end = h_end;
dpps_ad4_roi_cfg.v_start = v_start;
dpps_ad4_roi_cfg.v_end = v_end;
dpps_ad4_roi_cfg.factor_in = factor_in;
dpps_ad4_roi_cfg.factor_out = factor_out;
error = display_intf_->SetDisplayDppsAdROI(&dpps_ad4_roi_cfg);
if (error)
return HWC2::Error::BadConfig;
callbacks_->Refresh(id_);
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetFrameTriggerMode(uint32_t mode) {
DisplayError error = kErrorNone;
FrameTriggerMode trigger_mode = kFrameTriggerDefault;
if (mode >= kFrameTriggerMax) {
DLOGE("Invalid input mode %d", mode);
return HWC2::Error::BadParameter;
}
trigger_mode = static_cast<FrameTriggerMode>(mode);
error = display_intf_->SetFrameTriggerMode(trigger_mode);
if (error)
return HWC2::Error::BadConfig;
callbacks_->Refresh(HWC_DISPLAY_PRIMARY);
return HWC2::Error::None;
}
int HWCDisplayBuiltIn::Perform(uint32_t operation, ...) {
va_list args;
va_start(args, operation);
int val = 0;
LayerSolidFill *solid_fill_color;
LayerRect *rect = NULL;
switch (operation) {
case SET_METADATA_DYN_REFRESH_RATE:
val = va_arg(args, int32_t);
SetMetaDataRefreshRateFlag(val);
break;
case SET_BINDER_DYN_REFRESH_RATE:
val = va_arg(args, int32_t);
ForceRefreshRate(UINT32(val));
break;
case SET_DISPLAY_MODE:
val = va_arg(args, int32_t);
SetDisplayMode(UINT32(val));
break;
case SET_QDCM_SOLID_FILL_INFO:
solid_fill_color = va_arg(args, LayerSolidFill*);
SetQDCMSolidFillInfo(true, *solid_fill_color);
break;
case UNSET_QDCM_SOLID_FILL_INFO:
solid_fill_color = va_arg(args, LayerSolidFill*);
SetQDCMSolidFillInfo(false, *solid_fill_color);
break;
case SET_QDCM_SOLID_FILL_RECT:
rect = va_arg(args, LayerRect*);
solid_fill_rect_ = *rect;
break;
case UPDATE_TRANSFER_TIME:
val = va_arg(args, int32_t);
UpdateTransferTime(UINT32(val));
break;
default:
DLOGW("Invalid operation %d", operation);
va_end(args);
return -EINVAL;
}
va_end(args);
return 0;
}
DisplayError HWCDisplayBuiltIn::SetDisplayMode(uint32_t mode) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->SetDisplayMode(mode);
if (error == kErrorNone) {
DisplayConfigFixedInfo fixed_info = {};
display_intf_->GetConfig(&fixed_info);
is_cmd_mode_ = fixed_info.is_cmdmode;
}
}
return error;
}
void HWCDisplayBuiltIn::SetMetaDataRefreshRateFlag(bool enable) {
int disable_metadata_dynfps = 0;
HWCDebugHandler::Get()->GetProperty(DISABLE_METADATA_DYNAMIC_FPS_PROP, &disable_metadata_dynfps);
if (disable_metadata_dynfps) {
return;
}
layer_stack_.flags.use_metadata_refresh_rate = enable;
}
void HWCDisplayBuiltIn::SetQDCMSolidFillInfo(bool enable, const LayerSolidFill &color) {
solid_fill_enable_ = enable;
solid_fill_color_ = color;
}
int HWCDisplayBuiltIn::GetActiveSecureSession(std::bitset<kSecureMax> *secure_sessions) {
if (!secure_sessions) {
return -1;
}
secure_sessions->reset();
for (auto hwc_layer : layer_set_) {
Layer *layer = hwc_layer->GetSDMLayer();
if (layer->input_buffer.flags.secure_camera) {
secure_sessions->set(kSecureCamera);
}
if (layer->input_buffer.flags.secure_display) {
secure_sessions->set(kSecureDisplay);
}
}
if (secure_event_ == kTUITransitionStart || secure_event_ == kTUITransitionPrepare) {
secure_sessions->set(kSecureTUI);
}
return 0;
}
int HWCDisplayBuiltIn::HandleSecureSession(const std::bitset<kSecureMax> &secure_sessions,
bool *power_on_pending, bool is_active_secure_display) {
if (!power_on_pending) {
return -EINVAL;
}
if (!is_active_secure_display) {
// Do handling as done on non-primary displays.
DLOGI("Default handling for display %" PRIu64 " %d-%d", id_, sdm_id_, type_);
return HWCDisplay::HandleSecureSession(secure_sessions, power_on_pending,
is_active_secure_display);
}
if (current_power_mode_ != HWC2::PowerMode::On) {
return 0;
}
if (active_secure_sessions_[kSecureDisplay] != secure_sessions[kSecureDisplay]) {
SecureEvent secure_event =
secure_sessions.test(kSecureDisplay) ? kSecureDisplayStart : kSecureDisplayEnd;
bool needs_refresh = false;
DisplayError err = display_intf_->HandleSecureEvent(secure_event, &needs_refresh);
if (err != kErrorNone) {
DLOGE("Set secure event failed");
return err;
}
DLOGI("SecureDisplay state changed from %d to %d for display %" PRIu64 " %d-%d",
active_secure_sessions_.test(kSecureDisplay), secure_sessions.test(kSecureDisplay),
id_, sdm_id_, type_);
}
active_secure_sessions_ = secure_sessions;
*power_on_pending = false;
return 0;
}
void HWCDisplayBuiltIn::ForceRefreshRate(uint32_t refresh_rate) {
if ((refresh_rate && (refresh_rate < min_refresh_rate_ || refresh_rate > max_refresh_rate_)) ||
layer_stack_.force_refresh_rate == refresh_rate) {
// Cannot honor force refresh rate, as its beyond the range or new request is same
return;
}
layer_stack_.force_refresh_rate = refresh_rate;
callbacks_->Refresh(id_);
return;
}
void HWCDisplayBuiltIn::SetIdleTimeoutMs(uint32_t timeout_ms, uint32_t inactive_ms) {
display_intf_->SetIdleTimeoutMs(timeout_ms, inactive_ms);
}
void HWCDisplayBuiltIn::HandleFrameCapture() {
auto ret = kCWBReleaseFenceErrorNone;
{
std::unique_lock<std::mutex> lock(cwb_mutex_);
auto &cwb_resp = cwb_capture_status_map_[kCWBClientColor];
// If CWB request status is not notified, then need to wait for the notification.
if (cwb_resp.status == kCWBReleaseFenceNotChecked) {
cwb_cv_.wait(lock);
}
ret = cwb_resp.status;
}
frame_capture_status_ = (ret == kCWBReleaseFenceWaitTimedOut) ? -ETIME : (ret) ? -1 : 0;
frame_capture_buffer_queued_ = false;
DLOGV_IF(kTagQDCM, "Frame captured: frame_capture_buffer_queued_ %d",frame_capture_buffer_queued_);
}
int HWCDisplayBuiltIn::FrameCaptureAsync(const BufferInfo &output_buffer_info,
const CwbConfig &cwb_config) {
// Note: This function is called in context of a binder thread and a lock is already held
if (output_buffer_info.alloc_buffer_info.fd < 0) {
DLOGE("Invalid fd %d", output_buffer_info.alloc_buffer_info.fd);
return -1;
}
if (cwb_config.tap_point < CwbTapPoint::kLmTapPoint ||
cwb_config.tap_point > CwbTapPoint::kDemuraTapPoint) {
DLOGE("Invalid CWB tappoint passed by client ");
return -1;
}
const native_handle_t *buffer = static_cast<native_handle_t *>(output_buffer_info.private_data);
HWC2::Error err = SetReadbackBuffer(buffer, nullptr, cwb_config, kCWBClientColor);
if (err != HWC2::Error::None) {
return -1;
}
frame_capture_buffer_queued_ = true;
frame_capture_status_ = -EAGAIN;
return 0;
}
DisplayError HWCDisplayBuiltIn::SetDetailEnhancerConfig
(const DisplayDetailEnhancerData &de_data) {
DisplayError error = kErrorNotSupported;
if (display_intf_) {
error = display_intf_->SetDetailEnhancerData(de_data);
}
return error;
}
DisplayError HWCDisplayBuiltIn::SetHWDetailedEnhancerConfig(void *params) {
DisplayError err = kErrorNone;
DisplayDetailEnhancerData de_data;
PPDETuningCfgData *de_tuning_cfg_data = reinterpret_cast<PPDETuningCfgData*>(params);
if (de_tuning_cfg_data->cfg_pending) {
if (!de_tuning_cfg_data->cfg_en) {
de_data.enable = 0;
DLOGV_IF(kTagQDCM, "Disable DE config");
} else {
de_data.override_flags = kOverrideDEEnable;
de_data.enable = 1;
#ifdef DISP_DE_LPF_BLEND
DLOGV_IF(kTagQDCM, "Enable DE: flags %u, sharp_factor %d, thr_quiet %d, thr_dieout %d, "
"thr_low %d, thr_high %d, clip %d, quality %d, content_type %d, de_blend %d, "
"de_lpf_h %d, de_lpf_m %d, de_lpf_l %d",
de_tuning_cfg_data->params.flags, de_tuning_cfg_data->params.sharp_factor,
de_tuning_cfg_data->params.thr_quiet, de_tuning_cfg_data->params.thr_dieout,
de_tuning_cfg_data->params.thr_low, de_tuning_cfg_data->params.thr_high,
de_tuning_cfg_data->params.clip, de_tuning_cfg_data->params.quality,
de_tuning_cfg_data->params.content_type, de_tuning_cfg_data->params.de_blend,
de_tuning_cfg_data->params.de_lpf_h, de_tuning_cfg_data->params.de_lpf_m,
de_tuning_cfg_data->params.de_lpf_l);
#endif
if (de_tuning_cfg_data->params.flags & kDeTuningFlagSharpFactor) {
de_data.override_flags |= kOverrideDESharpen1;
de_data.sharp_factor = de_tuning_cfg_data->params.sharp_factor;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagClip) {
de_data.override_flags |= kOverrideDEClip;
de_data.clip = de_tuning_cfg_data->params.clip;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagThrQuiet) {
de_data.override_flags |= kOverrideDEThrQuiet;
de_data.thr_quiet = de_tuning_cfg_data->params.thr_quiet;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagThrDieout) {
de_data.override_flags |= kOverrideDEThrDieout;
de_data.thr_dieout = de_tuning_cfg_data->params.thr_dieout;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagThrLow) {
de_data.override_flags |= kOverrideDEThrLow;
de_data.thr_low = de_tuning_cfg_data->params.thr_low;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagThrHigh) {
de_data.override_flags |= kOverrideDEThrHigh;
de_data.thr_high = de_tuning_cfg_data->params.thr_high;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagContentQualLevel) {
switch (de_tuning_cfg_data->params.quality) {
case kDeContentQualLow:
de_data.quality_level = kContentQualityLow;
break;
case kDeContentQualMedium:
de_data.quality_level = kContentQualityMedium;
break;
case kDeContentQualHigh:
de_data.quality_level = kContentQualityHigh;
break;
case kDeContentQualUnknown:
default:
de_data.quality_level = kContentQualityUnknown;
break;
}
}
switch (de_tuning_cfg_data->params.content_type) {
case kDeContentTypeVideo:
de_data.content_type = kContentTypeVideo;
break;
case kDeContentTypeGraphics:
de_data.content_type = kContentTypeGraphics;
break;
case kDeContentTypeUnknown:
default:
de_data.content_type = kContentTypeUnknown;
break;
}
if (de_tuning_cfg_data->params.flags & kDeTuningFlagDeBlend) {
de_data.override_flags |= kOverrideDEBlend;
de_data.de_blend = de_tuning_cfg_data->params.de_blend;
}
#ifdef DISP_DE_LPF_BLEND
if (de_tuning_cfg_data->params.flags & kDeTuningFlagDeLpfBlend) {
de_data.override_flags |= kOverrideDELpfBlend;
de_data.de_lpf_en = true;
de_data.de_lpf_h = de_tuning_cfg_data->params.de_lpf_h;
de_data.de_lpf_m = de_tuning_cfg_data->params.de_lpf_m;
de_data.de_lpf_l = de_tuning_cfg_data->params.de_lpf_l;
}
#endif
}
err = SetDetailEnhancerConfig(de_data);
if (err) {
DLOGW("SetDetailEnhancerConfig failed. err = %d", err);
}
de_tuning_cfg_data->cfg_pending = false;
}
return err;
}
DisplayError HWCDisplayBuiltIn::ControlPartialUpdate(bool enable, uint32_t *pending) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->ControlPartialUpdate(enable, pending);
}
return error;
}
DisplayError HWCDisplayBuiltIn::DisablePartialUpdateOneFrame() {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->DisablePartialUpdateOneFrame();
}
return error;
}
HWC2::Error HWCDisplayBuiltIn::SetDisplayedContentSamplingEnabledVndService(bool enabled) {
std::unique_lock<decltype(sampling_mutex)> lk(sampling_mutex);
vndservice_sampling_vote = enabled;
if (api_sampling_vote || vndservice_sampling_vote) {
histogram.start();
display_intf_->colorSamplingOn();
} else {
display_intf_->colorSamplingOff();
histogram.stop();
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetDisplayedContentSamplingEnabled(int32_t enabled,
uint8_t component_mask,
uint64_t max_frames) {
if ((enabled != HWC2_DISPLAYED_CONTENT_SAMPLING_ENABLE) &&
(enabled != HWC2_DISPLAYED_CONTENT_SAMPLING_DISABLE))
return HWC2::Error::BadParameter;
std::unique_lock<decltype(sampling_mutex)> lk(sampling_mutex);
if (enabled == HWC2_DISPLAYED_CONTENT_SAMPLING_ENABLE) {
api_sampling_vote = true;
} else {
api_sampling_vote = false;
}
auto start = api_sampling_vote || vndservice_sampling_vote;
if (start && max_frames == 0) {
histogram.start();
display_intf_->colorSamplingOn();
} else if (start) {
histogram.start(max_frames);
display_intf_->colorSamplingOn();
} else {
display_intf_->colorSamplingOff();
histogram.stop();
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::GetDisplayedContentSamplingAttributes(
int32_t *format, int32_t *dataspace, uint8_t *supported_components) {
return histogram.getAttributes(format, dataspace, supported_components);
}
HWC2::Error HWCDisplayBuiltIn::GetDisplayedContentSample(
uint64_t max_frames, uint64_t timestamp, uint64_t *numFrames,
int32_t samples_size[NUM_HISTOGRAM_COLOR_COMPONENTS],
uint64_t *samples[NUM_HISTOGRAM_COLOR_COMPONENTS]) {
histogram.collect(max_frames, timestamp, samples_size, samples, numFrames);
return HWC2::Error::None;
}
DisplayError HWCDisplayBuiltIn::SetMixerResolution(uint32_t width, uint32_t height) {
DisplayError error = display_intf_->SetMixerResolution(width, height);
callbacks_->Refresh(id_);
return error;
}
DisplayError HWCDisplayBuiltIn::GetMixerResolution(uint32_t *width, uint32_t *height) {
return display_intf_->GetMixerResolution(width, height);
}
HWC2::Error HWCDisplayBuiltIn::SetQSyncMode(QSyncMode qsync_mode) {
// Client needs to ensure that config change and qsync mode change
// are not triggered in the same drawcycle.
if (pending_config_) {
DLOGE("Failed to set qsync mode. Pending active config transition");
return HWC2::Error::Unsupported;
}
auto err = display_intf_->SetQSyncMode(qsync_mode);
if (err != kErrorNone) {
return HWC2::Error::Unsupported;
}
return HWC2::Error::None;
}
DisplayError HWCDisplayBuiltIn::ControlIdlePowerCollapse(bool enable, bool synchronous) {
DisplayError error = kErrorNone;
if (display_intf_) {
error = display_intf_->ControlIdlePowerCollapse(enable, synchronous);
}
return error;
}
DisplayError HWCDisplayBuiltIn::SetJitterConfig(uint32_t jitter_type, float value, uint32_t time) {
DisplayError error = display_intf_->SetJitterConfig(jitter_type, value, time);
if (error != kErrorNone) {
DLOGE("Failed to set jitter configuration.");
return error;
}
callbacks_->Refresh(id_);
return kErrorNone;
}
DisplayError HWCDisplayBuiltIn::SetDynamicDSIClock(uint64_t bitclk) {
DisablePartialUpdateOneFrame();
DisplayError error = display_intf_->SetDynamicDSIClock(bitclk);
if (error != kErrorNone) {
DLOGE(" failed: Clk: %" PRIu64 " Error: %d", bitclk, error);
return error;
}
callbacks_->Refresh(id_);
return kErrorNone;
}
DisplayError HWCDisplayBuiltIn::GetDynamicDSIClock(uint64_t *bitclk) {
if (display_intf_) {
return display_intf_->GetDynamicDSIClock(bitclk);
}
return kErrorNotSupported;
}
DisplayError HWCDisplayBuiltIn::GetSupportedDSIClock(std::vector<uint64_t> *bitclk_rates) {
if (display_intf_) {
return display_intf_->GetSupportedDSIClock(bitclk_rates);
}
return kErrorNotSupported;
}
HWC2::Error HWCDisplayBuiltIn::UpdateDisplayId(hwc2_display_t id) {
id_ = id;
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetPendingRefresh() {
pending_refresh_ = true;
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetPanelBrightness(float brightness) {
DisplayError ret = display_intf_->SetPanelBrightness(brightness);
if (ret != kErrorNone) {
return HWC2::Error::NoResources;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::GetPanelBrightness(float *brightness) {
DisplayError ret = display_intf_->GetPanelBrightness(brightness);
if (ret != kErrorNone) {
return HWC2::Error::NoResources;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::GetPanelMaxBrightness(uint32_t *max_brightness_level) {
DisplayError ret = display_intf_->GetPanelMaxBrightness(max_brightness_level);
if (ret != kErrorNone) {
return HWC2::Error::NoResources;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetBLScale(uint32_t level) {
DisplayError ret = display_intf_->SetBLScale(level);
if (ret != kErrorNone) {
return HWC2::Error::NoResources;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetClientTarget(buffer_handle_t target,
shared_ptr<Fence> acquire_fence,
int32_t dataspace, hwc_region_t damage) {
DTRACE_SCOPED();
HWC2::Error error = HWCDisplay::SetClientTarget(target, acquire_fence, dataspace, damage);
if (error != HWC2::Error::None) {
return error;
}
// windowed_display and dynamic scaling are not supported.
if (windowed_display_) {
return HWC2::Error::None;
}
Layer *sdm_layer = client_target_->GetSDMLayer();
uint32_t fb_width = 0, fb_height = 0;
GetFrameBufferResolution(&fb_width, &fb_height);
if (fb_width != sdm_layer->input_buffer.unaligned_width ||
fb_height != sdm_layer->input_buffer.unaligned_height) {
if (SetFrameBufferConfig(sdm_layer->input_buffer.unaligned_width,
sdm_layer->input_buffer.unaligned_height)) {
return HWC2::Error::BadParameter;
}
}
return HWC2::Error::None;
}
DisplayError HWCDisplayBuiltIn::UpdateTransferTime(uint32_t transfer_time) {
DisplayError error = display_intf_->UpdateTransferTime(transfer_time);
if (error != kErrorNone) {
DLOGE(" failed: Transfer time: %" PRIu32 " Error: %d", transfer_time, error);
return error;
}
return kErrorNone;
}
bool HWCDisplayBuiltIn::IsSmartPanelConfig(uint32_t config_id) {
if (config_id < hwc_config_map_.size()) {
uint32_t index = hwc_config_map_.at(config_id);
return variable_config_map_.at(index).smart_panel;
}
return false;
}
bool HWCDisplayBuiltIn::HasSmartPanelConfig(void) {
if (!enable_poms_during_doze_) {
uint32_t config = 0;
GetActiveDisplayConfig(&config);
return IsSmartPanelConfig(config);
}
for (auto &config : variable_config_map_) {
if (config.second.smart_panel) {
return true;
}
}
return false;
}
int HWCDisplayBuiltIn::Deinit() {
// Destory color convert instance. This destroys thread and underlying GL resources.
if (gl_layer_stitch_) {
layer_stitch_task_.PerformTask(LayerStitchTaskCode::kCodeDestroyInstance, nullptr);
}
histogram.stop();
return HWCDisplay::Deinit();
}
void HWCDisplayBuiltIn::OnTask(const LayerStitchTaskCode &task_code,
SyncTask<LayerStitchTaskCode>::TaskContext *task_context) {
switch (task_code) {
case LayerStitchTaskCode::kCodeGetInstance: {
gl_layer_stitch_ = GLLayerStitch::GetInstance(false /* Non-secure */);
}
break;
case LayerStitchTaskCode::kCodeStitch: {
DTRACE_SCOPED();
LayerStitchContext* ctx = reinterpret_cast<LayerStitchContext*>(task_context);
gl_layer_stitch_->Blit(ctx->stitch_params, &(ctx->release_fence));
}
break;
case LayerStitchTaskCode::kCodeDestroyInstance: {
if (gl_layer_stitch_) {
GLLayerStitch::Destroy(gl_layer_stitch_);
}
}
break;
}
}
bool HWCDisplayBuiltIn::InitLayerStitch() {
if (!is_primary_) {
// Disable on all non-primary builtins.
DLOGI("Non-primary builtin.");
disable_layer_stitch_ = true;
return true;
}
// Disable by default.
int value = 1;
Debug::Get()->GetProperty(DISABLE_LAYER_STITCH, &value);
disable_layer_stitch_ = (value == 1);
if (disable_layer_stitch_) {
DLOGI("Layer Stitch Disabled !!!");
return true;
}
// Initialize stitch context. This will be non-secure.
layer_stitch_task_.PerformTask(LayerStitchTaskCode::kCodeGetInstance, nullptr);
if (gl_layer_stitch_ == nullptr) {
DLOGE("Failed to get LayerStitch Instance");
return false;
}
if (!AllocateStitchBuffer()) {
return true;
}
stitch_target_ = new HWCLayer(id_, static_cast<HWCBufferAllocator *>(buffer_allocator_));
// Populate buffer params and pvt handle.
InitStitchTarget();
DLOGI("Created LayerStitch instance: %p", gl_layer_stitch_);
return true;
}
bool HWCDisplayBuiltIn::AllocateStitchBuffer() {
// Buffer dimensions: FB width * (1.5 * height)
DTRACE_SCOPED();
DisplayError error = display_intf_->GetFrameBufferConfig(&fb_config_);
if (error != kErrorNone) {
DLOGE("Get frame buffer config failed. Error = %d", error);
return false;
}
BufferConfig &config = buffer_info_.buffer_config;
config.width = fb_config_.x_pixels;
config.height = fb_config_.y_pixels * kBufferHeightFactor;
// By default UBWC is enabled and below property is global enable/disable for all
// buffers allocated through gralloc , including framebuffer targets.
int ubwc_disabled = 0;
HWCDebugHandler::Get()->GetProperty(DISABLE_UBWC_PROP, &ubwc_disabled);
config.format = ubwc_disabled ? kFormatRGBA8888 : kFormatRGBA8888Ubwc;
config.gfx_client = true;
// Populate default params.
config.secure = false;
config.cache = false;
config.secure_camera = false;
int err = buffer_allocator_->AllocateBuffer(&buffer_info_);
if (err != 0) {
DLOGE("Failed to allocate buffer. Error: %d", error);
return false;
}
return true;
}
void HWCDisplayBuiltIn::InitStitchTarget() {
LayerBuffer buffer = {};
buffer.planes[0].fd = buffer_info_.alloc_buffer_info.fd;
buffer.planes[0].offset = 0;
buffer.planes[0].stride = buffer_info_.alloc_buffer_info.stride;
buffer.size = buffer_info_.alloc_buffer_info.size;
buffer.handle_id = buffer_info_.alloc_buffer_info.id;
buffer.width = buffer_info_.alloc_buffer_info.aligned_width;
buffer.height = buffer_info_.alloc_buffer_info.aligned_height;
buffer.unaligned_width = fb_config_.x_pixels;
buffer.unaligned_height = fb_config_.y_pixels * kBufferHeightFactor;
buffer.format = buffer_info_.alloc_buffer_info.format;
Layer *sdm_stitch_target = stitch_target_->GetSDMLayer();
sdm_stitch_target->composition = kCompositionStitchTarget;
sdm_stitch_target->input_buffer = buffer;
sdm_stitch_target->input_buffer.buffer_id = reinterpret_cast<uint64_t>(buffer_info_.private_data);
}
void HWCDisplayBuiltIn::AppendStitchLayer() {
if (disable_layer_stitch_) {
return;
}
// Append stitch target buffer to layer stack.
Layer *sdm_stitch_target = stitch_target_->GetSDMLayer();
sdm_stitch_target->composition = kCompositionStitchTarget;
sdm_stitch_target->dst_rect = {0, 0, FLOAT(fb_config_.x_pixels), FLOAT(fb_config_.y_pixels)};
sdm_stitch_target->layer_id = stitch_target_->GetId();
sdm_stitch_target->geometry_changes = stitch_target_->GetGeometryChanges();
layer_stack_.layers.push_back(sdm_stitch_target);
}
DisplayError HWCDisplayBuiltIn::HistogramEvent(int fd, uint32_t blob_id) {
histogram.notify_histogram_event(fd, blob_id);
return kErrorNone;
}
int HWCDisplayBuiltIn::PostInit() {
auto status = InitLayerStitch();
if (!status) {
DLOGW("Failed to initialize Layer Stitch context");
// Disable layer stitch.
disable_layer_stitch_ = true;
}
return 0;
}
bool HWCDisplayBuiltIn::NeedsLargeCompPerfHint() {
if (!cpu_hint_) {
DLOGV_IF(kTagResources, "CPU hint is not initialized");
return false;
}
if (active_refresh_rate_ < 120) {
return false;
}
if (large_comp_hint_threshold_ > 0 && layer_set_.size() >= large_comp_hint_threshold_) {
DLOGV_IF(kTagResources, "Number of app layers %d meet requirement %d. Set perf hint for large "
"comp cycle", layer_set_.size(), large_comp_hint_threshold_);
return true;
}
// Send hints when the device is in multi-display or when a skip layer is present.
if (layer_stack_.flags.skip_present || is_multi_display_) {
DLOGV_IF(kTagResources, "Found skip_layer:%d or is_multidisplay:%d. Set perf hint for large "
"comp cycle", layer_stack_.flags.skip_present, is_multi_display_);
return true;
}
int gpu_layer_count = 0;
for (auto hwc_layer : layer_set_) {
Layer *layer = hwc_layer->GetSDMLayer();
if (layer->composition == kCompositionGPU) {
gpu_layer_count++;
}
}
// Return immediately if full MDP comp is in use
if (!gpu_layer_count) {
return false;
}
auto it = mixed_mode_threshold_.find(active_refresh_rate_);;
if (it != mixed_mode_threshold_.end()) {
if (gpu_layer_count < it->second) {
DLOGV_IF(kTagResources, "Number of GPU layers :%d does not meet mixed mode perf hints "
"threshold:%d for %d fps", gpu_layer_count, it->second, active_refresh_rate_);
return false;
}
} else {
DLOGV_IF(kTagResources, "Mixed mode perf hints is not supported for %d fps",
active_refresh_rate_);
return false;
}
// Send hints when the number of GPU layers reaches the threshold for the active refresh rate.
DLOGV_IF(kTagResources, "Reached max GPU layers for %dfps. Set perf hint for large comp cycle",
active_refresh_rate_);
return true;
}
HWC2::Error HWCDisplayBuiltIn::PostCommitLayerStack(shared_ptr<Fence> *out_retire_fence) {
DTRACE_SCOPED();
HandleFrameOutput();
PostCommitStitchLayers();
auto status = HWCDisplay::PostCommitLayerStack(out_retire_fence);
/* display_intf_->GetConfig(&fixed_info);
is_cmd_mode_ = fixed_info.is_cmdmode;
// For video mode panel with dynamic fps, update the active mode index.
// This is needed to report the correct Vsync period when client queries
// using GetDisplayVsyncPeriod API.
if (!is_cmd_mode_ && !disable_dyn_fps_) {
hwc2_config_t active_config = hwc_config_map_.at(0);
GetActiveConfig(&active_config);
SetActiveConfigIndex(active_config);
}*/
pending_commit_ = false;
if (layer_stack_.request_flags.trigger_refresh) {
callbacks_->Refresh(id_);
}
return status;
}
bool HWCDisplayBuiltIn::IsDisplayIdle() {
// Notify only if this display is source of vsync.
bool vsync_source = (callbacks_->GetVsyncSource() == id_);
return vsync_source && display_idle_;
}
bool HWCDisplayBuiltIn::HasReadBackBufferSupport() {
DisplayConfigFixedInfo fixed_info = {};
display_intf_->GetConfig(&fixed_info);
return fixed_info.readback_supported;
}
HWC2::Error HWCDisplayBuiltIn::NotifyDisplayCalibrationMode(bool in_calibration) {
auto status = color_mode_->NotifyDisplayCalibrationMode(in_calibration);
if (status != HWC2::Error::None) {
DLOGE("Failed for notify QDCM mode = %d", in_calibration);
return status;
}
return status;
}
uint32_t HWCDisplayBuiltIn::GetUpdatingAppLayersCount() {
uint32_t updating_count = 0;
for (uint i = 0; i < layer_stack_.layers.size(); i++) {
auto layer = layer_stack_.layers.at(i);
if (layer->composition == kCompositionGPUTarget) {
break;
}
if (layer->flags.updating) {
updating_count++;
}
}
return updating_count;
}
HWC2::Error HWCDisplayBuiltIn::CommitOrPrepare(bool validate_only,
shared_ptr<Fence> *out_retire_fence,
uint32_t *out_num_types,
uint32_t *out_num_requests, bool *needs_commit) {
DTRACE_SCOPED();
auto status = HWCDisplay::CommitOrPrepare(validate_only, out_retire_fence, out_num_types,
out_num_requests, needs_commit);
if (perf_hint_large_comp_cycle_) {
bool needs_hint = NeedsLargeCompPerfHint();
HandleLargeCompositionHint(!needs_hint);
}
return status;
}
void HWCDisplayBuiltIn::LoadMixedModePerfHintThreshold() {
// For mixed mode composition, if perf hint for large composition cycles is enabled and if the
// use case meets the threshold, SF and HWC will be running on the gold CPU cores.
// For 120 fps, 8 layers should fall back to GPU
mixed_mode_threshold_.insert(std::make_pair<int32_t, int32_t>(120, 8));
// For 144 fps, 6 layers should fall back to GPU
mixed_mode_threshold_.insert(std::make_pair<int32_t, int32_t>(144, 6));
// TODO(user): Profile performance on 180 and 240 Hz without maxing out the CPU cores
// For 180 fps, 8 layers should fall back to GPU
mixed_mode_threshold_.insert(std::make_pair<int32_t, int32_t>(180, 8));
// For 240 fps, 4 layers should fall back to GPU
mixed_mode_threshold_.insert(std::make_pair<int32_t, int32_t>(240, 4));
}
HWC2::Error HWCDisplayBuiltIn::SetAlternateDisplayConfig(bool set) {
hwc2_config_t alt_config = 0;
DisplayError error = kErrorNone;
// return early if non-DSC mode is already set
if (set && alternate_config_ != -1) {
return HWC2::Error::None;
}
if (!set && alternate_config_ == -1) {
return HWC2::Error::None;
}
error = display_intf_->SetAlternateDisplayConfig(&alt_config);
if (error != kErrorNone) {
return HWC2::Error::Unsupported;
}
auto status = SetActiveConfig(alt_config);
if (set && status == HWC2::Error::None) {
alternate_config_ = alt_config;
}
if (!set) { // set alternate config to -1 on reset call
alternate_config_ = -1;
}
// Trigger refresh. This config gets applied on next commit.
callbacks_->Refresh(id_);
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetDimmingEnable(int int_enabled) {
DLOGV("Display ID: %" PRId64 " enabled: %d", id_, int_enabled);
DisplayError error = display_intf_->SetDimmingEnable(int_enabled);
if (error != kErrorNone) {
DLOGE("Failed. enabled = %d, error = %d", int_enabled, error);
return HWC2::Error::BadDisplay;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetDimmingMinBl(int min_bl) {
DLOGV("Display ID: %" PRId64 " min_bl: %d", id_, min_bl);
DisplayError error = display_intf_->SetDimmingMinBl(min_bl);
if (error != kErrorNone) {
DLOGE("Failed. min_bl = %d, error = %d", min_bl, error);
return HWC2::Error::BadDisplay;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::RetrieveDemuraTnFiles() {
DLOGV("Display ID: %" PRId64, id_);
DisplayError error = display_intf_->RetrieveDemuraTnFiles();
if (error != kErrorNone) {
DLOGE("Failed. error = %d",error);
return HWC2::Error::BadDisplay;
}
return HWC2::Error::None;
}
HWC2::Error HWCDisplayBuiltIn::SetDemuraState(int state) {
DLOGV("Display ID: %" PRId64 " state: %d", id_, state);
DisplayError error = display_intf_->SetDemuraState(state);
if (error != kErrorNone) {
DLOGE("Failed. state = %d, error = %d", state, error);
return HWC2::Error::BadDisplay;
}
callbacks_->Refresh(id_);
return HWC2::Error::None;
}
void HWCDisplayBuiltIn::HandleLargeCompositionHint(bool release) {
if (!cpu_hint_) {
return;
}
int tid = gettid();
if (release) {
if (hwc_tid_ != tid) {
DLOGV_IF(kTagResources, "HWC's tid:%d is updated to :%d", hwc_tid_, tid);
int ret = cpu_hint_->ReqHint(kHWC, tid);
if (!ret) {
hwc_tid_ = tid;
}
}
// For long term large composition hint, release the acquired handle after 100 milliseconds
// to avoid resending hints in animation launch use cases and others.
if (hint_release_start_time_ == 0) {
hint_release_start_time_ = systemTime(SYSTEM_TIME_MONOTONIC);
}
nsecs_t current_time = systemTime(SYSTEM_TIME_MONOTONIC);
if (nanoseconds_to_milliseconds(current_time - hint_release_start_time_) >=
elapse_time_threshold_) {
cpu_hint_->ReqHintRelease();
}
return;
}
if (hwc_tid_ != tid) {
DLOGV_IF(kTagResources, "HWC's tid:%d is updated to :%d", hwc_tid_, tid);
cpu_hint_->ReqHintsOffload(kPerfHintLargeCompCycle, tid);
hwc_tid_ = tid;
} else {
// Sending tid as 0 indicates to Perf HAL that HWC's tid is unchanged for the current frame
cpu_hint_->ReqHintsOffload(kPerfHintLargeCompCycle, 0);
}
// Reset time when large composition hint is active
hint_release_start_time_ = 0;
}
void HWCDisplayBuiltIn::ReqPerfHintRelease() {
if (!cpu_hint_) {
return;
}
cpu_hint_->ReqHintRelease();
}
} // namespace sdm