blob: d0170db0814b5afcc88f77a1949764e1611c0e98 [file] [log] [blame]
/*
* Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define LOG_TAG "a2dp_offload"
/*#define LOG_NDEBUG 0*/
#define LOG_NDDEBUG 0
#include <errno.h>
#include <log/log.h>
#include <dlfcn.h>
#include <pthread.h>
#include "audio_hw.h"
#include "platform.h"
#include "platform_api.h"
#include "audio_extn.h"
#include <stdlib.h>
#include <cutils/str_parms.h>
#include <hardware/audio.h>
#include <hardware/hardware.h>
#include <cutils/properties.h>
#ifdef DYNAMIC_LOG_ENABLED
#include <log_xml_parser.h>
#define LOG_MASK HAL_MOD_FILE_A2DP
#include <log_utils.h>
#endif
#define BT_IPC_SOURCE_LIB_NAME "btaudio_offload_if.so"
#define BT_IPC_SINK_LIB_NAME "libbthost_if_sink.so"
#define MEDIA_FMT_NONE 0
#define MEDIA_FMT_AAC 0x00010DA6
#define MEDIA_FMT_APTX 0x000131ff
#define MEDIA_FMT_APTX_HD 0x00013200
#define MEDIA_FMT_APTX_AD 0x00013204
#define MEDIA_FMT_SBC 0x00010BF2
#define MEDIA_FMT_CELT 0x00013221
#define MEDIA_FMT_LDAC 0x00013224
#define MEDIA_FMT_MP3 0x00010BE9
#define MEDIA_FMT_APTX_ADAPTIVE 0x00013204
#define MEDIA_FMT_APTX_AD_SPEECH 0x00013208
#define MEDIA_FMT_AAC_AOT_LC 2
#define MEDIA_FMT_AAC_AOT_SBR 5
#define MEDIA_FMT_AAC_AOT_PS 29
#define PCM_CHANNEL_L 1
#define PCM_CHANNEL_R 2
#define PCM_CHANNEL_C 3
#define MEDIA_FMT_SBC_CHANNEL_MODE_MONO 1
#define MEDIA_FMT_SBC_CHANNEL_MODE_STEREO 2
#define MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO 8
#define MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO 9
#define MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS 0
#define MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR 1
#define MIXER_ENC_CONFIG_BLOCK "SLIM_7_RX Encoder Config"
#define MIXER_ENC_APTX_AD_CONFIG_BLOCK "SLIM_7_RX APTX_AD Enc Cfg"
#define MIXER_SOURCE_DEC_CONFIG_BLOCK "SLIM_7_TX Decoder Config"
#define MIXER_SINK_DEC_CONFIG_BLOCK "SLIM_9_TX Decoder Config"
#define MIXER_ENC_BIT_FORMAT "AFE Input Bit Format"
#define MIXER_DEC_BIT_FORMAT "AFE Output Bit Format"
#define MIXER_SCRAMBLER_MODE "AFE Scrambler Mode"
#define MIXER_SAMPLE_RATE_RX "BT SampleRate RX"
#define MIXER_SOURCE_SAMPLE_RATE_TX "BT SampleRate TX"
#define MIXER_SAMPLE_RATE_DEFAULT "BT SampleRate"
#define MIXER_AFE_IN_CHANNELS "AFE Input Channels"
#define MIXER_ABR_TX_FEEDBACK_PATH "A2DP_SLIM7_UL_HL Switch"
#define MIXER_ABR_RX_FEEDBACK_PATH "SCO_SLIM7_DL_HL Switch"
#define MIXER_SET_FEEDBACK_CHANNEL "BT set feedback channel"
#define MIXER_SINK_SAMPLE_RATE "BT_TX SampleRate"
#define MIXER_AFE_SINK_CHANNELS "AFE Output Channels"
#define MIXER_FMT_TWS_CHANNEL_MODE "TWS Channel Mode"
#define ENCODER_LATENCY_SBC 10
#define ENCODER_LATENCY_APTX 40
#define ENCODER_LATENCY_APTX_HD 20
#define ENCODER_LATENCY_AAC 70
//To Do: Fine Tune Encoder CELT/LDAC latency.
#define ENCODER_LATENCY_CELT 40
#define ENCODER_LATENCY_LDAC 40
#define ENCODER_LATENCY_PCM 50
#define DEFAULT_SINK_LATENCY_SBC 140
#define DEFAULT_SINK_LATENCY_APTX 160
#define DEFAULT_SINK_LATENCY_APTX_HD 180
#define DEFAULT_SINK_LATENCY_AAC 180
//To Do: Fine Tune Default CELT/LDAC Latency.
#define DEFAULT_SINK_LATENCY_CELT 180
#define DEFAULT_SINK_LATENCY_LDAC 180
#define DEFAULT_SINK_LATENCY_PCM 140
#define SYSPROP_A2DP_OFFLOAD_SUPPORTED "ro.bluetooth.a2dp_offload.supported"
#define SYSPROP_A2DP_OFFLOAD_DISABLED "persist.bluetooth.a2dp_offload.disabled"
#define SYSPROP_A2DP_CODEC_LATENCIES "vendor.audio.a2dp.codec.latency"
// Default encoder bit width
#define DEFAULT_ENCODER_BIT_FORMAT 16
// Default encoder latency
#define DEFAULT_ENCODER_LATENCY 200
// Slimbus Tx sample rate for ABR feedback channel
#define ABR_TX_SAMPLE_RATE "KHZ_8"
// Slimbus Tx sample rate for APTX AD SPEECH
#define SPEECH_TX_SAMPLE_RATE "KHZ_96"
// Purpose ID for Inter Module Communication (IMC) in AFE
#define IMC_PURPOSE_ID_BT_INFO 0x000132E2
// Maximum quality levels for ABR
#define MAX_ABR_QUALITY_LEVELS 5
// Instance identifier for A2DP
#define MAX_INSTANCE_ID (UINT32_MAX / 2)
// Instance identifier for SWB
#define APTX_AD_SPEECH_INSTANCE_ID 37
#define SAMPLING_RATE_96K 96000
#define SAMPLING_RATE_48K 48000
#define SAMPLING_RATE_441K 44100
#define SAMPLING_RATE_32K 32000
#define CH_STEREO 2
#define CH_MONO 1
#define SOURCE 0
#define SINK 1
#define UNINITIALIZED -1
#ifdef __LP64__
#define VNDK_FWK_LIB_PATH "/vendor/lib64/libqti_vndfwk_detect.so"
#else
#define VNDK_FWK_LIB_PATH "/vendor/lib/libqti_vndfwk_detect.so"
#endif
static void *vndk_fwk_lib_handle = NULL;
static int is_running_with_enhanced_fwk = UNINITIALIZED;
typedef int (*vndk_fwk_isVendorEnhancedFwk_t)();
static vndk_fwk_isVendorEnhancedFwk_t vndk_fwk_isVendorEnhancedFwk;
/*
* Below enum values are extended from audio_base.h to
* to keep encoder and decoder type local to bthost_ipc
* and audio_hal as these are intended only for handshake
* between IPC lib and Audio HAL.
*/
typedef enum {
CODEC_TYPE_INVALID = AUDIO_FORMAT_INVALID, // 0xFFFFFFFFUL
CODEC_TYPE_AAC = AUDIO_FORMAT_AAC, // 0x04000000UL
CODEC_TYPE_SBC = AUDIO_FORMAT_SBC, // 0x1F000000UL
CODEC_TYPE_APTX = AUDIO_FORMAT_APTX, // 0x20000000UL
CODEC_TYPE_APTX_HD = AUDIO_FORMAT_APTX_HD, // 0x21000000UL
#ifndef LINUX_ENABLED
CODEC_TYPE_APTX_DUAL_MONO = 570425344u, // 0x22000000UL
#endif
CODEC_TYPE_LDAC = AUDIO_FORMAT_LDAC, // 0x23000000UL
CODEC_TYPE_CELT = 603979776u, // 0x24000000UL
CODEC_TYPE_APTX_AD = 620756992u, // 0x25000000UL
CODEC_TYPE_APTX_AD_SPEECH = 637534208u, //0x26000000UL
CODEC_TYPE_PCM = AUDIO_FORMAT_PCM_16_BIT, // 0x1u
}codec_t;
/*
* enums which describes the APTX Adaptive
* channel mode, these values are used by encoder
*/
typedef enum {
APTX_AD_CHANNEL_UNCHANGED = -1,
APTX_AD_CHANNEL_JOINT_STEREO = 0, // default
APTX_AD_CHANNEL_MONO = 1,
APTX_AD_CHANNEL_DUAL_MONO = 2,
APTX_AD_CHANNEL_STEREO_TWS = 4,
APTX_AD_CHANNEL_EARBUD = 8,
} enc_aptx_ad_channel_mode;
/*
* enums which describes the APTX Adaptive
* sampling frequency, these values are used
* by encoder
*/
typedef enum {
APTX_AD_SR_UNCHANGED = 0x0,
APTX_AD_48 = 0x1, // 48 KHz default
APTX_AD_44_1 = 0x2, // 44.1kHz
APTX_AD_96 = 0x3, // 96KHz
} enc_aptx_ad_s_rate;
typedef void (*bt_audio_pre_init_t)(void);
typedef int (*audio_source_open_t)(void);
typedef int (*audio_source_close_t)(void);
typedef int (*audio_source_start_t)(void);
typedef int (*audio_source_stop_t)(void);
typedef int (*audio_source_suspend_t)(void);
typedef void (*audio_source_handoff_triggered_t)(void);
typedef void (*clear_source_a2dpsuspend_flag_t)(void);
typedef void * (*audio_get_enc_config_t)(uint8_t *multicast_status,
uint8_t *num_dev, codec_t *codec_type);
typedef int (*audio_source_check_a2dp_ready_t)(void);
typedef int (*audio_is_source_scrambling_enabled_t)(void);
typedef bool (*audio_is_tws_mono_mode_enable_t)(void);
typedef int (*audio_sink_start_t)(void);
typedef int (*audio_sink_stop_t)(void);
typedef void * (*audio_get_dec_config_t)(codec_t *codec_type);
typedef void * (*audio_sink_session_setup_complete_t)(uint64_t system_latency);
typedef int (*audio_sink_check_a2dp_ready_t)(void);
typedef uint16_t (*audio_sink_get_a2dp_latency_t)(void);
enum A2DP_STATE {
A2DP_STATE_CONNECTED,
A2DP_STATE_STARTED,
A2DP_STATE_STOPPED,
A2DP_STATE_DISCONNECTED,
};
typedef enum {
IMC_TRANSMIT,
IMC_RECEIVE,
} imc_direction_t;
typedef enum {
IMC_DISABLE,
IMC_ENABLE,
} imc_status_t;
typedef enum {
SWAP_DISABLE,
SWAP_ENABLE,
} swap_status_t;
typedef enum {
MTU_SIZE,
PEAK_BIT_RATE,
BIT_RATE_MODE,
} frame_control_type_t;
// --- external function dependency ---
fp_platform_get_pcm_device_id_t fp_platform_get_pcm_device_id;
fp_check_a2dp_restore_t fp_check_a2dp_restore_l;
/* PCM config for ABR Feedback hostless front end */
static struct pcm_config pcm_config_abr = {
.channels = 1,
.rate = 8000,
.period_size = 240,
.period_count = 2,
.format = PCM_FORMAT_S16_LE,
.start_threshold = 0,
.stop_threshold = INT_MAX,
.avail_min = 0,
};
/* Adaptive bitrate config for A2DP codecs */
struct a2dp_abr_config {
/* Flag to denote whether Adaptive bitrate is enabled for codec */
bool is_abr_enabled;
/* Flag to denote whether front end has been opened for ABR */
bool abr_started;
/* ABR Tx path pcm handle */
struct pcm *abr_tx_handle;
/* ABR Rx path pcm handle */
struct pcm *abr_rx_handle;
/* ABR Inter Module Communication (IMC) instance ID */
uint32_t imc_instance;
};
static uint32_t instance_id = MAX_INSTANCE_ID;
/* structure used to update a2dp state machine
* to communicate IPC library
* to store DSP encoder configuration information
*/
struct a2dp_data {
struct audio_device *adev;
void *bt_lib_source_handle;
bt_audio_pre_init_t bt_audio_pre_init;
audio_source_open_t audio_source_open;
audio_source_close_t audio_source_close;
audio_source_start_t audio_source_start;
audio_source_stop_t audio_source_stop;
audio_source_suspend_t audio_source_suspend;
audio_source_handoff_triggered_t audio_source_handoff_triggered;
clear_source_a2dpsuspend_flag_t clear_source_a2dpsuspend_flag;
audio_get_enc_config_t audio_get_enc_config;
audio_source_check_a2dp_ready_t audio_source_check_a2dp_ready;
audio_is_tws_mono_mode_enable_t audio_is_tws_mono_mode_enable;
audio_is_source_scrambling_enabled_t audio_is_source_scrambling_enabled;
enum A2DP_STATE bt_state_source;
codec_t bt_encoder_format;
uint32_t enc_sampling_rate;
uint32_t enc_channels;
bool a2dp_source_started;
bool a2dp_source_suspended;
int a2dp_source_total_active_session_requests;
bool is_a2dp_offload_supported;
bool is_handoff_in_progress;
bool is_aptx_dual_mono_supported;
/* Mono Mode support for TWS+ */
bool is_tws_mono_mode_on;
bool is_aptx_adaptive;
/* Adaptive bitrate config for A2DP codecs */
struct a2dp_abr_config abr_config;
void *bt_lib_sink_handle;
audio_sink_start_t audio_sink_start;
audio_sink_stop_t audio_sink_stop;
audio_get_dec_config_t audio_get_dec_config;
audio_sink_session_setup_complete_t audio_sink_session_setup_complete;
audio_sink_check_a2dp_ready_t audio_sink_check_a2dp_ready;
audio_sink_get_a2dp_latency_t audio_sink_get_a2dp_latency;
enum A2DP_STATE bt_state_sink;
codec_t bt_decoder_format;
uint32_t dec_sampling_rate;
uint32_t dec_channels;
bool a2dp_sink_started;
int a2dp_sink_total_active_session_requests;
bool swb_configured;
};
struct a2dp_data a2dp;
/* Adaptive bitrate (ABR) is supported by certain Bluetooth codecs.
* Structures sent to configure DSP for ABR are defined below.
* This data helps DSP configure feedback path (BTSoC to LPASS)
* for link quality levels and mapping quality levels to codec
* specific bitrate.
*/
/* Key value pair for link quality level to bitrate mapping. */
struct bit_rate_level_map_t {
uint32_t link_quality_level;
uint32_t bitrate;
};
/* Link quality level to bitrate mapping info sent to DSP. */
struct quality_level_to_bitrate_info {
/* Number of quality levels being mapped.
* This will be equal to the size of mapping table.
*/
uint32_t num_levels;
/* Quality level to bitrate mapping table */
struct bit_rate_level_map_t bit_rate_level_map[MAX_ABR_QUALITY_LEVELS];
};
/* Structure to set up Inter Module Communication (IMC) between
* AFE Decoder and Encoder.
*/
struct imc_dec_enc_info {
/* Decoder to encoder communication direction.
* Transmit = 0 / Receive = 1
*/
uint32_t direction;
/* Enable / disable IMC between decoder and encoder */
uint32_t enable;
/* Purpose of IMC being set up between decoder and encoder.
* IMC_PURPOSE_ID_BT_INFO defined for link quality feedback
* is the default value to be sent as purpose.
*/
uint32_t purpose;
/* Unique communication instance ID.
* purpose and comm_instance together form the actual key
* used in IMC registration, which must be the same for
* encoder and decoder for which IMC is being set up.
*/
uint32_t comm_instance;
};
/* Structure to control frame size of AAC encoded frames. */
struct aac_frame_size_control_t {
/* Type of frame size control: MTU_SIZE / PEAK_BIT_RATE*/
uint32_t ctl_type;
/* Control value
* MTU_SIZE: MTU size in bytes
* PEAK_BIT_RATE: Peak bitrate in bits per second.
* BIT_RATE_MODE: Variable bitrate
*/
uint32_t ctl_value;
};
/* Structure used for ABR config of AFE encoder and decoder. */
struct abr_enc_cfg_t {
/* Link quality level to bitrate mapping info sent to DSP. */
struct quality_level_to_bitrate_info mapping_info;
/* Information to set up IMC between decoder and encoder */
struct imc_dec_enc_info imc_info;
/* Flag to indicate whether ABR is enabled */
bool is_abr_enabled;
} __attribute__ ((packed));
/* Structure to send configuration for decoder introduced
* on AFE Tx path for ABR link quality feedback to BT encoder.
*/
struct abr_dec_cfg_t {
/* Decoder media format */
uint32_t dec_format;
/* Information to set up IMC between decoder and encoder */
struct imc_dec_enc_info imc_info;
} __attribute__ ((packed));
struct aptx_ad_speech_mode_cfg_t
{
uint32_t mode;
uint32_t swapping;
} __attribute__ ((packed));
/* Structure for SWB voice dec config */
struct aptx_ad_speech_dec_cfg_t {
struct abr_dec_cfg_t abr_cfg;
struct aptx_ad_speech_mode_cfg_t speech_mode;
} __attribute__ ((packed));
/* START of DSP configurable structures
* These values should match with DSP interface defintion
*/
/* AAC encoder configuration structure. */
typedef struct aac_enc_cfg_t aac_enc_cfg_t;
/* supported enc_mode are AAC_LC, AAC_SBR, AAC_PS
* supported aac_fmt_flag are ADTS/RAW
* supported channel_cfg are Native mode, Mono , Stereo
*/
struct aac_enc_cfg_t {
uint32_t enc_format;
uint32_t bit_rate;
uint32_t enc_mode;
uint16_t aac_fmt_flag;
uint16_t channel_cfg;
uint32_t sample_rate;
} __attribute__ ((packed));
struct aac_enc_cfg_v2_t {
struct aac_enc_cfg_t aac_enc_cfg;
struct aac_frame_size_control_t frame_ctl;
} __attribute__ ((packed));
struct aac_enc_cfg_v3_t {
struct aac_enc_cfg_t aac_enc_cfg;
struct aac_frame_size_control_t frame_ctl;
struct aac_frame_size_control_t aac_key_value_ctl;
} __attribute__ ((packed));
typedef struct audio_aac_decoder_config_t audio_aac_decoder_config_t;
struct audio_aac_decoder_config_t {
uint16_t aac_fmt_flag; /* LATM*/
uint16_t audio_object_type; /* LC */
uint16_t channels; /* Stereo */
uint16_t total_size_of_pce_bits; /* 0 - only for channel conf PCE */
uint32_t sampling_rate; /* 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k,
44.1k, 48k, 64k, 88.2k, 96k */
} __attribute__ ((packed));
typedef struct audio_sbc_decoder_config_t audio_sbc_decoder_config_t;
struct audio_sbc_decoder_config_t {
uint16_t channels; /* Mono, Stereo */
uint32_t sampling_rate; /* 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k,
44.1k, 48k, 64k, 88.2k, 96k */
} __attribute__ ((packed));
/* AAC decoder configuration structure. */
typedef struct aac_dec_cfg_t aac_dec_cfg_t;
struct aac_dec_cfg_t {
uint32_t dec_format;
audio_aac_decoder_config_t data;
} __attribute__ ((packed));
/* SBC decoder configuration structure. */
typedef struct sbc_dec_cfg_t sbc_dec_cfg_t;
struct sbc_dec_cfg_t {
uint32_t dec_format;
audio_sbc_decoder_config_t data;
} __attribute__ ((packed));
/* SBC encoder configuration structure. */
typedef struct sbc_enc_cfg_t sbc_enc_cfg_t;
/* supported num_subbands are 4/8
* supported blk_len are 4, 8, 12, 16
* supported channel_mode are MONO, STEREO, DUAL_MONO, JOINT_STEREO
* supported alloc_method are LOUNDNESS/SNR
* supported bit_rate for mono channel is max 320kbps
* supported bit rate for stereo channel is max 512 kbps
*/
struct sbc_enc_cfg_t{
uint32_t enc_format;
uint32_t num_subbands;
uint32_t blk_len;
uint32_t channel_mode;
uint32_t alloc_method;
uint32_t bit_rate;
uint32_t sample_rate;
} __attribute__ ((packed));
/* supported num_channels are Mono/Stereo
* supported channel_mapping for mono is CHANNEL_C
* supported channel mapping for stereo is CHANNEL_L and CHANNEL_R
* custom size and reserved are not used(for future enhancement)
*/
struct custom_enc_cfg_t
{
uint32_t enc_format;
uint32_t sample_rate;
uint16_t num_channels;
uint16_t reserved;
uint8_t channel_mapping[8];
uint32_t custom_size;
} __attribute__ ((packed));
struct celt_specific_enc_cfg_t
{
uint32_t bit_rate;
uint16_t frame_size;
uint16_t complexity;
uint16_t prediction_mode;
uint16_t vbr_flag;
} __attribute__ ((packed));
struct celt_enc_cfg_t
{
struct custom_enc_cfg_t custom_cfg;
struct celt_specific_enc_cfg_t celt_cfg;
} __attribute__ ((packed));
/* sync_mode introduced with APTX V2 libraries
* sync mode: 0x0 = stereo sync mode
* 0x01 = dual mono sync mode
* 0x02 = dual mono with no sync on either L or R codewords
*/
struct aptx_v2_enc_cfg_ext_t
{
uint32_t sync_mode;
} __attribute__ ((packed));
/* APTX struct for combining custom enc and V2 fields */
struct aptx_enc_cfg_t
{
struct custom_enc_cfg_t custom_cfg;
struct aptx_v2_enc_cfg_ext_t aptx_v2_cfg;
} __attribute__ ((packed));
/* APTX AD structure */
struct aptx_ad_enc_cfg_ext_t
{
uint32_t sampling_freq;
uint32_t mtu;
uint32_t channel_mode;
uint32_t min_sink_modeA;
uint32_t max_sink_modeA;
uint32_t min_sink_modeB;
uint32_t max_sink_modeB;
uint32_t min_sink_modeC;
uint32_t max_sink_modeC;
uint32_t mode;
} __attribute__ ((packed));
struct aptx_ad_enc_cfg_t
{
struct custom_enc_cfg_t custom_cfg;
struct aptx_ad_enc_cfg_ext_t aptx_ad_cfg;
struct abr_enc_cfg_t abr_cfg;
} __attribute__ ((packed));
struct aptx_ad_enc_cfg_ext_r2_t
{
uint32_t sampling_freq;
uint32_t mtu;
uint32_t channel_mode;
uint32_t min_sink_modeA;
uint32_t max_sink_modeA;
uint32_t min_sink_modeB;
uint32_t max_sink_modeB;
uint32_t min_sink_modeC;
uint32_t max_sink_modeC;
uint32_t mode;
uint32_t input_mode;
uint32_t fade_duration;
uint8_t sink_cap[11];
} __attribute__ ((packed));
struct aptx_ad_enc_cfg_r2_t
{
struct custom_enc_cfg_t custom_cfg;
struct aptx_ad_enc_cfg_ext_r2_t aptx_ad_cfg;
struct abr_enc_cfg_t abr_cfg;
} __attribute__ ((packed));
/* APTX AD SPEECH structure */
struct aptx_ad_speech_enc_cfg_t
{
struct custom_enc_cfg_t custom_cfg;
/* Information to set up IMC between decoder and encoder */
struct imc_dec_enc_info imc_info;
struct aptx_ad_speech_mode_cfg_t speech_mode;
} __attribute__ ((packed));
struct ldac_specific_enc_cfg_t
{
uint32_t bit_rate;
uint16_t channel_mode;
uint16_t mtu;
} __attribute__ ((packed));
struct ldac_enc_cfg_t
{
struct custom_enc_cfg_t custom_cfg;
struct ldac_specific_enc_cfg_t ldac_cfg;
struct abr_enc_cfg_t abr_cfg;
} __attribute__ ((packed));
/* In LE BT source code uses system/audio.h for below
* structure definition. To avoid multiple definition
* compilation error for audiohal in LE , masking structure
* definition under "LINUX_ENABLED" which is defined only
* in LE
*/
#ifndef LINUX_ENABLED
/* TODO: Define the following structures only for O using PLATFORM_VERSION */
/* Information about BT SBC encoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP encoder
*/
typedef struct {
uint32_t subband; /* 4, 8 */
uint32_t blk_len; /* 4, 8, 12, 16 */
uint16_t sampling_rate; /*44.1khz,48khz*/
uint8_t channels; /*0(Mono),1(Dual_mono),2(Stereo),3(JS)*/
uint8_t alloc; /*0(Loudness),1(SNR)*/
uint8_t min_bitpool; /* 2 */
uint8_t max_bitpool; /*53(44.1khz),51 (48khz) */
uint32_t bitrate; /* 320kbps to 512kbps */
uint32_t bits_per_sample;
} audio_sbc_encoder_config;
/* Information about BT APTX encoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP encoder
*/
typedef struct {
uint16_t sampling_rate;
uint8_t channels;
uint32_t bitrate;
uint32_t bits_per_sample;
} audio_aptx_default_config;
typedef struct {
uint32_t sampling_rate;
uint32_t mtu;
int32_t channel_mode;
uint32_t min_sink_modeA;
uint32_t max_sink_modeA;
uint32_t min_sink_modeB;
uint32_t max_sink_modeB;
uint32_t min_sink_modeC;
uint32_t max_sink_modeC;
uint32_t encoder_mode;
uint8_t TTP_modeA_low;
uint8_t TTP_modeA_high;
uint8_t TTP_modeB_low;
uint8_t TTP_modeB_high;
uint8_t TTP_TWS_low;
uint8_t TTP_TWS_high;
uint32_t bits_per_sample;
uint32_t input_mode;
uint32_t fade_duration;
uint8_t sink_cap[11];
} audio_aptx_ad_config;
typedef struct {
uint16_t sampling_rate;
uint8_t channels;
uint32_t bitrate;
uint32_t sync_mode;
uint32_t bits_per_sample;
} audio_aptx_dual_mono_config;
typedef union {
audio_aptx_default_config *default_cfg;
audio_aptx_dual_mono_config *dual_mono_cfg;
audio_aptx_ad_config *ad_cfg;
} audio_aptx_encoder_config;
/* Information about BT AAC encoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP encoder
*/
typedef struct {
uint32_t enc_mode; /* LC, SBR, PS */
uint16_t format_flag; /* RAW, ADTS */
uint16_t channels; /* 1-Mono, 2-Stereo */
uint32_t sampling_rate;
uint32_t bitrate;
uint32_t bits_per_sample;
} audio_aac_encoder_config;
#endif
typedef struct {
audio_aac_encoder_config audio_aac_enc_cfg;
struct aac_frame_size_control_t frame_ctl;
} audio_aac_encoder_config_v2;
typedef struct {
audio_aac_encoder_config audio_aac_enc_cfg;
struct aac_frame_size_control_t frame_ctl;
uint8_t size_control_struct;
struct aac_frame_size_control_t* frame_ptr_ctl;
} audio_aac_encoder_config_v3;
/* Information about BT CELT encoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP encoder
*/
typedef struct {
uint32_t sampling_rate; /* 32000 - 48000, 48000 */
uint16_t channels; /* 1-Mono, 2-Stereo, 2*/
uint16_t frame_size; /* 64-128-256-512, 512 */
uint16_t complexity; /* 0-10, 1 */
uint16_t prediction_mode; /* 0-1-2, 0 */
uint16_t vbr_flag; /* 0-1, 0*/
uint32_t bitrate; /*32000 - 1536000, 139500*/
uint32_t bits_per_sample;
} audio_celt_encoder_config;
/* Information about BT LDAC encoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP encoder
*/
typedef struct {
uint32_t sampling_rate; /*44100,48000,88200,96000*/
uint32_t bit_rate; /*303000,606000,909000(in bits per second)*/
uint16_t channel_mode; /* 0, 4, 2, 1*/
uint16_t mtu; /*679*/
uint32_t bits_per_sample;
bool is_abr_enabled;
struct quality_level_to_bitrate_info level_to_bitrate_map;
} audio_ldac_encoder_config;
/* Information about BT AAC decoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP decoder
*/
typedef struct {
uint16_t aac_fmt_flag; /* LATM*/
uint16_t audio_object_type; /* LC */
uint16_t channels; /* Stereo */
uint16_t total_size_of_pce_bits; /* 0 - only for channel conf PCE */
uint32_t sampling_rate; /* 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k,
44.1k, 48k, 64k, 88.2k, 96k */
} audio_aac_dec_config_t;
/* Information about BT SBC decoder configuration
* This data is used between audio HAL module and
* BT IPC library to configure DSP decoder
*/
typedef struct {
uint16_t channels; /* Mono, Stereo */
uint32_t sampling_rate; /* 8k, 11.025k, 12k, 16k, 22.05k, 24k, 32k,
44.1k, 48k, 64k, 88.2k, 96k */
}audio_sbc_dec_config_t;
/*********** END of DSP configurable structures ********************/
static void update_offload_codec_capabilities()
{
a2dp.is_a2dp_offload_supported =
property_get_bool(SYSPROP_A2DP_OFFLOAD_SUPPORTED, false) &&
!property_get_bool(SYSPROP_A2DP_OFFLOAD_DISABLED, false);
ALOGD("%s: A2DP offload supported = %d",__func__,
a2dp.is_a2dp_offload_supported);
}
static int stop_abr()
{
struct mixer_ctl *ctl_abr_tx_path = NULL;
struct mixer_ctl *ctl_abr_rx_path = NULL;
struct mixer_ctl *ctl_set_bt_feedback_channel = NULL;
int ret = 0;
/* This function can be used if !abr_started for clean up */
ALOGV("%s: enter", __func__);
// Close hostless front end
if (a2dp.abr_config.abr_tx_handle != NULL) {
pcm_close(a2dp.abr_config.abr_tx_handle);
a2dp.abr_config.abr_tx_handle = NULL;
}
if (a2dp.abr_config.abr_rx_handle != NULL) {
pcm_close(a2dp.abr_config.abr_rx_handle);
a2dp.abr_config.abr_rx_handle = NULL;
}
a2dp.abr_config.abr_started = false;
a2dp.abr_config.imc_instance = 0;
// Reset BT driver mixer control for ABR usecase
ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SET_FEEDBACK_CHANNEL);
if (!ctl_set_bt_feedback_channel) {
ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__);
ret = -ENOSYS;
} else if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 0) != 0) {
ALOGE("%s: Failed to set BT usecase", __func__);
ret = -ENOSYS;
}
// Reset ABR Tx feedback path
ALOGV("%s: Disable ABR Tx feedback path", __func__);
ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_TX_FEEDBACK_PATH);
if (!ctl_abr_tx_path) {
ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__);
ret = -ENOSYS;
} else if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 0) != 0) {
ALOGE("%s: Failed to set ABR Tx feedback path", __func__);
ret = -ENOSYS;
}
// Reset ABR Rx feedback path
ALOGV("%s: Disable ABR Rx feedback path", __func__);
ctl_abr_rx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_RX_FEEDBACK_PATH);
if (!ctl_abr_rx_path) {
ALOGE("%s: ERROR ABR Rx feedback path mixer control not identifed", __func__);
ret = -ENOSYS;
} else if (mixer_ctl_set_value(ctl_abr_rx_path, 0, 0) != 0) {
ALOGE("%s: Failed to set ABR Rx feedback path", __func__);
ret = -ENOSYS;
}
return ret;
}
static int start_abr()
{
struct mixer_ctl *ctl_abr_tx_path = NULL;
struct mixer_ctl *ctl_abr_rx_path = NULL;
struct mixer_ctl *ctl_set_bt_feedback_channel = NULL;
int abr_device_id;
int ret = 0;
if (!a2dp.abr_config.is_abr_enabled) {
ALOGE("%s: Cannot start if ABR is not enabled", __func__);
return -ENOSYS;
}
if (a2dp.abr_config.abr_started) {
ALOGI("%s: ABR has already started", __func__);
return ret;
}
// Enable Slimbus 7 Tx feedback path
ALOGV("%s: Enable ABR Tx feedback path", __func__);
ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_TX_FEEDBACK_PATH);
if (!ctl_abr_tx_path) {
ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 1) != 0) {
ALOGE("%s: Failed to set ABR Tx feedback path", __func__);
return -ENOSYS;
}
// Notify ABR usecase information to BT driver to distinguish
// between SCO and feedback usecase
ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SET_FEEDBACK_CHANNEL);
if (!ctl_set_bt_feedback_channel) {
ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__);
goto fail;
}
if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 1) != 0) {
ALOGE("%s: Failed to set BT usecase", __func__);
goto fail;
}
// Open hostless front end and prepare ABR Tx path
abr_device_id = fp_platform_get_pcm_device_id(USECASE_AUDIO_A2DP_ABR_FEEDBACK,
PCM_CAPTURE);
if (!a2dp.abr_config.abr_tx_handle) {
a2dp.abr_config.abr_tx_handle = pcm_open(a2dp.adev->snd_card,
abr_device_id, PCM_IN,
&pcm_config_abr);
if (a2dp.abr_config.abr_tx_handle == NULL) {
ALOGE("%s: Can't open abr tx device", __func__);
goto fail;
}
if (!(pcm_is_ready(a2dp.abr_config.abr_tx_handle) &&
!pcm_start(a2dp.abr_config.abr_tx_handle))) {
ALOGE("%s: tx: %s", __func__, pcm_get_error(a2dp.abr_config.abr_tx_handle));
goto fail;
}
}
// Enable Slimbus 7 Rx feedback path for HD Voice use case
if (a2dp.bt_encoder_format == CODEC_TYPE_APTX_AD_SPEECH) {
ALOGV("%s: Enable ABR Rx feedback path", __func__);
ctl_abr_rx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_RX_FEEDBACK_PATH);
if (!ctl_abr_rx_path) {
ALOGE("%s: ERROR ABR Rx feedback path mixer control not identifed", __func__);
goto fail;
}
if (mixer_ctl_set_value(ctl_abr_rx_path, 0, 1) != 0) {
ALOGE("%s: Failed to set ABR Rx feedback path", __func__);
goto fail;
}
if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 1) != 0) {
ALOGE("%s: Failed to set BT usecase", __func__);
goto fail;
}
// Open hostless front end and prepare ABR Rx path
abr_device_id = fp_platform_get_pcm_device_id(USECASE_AUDIO_A2DP_ABR_FEEDBACK,
PCM_PLAYBACK);
if (!a2dp.abr_config.abr_rx_handle) {
a2dp.abr_config.abr_rx_handle = pcm_open(a2dp.adev->snd_card,
abr_device_id, PCM_OUT,
&pcm_config_abr);
if (a2dp.abr_config.abr_rx_handle == NULL) {
ALOGE("%s: Can't open abr rx device", __func__);
goto fail;
}
if (!(pcm_is_ready(a2dp.abr_config.abr_rx_handle) &&
!pcm_start(a2dp.abr_config.abr_rx_handle))) {
ALOGE("%s: rx: %s", __func__, pcm_get_error(a2dp.abr_config.abr_rx_handle));
goto fail;
}
}
}
a2dp.abr_config.abr_started = true;
return ret;
fail:
stop_abr();
return -ENOSYS;
}
static int check_if_enhanced_fwk() {
int is_enhanced_fwk = 1;
//dlopen lib
vndk_fwk_lib_handle = dlopen(VNDK_FWK_LIB_PATH, RTLD_NOW);
if (vndk_fwk_lib_handle != NULL) {
vndk_fwk_isVendorEnhancedFwk = (vndk_fwk_isVendorEnhancedFwk_t)
dlsym(vndk_fwk_lib_handle, "isRunningWithVendorEnhancedFramework");
if (vndk_fwk_isVendorEnhancedFwk == NULL) {
ALOGW("%s: VNDK_FWK_LIB not found, defaulting to enhanced_fwk configuration",
__func__);
is_enhanced_fwk = 1;
} else {
is_enhanced_fwk = vndk_fwk_isVendorEnhancedFwk();
}
}
ALOGV("%s: vndk_fwk_isVendorEnhancedFwk=%d", __func__, is_enhanced_fwk);
return is_enhanced_fwk;
}
static void open_a2dp_source() {
int ret = 0;
ALOGD(" Open A2DP source start ");
if (a2dp.bt_lib_source_handle && a2dp.audio_source_open) {
if (a2dp.bt_state_source == A2DP_STATE_DISCONNECTED) {
ALOGD("calling BT stream open");
ret = a2dp.audio_source_open();
if(ret != 0) {
ALOGE("Failed to open source stream for a2dp: status %d", ret);
}
a2dp.bt_state_source = A2DP_STATE_CONNECTED;
} else {
ALOGD("Called a2dp open with improper state %d", a2dp.bt_state_source);
}
} else {
ALOGE("a2dp handle is not identified, Ignoring open request");
a2dp.bt_state_source = A2DP_STATE_DISCONNECTED;
}
}
/* API to open BT IPC library to start IPC communication for BT Source*/
static void a2dp_source_init()
{
ALOGD("a2dp_source_init START");
if (a2dp.bt_lib_source_handle == NULL) {
ALOGD("Requesting for BT lib handle");
a2dp.bt_lib_source_handle = dlopen(BT_IPC_SOURCE_LIB_NAME, RTLD_NOW);
if (a2dp.bt_lib_source_handle == NULL) {
ALOGE("%s: dlopen failed for %s", __func__, BT_IPC_SOURCE_LIB_NAME);
return;
}
}
a2dp.bt_audio_pre_init = (bt_audio_pre_init_t)
dlsym(a2dp.bt_lib_source_handle, "bt_audio_pre_init");
a2dp.audio_source_open = (audio_source_open_t)
dlsym(a2dp.bt_lib_source_handle, "audio_stream_open");
a2dp.audio_source_start = (audio_source_start_t)
dlsym(a2dp.bt_lib_source_handle, "audio_start_stream");
a2dp.audio_get_enc_config = (audio_get_enc_config_t)
dlsym(a2dp.bt_lib_source_handle, "audio_get_codec_config");
a2dp.audio_source_suspend = (audio_source_suspend_t)
dlsym(a2dp.bt_lib_source_handle, "audio_suspend_stream");
a2dp.audio_source_handoff_triggered = (audio_source_handoff_triggered_t)
dlsym(a2dp.bt_lib_source_handle, "audio_handoff_triggered");
a2dp.clear_source_a2dpsuspend_flag = (clear_source_a2dpsuspend_flag_t)
dlsym(a2dp.bt_lib_source_handle, "clear_a2dpsuspend_flag");
a2dp.audio_source_stop = (audio_source_stop_t)
dlsym(a2dp.bt_lib_source_handle, "audio_stop_stream");
a2dp.audio_source_close = (audio_source_close_t)
dlsym(a2dp.bt_lib_source_handle, "audio_stream_close");
a2dp.audio_source_check_a2dp_ready = (audio_source_check_a2dp_ready_t)
dlsym(a2dp.bt_lib_source_handle,"audio_check_a2dp_ready");
a2dp.audio_sink_get_a2dp_latency = (audio_sink_get_a2dp_latency_t)
dlsym(a2dp.bt_lib_source_handle,"audio_sink_get_a2dp_latency");
a2dp.audio_is_source_scrambling_enabled = (audio_is_source_scrambling_enabled_t)
dlsym(a2dp.bt_lib_source_handle,"audio_is_scrambling_enabled");
a2dp.audio_is_tws_mono_mode_enable = (audio_is_tws_mono_mode_enable_t)
dlsym(a2dp.bt_lib_source_handle,"isTwsMonomodeEnable");
if (a2dp.bt_lib_source_handle && a2dp.bt_audio_pre_init) {
ALOGD("calling BT module preinit");
// fwk related check's will be done in the BT layer
a2dp.bt_audio_pre_init();
}
}
/* API to open BT IPC library to start IPC communication for BT Sink*/
static void open_a2dp_sink()
{
ALOGD(" Open A2DP input start ");
if (a2dp.bt_lib_sink_handle == NULL){
ALOGD(" Requesting for BT lib handle");
a2dp.bt_lib_sink_handle = dlopen(BT_IPC_SINK_LIB_NAME, RTLD_NOW);
if (a2dp.bt_lib_sink_handle == NULL) {
ALOGE("%s: DLOPEN failed for %s", __func__, BT_IPC_SINK_LIB_NAME);
} else {
a2dp.audio_sink_start = (audio_sink_start_t)
dlsym(a2dp.bt_lib_sink_handle, "audio_sink_start_capture");
a2dp.audio_get_dec_config = (audio_get_dec_config_t)
dlsym(a2dp.bt_lib_sink_handle, "audio_get_decoder_config");
a2dp.audio_sink_stop = (audio_sink_stop_t)
dlsym(a2dp.bt_lib_sink_handle, "audio_sink_stop_capture");
a2dp.audio_sink_check_a2dp_ready = (audio_sink_check_a2dp_ready_t)
dlsym(a2dp.bt_lib_sink_handle,"audio_sink_check_a2dp_ready");
a2dp.audio_sink_session_setup_complete = (audio_sink_session_setup_complete_t)
dlsym(a2dp.bt_lib_sink_handle, "audio_sink_session_setup_complete");
}
}
}
static int close_a2dp_output()
{
ALOGV("%s\n",__func__);
if (!(a2dp.bt_lib_source_handle && a2dp.audio_source_close)) {
ALOGE("a2dp source handle is not identified, Ignoring close request");
return -ENOSYS;
}
if (a2dp.bt_state_source != A2DP_STATE_DISCONNECTED) {
ALOGD("calling BT source stream close");
if (a2dp.audio_source_close() == false)
ALOGE("failed close a2dp source control path from BT library");
}
a2dp.a2dp_source_started = false;
a2dp.a2dp_source_total_active_session_requests = 0;
a2dp.a2dp_source_suspended = false;
a2dp.bt_encoder_format = CODEC_TYPE_INVALID;
a2dp.enc_sampling_rate = 48000;
a2dp.enc_channels = 2;
a2dp.bt_state_source = A2DP_STATE_DISCONNECTED;
if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started)
stop_abr();
a2dp.abr_config.is_abr_enabled = false;
a2dp.abr_config.abr_started = false;
a2dp.abr_config.imc_instance = 0;
a2dp.abr_config.abr_tx_handle = NULL;
a2dp.abr_config.abr_rx_handle = NULL;
a2dp.bt_state_source = A2DP_STATE_DISCONNECTED;
return 0;
}
static int close_a2dp_input()
{
ALOGV("%s\n",__func__);
if (!(a2dp.bt_lib_sink_handle && a2dp.audio_source_close)) {
ALOGE("a2dp sink handle is not identified, Ignoring close request");
return -ENOSYS;
}
if (a2dp.bt_state_sink != A2DP_STATE_DISCONNECTED) {
ALOGD("calling BT sink stream close");
if (a2dp.audio_source_close() == false)
ALOGE("failed close a2dp sink control path from BT library");
}
a2dp.a2dp_sink_started = false;
a2dp.a2dp_sink_total_active_session_requests = 0;
a2dp.bt_decoder_format = CODEC_TYPE_INVALID;
a2dp.dec_sampling_rate = 48000;
a2dp.dec_channels = 2;
a2dp.bt_state_sink = A2DP_STATE_DISCONNECTED;
return 0;
}
static void a2dp_check_and_set_scrambler()
{
bool scrambler_mode = false;
struct mixer_ctl *ctrl_scrambler_mode = NULL;
if (a2dp.audio_is_source_scrambling_enabled && (a2dp.bt_state_source != A2DP_STATE_DISCONNECTED))
scrambler_mode = a2dp.audio_is_source_scrambling_enabled();
if (scrambler_mode) {
//enable scrambler in dsp
ctrl_scrambler_mode = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SCRAMBLER_MODE);
if (!ctrl_scrambler_mode) {
ALOGE(" ERROR scrambler mode mixer control not identified");
return;
} else {
if (mixer_ctl_set_value(ctrl_scrambler_mode, 0, true) != 0) {
ALOGE("%s: Could not set scrambler mode", __func__);
return;
}
}
}
}
static bool a2dp_set_backend_cfg(uint8_t direction)
{
char *rate_str = NULL, *channels = NULL;
uint32_t sampling_rate;
struct mixer_ctl *ctl_sample_rate = NULL, *ctrl_channels = NULL;
bool is_configured = false;
if (direction == SINK) {
sampling_rate = a2dp.dec_sampling_rate;
} else {
sampling_rate = a2dp.enc_sampling_rate;
}
/*
* For LDAC encoder and AAC decoder open slimbus port at
* 96Khz for 48Khz input and 88.2Khz for 44.1Khz input.
* For APTX AD encoder, open slimbus port at 96Khz for 48Khz input.
*/
if (((a2dp.bt_encoder_format == CODEC_TYPE_LDAC) ||
(a2dp.bt_decoder_format == CODEC_TYPE_SBC) ||
(a2dp.bt_decoder_format == AUDIO_FORMAT_AAC) ||
(a2dp.bt_encoder_format == CODEC_TYPE_APTX_AD)) &&
(sampling_rate == 48000 || sampling_rate == 44100 )) {
sampling_rate = sampling_rate *2;
}
// No need to configure backend for PCM format.
if (a2dp.bt_encoder_format == CODEC_TYPE_PCM) {
return 0;
}
//Configure backend sampling rate
switch (sampling_rate) {
case 44100:
rate_str = "KHZ_44P1";
break;
case 88200:
rate_str = "KHZ_88P2";
break;
case 96000:
rate_str = "KHZ_96";
break;
case 48000:
default:
rate_str = "KHZ_48";
break;
}
if (direction == SINK) {
ALOGD("%s: set sink backend sample rate =%s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SINK_SAMPLE_RATE);
} else {
ALOGD("%s: set source backend sample rate =%s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_RX);
}
if (ctl_sample_rate) {
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str);
is_configured = false;
goto fail;
}
if (direction == SOURCE) {
/* Set Tx backend sample rate */
if (a2dp.abr_config.is_abr_enabled) {
if (a2dp.bt_encoder_format == CODEC_TYPE_APTX_AD_SPEECH)
rate_str = SPEECH_TX_SAMPLE_RATE;
else
rate_str = ABR_TX_SAMPLE_RATE;
ALOGD("%s: set backend tx sample rate = %s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SOURCE_SAMPLE_RATE_TX);
if (!ctl_sample_rate) {
ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__);
is_configured = false;
goto fail;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str);
is_configured = false;
goto fail;
}
}
}
} else {
/* Fallback to legacy approch if MIXER_SAMPLE_RATE_RX and
MIXER_SAMPLE_RATE_TX is not supported */
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_DEFAULT);
if (!ctl_sample_rate) {
ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__);
is_configured = false;
goto fail;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str);
is_configured = false;
goto fail;
}
}
if (direction == SINK) {
switch (a2dp.dec_channels) {
case 1:
channels = "One";
break;
case 2:
default:
channels = "Two";
break;
}
ALOGD("%s: set afe dec channels =%s", __func__, channels);
ctrl_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_SINK_CHANNELS);
} else {
//Configure AFE enc channels
switch (a2dp.enc_channels) {
case 1:
channels = "One";
break;
case 2:
default:
channels = "Two";
break;
}
ALOGD("%s: set afe enc channels =%s", __func__, channels);
ctrl_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_IN_CHANNELS);
}
if (!ctrl_channels) {
ALOGE(" ERROR AFE channels mixer control not identified");
} else {
if (mixer_ctl_set_enum_by_string(ctrl_channels, channels) != 0) {
ALOGE("%s: Failed to set AFE channels =%s", __func__, channels);
is_configured = false;
goto fail;
}
}
is_configured = true;
fail:
return is_configured;
}
bool a2dp_set_source_backend_cfg()
{
if (a2dp.a2dp_source_started && !a2dp.a2dp_source_suspended)
return a2dp_set_backend_cfg(SOURCE);
return false;
}
bool configure_aac_dec_format(audio_aac_dec_config_t *aac_bt_cfg)
{
struct mixer_ctl *ctl_dec_data = NULL, *ctrl_bit_format = NULL;
struct aac_dec_cfg_t aac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aac_bt_cfg == NULL)
return false;
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SINK_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE(" ERROR a2dp decoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&aac_dsp_cfg, 0x0, sizeof(struct aac_dec_cfg_t));
aac_dsp_cfg.dec_format = MEDIA_FMT_AAC;
aac_dsp_cfg.data.aac_fmt_flag = aac_bt_cfg->aac_fmt_flag;
aac_dsp_cfg.data.channels = aac_bt_cfg->channels;
switch(aac_bt_cfg->audio_object_type) {
case 0:
aac_dsp_cfg.data.audio_object_type = MEDIA_FMT_AAC_AOT_LC;
break;
case 2:
aac_dsp_cfg.data.audio_object_type = MEDIA_FMT_AAC_AOT_PS;
break;
case 1:
default:
aac_dsp_cfg.data.audio_object_type = MEDIA_FMT_AAC_AOT_SBR;
break;
}
aac_dsp_cfg.data.total_size_of_pce_bits = aac_bt_cfg->total_size_of_pce_bits;
aac_dsp_cfg.data.sampling_rate = aac_bt_cfg->sampling_rate;
ret = mixer_ctl_set_array(ctl_dec_data, (void *)&aac_dsp_cfg,
sizeof(struct aac_dec_cfg_t));
if (ret != 0) {
ALOGE("%s: failed to set AAC decoder config", __func__);
is_configured = false;
goto fail;
}
ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_DEC_BIT_FORMAT);
if (!ctrl_bit_format) {
ALOGE(" ERROR Dec bit format mixer control not identified");
is_configured = false;
goto fail;
}
ret = mixer_ctl_set_enum_by_string(ctrl_bit_format, "S16_LE");
if (ret != 0) {
ALOGE("%s: Failed to set bit format to decoder", __func__);
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_decoder_format = CODEC_TYPE_AAC;
a2dp.dec_channels = aac_dsp_cfg.data.channels;
a2dp.dec_sampling_rate = aac_dsp_cfg.data.sampling_rate;
ALOGV("Successfully updated AAC dec format with sampling_rate: %d channels:%d",
aac_dsp_cfg.data.sampling_rate, aac_dsp_cfg.data.channels);
fail:
return is_configured;
}
static int a2dp_set_bit_format(uint32_t enc_bit_format)
{
const char *bit_format = NULL;
struct mixer_ctl *ctrl_bit_format = NULL;
// Configure AFE Input Bit Format
switch (enc_bit_format) {
case 32:
bit_format = "S32_LE";
break;
case 24:
bit_format = "S24_LE";
break;
case 16:
default:
bit_format = "S16_LE";
break;
}
ALOGD("%s: set AFE input bit format = %d", __func__, enc_bit_format);
ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ENC_BIT_FORMAT);
if (!ctrl_bit_format) {
ALOGE("%s: ERROR AFE input bit format mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctrl_bit_format, bit_format) != 0) {
ALOGE("%s: Failed to set AFE input bit format = %d", __func__, enc_bit_format);
return -ENOSYS;
}
return 0;
}
static int a2dp_reset_backend_cfg(uint8_t direction)
{
const char *rate_str = "KHZ_8", *channels = "Zero";
struct mixer_ctl *ctl_sample_rate = NULL, *ctl_sample_rate_tx = NULL;
struct mixer_ctl *ctrl_channels = NULL;
// Reset backend sampling rate
if (direction == SINK) {
ALOGD("%s: reset sink backend sample rate =%s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SINK_SAMPLE_RATE);
} else {
ALOGD("%s: reset source backend sample rate =%s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_RX);
}
if (ctl_sample_rate) {
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to reset backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
if (a2dp.abr_config.is_abr_enabled) {
ctl_sample_rate_tx = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SOURCE_SAMPLE_RATE_TX);
if (!ctl_sample_rate_tx) {
ALOGE("%s: ERROR Tx backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate_tx, rate_str) != 0) {
ALOGE("%s: Failed to reset Tx backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
}
} else {
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_DEFAULT);
if (!ctl_sample_rate) {
ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to reset backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
}
// Reset AFE input channels
if (direction == SINK) {
ALOGD("%s: reset afe sink channels =%s", __func__, channels);
ctrl_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_SINK_CHANNELS);
} else {
ALOGD("%s: reset afe source channels =%s", __func__, channels);
ctrl_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_IN_CHANNELS);
}
if (!ctrl_channels) {
ALOGE("%s: ERROR AFE input channels mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctrl_channels, channels) != 0) {
ALOGE("%s: Failed to reset AFE in channels = %d", __func__, a2dp.enc_channels);
return -ENOSYS;
}
return 0;
}
/* API to configure AFE decoder in DSP */
static bool configure_a2dp_source_decoder_format(int dec_format)
{
struct mixer_ctl *ctl_dec_data = NULL;
struct abr_dec_cfg_t dec_cfg;
int ret = 0;
if (a2dp.abr_config.is_abr_enabled) {
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SOURCE_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE("%s: ERROR A2DP codec config data mixer control not identifed", __func__);
return false;
}
memset(&dec_cfg, 0x0, sizeof(dec_cfg));
dec_cfg.dec_format = dec_format;
dec_cfg.imc_info.direction = IMC_TRANSMIT;
dec_cfg.imc_info.enable = IMC_ENABLE;
dec_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
dec_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
ret = mixer_ctl_set_array(ctl_dec_data, &dec_cfg,
sizeof(dec_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set decoder config", __func__);
return false;
}
}
return true;
}
bool configure_sbc_dec_format(audio_sbc_dec_config_t *sbc_bt_cfg)
{
struct mixer_ctl *ctl_dec_data = NULL, *ctrl_bit_format = NULL;
struct sbc_dec_cfg_t sbc_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (sbc_bt_cfg == NULL)
goto fail;
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SINK_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE(" ERROR a2dp decoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&sbc_dsp_cfg, 0x0, sizeof(struct sbc_dec_cfg_t));
sbc_dsp_cfg.dec_format = MEDIA_FMT_SBC;
sbc_dsp_cfg.data.channels = sbc_bt_cfg->channels;
sbc_dsp_cfg.data.sampling_rate = sbc_bt_cfg->sampling_rate;
ret = mixer_ctl_set_array(ctl_dec_data, (void *)&sbc_dsp_cfg,
sizeof(struct sbc_dec_cfg_t));
if (ret != 0) {
ALOGE("%s: failed to set SBC decoder config", __func__);
is_configured = false;
goto fail;
}
ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_DEC_BIT_FORMAT);
if (!ctrl_bit_format) {
ALOGE(" ERROR Dec bit format mixer control not identified");
is_configured = false;
goto fail;
}
ret = mixer_ctl_set_enum_by_string(ctrl_bit_format, "S16_LE");
if (ret != 0) {
ALOGE("%s: Failed to set bit format to decoder", __func__);
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_decoder_format = CODEC_TYPE_SBC;
if (sbc_dsp_cfg.data.channels == MEDIA_FMT_SBC_CHANNEL_MODE_MONO)
a2dp.dec_channels = 1;
else
a2dp.dec_channels = 2;
a2dp.dec_sampling_rate = sbc_dsp_cfg.data.sampling_rate;
ALOGV("Successfully updated SBC dec format");
fail:
return is_configured;
}
/* API to configure AFE decoder in DSP */
static bool configure_a2dp_sink_decoder_format()
{
void *codec_info = NULL;
codec_t codec_type = CODEC_TYPE_INVALID;
bool is_configured = false;
struct mixer_ctl *ctl_dec_data = NULL;
if (!a2dp.audio_get_dec_config) {
ALOGE(" a2dp handle is not identified, ignoring a2dp decoder config");
return false;
}
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SINK_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE(" ERROR a2dp decoder CONFIG data mixer control not identified");
is_configured = false;
return false;
}
codec_info = a2dp.audio_get_dec_config(&codec_type);
switch(codec_type) {
case CODEC_TYPE_SBC:
ALOGD(" SBC decoder supported BT device");
is_configured = configure_sbc_dec_format((audio_sbc_dec_config_t *)codec_info);
break;
case CODEC_TYPE_AAC:
ALOGD(" AAC decoder supported BT device");
is_configured =
configure_aac_dec_format((audio_aac_dec_config_t *)codec_info);
break;
default:
ALOGD(" Received Unsupported decoder format");
is_configured = false;
break;
}
return is_configured;
}
/* API to configure SBC DSP encoder */
bool configure_sbc_enc_format(audio_sbc_encoder_config *sbc_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct sbc_enc_cfg_t sbc_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (sbc_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&sbc_dsp_cfg, 0x0, sizeof(struct sbc_enc_cfg_t));
sbc_dsp_cfg.enc_format = MEDIA_FMT_SBC;
sbc_dsp_cfg.num_subbands = sbc_bt_cfg->subband;
sbc_dsp_cfg.blk_len = sbc_bt_cfg->blk_len;
switch(sbc_bt_cfg->channels) {
case 0:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_MONO;
break;
case 1:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO;
break;
case 3:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO;
break;
case 2:
default:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_STEREO;
break;
}
if (sbc_bt_cfg->alloc)
sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS;
else
sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR;
sbc_dsp_cfg.bit_rate = sbc_bt_cfg->bitrate;
sbc_dsp_cfg.sample_rate = sbc_bt_cfg->sampling_rate;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&sbc_dsp_cfg,
sizeof(struct sbc_enc_cfg_t));
if (ret != 0) {
ALOGE("%s: failed to set SBC encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(sbc_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_SBC;
a2dp.enc_sampling_rate = sbc_bt_cfg->sampling_rate;
if (sbc_dsp_cfg.channel_mode == MEDIA_FMT_SBC_CHANNEL_MODE_MONO)
a2dp.enc_channels = 1;
else
a2dp.enc_channels = 2;
ALOGV("Successfully updated SBC enc format with samplingrate: %d channelmode:%d",
sbc_dsp_cfg.sample_rate, sbc_dsp_cfg.channel_mode);
fail:
return is_configured;
}
#ifndef LINUX_ENABLED
static int update_aptx_ad_dsp_config(struct aptx_ad_enc_cfg_t *aptx_dsp_cfg,
audio_aptx_encoder_config *aptx_bt_cfg)
{
int ret = 0;
if (aptx_dsp_cfg == NULL || aptx_bt_cfg == NULL) {
ALOGE("Invalid param, aptx_dsp_cfg %p aptx_bt_cfg %p",
aptx_dsp_cfg, aptx_bt_cfg);
return -EINVAL;
}
memset(aptx_dsp_cfg, 0x0, sizeof(struct aptx_ad_enc_cfg_t));
aptx_dsp_cfg->custom_cfg.enc_format = MEDIA_FMT_APTX_AD;
aptx_dsp_cfg->aptx_ad_cfg.sampling_freq = aptx_bt_cfg->ad_cfg->sampling_rate;
aptx_dsp_cfg->aptx_ad_cfg.mtu = aptx_bt_cfg->ad_cfg->mtu;
aptx_dsp_cfg->aptx_ad_cfg.channel_mode = aptx_bt_cfg->ad_cfg->channel_mode;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeA = aptx_bt_cfg->ad_cfg->min_sink_modeA;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeA = aptx_bt_cfg->ad_cfg->max_sink_modeA;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeB = aptx_bt_cfg->ad_cfg->min_sink_modeB;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeB = aptx_bt_cfg->ad_cfg->max_sink_modeB;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeC = aptx_bt_cfg->ad_cfg->min_sink_modeC;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeC = aptx_bt_cfg->ad_cfg->max_sink_modeC;
aptx_dsp_cfg->aptx_ad_cfg.mode = aptx_bt_cfg->ad_cfg->encoder_mode;
aptx_dsp_cfg->abr_cfg.imc_info.direction = IMC_RECEIVE;
aptx_dsp_cfg->abr_cfg.imc_info.enable = IMC_ENABLE;
aptx_dsp_cfg->abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
aptx_dsp_cfg->abr_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
switch(aptx_dsp_cfg->aptx_ad_cfg.channel_mode) {
case APTX_AD_CHANNEL_UNCHANGED:
case APTX_AD_CHANNEL_JOINT_STEREO:
case APTX_AD_CHANNEL_DUAL_MONO:
case APTX_AD_CHANNEL_STEREO_TWS:
case APTX_AD_CHANNEL_EARBUD:
default:
a2dp.enc_channels = CH_STEREO;
aptx_dsp_cfg->custom_cfg.num_channels = CH_STEREO;
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg->custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
case APTX_AD_CHANNEL_MONO:
a2dp.enc_channels = CH_MONO;
aptx_dsp_cfg->custom_cfg.num_channels = CH_MONO;
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
}
switch(aptx_dsp_cfg->aptx_ad_cfg.sampling_freq) {
case APTX_AD_SR_UNCHANGED:
case APTX_AD_48:
default:
a2dp.enc_sampling_rate = SAMPLING_RATE_48K;
aptx_dsp_cfg->custom_cfg.sample_rate = SAMPLING_RATE_48K;
break;
case APTX_AD_44_1:
a2dp.enc_sampling_rate = SAMPLING_RATE_441K;
aptx_dsp_cfg->custom_cfg.sample_rate = SAMPLING_RATE_441K;
break;
}
ALOGV("Successfully updated APTX AD enc format with \
samplingrate: %d channels:%d",
aptx_dsp_cfg->custom_cfg.sample_rate,
aptx_dsp_cfg->custom_cfg.num_channels);
return ret;
}
static int update_aptx_ad_dsp_config_r2(struct aptx_ad_enc_cfg_r2_t *aptx_dsp_cfg,
audio_aptx_encoder_config *aptx_bt_cfg)
{
int ret = 0;
if (aptx_dsp_cfg == NULL || aptx_bt_cfg == NULL) {
ALOGE("Invalid param, aptx_dsp_cfg %pK aptx_bt_cfg %pK",
aptx_dsp_cfg, aptx_bt_cfg);
return -EINVAL;
}
memset(aptx_dsp_cfg, 0x0, sizeof(struct aptx_ad_enc_cfg_r2_t));
aptx_dsp_cfg->custom_cfg.enc_format = MEDIA_FMT_APTX_AD;
aptx_dsp_cfg->aptx_ad_cfg.sampling_freq = aptx_bt_cfg->ad_cfg->sampling_rate;
aptx_dsp_cfg->aptx_ad_cfg.mtu = aptx_bt_cfg->ad_cfg->mtu;
aptx_dsp_cfg->aptx_ad_cfg.channel_mode = aptx_bt_cfg->ad_cfg->channel_mode;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeA = aptx_bt_cfg->ad_cfg->min_sink_modeA;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeA = aptx_bt_cfg->ad_cfg->max_sink_modeA;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeB = aptx_bt_cfg->ad_cfg->min_sink_modeB;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeB = aptx_bt_cfg->ad_cfg->max_sink_modeB;
aptx_dsp_cfg->aptx_ad_cfg.min_sink_modeC = aptx_bt_cfg->ad_cfg->min_sink_modeC;
aptx_dsp_cfg->aptx_ad_cfg.max_sink_modeC = aptx_bt_cfg->ad_cfg->max_sink_modeC;
aptx_dsp_cfg->aptx_ad_cfg.mode = aptx_bt_cfg->ad_cfg->encoder_mode;
aptx_dsp_cfg->aptx_ad_cfg.input_mode = aptx_bt_cfg->ad_cfg->input_mode;
aptx_dsp_cfg->aptx_ad_cfg.fade_duration = aptx_bt_cfg->ad_cfg->fade_duration;
for (int i = 0; i < sizeof(aptx_dsp_cfg->aptx_ad_cfg.sink_cap); i ++)
aptx_dsp_cfg->aptx_ad_cfg.sink_cap[i] = aptx_bt_cfg->ad_cfg->sink_cap[i];
aptx_dsp_cfg->abr_cfg.imc_info.direction = IMC_RECEIVE;
aptx_dsp_cfg->abr_cfg.imc_info.enable = IMC_ENABLE;
aptx_dsp_cfg->abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
aptx_dsp_cfg->abr_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
switch(aptx_dsp_cfg->aptx_ad_cfg.channel_mode) {
case APTX_AD_CHANNEL_UNCHANGED:
case APTX_AD_CHANNEL_JOINT_STEREO:
case APTX_AD_CHANNEL_DUAL_MONO:
case APTX_AD_CHANNEL_STEREO_TWS:
case APTX_AD_CHANNEL_EARBUD:
default:
a2dp.enc_channels = CH_STEREO;
aptx_dsp_cfg->custom_cfg.num_channels = CH_STEREO;
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg->custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
case APTX_AD_CHANNEL_MONO:
a2dp.enc_channels = CH_MONO;
aptx_dsp_cfg->custom_cfg.num_channels = CH_MONO;
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
}
switch(aptx_dsp_cfg->aptx_ad_cfg.sampling_freq) {
case APTX_AD_SR_UNCHANGED:
case APTX_AD_48:
default:
a2dp.enc_sampling_rate = SAMPLING_RATE_48K;
aptx_dsp_cfg->custom_cfg.sample_rate = SAMPLING_RATE_48K;
break;
case APTX_AD_44_1:
a2dp.enc_sampling_rate = SAMPLING_RATE_441K;
aptx_dsp_cfg->custom_cfg.sample_rate = SAMPLING_RATE_441K;
break;
case APTX_AD_96:
a2dp.enc_sampling_rate = SAMPLING_RATE_96K;
aptx_dsp_cfg->custom_cfg.sample_rate = SAMPLING_RATE_96K;
break;
}
ALOGV("Successfully updated APTX AD enc format with \
samplingrate: %d channels:%d",
aptx_dsp_cfg->custom_cfg.sample_rate,
aptx_dsp_cfg->custom_cfg.num_channels);
return ret;
}
static void audio_a2dp_update_tws_channel_mode()
{
char* channel_mode;
struct mixer_ctl *ctl_channel_mode;
ALOGD("Update tws for mono_mode on=%d",a2dp.is_tws_mono_mode_on);
if (a2dp.is_tws_mono_mode_on)
channel_mode = "One";
else
channel_mode = "Two";
ctl_channel_mode = mixer_get_ctl_by_name(a2dp.adev->mixer,MIXER_FMT_TWS_CHANNEL_MODE);
if (!ctl_channel_mode) {
ALOGE("failed to get tws mixer ctl");
return;
}
if (mixer_ctl_set_enum_by_string(ctl_channel_mode, channel_mode) != 0) {
ALOGE("%s: Failed to set the channel mode = %s", __func__, channel_mode);
return;
}
}
static int update_aptx_dsp_config_v2(struct aptx_enc_cfg_t *aptx_dsp_cfg,
audio_aptx_encoder_config *aptx_bt_cfg)
{
int ret = 0;
if (aptx_dsp_cfg == NULL || aptx_bt_cfg == NULL) {
ALOGE("Invalid param, aptx_dsp_cfg %p aptx_bt_cfg %p",
aptx_dsp_cfg, aptx_bt_cfg);
return -EINVAL;
}
memset(aptx_dsp_cfg, 0x0, sizeof(struct aptx_enc_cfg_t));
aptx_dsp_cfg->custom_cfg.enc_format = MEDIA_FMT_APTX;
if (!a2dp.is_aptx_dual_mono_supported) {
aptx_dsp_cfg->custom_cfg.sample_rate = aptx_bt_cfg->default_cfg->sampling_rate;
aptx_dsp_cfg->custom_cfg.num_channels = aptx_bt_cfg->default_cfg->channels;
} else {
aptx_dsp_cfg->custom_cfg.sample_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate;
aptx_dsp_cfg->custom_cfg.num_channels = aptx_bt_cfg->dual_mono_cfg->channels;
aptx_dsp_cfg->aptx_v2_cfg.sync_mode = aptx_bt_cfg->dual_mono_cfg->sync_mode;
}
switch(aptx_dsp_cfg->custom_cfg.num_channels) {
case 1:
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
aptx_dsp_cfg->custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg->custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
}
a2dp.enc_channels = aptx_dsp_cfg->custom_cfg.num_channels;
if (!a2dp.is_aptx_dual_mono_supported) {
a2dp.enc_sampling_rate = aptx_bt_cfg->default_cfg->sampling_rate;
ALOGV("Successfully updated APTX enc format with samplingrate: %d \
channels:%d", aptx_dsp_cfg->custom_cfg.sample_rate,
aptx_dsp_cfg->custom_cfg.num_channels);
} else {
a2dp.enc_sampling_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate;
ALOGV("Successfully updated APTX dual mono enc format with \
samplingrate: %d channels:%d syncmode %d",
aptx_dsp_cfg->custom_cfg.sample_rate,
aptx_dsp_cfg->custom_cfg.num_channels,
aptx_dsp_cfg->aptx_v2_cfg.sync_mode);
}
return ret;
}
#else
static int update_aptx_dsp_config_v1(struct custom_enc_cfg_t *aptx_dsp_cfg,
audio_aptx_encoder_config *aptx_bt_cfg)
{
int ret = 0;
if (aptx_dsp_cfg == NULL || aptx_bt_cfg == NULL) {
ALOGE("Invalid param, aptx_dsp_cfg %p aptx_bt_cfg %p",
aptx_dsp_cfg, aptx_bt_cfg);
return -EINVAL;
}
memset(&aptx_dsp_cfg, 0x0, sizeof(struct custom_enc_cfg_t));
aptx_dsp_cfg->enc_format = MEDIA_FMT_APTX;
aptx_dsp_cfg->sample_rate = aptx_bt_cfg->sampling_rate;
aptx_dsp_cfg->num_channels = aptx_bt_cfg->channels;
switch(aptx_dsp_cfg->num_channels) {
case 1:
aptx_dsp_cfg->channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
aptx_dsp_cfg->channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg->channel_mapping[1] = PCM_CHANNEL_R;
break;
}
ALOGV("Updated APTX enc format with samplingrate: %d channels:%d",
aptx_dsp_cfg->sample_rate, aptx_dsp_cfg->num_channels);
return ret;
}
#endif
/* API to configure APTX DSP encoder */
bool configure_aptx_enc_format(audio_aptx_encoder_config *aptx_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct mixer_ctl *aptx_ad_ctl = NULL;
int mixer_size = 0;
bool is_configured = false;
int ret = 0;
int sample_rate_backup = SAMPLING_RATE_48K;
if (aptx_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identifed");
return false;
}
#ifndef LINUX_ENABLED
struct aptx_enc_cfg_t aptx_dsp_cfg;
struct aptx_ad_enc_cfg_t aptx_ad_dsp_cfg;
struct aptx_ad_enc_cfg_r2_t aptx_ad_dsp_cfg_r2;
if (a2dp.is_aptx_adaptive) {
aptx_ad_ctl = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ENC_APTX_AD_CONFIG_BLOCK);
if (aptx_ad_ctl)
ret = update_aptx_ad_dsp_config_r2(&aptx_ad_dsp_cfg_r2, aptx_bt_cfg);
else
ret = update_aptx_ad_dsp_config(&aptx_ad_dsp_cfg, aptx_bt_cfg);
} else
ret = update_aptx_dsp_config_v2(&aptx_dsp_cfg, aptx_bt_cfg);
if (ret) {
is_configured = false;
goto fail;
}
if (a2dp.is_aptx_adaptive) {
if (aptx_ad_ctl)
ret = mixer_ctl_set_array(aptx_ad_ctl, (void *)&aptx_ad_dsp_cfg_r2,
sizeof(struct aptx_ad_enc_cfg_r2_t));
else
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_ad_dsp_cfg,
sizeof(struct aptx_ad_enc_cfg_t));
} else {
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
sizeof(struct aptx_enc_cfg_t));
}
#else
struct custom_enc_cfg_t aptx_dsp_cfg;
mixer_size = sizeof(struct custom_enc_cfg_t);
sample_rate_backup = aptx_bt_cfg->sampling_rate;
ret = update_aptx_dsp_config_v1(&aptx_dsp_cfg, aptx_bt_cfg);
if (ret) {
is_configured = false;
goto fail;
}
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
mixer_size);
#endif
if (ret != 0) {
ALOGE("%s: Failed to set APTX encoder config", __func__);
is_configured = false;
goto fail;
}
#ifndef LINUX_ENABLED //Temporarily disabled for LE, need to take care while doing VT FR
if (a2dp.is_aptx_adaptive)
ret = a2dp_set_bit_format(aptx_bt_cfg->ad_cfg->bits_per_sample);
else if (a2dp.is_aptx_dual_mono_supported)
ret = a2dp_set_bit_format(aptx_bt_cfg->dual_mono_cfg->bits_per_sample);
else
ret = a2dp_set_bit_format(aptx_bt_cfg->default_cfg->bits_per_sample);
#endif
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
if (a2dp.is_aptx_adaptive)
a2dp.bt_encoder_format = CODEC_TYPE_APTX_AD;
else
a2dp.bt_encoder_format = CODEC_TYPE_APTX;
fail:
/*restore sample rate */
if (!is_configured)
a2dp.enc_sampling_rate = sample_rate_backup;
return is_configured;
}
/* API to configure APTX HD DSP encoder
*/
#ifndef LINUX_ENABLED
bool configure_aptx_hd_enc_format(audio_aptx_default_config *aptx_bt_cfg)
#else
bool configure_aptx_hd_enc_format(audio_aptx_encoder_config *aptx_bt_cfg)
#endif
{
struct mixer_ctl *ctl_enc_data = NULL;
struct custom_enc_cfg_t aptx_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aptx_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&aptx_dsp_cfg, 0x0, sizeof(struct custom_enc_cfg_t));
aptx_dsp_cfg.enc_format = MEDIA_FMT_APTX_HD;
aptx_dsp_cfg.sample_rate = aptx_bt_cfg->sampling_rate;
aptx_dsp_cfg.num_channels = aptx_bt_cfg->channels;
switch(aptx_dsp_cfg.num_channels) {
case 1:
aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
}
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
sizeof(struct custom_enc_cfg_t));
if (ret != 0) {
ALOGE("%s: Failed to set APTX HD encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(aptx_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_APTX_HD;
a2dp.enc_sampling_rate = aptx_bt_cfg->sampling_rate;
a2dp.enc_channels = aptx_bt_cfg->channels;
ALOGV("Successfully updated APTX HD encformat with samplingrate: %d channels:%d",
aptx_dsp_cfg.sample_rate, aptx_dsp_cfg.num_channels);
fail:
return is_configured;
}
/* API to configure AAC DSP encoder */
bool configure_aac_enc_format(audio_aac_encoder_config *aac_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct aac_enc_cfg_t aac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aac_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&aac_dsp_cfg, 0x0, sizeof(struct aac_enc_cfg_t));
aac_dsp_cfg.enc_format = MEDIA_FMT_AAC;
aac_dsp_cfg.bit_rate = aac_bt_cfg->bitrate;
aac_dsp_cfg.sample_rate = aac_bt_cfg->sampling_rate;
switch (aac_bt_cfg->enc_mode) {
case 0:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_LC;
break;
case 2:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_PS;
break;
case 1:
default:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_SBR;
break;
}
aac_dsp_cfg.aac_fmt_flag = aac_bt_cfg->format_flag;
aac_dsp_cfg.channel_cfg = aac_bt_cfg->channels;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aac_dsp_cfg,
sizeof(struct aac_enc_cfg_t));
if (ret != 0) {
ALOGE("%s: Failed to set AAC encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(aac_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_AAC;
a2dp.enc_sampling_rate = aac_bt_cfg->sampling_rate;
a2dp.enc_channels = aac_bt_cfg->channels;
ALOGV("%s: Successfully updated AAC enc format with sampling rate: %d channels:%d",
__func__, aac_dsp_cfg.sample_rate, aac_dsp_cfg.channel_cfg);
fail:
return is_configured;
}
bool configure_aac_enc_format_v2(audio_aac_encoder_config_v2 *aac_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct aac_enc_cfg_v2_t aac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aac_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identifed");
is_configured = false;
goto fail;
}
memset(&aac_dsp_cfg, 0x0, sizeof(struct aac_enc_cfg_v2_t));
aac_dsp_cfg.aac_enc_cfg.enc_format = MEDIA_FMT_AAC;
aac_dsp_cfg.aac_enc_cfg.bit_rate = aac_bt_cfg->audio_aac_enc_cfg.bitrate;
aac_dsp_cfg.aac_enc_cfg.sample_rate = aac_bt_cfg->audio_aac_enc_cfg.sampling_rate;
switch (aac_bt_cfg->audio_aac_enc_cfg.enc_mode) {
case 0:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_LC;
break;
case 2:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_PS;
break;
case 1:
default:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_SBR;
break;
}
aac_dsp_cfg.aac_enc_cfg.aac_fmt_flag = aac_bt_cfg->audio_aac_enc_cfg.format_flag;
aac_dsp_cfg.aac_enc_cfg.channel_cfg = aac_bt_cfg->audio_aac_enc_cfg.channels;
aac_dsp_cfg.frame_ctl.ctl_type = aac_bt_cfg->frame_ctl.ctl_type;
aac_dsp_cfg.frame_ctl.ctl_value = aac_bt_cfg->frame_ctl.ctl_value;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aac_dsp_cfg,
sizeof(struct aac_enc_cfg_v2_t));
if (ret != 0) {
ALOGE("%s: Failed to set AAC encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(aac_bt_cfg->audio_aac_enc_cfg.bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_AAC;
a2dp.enc_sampling_rate = aac_bt_cfg->audio_aac_enc_cfg.sampling_rate;
a2dp.enc_channels = aac_bt_cfg->audio_aac_enc_cfg.channels;
ALOGV("%s: Successfully updated AAC enc format with sampling rate: %d channels:%d",
__func__, aac_dsp_cfg.aac_enc_cfg.sample_rate, aac_dsp_cfg.aac_enc_cfg.channel_cfg);
fail:
return is_configured;
}
bool configure_aac_enc_format_v3(audio_aac_encoder_config_v3 *aac_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct aac_enc_cfg_v3_t aac_dsp_cfg;
struct aac_frame_size_control_t* frame_vbr_ctl = NULL;
bool is_configured = false;
int ret = 0;
if (aac_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identifed");
is_configured = false;
goto fail;
}
memset(&aac_dsp_cfg, 0x0, sizeof(struct aac_enc_cfg_v3_t));
aac_dsp_cfg.aac_enc_cfg.enc_format = MEDIA_FMT_AAC;
aac_dsp_cfg.aac_enc_cfg.bit_rate = aac_bt_cfg->audio_aac_enc_cfg.bitrate;
aac_dsp_cfg.aac_enc_cfg.sample_rate = aac_bt_cfg->audio_aac_enc_cfg.sampling_rate;
switch (aac_bt_cfg->audio_aac_enc_cfg.enc_mode) {
case 0:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_LC;
break;
case 2:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_PS;
break;
case 1:
default:
aac_dsp_cfg.aac_enc_cfg.enc_mode = MEDIA_FMT_AAC_AOT_SBR;
break;
}
aac_dsp_cfg.aac_enc_cfg.aac_fmt_flag = aac_bt_cfg->audio_aac_enc_cfg.format_flag;
aac_dsp_cfg.aac_enc_cfg.channel_cfg = aac_bt_cfg->audio_aac_enc_cfg.channels;
aac_dsp_cfg.frame_ctl.ctl_type = aac_bt_cfg->frame_ctl.ctl_type;
aac_dsp_cfg.frame_ctl.ctl_value = aac_bt_cfg->frame_ctl.ctl_value;
frame_vbr_ctl = aac_bt_cfg->frame_ptr_ctl;
if (frame_vbr_ctl != NULL) {
aac_dsp_cfg.aac_key_value_ctl.ctl_type = frame_vbr_ctl->ctl_type;
aac_dsp_cfg.aac_key_value_ctl.ctl_value = frame_vbr_ctl->ctl_value;
} else {
ALOGE("%s: VBR cannot be enabled, fall back to default",__func__);
aac_dsp_cfg.aac_key_value_ctl.ctl_type = 0;
aac_dsp_cfg.aac_key_value_ctl.ctl_value = 0;
}
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aac_dsp_cfg,
sizeof(struct aac_enc_cfg_v3_t));
if (ret != 0) {
ALOGE("%s: Failed to set AAC encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(aac_bt_cfg->audio_aac_enc_cfg.bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_AAC;
a2dp.enc_sampling_rate = aac_bt_cfg->audio_aac_enc_cfg.sampling_rate;
a2dp.enc_channels = aac_bt_cfg->audio_aac_enc_cfg.channels;
ALOGV("%s: Successfully updated AAC enc format with sampling rate: %d channels:%d",
__func__, aac_dsp_cfg.aac_enc_cfg.sample_rate, aac_dsp_cfg.aac_enc_cfg.channel_cfg);
fail:
return is_configured;
}
bool configure_celt_enc_format(audio_celt_encoder_config *celt_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL;
struct celt_enc_cfg_t celt_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (celt_bt_cfg == NULL)
return false;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&celt_dsp_cfg, 0x0, sizeof(struct celt_enc_cfg_t));
celt_dsp_cfg.custom_cfg.enc_format = MEDIA_FMT_CELT;
celt_dsp_cfg.custom_cfg.sample_rate = celt_bt_cfg->sampling_rate;
celt_dsp_cfg.custom_cfg.num_channels = celt_bt_cfg->channels;
switch(celt_dsp_cfg.custom_cfg.num_channels) {
case 1:
celt_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
celt_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
celt_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
}
celt_dsp_cfg.custom_cfg.custom_size = sizeof(struct celt_enc_cfg_t);
celt_dsp_cfg.celt_cfg.frame_size = celt_bt_cfg->frame_size;
celt_dsp_cfg.celt_cfg.complexity = celt_bt_cfg->complexity;
celt_dsp_cfg.celt_cfg.prediction_mode = celt_bt_cfg->prediction_mode;
celt_dsp_cfg.celt_cfg.vbr_flag = celt_bt_cfg->vbr_flag;
celt_dsp_cfg.celt_cfg.bit_rate = celt_bt_cfg->bitrate;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&celt_dsp_cfg,
sizeof(struct celt_enc_cfg_t));
if (ret != 0) {
ALOGE("%s: Failed to set CELT encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(celt_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_CELT;
a2dp.enc_sampling_rate = celt_bt_cfg->sampling_rate;
a2dp.enc_channels = celt_bt_cfg->channels;
ALOGV("Successfully updated CELT encformat with samplingrate: %d channels:%d",
celt_dsp_cfg.custom_cfg.sample_rate, celt_dsp_cfg.custom_cfg.num_channels);
fail:
return is_configured;
}
bool configure_ldac_enc_format(audio_ldac_encoder_config *ldac_bt_cfg)
{
struct mixer_ctl *ldac_enc_data = NULL;
struct ldac_enc_cfg_t ldac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (ldac_bt_cfg == NULL)
return false;
ldac_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ldac_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identified");
is_configured = false;
goto fail;
}
memset(&ldac_dsp_cfg, 0x0, sizeof(struct ldac_enc_cfg_t));
ldac_dsp_cfg.custom_cfg.enc_format = MEDIA_FMT_LDAC;
ldac_dsp_cfg.custom_cfg.sample_rate = ldac_bt_cfg->sampling_rate;
ldac_dsp_cfg.ldac_cfg.channel_mode = ldac_bt_cfg->channel_mode;
switch(ldac_dsp_cfg.ldac_cfg.channel_mode) {
case 4:
ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
ldac_dsp_cfg.custom_cfg.num_channels = 1;
break;
case 2:
case 1:
default:
ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
ldac_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
ldac_dsp_cfg.custom_cfg.num_channels = 2;
break;
}
ldac_dsp_cfg.custom_cfg.custom_size = sizeof(struct ldac_enc_cfg_t);
ldac_dsp_cfg.ldac_cfg.mtu = ldac_bt_cfg->mtu;
ldac_dsp_cfg.ldac_cfg.bit_rate = ldac_bt_cfg->bit_rate;
if (ldac_bt_cfg->is_abr_enabled) {
ldac_dsp_cfg.abr_cfg.mapping_info = ldac_bt_cfg->level_to_bitrate_map;
ldac_dsp_cfg.abr_cfg.imc_info.direction = IMC_RECEIVE;
ldac_dsp_cfg.abr_cfg.imc_info.enable = IMC_ENABLE;
ldac_dsp_cfg.abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
ldac_dsp_cfg.abr_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
ldac_dsp_cfg.abr_cfg.is_abr_enabled = ldac_bt_cfg->is_abr_enabled;
}
ret = mixer_ctl_set_array(ldac_enc_data, (void *)&ldac_dsp_cfg,
sizeof(struct ldac_enc_cfg_t));
if (ret != 0) {
ALOGE("%s: Failed to set LDAC encoder config", __func__);
is_configured = false;
goto fail;
}
ret = a2dp_set_bit_format(ldac_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto fail;
}
is_configured = true;
a2dp.bt_encoder_format = CODEC_TYPE_LDAC;
a2dp.enc_sampling_rate = ldac_bt_cfg->sampling_rate;
a2dp.enc_channels = ldac_dsp_cfg.custom_cfg.num_channels;
a2dp.abr_config.is_abr_enabled = ldac_bt_cfg->is_abr_enabled;
ALOGV("Successfully updated LDAC encformat with samplingrate: %d channels:%d",
ldac_dsp_cfg.custom_cfg.sample_rate, ldac_dsp_cfg.custom_cfg.num_channels);
fail:
return is_configured;
}
bool configure_a2dp_encoder_format()
{
void *codec_info = NULL;
uint8_t multi_cast = 0, num_dev = 1;
codec_t codec_type = CODEC_TYPE_INVALID;
bool is_configured = false;
audio_aptx_encoder_config aptx_encoder_cfg;
if (!a2dp.audio_get_enc_config) {
ALOGE(" a2dp handle is not identified, ignoring a2dp encoder config");
return false;
}
ALOGD("configure_a2dp_encoder_format start");
codec_info = a2dp.audio_get_enc_config(&multi_cast, &num_dev,
&codec_type);
// ABR disabled by default for all codecs
a2dp.abr_config.is_abr_enabled = false;
a2dp.is_aptx_adaptive = false;
switch(codec_type) {
case CODEC_TYPE_SBC:
ALOGD(" Received SBC encoder supported BT device");
is_configured =
configure_sbc_enc_format((audio_sbc_encoder_config *)codec_info);
break;
case CODEC_TYPE_APTX:
ALOGD(" Received APTX encoder supported BT device");
#ifndef LINUX_ENABLED
a2dp.is_aptx_dual_mono_supported = false;
aptx_encoder_cfg.default_cfg = (audio_aptx_default_config *)codec_info;
#endif
is_configured =
configure_aptx_enc_format(&aptx_encoder_cfg);
break;
case CODEC_TYPE_APTX_HD:
ALOGD(" Received APTX HD encoder supported BT device");
#ifndef LINUX_ENABLED
is_configured =
configure_aptx_hd_enc_format((audio_aptx_default_config *)codec_info);
#else
is_configured =
configure_aptx_hd_enc_format((audio_aptx_encoder_config *)codec_info);
#endif
break;
#ifndef LINUX_ENABLED
case CODEC_TYPE_APTX_DUAL_MONO:
ALOGD(" Received APTX dual mono encoder supported BT device");
a2dp.is_aptx_dual_mono_supported = true;
if (a2dp.audio_is_tws_mono_mode_enable != NULL)
a2dp.is_tws_mono_mode_on = a2dp.audio_is_tws_mono_mode_enable();
aptx_encoder_cfg.dual_mono_cfg = (audio_aptx_dual_mono_config *)codec_info;
is_configured =
configure_aptx_enc_format(&aptx_encoder_cfg);
break;
#endif
case CODEC_TYPE_AAC:
ALOGD(" Received AAC encoder supported BT device");
bool is_aac_vbr_enabled =
property_get_bool("persist.vendor.bt.aac_vbr_frm_ctl.enabled", false);
bool is_aac_frame_ctl_enabled =
property_get_bool("persist.vendor.bt.aac_frm_ctl.enabled", false);
if (is_aac_vbr_enabled)
is_configured = configure_aac_enc_format_v3((audio_aac_encoder_config_v3 *) codec_info);
else
is_configured = is_aac_frame_ctl_enabled ?
configure_aac_enc_format_v2((audio_aac_encoder_config_v2 *) codec_info) :
configure_aac_enc_format((audio_aac_encoder_config *) codec_info);
break;
case CODEC_TYPE_CELT:
ALOGD(" Received CELT encoder supported BT device");
is_configured =
configure_celt_enc_format((audio_celt_encoder_config *)codec_info);
break;
case CODEC_TYPE_LDAC:
ALOGD(" Received LDAC encoder supported BT device");
if (!instance_id || instance_id > MAX_INSTANCE_ID)
instance_id = MAX_INSTANCE_ID;
a2dp.abr_config.imc_instance = instance_id--;
is_configured =
(configure_ldac_enc_format((audio_ldac_encoder_config *)codec_info) &&
configure_a2dp_source_decoder_format(CODEC_TYPE_LDAC));
break;
#ifndef LINUX_ENABLED //Temporarily disabled for LE, need to take care while doing VT FR
case CODEC_TYPE_APTX_AD:
ALOGD(" Received APTX AD encoder supported BT device");
if (!instance_id || instance_id > MAX_INSTANCE_ID)
instance_id = MAX_INSTANCE_ID;
a2dp.abr_config.imc_instance = instance_id--;
a2dp.abr_config.is_abr_enabled = true; // for APTX Adaptive ABR is Always on
a2dp.is_aptx_adaptive = true;
aptx_encoder_cfg.ad_cfg = (audio_aptx_ad_config *)codec_info;
is_configured =
(configure_aptx_enc_format(&aptx_encoder_cfg) &&
configure_a2dp_source_decoder_format(MEDIA_FMT_APTX_AD));
break;
#endif
case CODEC_TYPE_PCM:
ALOGD("Received PCM format for BT device");
a2dp.bt_encoder_format = CODEC_TYPE_PCM;
is_configured = true;
break;
default:
ALOGD(" Received Unsupported encoder formar");
is_configured = false;
break;
}
return is_configured;
}
int a2dp_start_playback()
{
int ret = 0;
ALOGD("a2dp_start_playback start");
if (!(a2dp.bt_lib_source_handle && a2dp.audio_source_start
&& a2dp.audio_get_enc_config)) {
ALOGE("a2dp handle is not identified, Ignoring start playback request");
return -ENOSYS;
}
if (a2dp.a2dp_source_suspended || a2dp.swb_configured) {
//session will be restarted after suspend completion
ALOGD("a2dp start requested during suspend state");
return -ENOSYS;
}
if (!a2dp.a2dp_source_started && !a2dp.a2dp_source_total_active_session_requests) {
ALOGD("calling BT module stream start");
/* This call indicates BT IPC lib to start playback */
ret = a2dp.audio_source_start();
ALOGE("BT controller start return = %d",ret);
if (ret != 0 ) {
ALOGE("BT controller start failed");
a2dp.a2dp_source_started = false;
ret = -ETIMEDOUT;
} else {
if (configure_a2dp_encoder_format() == true) {
a2dp.a2dp_source_started = true;
ret = 0;
ALOGD("Start playback successful to BT library");
} else {
ALOGD(" unable to configure DSP encoder");
a2dp.a2dp_source_started = false;
ret = -ETIMEDOUT;
}
}
}
if (a2dp.a2dp_source_started) {
a2dp.a2dp_source_total_active_session_requests++;
a2dp_check_and_set_scrambler();
audio_a2dp_update_tws_channel_mode();
a2dp_set_backend_cfg(SOURCE);
if (a2dp.abr_config.is_abr_enabled)
start_abr();
}
ALOGD("start A2DP playback total active sessions :%d",
a2dp.a2dp_source_total_active_session_requests);
return ret;
}
uint64_t a2dp_get_decoder_latency()
{
uint32_t latency = 0;
switch(a2dp.bt_decoder_format) {
case CODEC_TYPE_SBC:
latency = DEFAULT_SINK_LATENCY_SBC;
break;
case CODEC_TYPE_AAC:
latency = DEFAULT_SINK_LATENCY_AAC;
break;
default:
latency = 200;
ALOGD("No valid decoder defined, setting latency to %dms", latency);
break;
}
return (uint64_t)latency;
}
bool a2dp_send_sink_setup_complete(void) {
uint64_t system_latency = 0;
bool is_complete = false;
system_latency = a2dp_get_decoder_latency();
if (a2dp.audio_sink_session_setup_complete(system_latency) == 0) {
is_complete = true;
}
return is_complete;
}
bool a2dp_sink_is_ready()
{
bool ret = false;
if ((a2dp.bt_state_sink != A2DP_STATE_DISCONNECTED) &&
(a2dp.is_a2dp_offload_supported) &&
(a2dp.audio_sink_check_a2dp_ready))
ret = a2dp.audio_sink_check_a2dp_ready();
return ret;
}
int a2dp_start_capture()
{
int ret = 0;
ALOGD("a2dp_start_capture start");
if (!(a2dp.bt_lib_sink_handle && a2dp.audio_sink_start
&& a2dp.audio_get_dec_config)) {
ALOGE("a2dp handle is not identified, Ignoring start capture request");
return -ENOSYS;
}
if (!a2dp.a2dp_sink_started && !a2dp.a2dp_sink_total_active_session_requests) {
ALOGD("calling BT module stream start");
/* This call indicates BT IPC lib to start capture */
ret = a2dp.audio_sink_start();
ALOGE("BT controller start capture return = %d",ret);
if (ret != 0 ) {
ALOGE("BT controller start capture failed");
a2dp.a2dp_sink_started = false;
} else {
if (!a2dp_sink_is_ready()) {
ALOGD("Wait for capture ready not successful");
ret = -ETIMEDOUT;
}
if (configure_a2dp_sink_decoder_format() == true) {
a2dp.a2dp_sink_started = true;
ret = 0;
ALOGD("Start capture successful to BT library");
} else {
ALOGD(" unable to configure DSP decoder");
a2dp.a2dp_sink_started = false;
ret = -ETIMEDOUT;
}
if (!a2dp_send_sink_setup_complete()) {
ALOGD("sink_setup_complete not successful");
ret = -ETIMEDOUT;
}
}
}
if (a2dp.a2dp_sink_started) {
if (a2dp_set_backend_cfg(SINK) == true) {
a2dp.a2dp_sink_total_active_session_requests++;
}
}
ALOGD("start A2DP sink total active sessions :%d",
a2dp.a2dp_sink_total_active_session_requests);
return ret;
}
static void reset_a2dp_enc_config_params()
{
int ret =0;
struct mixer_ctl *ctl_enc_config, *ctl_channel_mode;
struct sbc_enc_cfg_t dummy_reset_config;
char* channel_mode;
memset(&dummy_reset_config, 0x0, sizeof(struct sbc_enc_cfg_t));
ctl_enc_config = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_config) {
ALOGE(" ERROR a2dp encoder format mixer control not identified");
} else {
ret = mixer_ctl_set_array(ctl_enc_config, (void *)&dummy_reset_config,
sizeof(struct sbc_enc_cfg_t));
a2dp.bt_encoder_format = MEDIA_FMT_NONE;
}
a2dp_set_bit_format(DEFAULT_ENCODER_BIT_FORMAT);
ctl_channel_mode = mixer_get_ctl_by_name(a2dp.adev->mixer,MIXER_FMT_TWS_CHANNEL_MODE);
if (!ctl_channel_mode) {
ALOGE("failed to get tws mixer ctl");
} else {
channel_mode = "Two";
if (mixer_ctl_set_enum_by_string(ctl_channel_mode, channel_mode) != 0) {
ALOGE("%s: Failed to set the channel mode = %s", __func__, channel_mode);
}
a2dp.is_tws_mono_mode_on = false;
}
}
static int reset_a2dp_source_dec_config_params()
{
struct mixer_ctl *ctl_dec_data = NULL;
struct abr_dec_cfg_t dummy_reset_cfg;
int ret = 0;
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SOURCE_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE("%s: ERROR A2DP decoder config mixer control not identifed", __func__);
return -EINVAL;
}
memset(&dummy_reset_cfg, 0x0, sizeof(dummy_reset_cfg));
ret = mixer_ctl_set_array(ctl_dec_data, (void *)&dummy_reset_cfg,
sizeof(dummy_reset_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set dummy decoder config", __func__);
return ret;
}
return ret;
}
static void reset_a2dp_sink_dec_config_params()
{
int ret =0;
struct mixer_ctl *ctl_dec_config, *ctrl_bit_format;
struct aac_dec_cfg_t dummy_reset_config;
memset(&dummy_reset_config, 0x0, sizeof(struct aac_dec_cfg_t));
ctl_dec_config = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SINK_DEC_CONFIG_BLOCK);
if (!ctl_dec_config) {
ALOGE(" ERROR a2dp decoder format mixer control not identified");
} else {
ret = mixer_ctl_set_array(ctl_dec_config, (void *)&dummy_reset_config,
sizeof(struct aac_dec_cfg_t));
a2dp.bt_decoder_format = MEDIA_FMT_NONE;
}
ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_DEC_BIT_FORMAT);
if (!ctrl_bit_format) {
ALOGE(" ERROR bit format CONFIG data mixer control not identified");
} else {
ret = mixer_ctl_set_enum_by_string(ctrl_bit_format, "S16_LE");
if (ret != 0) {
ALOGE("%s: Failed to set bit format to decoder", __func__);
}
}
}
static void reset_codec_config()
{
reset_a2dp_enc_config_params();
reset_a2dp_source_dec_config_params();
a2dp_reset_backend_cfg(SOURCE);
if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started)
stop_abr();
a2dp.abr_config.is_abr_enabled = false;
}
int a2dp_stop_playback()
{
int ret =0;
ALOGV("a2dp_stop_playback start");
if (!(a2dp.bt_lib_source_handle && a2dp.audio_source_stop)) {
ALOGE("a2dp handle is not identified, Ignoring stop request");
return -ENOSYS;
}
if (a2dp.a2dp_source_total_active_session_requests > 0)
a2dp.a2dp_source_total_active_session_requests--;
else
ALOGE("%s: No active playback session requests on A2DP", __func__);
if ( a2dp.a2dp_source_started && !a2dp.a2dp_source_total_active_session_requests) {
ALOGV("calling BT module stream stop");
ret = a2dp.audio_source_stop();
if (ret < 0)
ALOGE("stop stream to BT IPC lib failed");
else
ALOGV("stop steam to BT IPC lib successful");
if (!a2dp.a2dp_source_suspended && !a2dp.swb_configured)
reset_codec_config();
a2dp.a2dp_source_started = false;
}
if (!a2dp.a2dp_source_total_active_session_requests)
a2dp.a2dp_source_started = false;
ALOGD("Stop A2DP playback, total active sessions :%d",
a2dp.a2dp_source_total_active_session_requests);
return 0;
}
int a2dp_stop_capture()
{
int ret =0;
ALOGV("a2dp_stop_capture start");
if (!(a2dp.bt_lib_sink_handle && a2dp.audio_sink_stop)) {
ALOGE("a2dp handle is not identified, Ignoring stop request");
return -ENOSYS;
}
if (a2dp.a2dp_sink_total_active_session_requests > 0)
a2dp.a2dp_sink_total_active_session_requests--;
if ( a2dp.a2dp_sink_started && !a2dp.a2dp_sink_total_active_session_requests) {
ALOGV("calling BT module stream stop");
ret = a2dp.audio_sink_stop();
if (ret < 0)
ALOGE("stop stream to BT IPC lib failed");
else
ALOGV("stop steam to BT IPC lib successful");
reset_a2dp_sink_dec_config_params();
a2dp_reset_backend_cfg(SINK);
}
if (!a2dp.a2dp_sink_total_active_session_requests)
a2dp.a2dp_source_started = false;
ALOGD("Stop A2DP capture, total active sessions :%d",
a2dp.a2dp_sink_total_active_session_requests);
return 0;
}
int a2dp_set_parameters(struct str_parms *parms, bool *reconfig)
{
int ret = 0, val, status = 0;
char value[32] = {0};
struct audio_usecase *uc_info;
struct listnode *node;
if (a2dp.is_a2dp_offload_supported == false) {
ALOGV("no supported encoders identified,ignoring a2dp setparam");
status = -EINVAL;
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_CONNECT, value,
sizeof(value));
if (ret >= 0) {
val = atoi(value);
if (audio_is_a2dp_out_device(val)) {
ALOGV("Received device connect request for A2DP source");
open_a2dp_source();
}
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_DISCONNECT, value,
sizeof(value));
if (ret >= 0) {
val = atoi(value);
if (audio_is_a2dp_out_device(val)) {
ALOGV("Received source device dis- connect request");
close_a2dp_output();
reset_a2dp_enc_config_params();
reset_a2dp_source_dec_config_params();
a2dp_reset_backend_cfg(SOURCE);
} else if (audio_is_a2dp_in_device(val)) {
ALOGV("Received sink device dis- connect request");
close_a2dp_input();
reset_a2dp_sink_dec_config_params();
a2dp_reset_backend_cfg(SINK);
}
goto param_handled;
}
#ifndef LINUX_ENABLED
ret = str_parms_get_str(parms, "TwsChannelConfig", value, sizeof(value));
if (ret >= 0) {
ALOGD("Setting tws channel mode to %s",value);
if (!(strncmp(value, "mono", strlen(value))))
a2dp.is_tws_mono_mode_on = true;
else if (!(strncmp(value, "dual-mono", strlen(value))))
a2dp.is_tws_mono_mode_on = false;
audio_a2dp_update_tws_channel_mode();
goto param_handled;
}
#endif
ret = str_parms_get_str(parms, "A2dpSuspended", value, sizeof(value));
if (ret >= 0) {
if (a2dp.bt_lib_source_handle == NULL)
goto param_handled;
if ((!strncmp(value, "true", sizeof(value)))) {
if (a2dp.a2dp_source_suspended) {
ALOGD("%s: A2DP is already suspended", __func__);
goto param_handled;
}
ALOGD("Setting a2dp to suspend state");
a2dp.a2dp_source_suspended = true;
if (a2dp.bt_state_source == A2DP_STATE_DISCONNECTED)
goto param_handled;
list_for_each(node, &a2dp.adev->usecase_list) {
uc_info = node_to_item(node, struct audio_usecase, list);
if (uc_info->type == PCM_PLAYBACK &&
(uc_info->out_snd_device == SND_DEVICE_OUT_BT_A2DP ||
uc_info->out_snd_device == SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP ||
uc_info->out_snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP)) {
fp_check_a2dp_restore_l(a2dp.adev, uc_info->stream.out, false);
}
}
if (!a2dp.swb_configured)
reset_codec_config();
if (a2dp.audio_source_suspend)
a2dp.audio_source_suspend();
} else if (a2dp.a2dp_source_suspended == true) {
ALOGD("Resetting a2dp suspend state");
struct audio_usecase *uc_info;
struct listnode *node;
if (a2dp.clear_source_a2dpsuspend_flag)
a2dp.clear_source_a2dpsuspend_flag();
a2dp.a2dp_source_suspended = false;
/*
* It is possible that before suspend,a2dp sessions can be active
* for example during music + voice activation concurrency
* a2dp suspend will be called & BT will change to sco mode
* though music is paused as a part of voice activation
* compress session close happens only after pause timeout(10secs)
* so if resume request comes before pause timeout as a2dp session
* is already active IPC start will not be called from APM/audio_hw
* Fix is to call a2dp start for IPC library post suspend
* based on number of active session count
*/
if (a2dp.a2dp_source_total_active_session_requests > 0) {
ALOGD(" Calling IPC lib start post suspend state");
if (a2dp.audio_source_start) {
ret = a2dp.audio_source_start();
if (ret != 0) {
ALOGE("BT controller start failed");
a2dp.a2dp_source_started = false;
}
}
}
list_for_each(node, &a2dp.adev->usecase_list) {
uc_info = node_to_item(node, struct audio_usecase, list);
if (uc_info->stream.out && uc_info->type == PCM_PLAYBACK &&
is_a2dp_out_device_type(&uc_info->stream.out->device_list)) {
fp_check_a2dp_restore_l(a2dp.adev, uc_info->stream.out, true);
}
}
}
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_RECONFIG_A2DP, value,
sizeof(value));
if (ret >= 0) {
if (a2dp.is_a2dp_offload_supported &&
a2dp.bt_state_source != A2DP_STATE_DISCONNECTED) {
*reconfig = true;
}
goto param_handled;
}
param_handled:
ALOGV("end of a2dp setparam");
return status;
}
void a2dp_set_handoff_mode(bool is_on)
{
a2dp.is_handoff_in_progress = is_on;
}
bool a2dp_is_force_device_switch()
{
//During encoder reconfiguration mode, force a2dp device switch
// Or if a2dp device is selected but earlier start failed ( as a2dp
// was suspended, force retry.
return a2dp.is_handoff_in_progress || !a2dp.a2dp_source_started;
}
void a2dp_get_enc_sample_rate(int *sample_rate)
{
*sample_rate = a2dp.enc_sampling_rate;
}
void a2dp_get_dec_sample_rate(int *sample_rate)
{
*sample_rate = a2dp.dec_sampling_rate;
}
bool a2dp_source_is_ready()
{
bool ret = false;
if (a2dp.a2dp_source_suspended)
return ret;
if ((a2dp.bt_state_source != A2DP_STATE_DISCONNECTED) &&
(a2dp.is_a2dp_offload_supported) &&
(a2dp.audio_source_check_a2dp_ready))
ret = a2dp.audio_source_check_a2dp_ready();
return ret;
}
bool a2dp_source_is_suspended()
{
return a2dp.a2dp_source_suspended;
}
void a2dp_init(void *adev,
a2dp_offload_init_config_t init_config)
{
a2dp.adev = (struct audio_device*)adev;
a2dp.bt_lib_source_handle = NULL;
a2dp.a2dp_source_started = false;
a2dp.bt_state_source = A2DP_STATE_DISCONNECTED;
a2dp.a2dp_source_total_active_session_requests = 0;
a2dp.a2dp_source_suspended = false;
a2dp.bt_encoder_format = CODEC_TYPE_INVALID;
a2dp.enc_sampling_rate = 48000;
a2dp.is_handoff_in_progress = false;
a2dp.is_aptx_dual_mono_supported = false;
a2dp.is_aptx_adaptive = false;
a2dp.abr_config.is_abr_enabled = false;
a2dp.abr_config.abr_started = false;
a2dp.abr_config.imc_instance = 0;
a2dp.abr_config.abr_tx_handle = NULL;
a2dp.abr_config.abr_rx_handle = NULL;
a2dp.is_tws_mono_mode_on = false;
a2dp_source_init();
a2dp.swb_configured = false;
// init function pointers
fp_platform_get_pcm_device_id =
init_config.fp_platform_get_pcm_device_id;
fp_check_a2dp_restore_l = init_config.fp_check_a2dp_restore_l;
reset_a2dp_enc_config_params();
reset_a2dp_source_dec_config_params();
reset_a2dp_sink_dec_config_params();
a2dp.bt_lib_sink_handle = NULL;
a2dp.a2dp_sink_started = false;
a2dp.bt_state_sink = A2DP_STATE_DISCONNECTED;
a2dp.a2dp_sink_total_active_session_requests = 0;
if (is_running_with_enhanced_fwk == UNINITIALIZED)
is_running_with_enhanced_fwk = check_if_enhanced_fwk();
if (is_running_with_enhanced_fwk)
open_a2dp_sink();
a2dp.is_a2dp_offload_supported = false;
update_offload_codec_capabilities();
}
uint32_t a2dp_get_encoder_latency()
{
uint32_t latency = 0;
int avsync_runtime_prop = 0;
int sbc_offset = 0, aptx_offset = 0, aptxhd_offset = 0,
aac_offset = 0, celt_offset = 0, ldac_offset = 0;
char value[PROPERTY_VALUE_MAX];
memset(value, '\0', sizeof(char)*PROPERTY_VALUE_MAX);
avsync_runtime_prop = property_get(SYSPROP_A2DP_CODEC_LATENCIES, value, NULL);
if (avsync_runtime_prop > 0) {
if (sscanf(value, "%d/%d/%d/%d/%d%d",
&sbc_offset, &aptx_offset, &aptxhd_offset, &aac_offset, &celt_offset, &ldac_offset) != 6) {
ALOGI("Failed to parse avsync offset params from '%s'.", value);
avsync_runtime_prop = 0;
}
}
uint32_t slatency = 0;
if (a2dp.audio_sink_get_a2dp_latency && a2dp.bt_state_source != A2DP_STATE_DISCONNECTED) {
slatency = a2dp.audio_sink_get_a2dp_latency();
}
switch(a2dp.bt_encoder_format) {
case CODEC_TYPE_SBC:
latency = (avsync_runtime_prop > 0) ? sbc_offset : ENCODER_LATENCY_SBC;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_SBC : slatency;
break;
case CODEC_TYPE_APTX:
latency = (avsync_runtime_prop > 0) ? aptx_offset : ENCODER_LATENCY_APTX;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_APTX : slatency;
break;
case CODEC_TYPE_APTX_HD:
latency = (avsync_runtime_prop > 0) ? aptxhd_offset : ENCODER_LATENCY_APTX_HD;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_APTX_HD : slatency;
break;
case CODEC_TYPE_AAC:
latency = (avsync_runtime_prop > 0) ? aac_offset : ENCODER_LATENCY_AAC;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_AAC : slatency;
break;
case CODEC_TYPE_CELT:
latency = (avsync_runtime_prop > 0) ? celt_offset : ENCODER_LATENCY_CELT;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_CELT : slatency;
break;
case CODEC_TYPE_LDAC:
latency = (avsync_runtime_prop > 0) ? ldac_offset : ENCODER_LATENCY_LDAC;
latency += (slatency <= 0) ? DEFAULT_SINK_LATENCY_LDAC : slatency;
break;
case CODEC_TYPE_APTX_AD: // for aptx adaptive the latency depends on the mode (HQ/LL) and
latency = slatency; // BT IPC will take care of accomodating the mode factor and return latency
break;
case CODEC_TYPE_PCM:
latency = ENCODER_LATENCY_PCM;
latency += DEFAULT_SINK_LATENCY_PCM;
break;
default:
latency = 200;
break;
}
return latency;
}
int a2dp_get_parameters(struct str_parms *query,
struct str_parms *reply)
{
int ret, val = 0;
char value[32]={0};
ret = str_parms_get_str(query, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED,
value, sizeof(value));
if (ret >= 0) {
val = a2dp.is_a2dp_offload_supported;
str_parms_add_int(reply, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED, val);
ALOGV("%s: called ... isReconfigA2dpSupported %d", __func__, val);
}
return 0;
}
bool configure_aptx_ad_speech_enc_fmt() {
struct mixer_ctl *ctl_enc_data = NULL;
int mixer_size = 0;
int ret = 0;
struct aptx_ad_speech_enc_cfg_t aptx_dsp_cfg;
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE(" ERROR a2dp encoder CONFIG data mixer control not identifed");
return false;
}
/* Initialize dsp configuration params */
memset(&aptx_dsp_cfg, 0x0, sizeof(struct aptx_ad_speech_enc_cfg_t));
aptx_dsp_cfg.custom_cfg.enc_format = MEDIA_FMT_APTX_AD_SPEECH;
aptx_dsp_cfg.custom_cfg.sample_rate = SAMPLING_RATE_32K;
aptx_dsp_cfg.custom_cfg.num_channels = CH_MONO;
aptx_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg.imc_info.direction = IMC_RECEIVE;
aptx_dsp_cfg.imc_info.enable = IMC_ENABLE;
aptx_dsp_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
aptx_dsp_cfg.imc_info.comm_instance = APTX_AD_SPEECH_INSTANCE_ID;
aptx_dsp_cfg.speech_mode.mode = a2dp.adev->swb_speech_mode;
aptx_dsp_cfg.speech_mode.swapping = SWAP_ENABLE;
/* Configure AFE DSP configuration */
mixer_size = sizeof(struct aptx_ad_speech_enc_cfg_t);
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
mixer_size);
if (ret != 0) {
ALOGE("%s: Failed to set SWB encoder config", __func__);
return false;
}
/* Configure AFE Input Bit Format as PCM_16 */
ret = a2dp_set_bit_format(DEFAULT_ENCODER_BIT_FORMAT);
if (ret != 0) {
ALOGE("%s: Failed to set SWB bit format", __func__);
return false;
}
return true;
}
bool configure_aptx_ad_speech_dec_fmt()
{
struct mixer_ctl *ctl_dec_data = NULL;
struct aptx_ad_speech_dec_cfg_t dec_cfg;
int ret = 0;
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SOURCE_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE("%s: ERROR codec config data mixer control not identifed", __func__);
return false;
}
memset(&dec_cfg, 0x0, sizeof(dec_cfg));
dec_cfg.abr_cfg.dec_format = MEDIA_FMT_APTX_AD_SPEECH;
dec_cfg.abr_cfg.imc_info.direction = IMC_TRANSMIT;
dec_cfg.abr_cfg.imc_info.enable = IMC_ENABLE;
dec_cfg.abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
dec_cfg.abr_cfg.imc_info.comm_instance = APTX_AD_SPEECH_INSTANCE_ID;
dec_cfg.speech_mode.mode = a2dp.adev->swb_speech_mode;
dec_cfg.speech_mode.swapping = SWAP_ENABLE;
ret = mixer_ctl_set_array(ctl_dec_data, &dec_cfg,
sizeof(dec_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set decoder config", __func__);
return false;
}
return true;
}
int sco_start_configuration()
{
ALOGD("sco_start_configuration start");
if (!a2dp.swb_configured) {
a2dp.bt_encoder_format = CODEC_TYPE_APTX_AD_SPEECH;
/* Configure AFE codec*/
if (configure_aptx_ad_speech_enc_fmt() &&
configure_aptx_ad_speech_dec_fmt()) {
ALOGD("%s: SCO enc/dec configured successfully", __func__);
} else {
ALOGE("%s: failed to send SCO configuration", __func__);
return -ETIMEDOUT;
}
/* Configure backend*/
a2dp.enc_sampling_rate = SAMPLING_RATE_96K;
a2dp.enc_channels = CH_MONO;
a2dp.abr_config.is_abr_enabled = true;
a2dp_set_backend_cfg(SOURCE);
/* Start abr*/
start_abr();
a2dp.swb_configured = true;
}
return 0;
}
void sco_reset_configuration()
{
if (a2dp.swb_configured) {
ALOGD("sco_reset_configuration start");
reset_codec_config();
a2dp.bt_encoder_format = CODEC_TYPE_INVALID;
a2dp.swb_configured = false;
}
}