blob: dd286d6d49924b9a26b810a6816ab2e8a0b6aac5 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_KEYMASTER_DEFS_H
#define ANDROID_HARDWARE_KEYMASTER_DEFS_H
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/**
* Authorization tags each have an associated type. This enumeration facilitates tagging each with
* a type, by using the high four bits (of an implied 32-bit unsigned enum value) to specify up to
* 16 data types. These values are ORed with tag IDs to generate the final tag ID values.
*/
typedef enum {
KM_INVALID = 0 << 28, /* Invalid type, used to designate a tag as uninitialized */
KM_ENUM = 1 << 28,
KM_ENUM_REP = 2 << 28, /* Repeatable enumeration value. */
KM_UINT = 3 << 28,
KM_UINT_REP = 4 << 28, /* Repeatable integer value */
KM_ULONG = 5 << 28,
KM_DATE = 6 << 28,
KM_BOOL = 7 << 28,
KM_BIGNUM = 8 << 28,
KM_BYTES = 9 << 28,
KM_ULONG_REP = 10 << 28, /* Repeatable long value */
} keymaster_tag_type_t;
typedef enum {
KM_TAG_INVALID = KM_INVALID | 0,
/*
* Tags that must be semantically enforced by hardware and software implementations.
*/
/* Crypto parameters */
KM_TAG_PURPOSE = KM_ENUM_REP | 1, /* keymaster_purpose_t. */
KM_TAG_ALGORITHM = KM_ENUM | 2, /* keymaster_algorithm_t. */
KM_TAG_KEY_SIZE = KM_UINT | 3, /* Key size in bits. */
KM_TAG_BLOCK_MODE = KM_ENUM_REP | 4, /* keymaster_block_mode_t. */
KM_TAG_DIGEST = KM_ENUM_REP | 5, /* keymaster_digest_t. */
KM_TAG_PADDING = KM_ENUM_REP | 6, /* keymaster_padding_t. */
KM_TAG_CALLER_NONCE = KM_BOOL | 7, /* Allow caller to specify nonce or IV. */
KM_TAG_MIN_MAC_LENGTH = KM_UINT | 8, /* Minimum length of MAC or AEAD authentication tag in
* bits. */
KM_TAG_KDF = KM_ENUM_REP | 9, /* keymaster_kdf_t (keymaster2) */
KM_TAG_EC_CURVE = KM_ENUM | 10, /* keymaster_ec_curve_t (keymaster2) */
/* Algorithm-specific. */
KM_TAG_RSA_PUBLIC_EXPONENT = KM_ULONG | 200,
KM_TAG_ECIES_SINGLE_HASH_MODE = KM_BOOL | 201, /* Whether the ephemeral public key is fed into
* the KDF */
KM_TAG_INCLUDE_UNIQUE_ID = KM_BOOL | 202, /* If true, attestation certificates for this key
* will contain an application-scoped and
* time-bounded device-unique ID. (keymaster2) */
KM_TAG_RSA_OAEP_MGF_DIGEST = KM_ENUM_REP | 203, /* keymaster_digest_t. */
/* Other hardware-enforced. */
KM_TAG_BLOB_USAGE_REQUIREMENTS = KM_ENUM | 301, /* keymaster_key_blob_usage_requirements_t */
KM_TAG_BOOTLOADER_ONLY = KM_BOOL | 302, /* Usable only by bootloader */
KM_TAG_ROLLBACK_RESISTANCE = KM_BOOL | 303, /* Hardware enforced deletion with deleteKey
* or deleteAllKeys is supported */
KM_TAG_EARLY_BOOT_ONLY = KM_BOOL | 305, /* Key can only be used during early boot. */
/*
* Tags that should be semantically enforced by hardware if possible and will otherwise be
* enforced by software (keystore).
*/
/* Key validity period */
KM_TAG_ACTIVE_DATETIME = KM_DATE | 400, /* Start of validity */
KM_TAG_ORIGINATION_EXPIRE_DATETIME = KM_DATE | 401, /* Date when new "messages" should no
longer be created. */
KM_TAG_USAGE_EXPIRE_DATETIME = KM_DATE | 402, /* Date when existing "messages" should no
longer be trusted. */
KM_TAG_MIN_SECONDS_BETWEEN_OPS = KM_UINT | 403, /* Minimum elapsed time between
cryptographic operations with the key. */
KM_TAG_MAX_USES_PER_BOOT = KM_UINT | 404, /* Number of times the key can be used per
boot. */
KM_TAG_USAGE_COUNT_LIMIT = KM_UINT | 405, /* Number of cryptographic operations left
with the key.*/
/* User authentication */
KM_TAG_ALL_USERS = KM_BOOL | 500, /* Reserved for future use -- ignore */
KM_TAG_USER_ID = KM_UINT | 501, /* Reserved for future use -- ignore */
KM_TAG_USER_SECURE_ID = KM_ULONG_REP | 502, /* Secure ID of authorized user or authenticator(s).
Disallowed if KM_TAG_ALL_USERS or
KM_TAG_NO_AUTH_REQUIRED is present. */
KM_TAG_NO_AUTH_REQUIRED = KM_BOOL | 503, /* If key is usable without authentication. */
KM_TAG_USER_AUTH_TYPE = KM_ENUM | 504, /* Bitmask of authenticator types allowed when
* KM_TAG_USER_SECURE_ID contains a secure user ID,
* rather than a secure authenticator ID. Defined in
* hw_authenticator_type_t in hw_auth_token.h. */
KM_TAG_AUTH_TIMEOUT = KM_UINT | 505, /* Required freshness of user authentication for
private/secret key operations, in seconds.
Public key operations require no authentication.
If absent, authentication is required for every
use. Authentication state is lost when the
device is powered off. */
KM_TAG_ALLOW_WHILE_ON_BODY = KM_BOOL | 506, /* Allow key to be used after authentication timeout
* if device is still on-body (requires secure
* on-body sensor. */
KM_TAG_TRUSTED_USER_PRESENCE_REQUIRED = KM_BOOL | 507,/* Require test of user presence
* to use this key. */
KM_TAG_TRUSTED_CONFIRMATION_REQUIRED = KM_BOOL | 508, /* Require user confirmation through a
* trusted UI to use this key. */
KM_TAG_UNLOCKED_DEVICE_REQUIRED = KM_BOOL | 509, /* Require the device screen to be unlocked if the
* key is used. */
/* Application access control */
KM_TAG_ALL_APPLICATIONS = KM_BOOL | 600, /* Specified to indicate key is usable by all
* applications. */
KM_TAG_APPLICATION_ID = KM_BYTES | 601, /* Byte string identifying the authorized
* application. */
KM_TAG_EXPORTABLE = KM_BOOL | 602, /* If true, private/secret key can be exported, but
* only if all access control requirements for use are
* met. (keymaster2) */
/*
* Semantically unenforceable tags, either because they have no specific meaning or because
* they're informational only.
*/
KM_TAG_APPLICATION_DATA = KM_BYTES | 700, /* Data provided by authorized application. */
KM_TAG_CREATION_DATETIME = KM_DATE | 701, /* Key creation time */
KM_TAG_ORIGIN = KM_ENUM | 702, /* keymaster_key_origin_t. */
KM_TAG_ROLLBACK_RESISTANT = KM_BOOL | 703, /* Whether key is rollback-resistant. */
KM_TAG_ROOT_OF_TRUST = KM_BYTES | 704, /* Root of trust ID. */
KM_TAG_OS_VERSION = KM_UINT | 705, /* Version of system (keymaster2) */
KM_TAG_OS_PATCHLEVEL = KM_UINT | 706, /* Patch level of system (keymaster2) */
KM_TAG_UNIQUE_ID = KM_BYTES | 707, /* Used to provide unique ID in attestation */
KM_TAG_ATTESTATION_CHALLENGE = KM_BYTES | 708, /* Used to provide challenge in attestation */
KM_TAG_ATTESTATION_APPLICATION_ID = KM_BYTES | 709, /* Used to identify the set of possible
* applications of which one has initiated
* a key attestation */
KM_TAG_ATTESTATION_ID_BRAND = KM_BYTES | 710, /* Used to provide the device's brand name to be
included in attestation */
KM_TAG_ATTESTATION_ID_DEVICE = KM_BYTES | 711, /* Used to provide the device's device name to be
included in attestation */
KM_TAG_ATTESTATION_ID_PRODUCT = KM_BYTES | 712, /* Used to provide the device's product name to
be included in attestation */
KM_TAG_ATTESTATION_ID_SERIAL = KM_BYTES | 713, /* Used to provide the device's serial number to
be included in attestation */
KM_TAG_ATTESTATION_ID_IMEI = KM_BYTES | 714, /* Used to provide the device's IMEI to be
included in attestation */
KM_TAG_ATTESTATION_ID_MEID = KM_BYTES | 715, /* Used to provide the device's MEID to be
included in attestation */
KM_TAG_ATTESTATION_ID_MANUFACTURER = KM_BYTES | 716, /* Used to provide the device's
manufacturer name to be included in
attestation */
KM_TAG_ATTESTATION_ID_MODEL = KM_BYTES | 717, /* Used to provide the device's model name to be
included in attestation */
KM_TAG_VENDOR_PATCHLEVEL = KM_UINT | 718, /* specifies the vendor image security patch
level with which the key may be used */
KM_TAG_BOOT_PATCHLEVEL = KM_UINT | 719, /* specifies the boot image (kernel) security
patch level with which the key may be used */
KM_TAG_DEVICE_UNIQUE_ATTESTATION = KM_BOOL | 720, /* Indicates StrongBox device-unique
attestation is requested. */
KM_TAG_IDENTITY_CREDENTIAL_KEY = KM_BOOL | 721, /* This is an identity credential key */
KM_TAG_STORAGE_KEY = KM_BOOL | 722, /* storage encryption key */
KM_TAG_ATTESTATION_ID_SECOND_IMEI = KM_BYTES | 723, /* Used to provide the device's second
IMEI to be included in attestation */
/* Tags used only to provide data to or receive data from operations */
KM_TAG_ASSOCIATED_DATA = KM_BYTES | 1000, /* Used to provide associated data for AEAD modes. */
KM_TAG_NONCE = KM_BYTES | 1001, /* Nonce or Initialization Vector */
KM_TAG_AUTH_TOKEN = KM_BYTES | 1002, /* Authentication token that proves secure user
authentication has been performed. Structure
defined in hw_auth_token_t in hw_auth_token.h. */
KM_TAG_MAC_LENGTH = KM_UINT | 1003, /* MAC or AEAD authentication tag length in
* bits. */
KM_TAG_RESET_SINCE_ID_ROTATION = KM_BOOL | 1004, /* Whether the device has beeen factory reset
since the last unique ID rotation. Used
for key attestation. */
KM_TAG_CONFIRMATION_TOKEN = KM_BYTES | 1005, /* used to deliver a cryptographic token
proving that the user confirmed a signing
request. */
KM_TAG_CERTIFICATE_SERIAL = KM_BIGNUM | 1006, /* The serial number that should be
set in the attestation certificate
to be generated. */
KM_TAG_CERTIFICATE_SUBJECT = KM_BYTES | 1007, /* A DER-encoded X.500 subject that should be
set in the attestation certificate
to be generated. */
KM_TAG_CERTIFICATE_NOT_BEFORE = KM_DATE | 1008, /* Epoch time in milliseconds of the start of
the to be generated certificate's validity.
The value should interpreted as too's
complement signed integer. Negative values
indicate dates before Jan 1970 */
KM_TAG_CERTIFICATE_NOT_AFTER = KM_DATE | 1009, /* Epoch time in milliseconds of the end of
the to be generated certificate's validity.
The value should interpreted as too's
complement signed integer. Negative values
indicate dates before Jan 1970 */
KM_TAG_MAX_BOOT_LEVEL = KM_UINT | 1010, /* Specifies a maximum boot level at which a key
should function. */
} keymaster_tag_t;
/**
* Algorithms that may be provided by keymaster implementations. Those that must be provided by all
* implementations are tagged as "required".
*/
typedef enum {
/* Asymmetric algorithms. */
KM_ALGORITHM_RSA = 1,
// KM_ALGORITHM_DSA = 2, -- Removed, do not re-use value 2.
KM_ALGORITHM_EC = 3,
/* Block ciphers algorithms */
KM_ALGORITHM_AES = 32,
KM_ALGORITHM_TRIPLE_DES = 33,
/* MAC algorithms */
KM_ALGORITHM_HMAC = 128,
} keymaster_algorithm_t;
/**
* Symmetric block cipher modes provided by keymaster implementations.
*/
typedef enum {
/* Unauthenticated modes, usable only for encryption/decryption and not generally recommended
* except for compatibility with existing other protocols. */
KM_MODE_ECB = 1,
KM_MODE_CBC = 2,
KM_MODE_CTR = 3,
/* Authenticated modes, usable for encryption/decryption and signing/verification. Recommended
* over unauthenticated modes for all purposes. */
KM_MODE_GCM = 32,
} keymaster_block_mode_t;
/**
* Padding modes that may be applied to plaintext for encryption operations. This list includes
* padding modes for both symmetric and asymmetric algorithms. Note that implementations should not
* provide all possible combinations of algorithm and padding, only the
* cryptographically-appropriate pairs.
*/
typedef enum {
KM_PAD_NONE = 1, /* deprecated */
KM_PAD_RSA_OAEP = 2,
KM_PAD_RSA_PSS = 3,
KM_PAD_RSA_PKCS1_1_5_ENCRYPT = 4,
KM_PAD_RSA_PKCS1_1_5_SIGN = 5,
KM_PAD_PKCS7 = 64,
} keymaster_padding_t;
/**
* Digests provided by keymaster implementations.
*/
typedef enum {
KM_DIGEST_NONE = 0,
KM_DIGEST_MD5 = 1, /* Optional, may not be implemented in hardware, will be handled in software
* if needed. */
KM_DIGEST_SHA1 = 2,
KM_DIGEST_SHA_2_224 = 3,
KM_DIGEST_SHA_2_256 = 4,
KM_DIGEST_SHA_2_384 = 5,
KM_DIGEST_SHA_2_512 = 6,
} keymaster_digest_t;
/*
* Key derivation functions, mostly used in ECIES.
*/
typedef enum {
/* Do not apply a key derivation function; use the raw agreed key */
KM_KDF_NONE = 0,
/* HKDF defined in RFC 5869 with SHA256 */
KM_KDF_RFC5869_SHA256 = 1,
/* KDF1 defined in ISO 18033-2 with SHA1 */
KM_KDF_ISO18033_2_KDF1_SHA1 = 2,
/* KDF1 defined in ISO 18033-2 with SHA256 */
KM_KDF_ISO18033_2_KDF1_SHA256 = 3,
/* KDF2 defined in ISO 18033-2 with SHA1 */
KM_KDF_ISO18033_2_KDF2_SHA1 = 4,
/* KDF2 defined in ISO 18033-2 with SHA256 */
KM_KDF_ISO18033_2_KDF2_SHA256 = 5,
} keymaster_kdf_t;
/**
* Supported EC curves, used in ECDSA/ECIES.
*/
typedef enum {
KM_EC_CURVE_P_224 = 0,
KM_EC_CURVE_P_256 = 1,
KM_EC_CURVE_P_384 = 2,
KM_EC_CURVE_P_521 = 3,
KM_EC_CURVE_CURVE_25519 = 4,
} keymaster_ec_curve_t;
/**
* The origin of a key (or pair), i.e. where it was generated. Note that KM_TAG_ORIGIN can be found
* in either the hardware-enforced or software-enforced list for a key, indicating whether the key
* is hardware or software-based. Specifically, a key with KM_ORIGIN_GENERATED in the
* hardware-enforced list is guaranteed never to have existed outide the secure hardware.
*/
typedef enum {
KM_ORIGIN_GENERATED = 0, /* Generated in keymaster. Should not exist outside the TEE. */
KM_ORIGIN_DERIVED = 1, /* Derived inside keymaster. Likely exists off-device. */
KM_ORIGIN_IMPORTED = 2, /* Imported into keymaster. Existed as cleartext in Android. */
KM_ORIGIN_UNKNOWN = 3, /* Keymaster did not record origin. This value can only be seen on
* keys in a keymaster0 implementation. The keymaster0 adapter uses
* this value to document the fact that it is unkown whether the key
* was generated inside or imported into keymaster. */
} keymaster_key_origin_t;
/**
* Usability requirements of key blobs. This defines what system functionality must be available
* for the key to function. For example, key "blobs" which are actually handles referencing
* encrypted key material stored in the file system cannot be used until the file system is
* available, and should have BLOB_REQUIRES_FILE_SYSTEM. Other requirements entries will be added
* as needed for implementations.
*/
typedef enum {
KM_BLOB_STANDALONE = 0,
KM_BLOB_REQUIRES_FILE_SYSTEM = 1,
} keymaster_key_blob_usage_requirements_t;
/**
* Possible purposes of a key (or pair).
*/
typedef enum {
KM_PURPOSE_ENCRYPT = 0, /* Usable with RSA, EC and AES keys. */
KM_PURPOSE_DECRYPT = 1, /* Usable with RSA, EC and AES keys. */
KM_PURPOSE_SIGN = 2, /* Usable with RSA, EC and HMAC keys. */
KM_PURPOSE_VERIFY = 3, /* Usable with RSA, EC and HMAC keys. */
KM_PURPOSE_DERIVE_KEY = 4, /* Usable with EC keys. */
KM_PURPOSE_WRAP = 5, /* Usable with wrapped keys. */
KM_PURPOSE_AGREE_KEY = 6, /* Usable with EC keys. */
KM_PURPOSE_ATTEST_KEY = 7 /* Usabe with RSA and EC keys */
} keymaster_purpose_t;
typedef struct {
const uint8_t* data;
size_t data_length;
} keymaster_blob_t;
typedef struct {
keymaster_tag_t tag;
union {
uint32_t enumerated; /* KM_ENUM and KM_ENUM_REP */
bool boolean; /* KM_BOOL */
uint32_t integer; /* KM_INT and KM_INT_REP */
uint64_t long_integer; /* KM_LONG */
uint64_t date_time; /* KM_DATE */
keymaster_blob_t blob; /* KM_BIGNUM and KM_BYTES*/
};
} keymaster_key_param_t;
typedef struct {
keymaster_key_param_t* params; /* may be NULL if length == 0 */
size_t length;
} keymaster_key_param_set_t;
/**
* Parameters that define a key's characteristics, including authorized modes of usage and access
* control restrictions. The parameters are divided into two categories, those that are enforced by
* secure hardware, and those that are not. For a software-only keymaster implementation the
* enforced array must NULL. Hardware implementations must enforce everything in the enforced
* array.
*/
typedef struct {
keymaster_key_param_set_t hw_enforced;
keymaster_key_param_set_t sw_enforced;
} keymaster_key_characteristics_t;
typedef struct {
const uint8_t* key_material;
size_t key_material_size;
} keymaster_key_blob_t;
typedef struct {
keymaster_blob_t* entries;
size_t entry_count;
} keymaster_cert_chain_t;
typedef enum {
KM_VERIFIED_BOOT_VERIFIED = 0, /* Full chain of trust extending from the bootloader to
* verified partitions, including the bootloader, boot
* partition, and all verified partitions*/
KM_VERIFIED_BOOT_SELF_SIGNED = 1, /* The boot partition has been verified using the embedded
* certificate, and the signature is valid. The bootloader
* displays a warning and the fingerprint of the public
* key before allowing the boot process to continue.*/
KM_VERIFIED_BOOT_UNVERIFIED = 2, /* The device may be freely modified. Device integrity is left
* to the user to verify out-of-band. The bootloader
* displays a warning to the user before allowing the boot
* process to continue */
KM_VERIFIED_BOOT_FAILED = 3, /* The device failed verification. The bootloader displays a
* warning and stops the boot process, so no keymaster
* implementation should ever actually return this value,
* since it should not run. Included here only for
* completeness. */
} keymaster_verified_boot_t;
typedef enum {
KM_SECURITY_LEVEL_SOFTWARE = 0,
KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT = 1,
KM_SECURITY_LEVEL_STRONGBOX = 2,
} keymaster_security_level_t;
/**
* Formats for key import and export.
*/
typedef enum {
KM_KEY_FORMAT_X509 = 0, /* for public key export */
KM_KEY_FORMAT_PKCS8 = 1, /* for asymmetric key pair import */
KM_KEY_FORMAT_RAW = 3, /* for symmetric key import and export*/
} keymaster_key_format_t;
/**
* The keymaster operation API consists of begin, update, finish and abort. This is the type of the
* handle used to tie the sequence of calls together. A 64-bit value is used because it's important
* that handles not be predictable. Implementations must use strong random numbers for handle
* values.
*/
typedef uint64_t keymaster_operation_handle_t;
typedef enum {
KM_ERROR_OK = 0,
KM_ERROR_ROOT_OF_TRUST_ALREADY_SET = -1,
KM_ERROR_UNSUPPORTED_PURPOSE = -2,
KM_ERROR_INCOMPATIBLE_PURPOSE = -3,
KM_ERROR_UNSUPPORTED_ALGORITHM = -4,
KM_ERROR_INCOMPATIBLE_ALGORITHM = -5,
KM_ERROR_UNSUPPORTED_KEY_SIZE = -6,
KM_ERROR_UNSUPPORTED_BLOCK_MODE = -7,
KM_ERROR_INCOMPATIBLE_BLOCK_MODE = -8,
KM_ERROR_UNSUPPORTED_MAC_LENGTH = -9,
KM_ERROR_UNSUPPORTED_PADDING_MODE = -10,
KM_ERROR_INCOMPATIBLE_PADDING_MODE = -11,
KM_ERROR_UNSUPPORTED_DIGEST = -12,
KM_ERROR_INCOMPATIBLE_DIGEST = -13,
KM_ERROR_INVALID_EXPIRATION_TIME = -14,
KM_ERROR_INVALID_USER_ID = -15,
KM_ERROR_INVALID_AUTHORIZATION_TIMEOUT = -16,
KM_ERROR_UNSUPPORTED_KEY_FORMAT = -17,
KM_ERROR_INCOMPATIBLE_KEY_FORMAT = -18,
KM_ERROR_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM = -19, /* For PKCS8 & PKCS12 */
KM_ERROR_UNSUPPORTED_KEY_VERIFICATION_ALGORITHM = -20, /* For PKCS8 & PKCS12 */
KM_ERROR_INVALID_INPUT_LENGTH = -21,
KM_ERROR_KEY_EXPORT_OPTIONS_INVALID = -22,
KM_ERROR_DELEGATION_NOT_ALLOWED = -23,
KM_ERROR_KEY_NOT_YET_VALID = -24,
KM_ERROR_KEY_EXPIRED = -25,
KM_ERROR_KEY_USER_NOT_AUTHENTICATED = -26,
KM_ERROR_OUTPUT_PARAMETER_NULL = -27,
KM_ERROR_INVALID_OPERATION_HANDLE = -28,
KM_ERROR_INSUFFICIENT_BUFFER_SPACE = -29,
KM_ERROR_VERIFICATION_FAILED = -30,
KM_ERROR_TOO_MANY_OPERATIONS = -31,
KM_ERROR_UNEXPECTED_NULL_POINTER = -32,
KM_ERROR_INVALID_KEY_BLOB = -33,
KM_ERROR_IMPORTED_KEY_NOT_ENCRYPTED = -34,
KM_ERROR_IMPORTED_KEY_DECRYPTION_FAILED = -35,
KM_ERROR_IMPORTED_KEY_NOT_SIGNED = -36,
KM_ERROR_IMPORTED_KEY_VERIFICATION_FAILED = -37,
KM_ERROR_INVALID_ARGUMENT = -38,
KM_ERROR_UNSUPPORTED_TAG = -39,
KM_ERROR_INVALID_TAG = -40,
KM_ERROR_MEMORY_ALLOCATION_FAILED = -41,
KM_ERROR_IMPORT_PARAMETER_MISMATCH = -44,
KM_ERROR_SECURE_HW_ACCESS_DENIED = -45,
KM_ERROR_OPERATION_CANCELLED = -46,
KM_ERROR_CONCURRENT_ACCESS_CONFLICT = -47,
KM_ERROR_SECURE_HW_BUSY = -48,
KM_ERROR_SECURE_HW_COMMUNICATION_FAILED = -49,
KM_ERROR_UNSUPPORTED_EC_FIELD = -50,
KM_ERROR_MISSING_NONCE = -51,
KM_ERROR_INVALID_NONCE = -52,
KM_ERROR_MISSING_MAC_LENGTH = -53,
KM_ERROR_KEY_RATE_LIMIT_EXCEEDED = -54,
KM_ERROR_CALLER_NONCE_PROHIBITED = -55,
KM_ERROR_KEY_MAX_OPS_EXCEEDED = -56,
KM_ERROR_INVALID_MAC_LENGTH = -57,
KM_ERROR_MISSING_MIN_MAC_LENGTH = -58,
KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH = -59,
KM_ERROR_UNSUPPORTED_KDF = -60,
KM_ERROR_UNSUPPORTED_EC_CURVE = -61,
KM_ERROR_KEY_REQUIRES_UPGRADE = -62,
KM_ERROR_ATTESTATION_CHALLENGE_MISSING = -63,
KM_ERROR_KEYMASTER_NOT_CONFIGURED = -64,
KM_ERROR_ATTESTATION_APPLICATION_ID_MISSING = -65,
KM_ERROR_CANNOT_ATTEST_IDS = -66,
KM_ERROR_ROLLBACK_RESISTANCE_UNAVAILABLE = -67,
KM_ERROR_NO_USER_CONFIRMATION = -71,
KM_ERROR_DEVICE_LOCKED = -72,
KM_ERROR_EARLY_BOOT_ENDED = -73,
KM_ERROR_ATTESTATION_KEYS_NOT_PROVISIONED = -74,
KM_ERROR_ATTESTATION_IDS_NOT_PROVISIONED = -75,
KM_ERROR_INCOMPATIBLE_MGF_DIGEST = -78,
KM_ERROR_UNSUPPORTED_MGF_DIGEST = -79,
KM_ERROR_MISSING_NOT_BEFORE = -80,
KM_ERROR_MISSING_NOT_AFTER = -81,
KM_ERROR_MISSING_ISSUER_SUBJECT = -82,
KM_ERROR_INVALID_ISSUER_SUBJECT = -83,
KM_ERROR_BOOT_LEVEL_EXCEEDED = -84,
KM_ERROR_UNIMPLEMENTED = -100,
KM_ERROR_VERSION_MISMATCH = -101,
KM_ERROR_UNKNOWN_ERROR = -1000,
} keymaster_error_t;
/* Convenience functions for manipulating keymaster tag types */
static inline keymaster_tag_type_t keymaster_tag_get_type(keymaster_tag_t tag) {
return (keymaster_tag_type_t)(tag & (0xF << 28));
}
static inline uint32_t keymaster_tag_mask_type(keymaster_tag_t tag) {
return tag & 0x0FFFFFFF;
}
static inline bool keymaster_tag_type_repeatable(keymaster_tag_type_t type) {
switch (type) {
case KM_UINT_REP:
case KM_ENUM_REP:
return true;
default:
return false;
}
}
static inline bool keymaster_tag_repeatable(keymaster_tag_t tag) {
return keymaster_tag_type_repeatable(keymaster_tag_get_type(tag));
}
/* Convenience functions for manipulating keymaster_key_param_t structs */
inline keymaster_key_param_t keymaster_param_enum(keymaster_tag_t tag, uint32_t value) {
// assert(keymaster_tag_get_type(tag) == KM_ENUM || keymaster_tag_get_type(tag) == KM_ENUM_REP);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.enumerated = value;
return param;
}
inline keymaster_key_param_t keymaster_param_int(keymaster_tag_t tag, uint32_t value) {
// assert(keymaster_tag_get_type(tag) == KM_INT || keymaster_tag_get_type(tag) == KM_INT_REP);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.integer = value;
return param;
}
inline keymaster_key_param_t keymaster_param_long(keymaster_tag_t tag, uint64_t value) {
// assert(keymaster_tag_get_type(tag) == KM_LONG);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.long_integer = value;
return param;
}
inline keymaster_key_param_t keymaster_param_blob(keymaster_tag_t tag, const uint8_t* bytes,
size_t bytes_len) {
// assert(keymaster_tag_get_type(tag) == KM_BYTES || keymaster_tag_get_type(tag) == KM_BIGNUM);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.blob.data = (uint8_t*)bytes;
param.blob.data_length = bytes_len;
return param;
}
inline keymaster_key_param_t keymaster_param_bool(keymaster_tag_t tag) {
// assert(keymaster_tag_get_type(tag) == KM_BOOL);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.boolean = true;
return param;
}
inline keymaster_key_param_t keymaster_param_date(keymaster_tag_t tag, uint64_t value) {
// assert(keymaster_tag_get_type(tag) == KM_DATE);
keymaster_key_param_t param;
memset(&param, 0, sizeof(param));
param.tag = tag;
param.date_time = value;
return param;
}
#define KEYMASTER_SIMPLE_COMPARE(a, b) (a < b) ? -1 : ((a > b) ? 1 : 0)
inline int keymaster_param_compare(const keymaster_key_param_t* a, const keymaster_key_param_t* b) {
int retval = KEYMASTER_SIMPLE_COMPARE((uint32_t)a->tag, (uint32_t)b->tag);
if (retval != 0)
return retval;
switch (keymaster_tag_get_type(a->tag)) {
case KM_INVALID:
case KM_BOOL:
return 0;
case KM_ENUM:
case KM_ENUM_REP:
return KEYMASTER_SIMPLE_COMPARE(a->enumerated, b->enumerated);
case KM_UINT:
case KM_UINT_REP:
return KEYMASTER_SIMPLE_COMPARE(a->integer, b->integer);
case KM_ULONG:
case KM_ULONG_REP:
return KEYMASTER_SIMPLE_COMPARE(a->long_integer, b->long_integer);
case KM_DATE:
return KEYMASTER_SIMPLE_COMPARE(a->date_time, b->date_time);
case KM_BIGNUM:
case KM_BYTES:
// Handle the empty cases.
if (a->blob.data_length != 0 && b->blob.data_length == 0)
return -1;
if (a->blob.data_length == 0 && b->blob.data_length == 0)
return 0;
if (a->blob.data_length == 0 && b->blob.data_length > 0)
return 1;
retval = memcmp(a->blob.data, b->blob.data, a->blob.data_length < b->blob.data_length
? a->blob.data_length
: b->blob.data_length);
if (retval != 0)
return retval;
else if (a->blob.data_length != b->blob.data_length) {
// Equal up to the common length; longer one is larger.
if (a->blob.data_length < b->blob.data_length)
return -1;
if (a->blob.data_length > b->blob.data_length)
return 1;
}
}
return 0;
}
#undef KEYMASTER_SIMPLE_COMPARE
inline void keymaster_free_param_values(keymaster_key_param_t* param, size_t param_count) {
while (param_count > 0) {
param_count--;
switch (keymaster_tag_get_type(param->tag)) {
case KM_BIGNUM:
case KM_BYTES:
free((void*)param->blob.data);
param->blob.data = NULL;
break;
default:
// NOP
break;
}
++param;
}
}
inline void keymaster_free_param_set(keymaster_key_param_set_t* set) {
if (set) {
keymaster_free_param_values(set->params, set->length);
free(set->params);
set->params = NULL;
set->length = 0;
}
}
inline void keymaster_free_characteristics(keymaster_key_characteristics_t* characteristics) {
if (characteristics) {
keymaster_free_param_set(&characteristics->hw_enforced);
keymaster_free_param_set(&characteristics->sw_enforced);
}
}
inline void keymaster_free_cert_chain(keymaster_cert_chain_t* chain) {
if (chain) {
for (size_t i = 0; i < chain->entry_count; ++i) {
free((uint8_t*)chain->entries[i].data);
chain->entries[i].data = NULL;
chain->entries[i].data_length = 0;
}
free(chain->entries);
chain->entries = NULL;
chain->entry_count = 0;
}
}
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
#endif // ANDROID_HARDWARE_KEYMASTER_DEFS_H