blob: 2dc7a177a064f7dd519036f04a8412c105ba710c [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "aidl/sensors/convert.h"
#include "android-base/logging.h"
namespace android {
namespace hardware {
namespace sensors {
namespace implementation {
using aidl::android::hardware::sensors::AdditionalInfo;
using aidl::android::hardware::sensors::DynamicSensorInfo;
using aidl::android::hardware::sensors::Event;
using aidl::android::hardware::sensors::ISensors;
using aidl::android::hardware::sensors::SensorInfo;
using aidl::android::hardware::sensors::SensorStatus;
using aidl::android::hardware::sensors::SensorType;
status_t convertToStatus(ndk::ScopedAStatus status) {
if (status.isOk()) {
return OK;
} else {
switch (status.getExceptionCode()) {
case EX_ILLEGAL_ARGUMENT: {
return BAD_VALUE;
}
case EX_SECURITY: {
return PERMISSION_DENIED;
}
case EX_UNSUPPORTED_OPERATION: {
return INVALID_OPERATION;
}
case EX_SERVICE_SPECIFIC: {
switch (status.getServiceSpecificError()) {
case ISensors::ERROR_BAD_VALUE: {
return BAD_VALUE;
}
case ISensors::ERROR_NO_MEMORY: {
return NO_MEMORY;
}
default: {
return UNKNOWN_ERROR;
}
}
}
default: {
return UNKNOWN_ERROR;
}
}
}
}
void convertToSensor(const SensorInfo& src, sensor_t* dst) {
dst->name = strdup(src.name.c_str());
dst->vendor = strdup(src.vendor.c_str());
dst->version = src.version;
dst->handle = src.sensorHandle;
dst->type = (int)src.type;
dst->maxRange = src.maxRange;
dst->resolution = src.resolution;
dst->power = src.power;
dst->minDelay = src.minDelayUs;
dst->fifoReservedEventCount = src.fifoReservedEventCount;
dst->fifoMaxEventCount = src.fifoMaxEventCount;
dst->stringType = strdup(src.typeAsString.c_str());
dst->requiredPermission = strdup(src.requiredPermission.c_str());
dst->maxDelay = src.maxDelayUs;
dst->flags = src.flags;
dst->reserved[0] = dst->reserved[1] = 0;
}
void convertToSensorEvent(const Event& src, sensors_event_t* dst) {
*dst = {.version = sizeof(sensors_event_t),
.sensor = src.sensorHandle,
.type = (int32_t)src.sensorType,
.reserved0 = 0,
.timestamp = src.timestamp};
switch (src.sensorType) {
case SensorType::META_DATA: {
// Legacy HALs expect the handle reference in the meta data field.
// Copy it over from the handle of the event.
dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
dst->meta_data.sensor = src.sensorHandle;
// Set the sensor handle to 0 to maintain compatibility.
dst->sensor = 0;
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED: {
dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
break;
}
case SensorType::HINGE_ANGLE:
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
break;
}
case SensorType::STEP_COUNTER: {
dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
break;
}
case SensorType::HEART_RATE: {
dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
dst->heart_rate.status =
(int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
break;
}
case SensorType::POSE_6DOF: { // 15 floats
for (size_t i = 0; i < 15; ++i) {
dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
}
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
dst->dynamic_sensor_meta.connected =
src.payload.get<Event::EventPayload::dynamic>().connected;
dst->dynamic_sensor_meta.handle =
src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
memcpy(dst->dynamic_sensor_meta.uuid,
src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
break;
}
case SensorType::ADDITIONAL_INFO: {
const AdditionalInfo& srcInfo = src.payload.get<Event::EventPayload::additional>();
additional_info_event_t* dstInfo = &dst->additional_info;
dstInfo->type = (int32_t)srcInfo.type;
dstInfo->serial = srcInfo.serial;
switch (srcInfo.payload.getTag()) {
case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
const auto& values =
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
.values;
CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
break;
}
case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
const auto& values =
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
.values;
CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
break;
}
default: {
LOG(ERROR) << "Invalid sensor additional info tag: ",
(int)srcInfo.payload.getTag();
}
}
break;
}
case SensorType::HEAD_TRACKER: {
const auto& ht = src.payload.get<Event::EventPayload::headTracker>();
dst->head_tracker.rx = ht.rx;
dst->head_tracker.ry = ht.ry;
dst->head_tracker.rz = ht.rz;
dst->head_tracker.vx = ht.vx;
dst->head_tracker.vy = ht.vy;
dst->head_tracker.vz = ht.vz;
dst->head_tracker.discontinuity_count = ht.discontinuityCount;
break;
}
case SensorType::ACCELEROMETER_LIMITED_AXES:
case SensorType::GYROSCOPE_LIMITED_AXES:
dst->limited_axes_imu.x = src.payload.get<Event::EventPayload::limitedAxesImu>().x;
dst->limited_axes_imu.y = src.payload.get<Event::EventPayload::limitedAxesImu>().y;
dst->limited_axes_imu.z = src.payload.get<Event::EventPayload::limitedAxesImu>().z;
dst->limited_axes_imu.x_supported =
src.payload.get<Event::EventPayload::limitedAxesImu>().xSupported;
dst->limited_axes_imu.y_supported =
src.payload.get<Event::EventPayload::limitedAxesImu>().ySupported;
dst->limited_axes_imu.z_supported =
src.payload.get<Event::EventPayload::limitedAxesImu>().zSupported;
break;
case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
dst->limited_axes_imu_uncalibrated.x_uncalib =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().x;
dst->limited_axes_imu_uncalibrated.y_uncalib =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().y;
dst->limited_axes_imu_uncalibrated.z_uncalib =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().z;
dst->limited_axes_imu_uncalibrated.x_bias =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xBias;
dst->limited_axes_imu_uncalibrated.y_bias =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().yBias;
dst->limited_axes_imu_uncalibrated.z_bias =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zBias;
dst->limited_axes_imu_uncalibrated.x_supported =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xSupported;
dst->limited_axes_imu_uncalibrated.y_supported =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().ySupported;
dst->limited_axes_imu_uncalibrated.z_supported =
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zSupported;
break;
case SensorType::HEADING:
dst->heading.heading = src.payload.get<Event::EventPayload::heading>().heading;
dst->heading.accuracy = src.payload.get<Event::EventPayload::heading>().accuracy;
break;
default: {
CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
16 * sizeof(float));
break;
}
}
}
void convertFromSensorEvent(const sensors_event_t& src, Event* dst) {
*dst = {
.timestamp = src.timestamp,
.sensorHandle = src.sensor,
.sensorType = (SensorType)src.type,
};
switch (dst->sensorType) {
case SensorType::META_DATA: {
Event::EventPayload::MetaData meta;
meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
// Legacy HALs contain the handle reference in the meta data field.
// Copy that over to the handle of the event. In legacy HALs this
// field was expected to be 0.
dst->sensorHandle = src.meta_data.sensor;
dst->payload.set<Event::EventPayload::Tag::meta>(meta);
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
Event::EventPayload::Vec3 vec3;
vec3.x = src.acceleration.x;
vec3.y = src.acceleration.y;
vec3.z = src.acceleration.z;
vec3.status = (SensorStatus)src.acceleration.status;
dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
Event::EventPayload::Vec4 vec4;
vec4.x = src.data[0];
vec4.y = src.data[1];
vec4.z = src.data[2];
vec4.w = src.data[3];
dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
Event::EventPayload::Data data;
memcpy(data.values.data(), src.data, 5 * sizeof(float));
dst->payload.set<Event::EventPayload::Tag::data>(data);
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED: {
Event::EventPayload::Uncal uncal;
uncal.x = src.uncalibrated_gyro.x_uncalib;
uncal.y = src.uncalibrated_gyro.y_uncalib;
uncal.z = src.uncalibrated_gyro.z_uncalib;
uncal.xBias = src.uncalibrated_gyro.x_bias;
uncal.yBias = src.uncalibrated_gyro.y_bias;
uncal.zBias = src.uncalibrated_gyro.z_bias;
dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
break;
}
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT:
case SensorType::HINGE_ANGLE: {
dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
break;
}
case SensorType::STEP_COUNTER: {
dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
break;
}
case SensorType::HEART_RATE: {
Event::EventPayload::HeartRate heartRate;
heartRate.bpm = src.heart_rate.bpm;
heartRate.status = (SensorStatus)src.heart_rate.status;
dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
break;
}
case SensorType::POSE_6DOF: { // 15 floats
Event::EventPayload::Pose6Dof pose6DOF;
for (size_t i = 0; i < 15; ++i) {
pose6DOF.values[i] = src.data[i];
}
dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
DynamicSensorInfo dynamic;
dynamic.connected = src.dynamic_sensor_meta.connected;
dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
break;
}
case SensorType::ADDITIONAL_INFO: {
AdditionalInfo info;
const additional_info_event_t& srcInfo = src.additional_info;
info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
info.serial = srcInfo.serial;
AdditionalInfo::AdditionalInfoPayload::Int32Values data;
CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
dst->payload.set<Event::EventPayload::Tag::additional>(info);
break;
}
case SensorType::HEAD_TRACKER: {
Event::EventPayload::HeadTracker headTracker;
headTracker.rx = src.head_tracker.rx;
headTracker.ry = src.head_tracker.ry;
headTracker.rz = src.head_tracker.rz;
headTracker.vx = src.head_tracker.vx;
headTracker.vy = src.head_tracker.vy;
headTracker.vz = src.head_tracker.vz;
headTracker.discontinuityCount = src.head_tracker.discontinuity_count;
dst->payload.set<Event::EventPayload::Tag::headTracker>(headTracker);
break;
}
case SensorType::ACCELEROMETER_LIMITED_AXES:
case SensorType::GYROSCOPE_LIMITED_AXES: {
Event::EventPayload::LimitedAxesImu limitedAxesImu;
limitedAxesImu.x = src.limited_axes_imu.x;
limitedAxesImu.y = src.limited_axes_imu.y;
limitedAxesImu.z = src.limited_axes_imu.z;
limitedAxesImu.xSupported = src.limited_axes_imu.x_supported;
limitedAxesImu.ySupported = src.limited_axes_imu.y_supported;
limitedAxesImu.zSupported = src.limited_axes_imu.z_supported;
dst->payload.set<Event::EventPayload::Tag::limitedAxesImu>(limitedAxesImu);
break;
}
case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED: {
Event::EventPayload::LimitedAxesImuUncal limitedAxesImuUncal;
limitedAxesImuUncal.x = src.limited_axes_imu_uncalibrated.x_uncalib;
limitedAxesImuUncal.y = src.limited_axes_imu_uncalibrated.y_uncalib;
limitedAxesImuUncal.z = src.limited_axes_imu_uncalibrated.z_uncalib;
limitedAxesImuUncal.xBias = src.limited_axes_imu_uncalibrated.x_bias;
limitedAxesImuUncal.yBias = src.limited_axes_imu_uncalibrated.y_bias;
limitedAxesImuUncal.zBias = src.limited_axes_imu_uncalibrated.z_bias;
limitedAxesImuUncal.xSupported = src.limited_axes_imu_uncalibrated.x_supported;
limitedAxesImuUncal.ySupported = src.limited_axes_imu_uncalibrated.y_supported;
limitedAxesImuUncal.zSupported = src.limited_axes_imu_uncalibrated.z_supported;
dst->payload.set<Event::EventPayload::Tag::limitedAxesImuUncal>(limitedAxesImuUncal);
break;
}
case SensorType::HEADING: {
Event::EventPayload::Heading heading;
heading.heading = src.heading.heading;
heading.accuracy = src.heading.accuracy;
dst->payload.set<Event::EventPayload::heading>(heading);
break;
}
default: {
CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
Event::EventPayload::Data data;
memcpy(data.values.data(), src.data, 16 * sizeof(float));
dst->payload.set<Event::EventPayload::Tag::data>(data);
break;
}
}
}
void convertFromASensorEvent(const ASensorEvent& src, Event* dst) {
convertFromSensorEvent(common::convertASensorEvent(src), dst);
}
} // namespace implementation
} // namespace sensors
} // namespace hardware
} // namespace android