blob: 087f7632b044dcaa95f181a641cf65c78a44794e [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "KeyMintAidlTestBase.h"
#include <chrono>
#include <fstream>
#include <unordered_set>
#include <vector>
#include <android-base/logging.h>
#include <android/binder_manager.h>
#include <android/content/pm/IPackageManagerNative.h>
#include <cppbor_parse.h>
#include <cutils/properties.h>
#include <gmock/gmock.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <remote_prov/remote_prov_utils.h>
#include <keymaster/cppcose/cppcose.h>
#include <keymint_support/key_param_output.h>
#include <keymint_support/keymint_utils.h>
#include <keymint_support/openssl_utils.h>
namespace aidl::android::hardware::security::keymint {
using namespace cppcose;
using namespace std::literals::chrono_literals;
using std::endl;
using std::optional;
using std::unique_ptr;
using ::testing::AssertionFailure;
using ::testing::AssertionResult;
using ::testing::AssertionSuccess;
using ::testing::ElementsAreArray;
using ::testing::MatchesRegex;
using ::testing::Not;
::std::ostream& operator<<(::std::ostream& os, const AuthorizationSet& set) {
if (set.size() == 0)
os << "(Empty)" << ::std::endl;
else {
os << "\n";
for (auto& entry : set) os << entry << ::std::endl;
}
return os;
}
namespace test {
namespace {
// Possible values for the feature version. Assumes that future KeyMint versions
// will continue with the 100 * AIDL_version numbering scheme.
//
// Must be kept in numerically increasing order.
const int32_t kFeatureVersions[] = {10, 11, 20, 30, 40, 41, 100, 200,
300, 400, 500, 600, 700, 800, 900};
// Invalid value for a patchlevel (which is of form YYYYMMDD).
const uint32_t kInvalidPatchlevel = 99998877;
// Overhead for PKCS#1 v1.5 signature padding of undigested messages. Digested messages have
// additional overhead, for the digest algorithmIdentifier required by PKCS#1.
const size_t kPkcs1UndigestedSignaturePaddingOverhead = 11;
size_t count_tag_invalid_entries(const std::vector<KeyParameter>& authorizations) {
return std::count_if(authorizations.begin(), authorizations.end(),
[](const KeyParameter& e) -> bool { return e.tag == Tag::INVALID; });
}
typedef KeyMintAidlTestBase::KeyData KeyData;
// Predicate for testing basic characteristics validity in generation or import.
bool KeyCharacteristicsBasicallyValid(SecurityLevel secLevel,
const vector<KeyCharacteristics>& key_characteristics,
int32_t aidl_version) {
if (key_characteristics.empty()) return false;
std::unordered_set<SecurityLevel> levels_seen;
for (auto& entry : key_characteristics) {
if (entry.authorizations.empty()) {
GTEST_LOG_(ERROR) << "empty authorizations for " << entry.securityLevel;
return false;
}
// There was no test to assert that INVALID tag should not present in authorization list
// before Keymint V3, so there are some Keymint implementations where asserting for INVALID
// tag fails(b/297306437), hence skipping for Keymint < 3.
if (aidl_version >= 3) {
EXPECT_EQ(count_tag_invalid_entries(entry.authorizations), 0);
}
// Just ignore the SecurityLevel::KEYSTORE as the KM won't do any enforcement on this.
if (entry.securityLevel == SecurityLevel::KEYSTORE) continue;
if (levels_seen.find(entry.securityLevel) != levels_seen.end()) {
GTEST_LOG_(ERROR) << "duplicate authorizations for " << entry.securityLevel;
return false;
}
levels_seen.insert(entry.securityLevel);
// Generally, we should only have one entry, at the same security level as the KM
// instance. There is an exception: StrongBox KM can have some authorizations that are
// enforced by the TEE.
bool isExpectedSecurityLevel = secLevel == entry.securityLevel ||
(secLevel == SecurityLevel::STRONGBOX &&
entry.securityLevel == SecurityLevel::TRUSTED_ENVIRONMENT);
if (!isExpectedSecurityLevel) {
GTEST_LOG_(ERROR) << "Unexpected security level " << entry.securityLevel;
return false;
}
}
return true;
}
void check_crl_distribution_points_extension_not_present(X509* certificate) {
ASN1_OBJECT_Ptr crl_dp_oid(OBJ_txt2obj(kCrlDPOid, 1 /* dotted string format */));
ASSERT_TRUE(crl_dp_oid.get());
int location =
X509_get_ext_by_OBJ(certificate, crl_dp_oid.get(), -1 /* search from beginning */);
ASSERT_EQ(location, -1);
}
void check_attestation_version(uint32_t attestation_version, int32_t aidl_version) {
// Version numbers in attestation extensions should be a multiple of 100.
EXPECT_EQ(attestation_version % 100, 0);
// The multiplier should never be higher than the AIDL version, but can be less
// (for example, if the implementation is from an earlier version but the HAL service
// uses the default libraries and so reports the current AIDL version).
EXPECT_TRUE((attestation_version / 100) <= aidl_version);
}
bool avb_verification_enabled() {
char value[PROPERTY_VALUE_MAX];
return property_get("ro.boot.vbmeta.device_state", value, "") != 0;
}
char nibble2hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
// Attestations don't contain everything in key authorization lists, so we need to filter the key
// lists to produce the lists that we expect to match the attestations.
auto kTagsToFilter = {
Tag::CREATION_DATETIME,
Tag::HARDWARE_TYPE,
Tag::INCLUDE_UNIQUE_ID,
};
AuthorizationSet filtered_tags(const AuthorizationSet& set) {
AuthorizationSet filtered;
std::remove_copy_if(
set.begin(), set.end(), std::back_inserter(filtered), [](const auto& entry) -> bool {
return std::find(kTagsToFilter.begin(), kTagsToFilter.end(), entry.tag) !=
kTagsToFilter.end();
});
return filtered;
}
// Remove any SecurityLevel::KEYSTORE entries from a list of key characteristics.
void strip_keystore_tags(vector<KeyCharacteristics>* characteristics) {
characteristics->erase(std::remove_if(characteristics->begin(), characteristics->end(),
[](const auto& entry) {
return entry.securityLevel == SecurityLevel::KEYSTORE;
}),
characteristics->end());
}
string x509NameToStr(X509_NAME* name) {
char* s = X509_NAME_oneline(name, nullptr, 0);
string retval(s);
OPENSSL_free(s);
return retval;
}
} // namespace
bool KeyMintAidlTestBase::arm_deleteAllKeys = false;
bool KeyMintAidlTestBase::dump_Attestations = false;
std::string KeyMintAidlTestBase::keyblob_dir;
std::optional<bool> KeyMintAidlTestBase::expect_upgrade = std::nullopt;
KeyBlobDeleter::~KeyBlobDeleter() {
if (key_blob_.empty()) {
return;
}
Status result = keymint_->deleteKey(key_blob_);
key_blob_.clear();
EXPECT_TRUE(result.isOk()) << result.getServiceSpecificError() << "\n";
ErrorCode rc = GetReturnErrorCode(result);
EXPECT_TRUE(rc == ErrorCode::OK || rc == ErrorCode::UNIMPLEMENTED) << result << "\n";
}
uint32_t KeyMintAidlTestBase::boot_patch_level(
const vector<KeyCharacteristics>& key_characteristics) {
// The boot patchlevel is not available as a property, but should be present
// in the key characteristics of any created key.
AuthorizationSet allAuths;
for (auto& entry : key_characteristics) {
allAuths.push_back(AuthorizationSet(entry.authorizations));
}
auto patchlevel = allAuths.GetTagValue(TAG_BOOT_PATCHLEVEL);
if (patchlevel.has_value()) {
return patchlevel.value();
} else {
// No boot patchlevel is available. Return a value that won't match anything
// and so will trigger test failures.
return kInvalidPatchlevel;
}
}
uint32_t KeyMintAidlTestBase::boot_patch_level() {
return boot_patch_level(key_characteristics_);
}
/**
* An API to determine device IDs attestation is required or not,
* which is mandatory for KeyMint version 2 or first_api_level 33 or greater.
*/
bool KeyMintAidlTestBase::isDeviceIdAttestationRequired() {
return AidlVersion() >= 2 || property_get_int32("ro.vendor.api_level", 0) >= __ANDROID_API_T__;
}
/**
* An API to determine second IMEI ID attestation is required or not,
* which is supported for KeyMint version 3 or first_api_level greater than 33.
*/
bool KeyMintAidlTestBase::isSecondImeiIdAttestationRequired() {
return AidlVersion() >= 3 && property_get_int32("ro.vendor.api_level", 0) > __ANDROID_API_T__;
}
bool KeyMintAidlTestBase::Curve25519Supported() {
// Strongbox never supports curve 25519.
if (SecLevel() == SecurityLevel::STRONGBOX) {
return false;
}
// Curve 25519 was included in version 2 of the KeyMint interface.
int32_t version = 0;
auto status = keymint_->getInterfaceVersion(&version);
if (!status.isOk()) {
ADD_FAILURE() << "Failed to determine interface version";
}
return version >= 2;
}
void KeyMintAidlTestBase::InitializeKeyMint(std::shared_ptr<IKeyMintDevice> keyMint) {
ASSERT_NE(keyMint, nullptr);
keymint_ = std::move(keyMint);
KeyMintHardwareInfo info;
ASSERT_TRUE(keymint_->getHardwareInfo(&info).isOk());
securityLevel_ = info.securityLevel;
name_.assign(info.keyMintName.begin(), info.keyMintName.end());
author_.assign(info.keyMintAuthorName.begin(), info.keyMintAuthorName.end());
timestamp_token_required_ = info.timestampTokenRequired;
os_version_ = getOsVersion();
os_patch_level_ = getOsPatchlevel();
vendor_patch_level_ = getVendorPatchlevel();
}
int32_t KeyMintAidlTestBase::AidlVersion() const {
int32_t version = 0;
auto status = keymint_->getInterfaceVersion(&version);
if (!status.isOk()) {
ADD_FAILURE() << "Failed to determine interface version";
}
return version;
}
void KeyMintAidlTestBase::SetUp() {
if (AServiceManager_isDeclared(GetParam().c_str())) {
::ndk::SpAIBinder binder(AServiceManager_waitForService(GetParam().c_str()));
InitializeKeyMint(IKeyMintDevice::fromBinder(binder));
} else {
InitializeKeyMint(nullptr);
}
}
ErrorCode KeyMintAidlTestBase::GenerateKey(const AuthorizationSet& key_desc,
const optional<AttestationKey>& attest_key,
vector<uint8_t>* key_blob,
vector<KeyCharacteristics>* key_characteristics,
vector<Certificate>* cert_chain) {
EXPECT_NE(key_blob, nullptr) << "Key blob pointer must not be null. Test bug";
EXPECT_NE(key_characteristics, nullptr)
<< "Previous characteristics not deleted before generating key. Test bug.";
KeyCreationResult creationResult;
Status result = keymint_->generateKey(key_desc.vector_data(), attest_key, &creationResult);
if (result.isOk()) {
EXPECT_PRED3(KeyCharacteristicsBasicallyValid, SecLevel(),
creationResult.keyCharacteristics, AidlVersion());
EXPECT_GT(creationResult.keyBlob.size(), 0);
*key_blob = std::move(creationResult.keyBlob);
*key_characteristics = std::move(creationResult.keyCharacteristics);
*cert_chain = std::move(creationResult.certificateChain);
auto algorithm = key_desc.GetTagValue(TAG_ALGORITHM);
EXPECT_TRUE(algorithm);
if (algorithm &&
(algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC)) {
EXPECT_GE(cert_chain->size(), 1);
if (key_desc.Contains(TAG_ATTESTATION_CHALLENGE)) {
if (attest_key) {
EXPECT_EQ(cert_chain->size(), 1);
} else {
EXPECT_GT(cert_chain->size(), 1);
}
}
} else {
// For symmetric keys there should be no certificates.
EXPECT_EQ(cert_chain->size(), 0);
}
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::GenerateKey(const AuthorizationSet& key_desc,
const optional<AttestationKey>& attest_key) {
return GenerateKey(key_desc, attest_key, &key_blob_, &key_characteristics_, &cert_chain_);
}
ErrorCode KeyMintAidlTestBase::GenerateKeyWithSelfSignedAttestKey(
const AuthorizationSet& attest_key_desc, const AuthorizationSet& key_desc,
vector<uint8_t>* key_blob, vector<KeyCharacteristics>* key_characteristics,
vector<Certificate>* cert_chain) {
skipAttestKeyTest();
AttestationKey attest_key;
vector<Certificate> attest_cert_chain;
vector<KeyCharacteristics> attest_key_characteristics;
// Generate a key with self signed attestation.
auto error = GenerateAttestKey(attest_key_desc, std::nullopt, &attest_key.keyBlob,
&attest_key_characteristics, &attest_cert_chain);
if (error != ErrorCode::OK) {
return error;
}
attest_key.issuerSubjectName = make_name_from_str("Android Keystore Key");
// Generate a key, by passing the above self signed attestation key as attest key.
error = GenerateKey(key_desc, attest_key, key_blob, key_characteristics, cert_chain);
if (error == ErrorCode::OK) {
// Append the attest_cert_chain to the attested cert_chain to yield a valid cert chain.
cert_chain->push_back(attest_cert_chain[0]);
}
return error;
}
ErrorCode KeyMintAidlTestBase::ImportKey(const AuthorizationSet& key_desc, KeyFormat format,
const string& key_material, vector<uint8_t>* key_blob,
vector<KeyCharacteristics>* key_characteristics) {
Status result;
cert_chain_.clear();
key_characteristics->clear();
key_blob->clear();
KeyCreationResult creationResult;
result = keymint_->importKey(key_desc.vector_data(), format,
vector<uint8_t>(key_material.begin(), key_material.end()),
{} /* attestationSigningKeyBlob */, &creationResult);
if (result.isOk()) {
EXPECT_PRED3(KeyCharacteristicsBasicallyValid, SecLevel(),
creationResult.keyCharacteristics, AidlVersion());
EXPECT_GT(creationResult.keyBlob.size(), 0);
*key_blob = std::move(creationResult.keyBlob);
*key_characteristics = std::move(creationResult.keyCharacteristics);
cert_chain_ = std::move(creationResult.certificateChain);
auto algorithm = key_desc.GetTagValue(TAG_ALGORITHM);
EXPECT_TRUE(algorithm);
if (algorithm &&
(algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC)) {
EXPECT_GE(cert_chain_.size(), 1);
if (key_desc.Contains(TAG_ATTESTATION_CHALLENGE)) EXPECT_GT(cert_chain_.size(), 1);
} else {
// For symmetric keys there should be no certificates.
EXPECT_EQ(cert_chain_.size(), 0);
}
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::ImportKey(const AuthorizationSet& key_desc, KeyFormat format,
const string& key_material) {
return ImportKey(key_desc, format, key_material, &key_blob_, &key_characteristics_);
}
ErrorCode KeyMintAidlTestBase::ImportWrappedKey(string wrapped_key, string wrapping_key,
const AuthorizationSet& wrapping_key_desc,
string masking_key,
const AuthorizationSet& unwrapping_params,
int64_t password_sid, int64_t biometric_sid) {
EXPECT_EQ(ErrorCode::OK, ImportKey(wrapping_key_desc, KeyFormat::PKCS8, wrapping_key));
key_characteristics_.clear();
KeyCreationResult creationResult;
Status result = keymint_->importWrappedKey(
vector<uint8_t>(wrapped_key.begin(), wrapped_key.end()), key_blob_,
vector<uint8_t>(masking_key.begin(), masking_key.end()),
unwrapping_params.vector_data(), password_sid, biometric_sid, &creationResult);
if (result.isOk()) {
EXPECT_PRED3(KeyCharacteristicsBasicallyValid, SecLevel(),
creationResult.keyCharacteristics, AidlVersion());
EXPECT_GT(creationResult.keyBlob.size(), 0);
key_blob_ = std::move(creationResult.keyBlob);
key_characteristics_ = std::move(creationResult.keyCharacteristics);
cert_chain_ = std::move(creationResult.certificateChain);
AuthorizationSet allAuths;
for (auto& entry : key_characteristics_) {
allAuths.push_back(AuthorizationSet(entry.authorizations));
}
auto algorithm = allAuths.GetTagValue(TAG_ALGORITHM);
EXPECT_TRUE(algorithm);
if (algorithm &&
(algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC)) {
EXPECT_GE(cert_chain_.size(), 1);
} else {
// For symmetric keys there should be no certificates.
EXPECT_EQ(cert_chain_.size(), 0);
}
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::GetCharacteristics(const vector<uint8_t>& key_blob,
const vector<uint8_t>& app_id,
const vector<uint8_t>& app_data,
vector<KeyCharacteristics>* key_characteristics) {
Status result =
keymint_->getKeyCharacteristics(key_blob, app_id, app_data, key_characteristics);
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::GetCharacteristics(const vector<uint8_t>& key_blob,
vector<KeyCharacteristics>* key_characteristics) {
vector<uint8_t> empty_app_id, empty_app_data;
return GetCharacteristics(key_blob, empty_app_id, empty_app_data, key_characteristics);
}
void KeyMintAidlTestBase::CheckCharacteristics(
const vector<uint8_t>& key_blob,
const vector<KeyCharacteristics>& generate_characteristics) {
// Any key characteristics that were in SecurityLevel::KEYSTORE when returned from
// generateKey() should be excluded, as KeyMint will have no record of them.
// This applies to CREATION_DATETIME in particular.
vector<KeyCharacteristics> expected_characteristics(generate_characteristics);
strip_keystore_tags(&expected_characteristics);
vector<KeyCharacteristics> retrieved;
ASSERT_EQ(ErrorCode::OK, GetCharacteristics(key_blob, &retrieved));
EXPECT_EQ(expected_characteristics, retrieved);
}
void KeyMintAidlTestBase::CheckAppIdCharacteristics(
const vector<uint8_t>& key_blob, std::string_view app_id_string,
std::string_view app_data_string,
const vector<KeyCharacteristics>& generate_characteristics) {
// Exclude any SecurityLevel::KEYSTORE characteristics for comparisons.
vector<KeyCharacteristics> expected_characteristics(generate_characteristics);
strip_keystore_tags(&expected_characteristics);
vector<uint8_t> app_id(app_id_string.begin(), app_id_string.end());
vector<uint8_t> app_data(app_data_string.begin(), app_data_string.end());
vector<KeyCharacteristics> retrieved;
ASSERT_EQ(ErrorCode::OK, GetCharacteristics(key_blob, app_id, app_data, &retrieved));
EXPECT_EQ(expected_characteristics, retrieved);
// Check that key characteristics can't be retrieved if the app ID or app data is missing.
vector<uint8_t> empty;
vector<KeyCharacteristics> not_retrieved;
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
GetCharacteristics(key_blob, empty, app_data, &not_retrieved));
EXPECT_EQ(not_retrieved.size(), 0);
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
GetCharacteristics(key_blob, app_id, empty, &not_retrieved));
EXPECT_EQ(not_retrieved.size(), 0);
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
GetCharacteristics(key_blob, empty, empty, &not_retrieved));
EXPECT_EQ(not_retrieved.size(), 0);
}
ErrorCode KeyMintAidlTestBase::DeleteKey(vector<uint8_t>* key_blob, bool keep_key_blob) {
Status result = keymint_->deleteKey(*key_blob);
if (!keep_key_blob) {
*key_blob = vector<uint8_t>();
}
EXPECT_TRUE(result.isOk()) << result.getServiceSpecificError() << endl;
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::DeleteKey(bool keep_key_blob) {
return DeleteKey(&key_blob_, keep_key_blob);
}
ErrorCode KeyMintAidlTestBase::DeleteAllKeys() {
Status result = keymint_->deleteAllKeys();
EXPECT_TRUE(result.isOk()) << result.getServiceSpecificError() << endl;
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::DestroyAttestationIds() {
Status result = keymint_->destroyAttestationIds();
return GetReturnErrorCode(result);
}
void KeyMintAidlTestBase::CheckedDeleteKey() {
ErrorCode result = DeleteKey(&key_blob_, /* keep_key_blob = */ false);
EXPECT_TRUE(result == ErrorCode::OK || result == ErrorCode::UNIMPLEMENTED) << result << endl;
}
ErrorCode KeyMintAidlTestBase::Begin(KeyPurpose purpose, const vector<uint8_t>& key_blob,
const AuthorizationSet& in_params,
AuthorizationSet* out_params,
std::shared_ptr<IKeyMintOperation>& op) {
SCOPED_TRACE("Begin");
Status result;
BeginResult out;
result = keymint_->begin(purpose, key_blob, in_params.vector_data(), std::nullopt, &out);
if (result.isOk()) {
*out_params = out.params;
challenge_ = out.challenge;
op = out.operation;
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::Begin(KeyPurpose purpose, const vector<uint8_t>& key_blob,
const AuthorizationSet& in_params,
AuthorizationSet* out_params,
std::optional<HardwareAuthToken> hat) {
SCOPED_TRACE("Begin");
Status result;
BeginResult out;
result = keymint_->begin(purpose, key_blob, in_params.vector_data(), hat, &out);
if (result.isOk()) {
*out_params = out.params;
challenge_ = out.challenge;
op_ = out.operation;
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::Begin(KeyPurpose purpose, const AuthorizationSet& in_params,
AuthorizationSet* out_params) {
SCOPED_TRACE("Begin");
EXPECT_EQ(nullptr, op_);
return Begin(purpose, key_blob_, in_params, out_params);
}
ErrorCode KeyMintAidlTestBase::Begin(KeyPurpose purpose, const AuthorizationSet& in_params) {
SCOPED_TRACE("Begin");
AuthorizationSet out_params;
ErrorCode result = Begin(purpose, in_params, &out_params);
EXPECT_TRUE(out_params.empty());
return result;
}
ErrorCode KeyMintAidlTestBase::UpdateAad(const string& input) {
return GetReturnErrorCode(op_->updateAad(vector<uint8_t>(input.begin(), input.end()),
{} /* hardwareAuthToken */,
{} /* verificationToken */));
}
ErrorCode KeyMintAidlTestBase::Update(const string& input, string* output) {
SCOPED_TRACE("Update");
Status result;
if (!output) return ErrorCode::UNEXPECTED_NULL_POINTER;
EXPECT_NE(op_, nullptr);
if (!op_) return ErrorCode::UNEXPECTED_NULL_POINTER;
std::vector<uint8_t> o_put;
result = op_->update(vector<uint8_t>(input.begin(), input.end()), {}, {}, &o_put);
if (result.isOk()) {
output->append(o_put.begin(), o_put.end());
} else {
// Failure always terminates the operation.
op_ = {};
}
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::Finish(const string& input, const string& signature, string* output,
std::optional<HardwareAuthToken> hat,
std::optional<secureclock::TimeStampToken> time_token) {
SCOPED_TRACE("Finish");
Status result;
EXPECT_NE(op_, nullptr);
if (!op_) return ErrorCode::UNEXPECTED_NULL_POINTER;
vector<uint8_t> oPut;
result = op_->finish(vector<uint8_t>(input.begin(), input.end()),
vector<uint8_t>(signature.begin(), signature.end()), hat, time_token,
{} /* confirmationToken */, &oPut);
if (result.isOk()) output->append(oPut.begin(), oPut.end());
op_ = {};
return GetReturnErrorCode(result);
}
ErrorCode KeyMintAidlTestBase::Abort(const std::shared_ptr<IKeyMintOperation>& op) {
SCOPED_TRACE("Abort");
EXPECT_NE(op, nullptr);
if (!op) return ErrorCode::UNEXPECTED_NULL_POINTER;
Status retval = op->abort();
EXPECT_TRUE(retval.isOk());
return static_cast<ErrorCode>(retval.getServiceSpecificError());
}
ErrorCode KeyMintAidlTestBase::Abort() {
SCOPED_TRACE("Abort");
EXPECT_NE(op_, nullptr);
if (!op_) return ErrorCode::UNEXPECTED_NULL_POINTER;
Status retval = op_->abort();
return static_cast<ErrorCode>(retval.getServiceSpecificError());
}
void KeyMintAidlTestBase::AbortIfNeeded() {
SCOPED_TRACE("AbortIfNeeded");
if (op_) {
EXPECT_EQ(ErrorCode::OK, Abort());
op_.reset();
}
}
auto KeyMintAidlTestBase::ProcessMessage(const vector<uint8_t>& key_blob, KeyPurpose operation,
const string& message, const AuthorizationSet& in_params)
-> std::tuple<ErrorCode, string> {
AuthorizationSet begin_out_params;
ErrorCode result = Begin(operation, key_blob, in_params, &begin_out_params);
if (result != ErrorCode::OK) return {result, {}};
string output;
return {Finish(message, &output), output};
}
string KeyMintAidlTestBase::ProcessMessage(const vector<uint8_t>& key_blob, KeyPurpose operation,
const string& message, const AuthorizationSet& in_params,
AuthorizationSet* out_params) {
SCOPED_TRACE("ProcessMessage");
AuthorizationSet begin_out_params;
ErrorCode result = Begin(operation, key_blob, in_params, out_params);
EXPECT_EQ(ErrorCode::OK, result);
if (result != ErrorCode::OK) {
return "";
}
string output;
EXPECT_EQ(ErrorCode::OK, Finish(message, &output));
return output;
}
string KeyMintAidlTestBase::SignMessage(const vector<uint8_t>& key_blob, const string& message,
const AuthorizationSet& params) {
SCOPED_TRACE("SignMessage");
AuthorizationSet out_params;
string signature = ProcessMessage(key_blob, KeyPurpose::SIGN, message, params, &out_params);
EXPECT_TRUE(out_params.empty());
return signature;
}
string KeyMintAidlTestBase::SignMessage(const string& message, const AuthorizationSet& params) {
SCOPED_TRACE("SignMessage");
return SignMessage(key_blob_, message, params);
}
string KeyMintAidlTestBase::MacMessage(const string& message, Digest digest, size_t mac_length) {
SCOPED_TRACE("MacMessage");
return SignMessage(
key_blob_, message,
AuthorizationSetBuilder().Digest(digest).Authorization(TAG_MAC_LENGTH, mac_length));
}
void KeyMintAidlTestBase::CheckAesIncrementalEncryptOperation(BlockMode block_mode,
int message_size) {
auto builder = AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.AesEncryptionKey(128)
.BlockMode(block_mode)
.Padding(PaddingMode::NONE);
if (block_mode == BlockMode::GCM) {
builder.Authorization(TAG_MIN_MAC_LENGTH, 128);
}
ASSERT_EQ(ErrorCode::OK, GenerateKey(builder));
for (int increment = 1; increment <= message_size; ++increment) {
string message(message_size, 'a');
auto params = AuthorizationSetBuilder().BlockMode(block_mode).Padding(PaddingMode::NONE);
if (block_mode == BlockMode::GCM) {
params.Authorization(TAG_MAC_LENGTH, 128) /* for GCM */;
}
AuthorizationSet output_params;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params, &output_params));
string ciphertext;
string to_send;
for (size_t i = 0; i < message.size(); i += increment) {
EXPECT_EQ(ErrorCode::OK, Update(message.substr(i, increment), &ciphertext));
}
EXPECT_EQ(ErrorCode::OK, Finish(to_send, &ciphertext))
<< "Error sending " << to_send << " with block mode " << block_mode;
switch (block_mode) {
case BlockMode::GCM:
EXPECT_EQ(message.size() + 16, ciphertext.size());
break;
case BlockMode::CTR:
EXPECT_EQ(message.size(), ciphertext.size());
break;
case BlockMode::CBC:
case BlockMode::ECB:
EXPECT_EQ(message.size() + message.size() % 16, ciphertext.size());
break;
}
auto iv = output_params.GetTagValue(TAG_NONCE);
switch (block_mode) {
case BlockMode::CBC:
case BlockMode::GCM:
case BlockMode::CTR:
ASSERT_TRUE(iv) << "No IV for block mode " << block_mode;
EXPECT_EQ(block_mode == BlockMode::GCM ? 12U : 16U, iv->get().size());
params.push_back(TAG_NONCE, iv->get());
break;
case BlockMode::ECB:
EXPECT_FALSE(iv) << "ECB mode should not generate IV";
break;
}
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::DECRYPT, params))
<< "Decrypt begin() failed for block mode " << block_mode;
string plaintext;
for (size_t i = 0; i < ciphertext.size(); i += increment) {
EXPECT_EQ(ErrorCode::OK, Update(ciphertext.substr(i, increment), &plaintext));
}
ErrorCode error = Finish(to_send, &plaintext);
ASSERT_EQ(ErrorCode::OK, error) << "Decryption failed for block mode " << block_mode
<< " and increment " << increment;
if (error == ErrorCode::OK) {
ASSERT_EQ(message, plaintext) << "Decryption didn't match for block mode " << block_mode
<< " and increment " << increment;
}
}
}
void KeyMintAidlTestBase::AesCheckEncryptOneByteAtATime(const string& key, BlockMode block_mode,
PaddingMode padding_mode, const string& iv,
const string& plaintext,
const string& exp_cipher_text) {
bool is_authenticated_cipher = (block_mode == BlockMode::GCM);
auto auth_set = AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.AesEncryptionKey(key.size() * 8)
.BlockMode(block_mode)
.Padding(padding_mode);
if (iv.size() > 0) auth_set.Authorization(TAG_CALLER_NONCE);
if (is_authenticated_cipher) auth_set.Authorization(TAG_MIN_MAC_LENGTH, 128);
ASSERT_EQ(ErrorCode::OK, ImportKey(auth_set, KeyFormat::RAW, key));
CheckEncryptOneByteAtATime(block_mode, 16 /*block_size*/, padding_mode, iv, plaintext,
exp_cipher_text);
}
void KeyMintAidlTestBase::CheckEncryptOneByteAtATime(BlockMode block_mode, const int block_size,
PaddingMode padding_mode, const string& iv,
const string& plaintext,
const string& exp_cipher_text) {
bool is_stream_cipher = (block_mode == BlockMode::CTR || block_mode == BlockMode::GCM);
bool is_authenticated_cipher = (block_mode == BlockMode::GCM);
auto params = AuthorizationSetBuilder().BlockMode(block_mode).Padding(padding_mode);
if (iv.size() > 0) params.Authorization(TAG_NONCE, iv.data(), iv.size());
if (is_authenticated_cipher) params.Authorization(TAG_MAC_LENGTH, 128);
AuthorizationSet output_params;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params, &output_params));
string actual_ciphertext;
if (is_stream_cipher) {
// Assert that a 1 byte of output is produced for 1 byte of input.
// Every input byte produces an output byte.
for (int plaintext_index = 0; plaintext_index < plaintext.size(); plaintext_index++) {
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Update(plaintext.substr(plaintext_index, 1), &ciphertext));
// Some StrongBox implementations cannot support 1:1 input:output lengths, so
// we relax this API restriction for them.
if (SecLevel() != SecurityLevel::STRONGBOX) {
EXPECT_EQ(1, ciphertext.size()) << "plaintext index: " << plaintext_index;
}
actual_ciphertext.append(ciphertext);
}
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Finish(&ciphertext));
if (SecLevel() != SecurityLevel::STRONGBOX) {
string expected_final_output;
if (is_authenticated_cipher) {
expected_final_output = exp_cipher_text.substr(plaintext.size());
}
EXPECT_EQ(expected_final_output, ciphertext);
}
actual_ciphertext.append(ciphertext);
} else {
// Assert that a block of output is produced once a full block of input is provided.
// Every input block produces an output block.
bool compare_output = true;
string additional_information;
int vendor_api_level = property_get_int32("ro.vendor.api_level", 0);
if (SecLevel() == SecurityLevel::STRONGBOX) {
// This is known to be broken on older vendor implementations.
if (vendor_api_level <= __ANDROID_API_U__) {
compare_output = false;
} else {
additional_information = " (b/194134359) ";
}
}
for (int plaintext_index = 0; plaintext_index < plaintext.size(); plaintext_index++) {
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Update(plaintext.substr(plaintext_index, 1), &ciphertext));
if (compare_output) {
if ((plaintext_index % block_size) == block_size - 1) {
// Update is expected to have output a new block
EXPECT_EQ(block_size, ciphertext.size())
<< "plaintext index: " << plaintext_index << additional_information;
} else {
// Update is expected to have produced no output
EXPECT_EQ(0, ciphertext.size())
<< "plaintext index: " << plaintext_index << additional_information;
}
}
actual_ciphertext.append(ciphertext);
}
string ciphertext;
EXPECT_EQ(ErrorCode::OK, Finish(&ciphertext));
actual_ciphertext.append(ciphertext);
}
// Regardless of how the completed ciphertext got accumulated, it should match the expected
// ciphertext.
EXPECT_EQ(exp_cipher_text, actual_ciphertext);
}
void KeyMintAidlTestBase::CheckHmacTestVector(const string& key, const string& message,
Digest digest, const string& expected_mac) {
SCOPED_TRACE("CheckHmacTestVector");
ASSERT_EQ(ErrorCode::OK,
ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.HmacKey(key.size() * 8)
.Authorization(TAG_MIN_MAC_LENGTH, expected_mac.size() * 8)
.Digest(digest),
KeyFormat::RAW, key));
string signature = MacMessage(message, digest, expected_mac.size() * 8);
EXPECT_EQ(expected_mac, signature)
<< "Test vector didn't match for key of size " << key.size() << " message of size "
<< message.size() << " and digest " << digest;
CheckedDeleteKey();
}
void KeyMintAidlTestBase::CheckAesCtrTestVector(const string& key, const string& nonce,
const string& message,
const string& expected_ciphertext) {
SCOPED_TRACE("CheckAesCtrTestVector");
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.AesEncryptionKey(key.size() * 8)
.BlockMode(BlockMode::CTR)
.Authorization(TAG_CALLER_NONCE)
.Padding(PaddingMode::NONE),
KeyFormat::RAW, key));
auto params = AuthorizationSetBuilder()
.Authorization(TAG_NONCE, nonce.data(), nonce.size())
.BlockMode(BlockMode::CTR)
.Padding(PaddingMode::NONE);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(key_blob_, message, params, &out_params);
EXPECT_EQ(expected_ciphertext, ciphertext);
}
void KeyMintAidlTestBase::CheckTripleDesTestVector(KeyPurpose purpose, BlockMode block_mode,
PaddingMode padding_mode, const string& key,
const string& iv, const string& input,
const string& expected_output) {
auto authset = AuthorizationSetBuilder()
.TripleDesEncryptionKey(key.size() * 7)
.BlockMode(block_mode)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(padding_mode);
if (iv.size()) authset.Authorization(TAG_CALLER_NONCE);
ASSERT_EQ(ErrorCode::OK, ImportKey(authset, KeyFormat::RAW, key));
ASSERT_GT(key_blob_.size(), 0U);
auto begin_params = AuthorizationSetBuilder().BlockMode(block_mode).Padding(padding_mode);
if (iv.size()) begin_params.Authorization(TAG_NONCE, iv.data(), iv.size());
AuthorizationSet output_params;
string output = ProcessMessage(key_blob_, purpose, input, begin_params, &output_params);
EXPECT_EQ(expected_output, output);
}
void KeyMintAidlTestBase::VerifyMessage(const vector<uint8_t>& key_blob, const string& message,
const string& signature, const AuthorizationSet& params) {
SCOPED_TRACE("VerifyMessage");
AuthorizationSet begin_out_params;
ASSERT_EQ(ErrorCode::OK, Begin(KeyPurpose::VERIFY, key_blob, params, &begin_out_params));
string output;
EXPECT_EQ(ErrorCode::OK, Finish(message, signature, &output));
EXPECT_TRUE(output.empty());
op_ = {};
}
void KeyMintAidlTestBase::VerifyMessage(const string& message, const string& signature,
const AuthorizationSet& params) {
SCOPED_TRACE("VerifyMessage");
VerifyMessage(key_blob_, message, signature, params);
}
void KeyMintAidlTestBase::LocalVerifyMessage(const string& message, const string& signature,
const AuthorizationSet& params) {
SCOPED_TRACE("LocalVerifyMessage");
ASSERT_GT(cert_chain_.size(), 0);
LocalVerifyMessage(cert_chain_[0].encodedCertificate, message, signature, params);
}
void KeyMintAidlTestBase::LocalVerifyMessage(const vector<uint8_t>& der_cert, const string& message,
const string& signature,
const AuthorizationSet& params) {
// Retrieve the public key from the leaf certificate.
X509_Ptr key_cert(parse_cert_blob(der_cert));
ASSERT_TRUE(key_cert.get());
EVP_PKEY_Ptr pub_key(X509_get_pubkey(key_cert.get()));
ASSERT_TRUE(pub_key.get());
Digest digest = params.GetTagValue(TAG_DIGEST).value();
PaddingMode padding = PaddingMode::NONE;
auto tag = params.GetTagValue(TAG_PADDING);
if (tag.has_value()) {
padding = tag.value();
}
if (digest == Digest::NONE) {
switch (EVP_PKEY_id(pub_key.get())) {
case EVP_PKEY_ED25519: {
ASSERT_EQ(64, signature.size());
uint8_t pub_keydata[32];
size_t pub_len = sizeof(pub_keydata);
ASSERT_EQ(1, EVP_PKEY_get_raw_public_key(pub_key.get(), pub_keydata, &pub_len));
ASSERT_EQ(sizeof(pub_keydata), pub_len);
ASSERT_EQ(1, ED25519_verify(reinterpret_cast<const uint8_t*>(message.data()),
message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
pub_keydata));
break;
}
case EVP_PKEY_EC: {
vector<uint8_t> data((EVP_PKEY_bits(pub_key.get()) + 7) / 8);
size_t data_size = std::min(data.size(), message.size());
memcpy(data.data(), message.data(), data_size);
EC_KEY_Ptr ecdsa(EVP_PKEY_get1_EC_KEY(pub_key.get()));
ASSERT_TRUE(ecdsa.get());
ASSERT_EQ(1,
ECDSA_verify(0, reinterpret_cast<const uint8_t*>(data.data()), data_size,
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), ecdsa.get()));
break;
}
case EVP_PKEY_RSA: {
vector<uint8_t> data(EVP_PKEY_size(pub_key.get()));
size_t data_size = std::min(data.size(), message.size());
memcpy(data.data(), message.data(), data_size);
RSA_Ptr rsa(EVP_PKEY_get1_RSA(const_cast<EVP_PKEY*>(pub_key.get())));
ASSERT_TRUE(rsa.get());
size_t key_len = RSA_size(rsa.get());
int openssl_padding = RSA_NO_PADDING;
switch (padding) {
case PaddingMode::NONE:
ASSERT_TRUE(data_size <= key_len);
ASSERT_EQ(key_len, signature.size());
openssl_padding = RSA_NO_PADDING;
break;
case PaddingMode::RSA_PKCS1_1_5_SIGN:
ASSERT_TRUE(data_size + kPkcs1UndigestedSignaturePaddingOverhead <=
key_len);
openssl_padding = RSA_PKCS1_PADDING;
break;
default:
ADD_FAILURE() << "Unsupported RSA padding mode " << padding;
}
vector<uint8_t> decrypted_data(key_len);
int bytes_decrypted = RSA_public_decrypt(
signature.size(), reinterpret_cast<const uint8_t*>(signature.data()),
decrypted_data.data(), rsa.get(), openssl_padding);
ASSERT_GE(bytes_decrypted, 0);
const uint8_t* compare_pos = decrypted_data.data();
size_t bytes_to_compare = bytes_decrypted;
uint8_t zero_check_result = 0;
if (padding == PaddingMode::NONE && data_size < bytes_to_compare) {
// If the data is short, for "unpadded" signing we zero-pad to the left. So
// during verification we should have zeros on the left of the decrypted data.
// Do a constant-time check.
const uint8_t* zero_end = compare_pos + bytes_to_compare - data_size;
while (compare_pos < zero_end) zero_check_result |= *compare_pos++;
ASSERT_EQ(0, zero_check_result);
bytes_to_compare = data_size;
}
ASSERT_EQ(0, memcmp(compare_pos, data.data(), bytes_to_compare));
break;
}
default:
ADD_FAILURE() << "Unknown public key type";
}
} else {
EVP_MD_CTX digest_ctx;
EVP_MD_CTX_init(&digest_ctx);
EVP_PKEY_CTX* pkey_ctx;
const EVP_MD* md = openssl_digest(digest);
ASSERT_NE(md, nullptr);
ASSERT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, md, nullptr, pub_key.get()));
if (padding == PaddingMode::RSA_PSS) {
EXPECT_GT(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING), 0);
EXPECT_GT(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, EVP_MD_size(md)), 0);
EXPECT_GT(EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, md), 0);
}
ASSERT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx,
reinterpret_cast<const uint8_t*>(message.data()),
message.size()));
ASSERT_EQ(1, EVP_DigestVerifyFinal(&digest_ctx,
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size()));
EVP_MD_CTX_cleanup(&digest_ctx);
}
}
string KeyMintAidlTestBase::LocalRsaEncryptMessage(const string& message,
const AuthorizationSet& params) {
SCOPED_TRACE("LocalRsaEncryptMessage");
// Retrieve the public key from the leaf certificate.
if (cert_chain_.empty()) {
ADD_FAILURE() << "No public key available";
return "Failure";
}
X509_Ptr key_cert(parse_cert_blob(cert_chain_[0].encodedCertificate));
if (key_cert.get() == nullptr) {
ADD_FAILURE() << "Failed to parse cert";
return "Failure";
}
EVP_PKEY_Ptr pub_key(X509_get_pubkey(key_cert.get()));
if (pub_key.get() == nullptr) {
ADD_FAILURE() << "Failed to retrieve public key";
return "Failure";
}
RSA_Ptr rsa(EVP_PKEY_get1_RSA(const_cast<EVP_PKEY*>(pub_key.get())));
if (rsa.get() == nullptr) {
ADD_FAILURE() << "Failed to retrieve RSA public key";
return "Failure";
}
// Retrieve relevant tags.
Digest digest = Digest::NONE;
Digest mgf_digest = Digest::SHA1;
PaddingMode padding = PaddingMode::NONE;
auto digest_tag = params.GetTagValue(TAG_DIGEST);
if (digest_tag.has_value()) digest = digest_tag.value();
auto pad_tag = params.GetTagValue(TAG_PADDING);
if (pad_tag.has_value()) padding = pad_tag.value();
auto mgf_tag = params.GetTagValue(TAG_RSA_OAEP_MGF_DIGEST);
if (mgf_tag.has_value()) mgf_digest = mgf_tag.value();
const EVP_MD* md = openssl_digest(digest);
const EVP_MD* mgf_md = openssl_digest(mgf_digest);
// Set up encryption context.
EVP_PKEY_CTX_Ptr ctx(EVP_PKEY_CTX_new(pub_key.get(), /* engine= */ nullptr));
if (EVP_PKEY_encrypt_init(ctx.get()) <= 0) {
ADD_FAILURE() << "Encryption init failed: " << ERR_peek_last_error();
return "Failure";
}
int rc = -1;
switch (padding) {
case PaddingMode::NONE:
rc = EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_NO_PADDING);
break;
case PaddingMode::RSA_PKCS1_1_5_ENCRYPT:
rc = EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_PADDING);
break;
case PaddingMode::RSA_OAEP:
rc = EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_OAEP_PADDING);
break;
default:
break;
}
if (rc <= 0) {
ADD_FAILURE() << "Set padding failed: " << ERR_peek_last_error();
return "Failure";
}
if (padding == PaddingMode::RSA_OAEP) {
if (!EVP_PKEY_CTX_set_rsa_oaep_md(ctx.get(), md)) {
ADD_FAILURE() << "Set digest failed: " << ERR_peek_last_error();
return "Failure";
}
if (!EVP_PKEY_CTX_set_rsa_mgf1_md(ctx.get(), mgf_md)) {
ADD_FAILURE() << "Set MGF digest failed: " << ERR_peek_last_error();
return "Failure";
}
}
// Determine output size.
size_t outlen;
if (EVP_PKEY_encrypt(ctx.get(), nullptr /* out */, &outlen,
reinterpret_cast<const uint8_t*>(message.data()), message.size()) <= 0) {
ADD_FAILURE() << "Determine output size failed: " << ERR_peek_last_error();
return "Failure";
}
// Left-zero-pad the input if necessary.
const uint8_t* to_encrypt = reinterpret_cast<const uint8_t*>(message.data());
size_t to_encrypt_len = message.size();
std::unique_ptr<string> zero_padded_message;
if (padding == PaddingMode::NONE && to_encrypt_len < outlen) {
zero_padded_message.reset(new string(outlen, '\0'));
memcpy(zero_padded_message->data() + (outlen - to_encrypt_len), message.data(),
message.size());
to_encrypt = reinterpret_cast<const uint8_t*>(zero_padded_message->data());
to_encrypt_len = outlen;
}
// Do the encryption.
string output(outlen, '\0');
if (EVP_PKEY_encrypt(ctx.get(), reinterpret_cast<uint8_t*>(output.data()), &outlen, to_encrypt,
to_encrypt_len) <= 0) {
ADD_FAILURE() << "Encryption failed: " << ERR_peek_last_error();
return "Failure";
}
return output;
}
string KeyMintAidlTestBase::EncryptMessage(const vector<uint8_t>& key_blob, const string& message,
const AuthorizationSet& in_params,
AuthorizationSet* out_params) {
SCOPED_TRACE("EncryptMessage");
return ProcessMessage(key_blob, KeyPurpose::ENCRYPT, message, in_params, out_params);
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, const AuthorizationSet& params,
AuthorizationSet* out_params) {
SCOPED_TRACE("EncryptMessage");
return EncryptMessage(key_blob_, message, params, out_params);
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, const AuthorizationSet& params) {
SCOPED_TRACE("EncryptMessage");
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
EXPECT_TRUE(out_params.empty()) << "Output params should be empty. Contained: " << out_params;
return ciphertext;
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, BlockMode block_mode,
PaddingMode padding) {
SCOPED_TRACE("EncryptMessage");
auto params = AuthorizationSetBuilder().BlockMode(block_mode).Padding(padding);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
EXPECT_TRUE(out_params.empty()) << "Output params should be empty. Contained: " << out_params;
return ciphertext;
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, BlockMode block_mode,
PaddingMode padding, vector<uint8_t>* iv_out) {
SCOPED_TRACE("EncryptMessage");
auto params = AuthorizationSetBuilder().BlockMode(block_mode).Padding(padding);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
EXPECT_EQ(1U, out_params.size());
auto ivVal = out_params.GetTagValue(TAG_NONCE);
EXPECT_TRUE(ivVal);
if (ivVal) *iv_out = *ivVal;
return ciphertext;
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, BlockMode block_mode,
PaddingMode padding, const vector<uint8_t>& iv_in) {
SCOPED_TRACE("EncryptMessage");
auto params = AuthorizationSetBuilder()
.BlockMode(block_mode)
.Padding(padding)
.Authorization(TAG_NONCE, iv_in);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
return ciphertext;
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, BlockMode block_mode,
PaddingMode padding, uint8_t mac_length_bits,
const vector<uint8_t>& iv_in) {
SCOPED_TRACE("EncryptMessage");
auto params = AuthorizationSetBuilder()
.BlockMode(block_mode)
.Padding(padding)
.Authorization(TAG_MAC_LENGTH, mac_length_bits)
.Authorization(TAG_NONCE, iv_in);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
return ciphertext;
}
string KeyMintAidlTestBase::EncryptMessage(const string& message, BlockMode block_mode,
PaddingMode padding, uint8_t mac_length_bits) {
SCOPED_TRACE("EncryptMessage");
auto params = AuthorizationSetBuilder()
.BlockMode(block_mode)
.Padding(padding)
.Authorization(TAG_MAC_LENGTH, mac_length_bits);
AuthorizationSet out_params;
string ciphertext = EncryptMessage(message, params, &out_params);
return ciphertext;
}
string KeyMintAidlTestBase::DecryptMessage(const vector<uint8_t>& key_blob,
const string& ciphertext,
const AuthorizationSet& params) {
SCOPED_TRACE("DecryptMessage");
AuthorizationSet out_params;
string plaintext =
ProcessMessage(key_blob, KeyPurpose::DECRYPT, ciphertext, params, &out_params);
EXPECT_TRUE(out_params.empty());
return plaintext;
}
string KeyMintAidlTestBase::DecryptMessage(const string& ciphertext,
const AuthorizationSet& params) {
SCOPED_TRACE("DecryptMessage");
return DecryptMessage(key_blob_, ciphertext, params);
}
string KeyMintAidlTestBase::DecryptMessage(const string& ciphertext, BlockMode block_mode,
PaddingMode padding_mode, const vector<uint8_t>& iv) {
SCOPED_TRACE("DecryptMessage");
auto params = AuthorizationSetBuilder()
.BlockMode(block_mode)
.Padding(padding_mode)
.Authorization(TAG_NONCE, iv);
return DecryptMessage(key_blob_, ciphertext, params);
}
std::pair<ErrorCode, vector<uint8_t>> KeyMintAidlTestBase::UpgradeKey(
const vector<uint8_t>& key_blob) {
std::pair<ErrorCode, vector<uint8_t>> retval;
vector<uint8_t> outKeyBlob;
Status result = keymint_->upgradeKey(key_blob, vector<KeyParameter>(), &outKeyBlob);
ErrorCode errorcode = GetReturnErrorCode(result);
retval = std::tie(errorcode, outKeyBlob);
return retval;
}
bool KeyMintAidlTestBase::IsRkpSupportRequired() const {
// This is technically not a match to the requirements for S chipsets,
// however when S shipped there was a bug in the test that skipped the
// tests if KeyMint 2 was not on the system. So we allowed many chipests
// to ship without RKP support. In T we hardened the requirements around
// support for RKP, so relax the test to match.
return get_vsr_api_level() >= __ANDROID_API_T__;
}
vector<uint32_t> KeyMintAidlTestBase::ValidKeySizes(Algorithm algorithm) {
switch (algorithm) {
case Algorithm::RSA:
switch (SecLevel()) {
case SecurityLevel::SOFTWARE:
case SecurityLevel::TRUSTED_ENVIRONMENT:
return {2048, 3072, 4096};
case SecurityLevel::STRONGBOX:
return {2048};
default:
ADD_FAILURE() << "Invalid security level " << uint32_t(SecLevel());
break;
}
break;
case Algorithm::EC:
ADD_FAILURE() << "EC keys must be specified by curve not size";
break;
case Algorithm::AES:
return {128, 256};
case Algorithm::TRIPLE_DES:
return {168};
case Algorithm::HMAC: {
vector<uint32_t> retval((512 - 64) / 8 + 1);
uint32_t size = 64 - 8;
std::generate(retval.begin(), retval.end(), [&]() { return (size += 8); });
return retval;
}
default:
ADD_FAILURE() << "Invalid Algorithm: " << algorithm;
return {};
}
ADD_FAILURE() << "Should be impossible to get here";
return {};
}
vector<uint32_t> KeyMintAidlTestBase::InvalidKeySizes(Algorithm algorithm) {
if (SecLevel() == SecurityLevel::STRONGBOX) {
switch (algorithm) {
case Algorithm::RSA:
return {3072, 4096};
case Algorithm::EC:
return {224, 384, 521};
case Algorithm::AES:
return {192};
case Algorithm::TRIPLE_DES:
return {56};
default:
return {};
}
} else {
switch (algorithm) {
case Algorithm::AES:
return {64, 96, 131, 512};
case Algorithm::TRIPLE_DES:
return {56};
default:
return {};
}
}
return {};
}
vector<BlockMode> KeyMintAidlTestBase::ValidBlockModes(Algorithm algorithm) {
switch (algorithm) {
case Algorithm::AES:
return {
BlockMode::CBC,
BlockMode::CTR,
BlockMode::ECB,
BlockMode::GCM,
};
case Algorithm::TRIPLE_DES:
return {
BlockMode::CBC,
BlockMode::ECB,
};
default:
return {};
}
}
vector<PaddingMode> KeyMintAidlTestBase::ValidPaddingModes(Algorithm algorithm,
BlockMode blockMode) {
switch (algorithm) {
case Algorithm::AES:
switch (blockMode) {
case BlockMode::CBC:
case BlockMode::ECB:
return {PaddingMode::NONE, PaddingMode::PKCS7};
case BlockMode::CTR:
case BlockMode::GCM:
return {PaddingMode::NONE};
default:
return {};
};
case Algorithm::TRIPLE_DES:
switch (blockMode) {
case BlockMode::CBC:
case BlockMode::ECB:
return {PaddingMode::NONE, PaddingMode::PKCS7};
default:
return {};
};
default:
return {};
}
}
vector<PaddingMode> KeyMintAidlTestBase::InvalidPaddingModes(Algorithm algorithm,
BlockMode blockMode) {
switch (algorithm) {
case Algorithm::AES:
switch (blockMode) {
case BlockMode::CTR:
case BlockMode::GCM:
return {PaddingMode::PKCS7};
default:
return {};
};
default:
return {};
}
}
vector<EcCurve> KeyMintAidlTestBase::ValidCurves() {
if (securityLevel_ == SecurityLevel::STRONGBOX) {
return {EcCurve::P_256};
} else if (Curve25519Supported()) {
return {EcCurve::P_224, EcCurve::P_256, EcCurve::P_384, EcCurve::P_521,
EcCurve::CURVE_25519};
} else {
return {
EcCurve::P_224,
EcCurve::P_256,
EcCurve::P_384,
EcCurve::P_521,
};
}
}
vector<EcCurve> KeyMintAidlTestBase::InvalidCurves() {
if (SecLevel() == SecurityLevel::STRONGBOX) {
// Curve 25519 is not supported, either because:
// - KeyMint v1: it's an unknown enum value
// - KeyMint v2+: it's not supported by StrongBox.
return {EcCurve::P_224, EcCurve::P_384, EcCurve::P_521, EcCurve::CURVE_25519};
} else {
if (Curve25519Supported()) {
return {};
} else {
return {EcCurve::CURVE_25519};
}
}
}
vector<uint64_t> KeyMintAidlTestBase::ValidExponents() {
if (SecLevel() == SecurityLevel::STRONGBOX) {
return {65537};
} else {
return {3, 65537};
}
}
vector<Digest> KeyMintAidlTestBase::ValidDigests(bool withNone, bool withMD5) {
switch (SecLevel()) {
case SecurityLevel::SOFTWARE:
case SecurityLevel::TRUSTED_ENVIRONMENT:
if (withNone) {
if (withMD5)
return {Digest::NONE, Digest::MD5, Digest::SHA1,
Digest::SHA_2_224, Digest::SHA_2_256, Digest::SHA_2_384,
Digest::SHA_2_512};
else
return {Digest::NONE, Digest::SHA1, Digest::SHA_2_224,
Digest::SHA_2_256, Digest::SHA_2_384, Digest::SHA_2_512};
} else {
if (withMD5)
return {Digest::MD5, Digest::SHA1, Digest::SHA_2_224,
Digest::SHA_2_256, Digest::SHA_2_384, Digest::SHA_2_512};
else
return {Digest::SHA1, Digest::SHA_2_224, Digest::SHA_2_256, Digest::SHA_2_384,
Digest::SHA_2_512};
}
break;
case SecurityLevel::STRONGBOX:
if (withNone)
return {Digest::NONE, Digest::SHA_2_256};
else
return {Digest::SHA_2_256};
break;
default:
ADD_FAILURE() << "Invalid security level " << uint32_t(SecLevel());
break;
}
ADD_FAILURE() << "Should be impossible to get here";
return {};
}
static const vector<KeyParameter> kEmptyAuthList{};
const vector<KeyParameter>& KeyMintAidlTestBase::SecLevelAuthorizations(
const vector<KeyCharacteristics>& key_characteristics) {
auto found = std::find_if(key_characteristics.begin(), key_characteristics.end(),
[this](auto& entry) { return entry.securityLevel == SecLevel(); });
return (found == key_characteristics.end()) ? kEmptyAuthList : found->authorizations;
}
const vector<KeyParameter>& KeyMintAidlTestBase::SecLevelAuthorizations(
const vector<KeyCharacteristics>& key_characteristics, SecurityLevel securityLevel) {
auto found = std::find_if(
key_characteristics.begin(), key_characteristics.end(),
[securityLevel](auto& entry) { return entry.securityLevel == securityLevel; });
return (found == key_characteristics.end()) ? kEmptyAuthList : found->authorizations;
}
ErrorCode KeyMintAidlTestBase::UseAesKey(const vector<uint8_t>& aesKeyBlob) {
auto [result, ciphertext] = ProcessMessage(
aesKeyBlob, KeyPurpose::ENCRYPT, "1234567890123456",
AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::NONE));
return result;
}
ErrorCode KeyMintAidlTestBase::UseHmacKey(const vector<uint8_t>& hmacKeyBlob) {
auto [result, mac] = ProcessMessage(
hmacKeyBlob, KeyPurpose::SIGN, "1234567890123456",
AuthorizationSetBuilder().Authorization(TAG_MAC_LENGTH, 128).Digest(Digest::SHA_2_256));
return result;
}
ErrorCode KeyMintAidlTestBase::UseRsaKey(const vector<uint8_t>& rsaKeyBlob) {
std::string message(2048 / 8, 'a');
auto [result, signature] = ProcessMessage(
rsaKeyBlob, KeyPurpose::SIGN, message,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
return result;
}
ErrorCode KeyMintAidlTestBase::UseEcdsaKey(const vector<uint8_t>& ecdsaKeyBlob) {
auto [result, signature] = ProcessMessage(ecdsaKeyBlob, KeyPurpose::SIGN, "a",
AuthorizationSetBuilder().Digest(Digest::SHA_2_256));
return result;
}
ErrorCode KeyMintAidlTestBase::GenerateAttestKey(const AuthorizationSet& key_desc,
const optional<AttestationKey>& attest_key,
vector<uint8_t>* key_blob,
vector<KeyCharacteristics>* key_characteristics,
vector<Certificate>* cert_chain) {
// The original specification for KeyMint v1 required ATTEST_KEY not be combined
// with any other key purpose, but the original VTS tests incorrectly did exactly that.
// This means that a device that launched prior to Android T (API level 33) may
// accept or even require KeyPurpose::SIGN too.
if (property_get_int32("ro.board.first_api_level", 0) < __ANDROID_API_T__) {
AuthorizationSet key_desc_plus_sign = key_desc;
key_desc_plus_sign.push_back(TAG_PURPOSE, KeyPurpose::SIGN);
auto result = GenerateKey(key_desc_plus_sign, attest_key, key_blob, key_characteristics,
cert_chain);
if (result == ErrorCode::OK) {
return result;
}
// If the key generation failed, it may be because the device is (correctly)
// rejecting the combination of ATTEST_KEY+SIGN. Fall through to try again with
// just ATTEST_KEY.
}
return GenerateKey(key_desc, attest_key, key_blob, key_characteristics, cert_chain);
}
// Check if ATTEST_KEY feature is disabled
bool KeyMintAidlTestBase::is_attest_key_feature_disabled(void) const {
if (!check_feature(FEATURE_KEYSTORE_APP_ATTEST_KEY)) {
GTEST_LOG_(INFO) << "Feature " + FEATURE_KEYSTORE_APP_ATTEST_KEY + " is disabled";
return true;
}
return false;
}
// Check if StrongBox KeyStore is enabled
bool KeyMintAidlTestBase::is_strongbox_enabled(void) const {
if (check_feature(FEATURE_STRONGBOX_KEYSTORE)) {
GTEST_LOG_(INFO) << "Feature " + FEATURE_STRONGBOX_KEYSTORE + " is enabled";
return true;
}
return false;
}
// Check if chipset has received a waiver allowing it to be launched with Android S or T with
// Keymaster 4.0 in StrongBox.
bool KeyMintAidlTestBase::is_chipset_allowed_km4_strongbox(void) const {
std::array<char, PROPERTY_VALUE_MAX> buffer;
const int32_t first_api_level = property_get_int32("ro.board.first_api_level", 0);
if (first_api_level <= 0 || first_api_level > __ANDROID_API_T__) return false;
auto res = property_get("ro.vendor.qti.soc_model", buffer.data(), nullptr);
if (res <= 0) return false;
const string allowed_soc_models[] = {"SM8450", "SM8475", "SM8550", "SXR2230P",
"SM4450", "SM7450", "SM6450"};
for (const string model : allowed_soc_models) {
if (model.compare(buffer.data()) == 0) {
GTEST_LOG_(INFO) << "QTI SOC Model " + model + " is allowed SB KM 4.0";
return true;
}
}
return false;
}
// Indicate whether a test that involves use of the ATTEST_KEY feature should be
// skipped.
//
// In general, every KeyMint implementation should support ATTEST_KEY;
// however, there is a waiver for some specific devices that ship with a
// combination of Keymaster/StrongBox and KeyMint/TEE. On these devices, the
// ATTEST_KEY feature is disabled in the KeyMint/TEE implementation so that
// the device has consistent ATTEST_KEY behavior (ie. UNIMPLEMENTED) across both
// HAL implementations.
//
// This means that a test involving ATTEST_KEY test should be skipped if all of
// the following conditions hold:
// 1. The device is running one of the chipsets that have received a waiver
// allowing it to be launched with Android S or T with Keymaster 4.0
// in StrongBox
// 2. The device has a STRONGBOX implementation present.
// 3. ATTEST_KEY feature is advertised as disabled.
//
// Note that in this scenario, ATTEST_KEY tests should be skipped for both
// the StrongBox implementation (which is Keymaster, therefore not tested here)
// and for the TEE implementation (which is adjusted to return UNIMPLEMENTED
// specifically for this waiver).
bool KeyMintAidlTestBase::shouldSkipAttestKeyTest(void) const {
// Check the chipset first as that doesn't require a round-trip to Package Manager.
return (is_chipset_allowed_km4_strongbox() && is_strongbox_enabled() &&
is_attest_key_feature_disabled());
}
// Skip a test that involves use of the ATTEST_KEY feature in specific configurations
// where ATTEST_KEY is not supported (for either StrongBox or TEE).
void KeyMintAidlTestBase::skipAttestKeyTest(void) const {
if (shouldSkipAttestKeyTest()) {
GTEST_SKIP() << "Test using ATTEST_KEY is not applicable on waivered device";
}
}
void verify_serial(X509* cert, const uint64_t expected_serial) {
BIGNUM_Ptr ser(BN_new());
EXPECT_TRUE(ASN1_INTEGER_to_BN(X509_get_serialNumber(cert), ser.get()));
uint64_t serial;
EXPECT_TRUE(BN_get_u64(ser.get(), &serial));
EXPECT_EQ(serial, expected_serial);
}
// Please set self_signed to true for fake certificates or self signed
// certificates
void verify_subject(const X509* cert, //
const string& subject, //
bool self_signed) {
char* cert_issuer = //
X509_NAME_oneline(X509_get_issuer_name(cert), nullptr, 0);
char* cert_subj = X509_NAME_oneline(X509_get_subject_name(cert), nullptr, 0);
string expected_subject("/CN=");
if (subject.empty()) {
expected_subject.append("Android Keystore Key");
} else {
expected_subject.append(subject);
}
EXPECT_STREQ(expected_subject.c_str(), cert_subj) << "Cert has wrong subject." << cert_subj;
if (self_signed) {
EXPECT_STREQ(cert_issuer, cert_subj)
<< "Cert issuer and subject mismatch for self signed certificate.";
}
OPENSSL_free(cert_subj);
OPENSSL_free(cert_issuer);
}
int get_vsr_api_level() {
int vendor_api_level = ::android::base::GetIntProperty("ro.vendor.api_level", -1);
if (vendor_api_level != -1) {
return vendor_api_level;
}
// Android S and older devices do not define ro.vendor.api_level
vendor_api_level = ::android::base::GetIntProperty("ro.board.api_level", -1);
if (vendor_api_level == -1) {
vendor_api_level = ::android::base::GetIntProperty("ro.board.first_api_level", -1);
}
int product_api_level = ::android::base::GetIntProperty("ro.product.first_api_level", -1);
if (product_api_level == -1) {
product_api_level = ::android::base::GetIntProperty("ro.build.version.sdk", -1);
EXPECT_NE(product_api_level, -1) << "Could not find ro.build.version.sdk";
}
// VSR API level is the minimum of vendor_api_level and product_api_level.
if (vendor_api_level == -1 || vendor_api_level > product_api_level) {
return product_api_level;
}
return vendor_api_level;
}
bool is_gsi_image() {
std::ifstream ifs("/system/system_ext/etc/init/init.gsi.rc");
return ifs.good();
}
vector<uint8_t> build_serial_blob(const uint64_t serial_int) {
BIGNUM_Ptr serial(BN_new());
EXPECT_TRUE(BN_set_u64(serial.get(), serial_int));
int len = BN_num_bytes(serial.get());
vector<uint8_t> serial_blob(len);
if (BN_bn2bin(serial.get(), serial_blob.data()) != len) {
return {};
}
if (serial_blob.empty() || serial_blob[0] & 0x80) {
// An empty blob is OpenSSL's encoding of the zero value; we need single zero byte.
// Top bit being set indicates a negative number in two's complement, but our input
// was positive.
// In either case, prepend a zero byte.
serial_blob.insert(serial_blob.begin(), 0x00);
}
return serial_blob;
}
void verify_subject_and_serial(const Certificate& certificate, //
const uint64_t expected_serial, //
const string& subject, bool self_signed) {
X509_Ptr cert(parse_cert_blob(certificate.encodedCertificate));
ASSERT_TRUE(!!cert.get());
verify_serial(cert.get(), expected_serial);
verify_subject(cert.get(), subject, self_signed);
}
void verify_root_of_trust(const vector<uint8_t>& verified_boot_key, bool device_locked,
VerifiedBoot verified_boot_state,
const vector<uint8_t>& verified_boot_hash) {
char property_value[PROPERTY_VALUE_MAX] = {};
if (avb_verification_enabled()) {
EXPECT_NE(property_get("ro.boot.vbmeta.digest", property_value, ""), 0);
string prop_string(property_value);
EXPECT_EQ(prop_string.size(), 64);
EXPECT_EQ(prop_string, bin2hex(verified_boot_hash));
EXPECT_NE(property_get("ro.boot.vbmeta.device_state", property_value, ""), 0);
if (!strcmp(property_value, "unlocked")) {
EXPECT_FALSE(device_locked);
} else {
EXPECT_TRUE(device_locked);
}
// Check that the device is locked if not debuggable, e.g., user build
// images in CTS. For VTS, debuggable images are used to allow adb root
// and the device is unlocked.
if (!property_get_bool("ro.debuggable", false)) {
EXPECT_TRUE(device_locked);
} else {
EXPECT_FALSE(device_locked);
}
}
// Verified boot key should be all 0's if the boot state is not verified or self signed
std::string empty_boot_key(32, '\0');
std::string verified_boot_key_str((const char*)verified_boot_key.data(),
verified_boot_key.size());
if (get_vsr_api_level() >= __ANDROID_API_V__) {
// The attestation should contain the SHA-256 hash of the verified boot
// key. However, this was not checked for earlier versions of the KeyMint
// HAL so only be strict for VSR-V and above.
EXPECT_LE(verified_boot_key.size(), 32);
}
EXPECT_NE(property_get("ro.boot.verifiedbootstate", property_value, ""), 0);
if (!strcmp(property_value, "green")) {
EXPECT_EQ(verified_boot_state, VerifiedBoot::VERIFIED);
EXPECT_NE(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "yellow")) {
EXPECT_EQ(verified_boot_state, VerifiedBoot::SELF_SIGNED);
EXPECT_NE(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "orange")) {
EXPECT_EQ(verified_boot_state, VerifiedBoot::UNVERIFIED);
EXPECT_EQ(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "red")) {
EXPECT_EQ(verified_boot_state, VerifiedBoot::FAILED);
} else {
EXPECT_EQ(verified_boot_state, VerifiedBoot::UNVERIFIED);
EXPECT_EQ(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
}
}
bool verify_attestation_record(int32_t aidl_version, //
const string& challenge, //
const string& app_id, //
AuthorizationSet expected_sw_enforced, //
AuthorizationSet expected_hw_enforced, //
SecurityLevel security_level,
const vector<uint8_t>& attestation_cert,
vector<uint8_t>* unique_id) {
X509_Ptr cert(parse_cert_blob(attestation_cert));
EXPECT_TRUE(!!cert.get());
if (!cert.get()) return false;
// Make sure CRL Distribution Points extension is not present in a certificate
// containing attestation record.
check_crl_distribution_points_extension_not_present(cert.get());
ASN1_OCTET_STRING* attest_rec = get_attestation_record(cert.get());
EXPECT_TRUE(!!attest_rec);
if (!attest_rec) return false;
AuthorizationSet att_sw_enforced;
AuthorizationSet att_hw_enforced;
uint32_t att_attestation_version;
uint32_t att_keymint_version;
SecurityLevel att_attestation_security_level;
SecurityLevel att_keymint_security_level;
vector<uint8_t> att_challenge;
vector<uint8_t> att_unique_id;
vector<uint8_t> att_app_id;
auto error = parse_attestation_record(attest_rec->data, //
attest_rec->length, //
&att_attestation_version, //
&att_attestation_security_level, //
&att_keymint_version, //
&att_keymint_security_level, //
&att_challenge, //
&att_sw_enforced, //
&att_hw_enforced, //
&att_unique_id);
EXPECT_EQ(ErrorCode::OK, error);
if (error != ErrorCode::OK) return false;
check_attestation_version(att_attestation_version, aidl_version);
vector<uint8_t> appId(app_id.begin(), app_id.end());
// check challenge and app id only if we expects a non-fake certificate
if (challenge.length() > 0) {
EXPECT_EQ(challenge.length(), att_challenge.size());
EXPECT_EQ(0, memcmp(challenge.data(), att_challenge.data(), challenge.length()));
expected_sw_enforced.push_back(TAG_ATTESTATION_APPLICATION_ID, appId);
}
check_attestation_version(att_keymint_version, aidl_version);
EXPECT_EQ(security_level, att_keymint_security_level);
EXPECT_EQ(security_level, att_attestation_security_level);
for (int i = 0; i < att_hw_enforced.size(); i++) {
if (att_hw_enforced[i].tag == TAG_BOOT_PATCHLEVEL ||
att_hw_enforced[i].tag == TAG_VENDOR_PATCHLEVEL) {
std::string date =
std::to_string(att_hw_enforced[i].value.get<KeyParameterValue::integer>());
// strptime seems to require delimiters, but the tag value will
// be YYYYMMDD
if (date.size() != 8) {
ADD_FAILURE() << "Tag " << att_hw_enforced[i].tag
<< " with invalid format (not YYYYMMDD): " << date;
return false;
}
date.insert(6, "-");
date.insert(4, "-");
struct tm time;
strptime(date.c_str(), "%Y-%m-%d", &time);
// Day of the month (0-31)
EXPECT_GE(time.tm_mday, 0);
EXPECT_LT(time.tm_mday, 32);
// Months since Jan (0-11)
EXPECT_GE(time.tm_mon, 0);
EXPECT_LT(time.tm_mon, 12);
// Years since 1900
EXPECT_GT(time.tm_year, 110);
EXPECT_LT(time.tm_year, 200);
}
}
// Check to make sure boolean values are properly encoded. Presence of a boolean tag
// indicates true. A provided boolean tag that can be pulled back out of the certificate
// indicates correct encoding. No need to check if it's in both lists, since the
// AuthorizationSet compare below will handle mismatches of tags.
if (security_level == SecurityLevel::SOFTWARE) {
EXPECT_TRUE(expected_sw_enforced.Contains(TAG_NO_AUTH_REQUIRED));
} else {
EXPECT_TRUE(expected_hw_enforced.Contains(TAG_NO_AUTH_REQUIRED));
}
if (att_hw_enforced.Contains(TAG_ALGORITHM, Algorithm::EC)) {
// For ECDSA keys, either an EC_CURVE or a KEY_SIZE can be specified, but one must be.
EXPECT_TRUE(att_hw_enforced.Contains(TAG_EC_CURVE) ||
att_hw_enforced.Contains(TAG_KEY_SIZE));
}
// Test root of trust elements
vector<uint8_t> verified_boot_key;
VerifiedBoot verified_boot_state;
bool device_locked;
vector<uint8_t> verified_boot_hash;
error = parse_root_of_trust(attest_rec->data, attest_rec->length, &verified_boot_key,
&verified_boot_state, &device_locked, &verified_boot_hash);
EXPECT_EQ(ErrorCode::OK, error);
verify_root_of_trust(verified_boot_key, device_locked, verified_boot_state, verified_boot_hash);
att_sw_enforced.Sort();
expected_sw_enforced.Sort();
EXPECT_EQ(filtered_tags(expected_sw_enforced), filtered_tags(att_sw_enforced));
att_hw_enforced.Sort();
expected_hw_enforced.Sort();
EXPECT_EQ(filtered_tags(expected_hw_enforced), filtered_tags(att_hw_enforced));
if (unique_id != nullptr) {
*unique_id = att_unique_id;
}
return true;
}
string bin2hex(const vector<uint8_t>& data) {
string retval;
retval.reserve(data.size() * 2 + 1);
for (uint8_t byte : data) {
retval.push_back(nibble2hex[0x0F & (byte >> 4)]);
retval.push_back(nibble2hex[0x0F & byte]);
}
return retval;
}
AuthorizationSet HwEnforcedAuthorizations(const vector<KeyCharacteristics>& key_characteristics) {
AuthorizationSet authList;
for (auto& entry : key_characteristics) {
if (entry.securityLevel == SecurityLevel::STRONGBOX ||
entry.securityLevel == SecurityLevel::TRUSTED_ENVIRONMENT) {
authList.push_back(AuthorizationSet(entry.authorizations));
}
}
return authList;
}
AuthorizationSet SwEnforcedAuthorizations(const vector<KeyCharacteristics>& key_characteristics) {
AuthorizationSet authList;
for (auto& entry : key_characteristics) {
if (entry.securityLevel == SecurityLevel::SOFTWARE ||
entry.securityLevel == SecurityLevel::KEYSTORE) {
authList.push_back(AuthorizationSet(entry.authorizations));
}
}
return authList;
}
AssertionResult ChainSignaturesAreValid(const vector<Certificate>& chain,
bool strict_issuer_check) {
std::stringstream cert_data;
for (size_t i = 0; i < chain.size(); ++i) {
cert_data << bin2hex(chain[i].encodedCertificate) << std::endl;
X509_Ptr key_cert(parse_cert_blob(chain[i].encodedCertificate));
X509_Ptr signing_cert;
if (i < chain.size() - 1) {
signing_cert = parse_cert_blob(chain[i + 1].encodedCertificate);
} else {
signing_cert = parse_cert_blob(chain[i].encodedCertificate);
}
if (!key_cert.get() || !signing_cert.get()) return AssertionFailure() << cert_data.str();
EVP_PKEY_Ptr signing_pubkey(X509_get_pubkey(signing_cert.get()));
if (!signing_pubkey.get()) return AssertionFailure() << cert_data.str();
if (!X509_verify(key_cert.get(), signing_pubkey.get())) {
return AssertionFailure()
<< "Verification of certificate " << i << " failed "
<< "OpenSSL error string: " << ERR_error_string(ERR_get_error(), NULL) << '\n'
<< cert_data.str();
}
string cert_issuer = x509NameToStr(X509_get_issuer_name(key_cert.get()));
string signer_subj = x509NameToStr(X509_get_subject_name(signing_cert.get()));
if (cert_issuer != signer_subj && strict_issuer_check) {
return AssertionFailure() << "Cert " << i << " has wrong issuer.\n"
<< " Signer subject is " << signer_subj
<< " Issuer subject is " << cert_issuer << endl
<< cert_data.str();
}
}
if (KeyMintAidlTestBase::dump_Attestations) std::cout << cert_data.str();
return AssertionSuccess();
}
ErrorCode GetReturnErrorCode(const Status& result) {
if (result.isOk()) return ErrorCode::OK;
if (result.getExceptionCode() == EX_SERVICE_SPECIFIC) {
return static_cast<ErrorCode>(result.getServiceSpecificError());
}
return ErrorCode::UNKNOWN_ERROR;
}
X509_Ptr parse_cert_blob(const vector<uint8_t>& blob) {
const uint8_t* p = blob.data();
return X509_Ptr(d2i_X509(nullptr /* allocate new */, &p, blob.size()));
}
// Extract attestation record from cert. Returned object is still part of cert; don't free it
// separately.
ASN1_OCTET_STRING* get_attestation_record(X509* certificate) {
ASN1_OBJECT_Ptr oid(OBJ_txt2obj(kAttestionRecordOid, 1 /* dotted string format */));
EXPECT_TRUE(!!oid.get());
if (!oid.get()) return nullptr;
int location = X509_get_ext_by_OBJ(certificate, oid.get(), -1 /* search from beginning */);
EXPECT_NE(-1, location) << "Attestation extension not found in certificate";
if (location == -1) return nullptr;
X509_EXTENSION* attest_rec_ext = X509_get_ext(certificate, location);
EXPECT_TRUE(!!attest_rec_ext)
<< "Found attestation extension but couldn't retrieve it? Probably a BoringSSL bug.";
if (!attest_rec_ext) return nullptr;
ASN1_OCTET_STRING* attest_rec = X509_EXTENSION_get_data(attest_rec_ext);
EXPECT_TRUE(!!attest_rec) << "Attestation extension contained no data";
return attest_rec;
}
vector<uint8_t> make_name_from_str(const string& name) {
X509_NAME_Ptr x509_name(X509_NAME_new());
EXPECT_TRUE(x509_name.get() != nullptr);
if (!x509_name) return {};
EXPECT_EQ(1, X509_NAME_add_entry_by_txt(x509_name.get(), //
"CN", //
MBSTRING_ASC,
reinterpret_cast<const uint8_t*>(name.c_str()),
-1, // len
-1, // loc
0 /* set */));
int len = i2d_X509_NAME(x509_name.get(), nullptr /* only return length */);
EXPECT_GT(len, 0);
vector<uint8_t> retval(len);
uint8_t* p = retval.data();
i2d_X509_NAME(x509_name.get(), &p);
return retval;
}
void KeyMintAidlTestBase::assert_mgf_digests_present_or_not_in_key_characteristics(
std::vector<android::hardware::security::keymint::Digest>& expected_mgf_digests,
bool is_mgf_digest_expected) const {
assert_mgf_digests_present_or_not_in_key_characteristics(
key_characteristics_, expected_mgf_digests, is_mgf_digest_expected);
}
void KeyMintAidlTestBase::assert_mgf_digests_present_or_not_in_key_characteristics(
const vector<KeyCharacteristics>& key_characteristics,
std::vector<android::hardware::security::keymint::Digest>& expected_mgf_digests,
bool is_mgf_digest_expected) const {
// There was no test to assert that MGF1 digest was present in generated/imported key
// characteristics before Keymint V3, so there are some Keymint implementations where
// asserting for MGF1 digest fails(b/297306437), hence skipping for Keymint < 3.
if (AidlVersion() < 3) {
return;
}
AuthorizationSet auths;
for (auto& entry : key_characteristics) {
auths.push_back(AuthorizationSet(entry.authorizations));
}
for (auto digest : expected_mgf_digests) {
if (is_mgf_digest_expected) {
ASSERT_TRUE(auths.Contains(TAG_RSA_OAEP_MGF_DIGEST, digest));
} else {
ASSERT_FALSE(auths.Contains(TAG_RSA_OAEP_MGF_DIGEST, digest));
}
}
}
namespace {
void check_cose_key(const vector<uint8_t>& data, bool testMode) {
auto [parsedPayload, __, payloadParseErr] = cppbor::parse(data);
ASSERT_TRUE(parsedPayload) << "Key parse failed: " << payloadParseErr;
// The following check assumes that canonical CBOR encoding is used for the COSE_Key.
if (testMode) {
EXPECT_THAT(
cppbor::prettyPrint(parsedPayload.get()),
MatchesRegex("\\{\n"
" 1 : 2,\n" // kty: EC2
" 3 : -7,\n" // alg: ES256
" -1 : 1,\n" // EC id: P256
// The regex {(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}} matches a
// sequence of 32 hexadecimal bytes, enclosed in braces and
// separated by commas. In this case, some Ed25519 public key.
" -2 : \\{(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}\\},\n" // pub_x: data
" -3 : \\{(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}\\},\n" // pub_y: data
" -70000 : null,\n" // test marker
"\\}"));
} else {
EXPECT_THAT(
cppbor::prettyPrint(parsedPayload.get()),
MatchesRegex("\\{\n"
" 1 : 2,\n" // kty: EC2
" 3 : -7,\n" // alg: ES256
" -1 : 1,\n" // EC id: P256
// The regex {(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}} matches a
// sequence of 32 hexadecimal bytes, enclosed in braces and
// separated by commas. In this case, some Ed25519 public key.
" -2 : \\{(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}\\},\n" // pub_x: data
" -3 : \\{(0x[0-9a-f]{2}, ){31}0x[0-9a-f]{2}\\},\n" // pub_y: data
"\\}"));
}
}
} // namespace
void check_maced_pubkey(const MacedPublicKey& macedPubKey, bool testMode,
vector<uint8_t>* payload_value) {
auto [coseMac0, _, mac0ParseErr] = cppbor::parse(macedPubKey.macedKey);
ASSERT_TRUE(coseMac0) << "COSE Mac0 parse failed " << mac0ParseErr;
ASSERT_NE(coseMac0->asArray(), nullptr);
ASSERT_EQ(coseMac0->asArray()->size(), kCoseMac0EntryCount);
auto protParms = coseMac0->asArray()->get(kCoseMac0ProtectedParams)->asBstr();
ASSERT_NE(protParms, nullptr);
// Header label:value of 'alg': HMAC-256
ASSERT_EQ(cppbor::prettyPrint(protParms->value()), "{\n 1 : 5,\n}");
auto unprotParms = coseMac0->asArray()->get(kCoseMac0UnprotectedParams)->asMap();
ASSERT_NE(unprotParms, nullptr);
ASSERT_EQ(unprotParms->size(), 0);
// The payload is a bstr holding an encoded COSE_Key
auto payload = coseMac0->asArray()->get(kCoseMac0Payload)->asBstr();
ASSERT_NE(payload, nullptr);
check_cose_key(payload->value(), testMode);
auto coseMac0Tag = coseMac0->asArray()->get(kCoseMac0Tag)->asBstr();
ASSERT_TRUE(coseMac0Tag);
auto extractedTag = coseMac0Tag->value();
EXPECT_EQ(extractedTag.size(), 32U);
// Compare with tag generated with kTestMacKey. Should only match in test mode
auto macFunction = [](const cppcose::bytevec& input) {
return cppcose::generateHmacSha256(remote_prov::kTestMacKey, input);
};
auto testTag =
cppcose::generateCoseMac0Mac(macFunction, {} /* external_aad */, payload->value());
ASSERT_TRUE(testTag) << "Tag calculation failed: " << testTag.message();
if (testMode) {
EXPECT_THAT(*testTag, ElementsAreArray(extractedTag));
} else {
EXPECT_THAT(*testTag, Not(ElementsAreArray(extractedTag)));
}
if (payload_value != nullptr) {
*payload_value = payload->value();
}
}
void p256_pub_key(const vector<uint8_t>& coseKeyData, EVP_PKEY_Ptr* signingKey) {
// Extract x and y affine coordinates from the encoded Cose_Key.
auto [parsedPayload, __, payloadParseErr] = cppbor::parse(coseKeyData);
ASSERT_TRUE(parsedPayload) << "Key parse failed: " << payloadParseErr;
auto coseKey = parsedPayload->asMap();
const std::unique_ptr<cppbor::Item>& xItem = coseKey->get(cppcose::CoseKey::PUBKEY_X);
ASSERT_NE(xItem->asBstr(), nullptr);
vector<uint8_t> x = xItem->asBstr()->value();
const std::unique_ptr<cppbor::Item>& yItem = coseKey->get(cppcose::CoseKey::PUBKEY_Y);
ASSERT_NE(yItem->asBstr(), nullptr);
vector<uint8_t> y = yItem->asBstr()->value();
// Concatenate: 0x04 (uncompressed form marker) | x | y
vector<uint8_t> pubKeyData{0x04};
pubKeyData.insert(pubKeyData.end(), x.begin(), x.end());
pubKeyData.insert(pubKeyData.end(), y.begin(), y.end());
EC_KEY_Ptr ecKey = EC_KEY_Ptr(EC_KEY_new());
ASSERT_NE(ecKey, nullptr);
EC_GROUP_Ptr group = EC_GROUP_Ptr(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
ASSERT_NE(group, nullptr);
ASSERT_EQ(EC_KEY_set_group(ecKey.get(), group.get()), 1);
EC_POINT_Ptr point = EC_POINT_Ptr(EC_POINT_new(group.get()));
ASSERT_NE(point, nullptr);
ASSERT_EQ(EC_POINT_oct2point(group.get(), point.get(), pubKeyData.data(), pubKeyData.size(),
nullptr),
1);
ASSERT_EQ(EC_KEY_set_public_key(ecKey.get(), point.get()), 1);
EVP_PKEY_Ptr pubKey = EVP_PKEY_Ptr(EVP_PKEY_new());
ASSERT_NE(pubKey, nullptr);
EVP_PKEY_assign_EC_KEY(pubKey.get(), ecKey.release());
*signingKey = std::move(pubKey);
}
// Check the error code from an attempt to perform device ID attestation with an invalid value.
void device_id_attestation_check_acceptable_error(Tag tag, const ErrorCode& result) {
if (result == ErrorCode::CANNOT_ATTEST_IDS) {
// Standard/default error code for ID mismatch.
} else if (result == ErrorCode::INVALID_TAG) {
// Depending on the situation, other error codes may be acceptable. First, allow older
// implementations to use INVALID_TAG.
ASSERT_FALSE(get_vsr_api_level() > __ANDROID_API_T__)
<< "It is a specification violation for INVALID_TAG to be returned due to ID "
<< "mismatch in a Device ID Attestation call. INVALID_TAG is only intended to "
<< "be used for a case where updateAad() is called after update(). As of "
<< "VSR-14, this is now enforced as an error.";
} else if (result == ErrorCode::ATTESTATION_IDS_NOT_PROVISIONED) {
// If the device is not a phone, it will not have IMEI/MEID values available. Allow
// ATTESTATION_IDS_NOT_PROVISIONED in this case.
ASSERT_TRUE((tag == TAG_ATTESTATION_ID_IMEI || tag == TAG_ATTESTATION_ID_MEID ||
tag == TAG_ATTESTATION_ID_SECOND_IMEI))
<< "incorrect error code on attestation ID mismatch";
} else {
ADD_FAILURE() << "Error code " << result
<< " returned on attestation ID mismatch, should be CANNOT_ATTEST_IDS";
}
}
// Check whether the given named feature is available.
bool check_feature(const std::string& name) {
::android::sp<::android::IServiceManager> sm(::android::defaultServiceManager());
::android::sp<::android::IBinder> binder(
sm->waitForService(::android::String16("package_native")));
if (binder == nullptr) {
GTEST_LOG_(ERROR) << "waitForService package_native failed";
return false;
}
::android::sp<::android::content::pm::IPackageManagerNative> packageMgr =
::android::interface_cast<::android::content::pm::IPackageManagerNative>(binder);
if (packageMgr == nullptr) {
GTEST_LOG_(ERROR) << "Cannot find package manager";
return false;
}
bool hasFeature = false;
auto status = packageMgr->hasSystemFeature(::android::String16(name.c_str()), 0, &hasFeature);
if (!status.isOk()) {
GTEST_LOG_(ERROR) << "hasSystemFeature('" << name << "') failed: " << status;
return false;
}
return hasFeature;
}
// Return the numeric value associated with a feature.
std::optional<int32_t> keymint_feature_value(bool strongbox) {
std::string name = strongbox ? FEATURE_STRONGBOX_KEYSTORE : FEATURE_HARDWARE_KEYSTORE;
::android::String16 name16(name.c_str());
::android::sp<::android::IServiceManager> sm(::android::defaultServiceManager());
::android::sp<::android::IBinder> binder(
sm->waitForService(::android::String16("package_native")));
if (binder == nullptr) {
GTEST_LOG_(ERROR) << "waitForService package_native failed";
return std::nullopt;
}
::android::sp<::android::content::pm::IPackageManagerNative> packageMgr =
::android::interface_cast<::android::content::pm::IPackageManagerNative>(binder);
if (packageMgr == nullptr) {
GTEST_LOG_(ERROR) << "Cannot find package manager";
return std::nullopt;
}
// Package manager has no mechanism to retrieve the version of a feature,
// only to indicate whether a certain version or above is present.
std::optional<int32_t> result = std::nullopt;
for (auto version : kFeatureVersions) {
bool hasFeature = false;
auto status = packageMgr->hasSystemFeature(name16, version, &hasFeature);
if (!status.isOk()) {
GTEST_LOG_(ERROR) << "hasSystemFeature('" << name << "', " << version
<< ") failed: " << status;
return result;
} else if (hasFeature) {
result = version;
} else {
break;
}
}
return result;
}
} // namespace test
} // namespace aidl::android::hardware::security::keymint