| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <HadamardUtils.h> |
| |
| #include <android-base/logging.h> |
| |
| namespace aidl { |
| namespace android { |
| namespace hardware { |
| namespace rebootescrow { |
| namespace hadamard { |
| |
| static inline uint8_t read_bit(const std::vector<uint8_t>& input, size_t bit) { |
| return (input[bit >> 3] >> (bit & 7)) & 1u; |
| } |
| |
| // Use a simple LCG which is easy to run in reverse. |
| // https://www.johndcook.com/blog/2017/07/05/simple-random-number-generator/ |
| constexpr uint64_t RNG_MODULUS = 0x7fffffff; |
| constexpr uint64_t RNG_MUL = 742938285; |
| constexpr uint64_t RNG_SEED = 20170705; |
| constexpr uint64_t RNG_INV_MUL = 1413043504; // (mul * inv_mul) % modulus == 1 |
| constexpr uint64_t RNG_INV_SEED = 1173538311; // (seed * mul**65534) % modulus |
| |
| // Apply an error correcting encoding. |
| // |
| // The error correcting code used is an augmented Hadamard code with |
| // k=15, so it takes a 16-bit input and produces a 2^15-bit output. |
| // We break the 32-byte key into 16 16-bit codewords and encode |
| // each codeword to a 2^15-bit output. |
| // |
| // To better defend against clustered errors, we stripe together the encoded |
| // codewords. Thus if a single 512-byte DRAM line is lost, instead of losing |
| // 2^11 bits from the encoding of a single code word, we lose 2^7 bits |
| // from the encoding of each of the 16 codewords. |
| // In addition we apply a Fisher-Yates shuffle to the bytes of the encoding; |
| // Hadamard encoding recovers much better from random errors than systematic |
| // ones, and this ensures that errors will be random. |
| std::vector<uint8_t> EncodeKey(const std::vector<uint8_t>& input) { |
| CHECK_EQ(input.size(), KEY_SIZE_IN_BYTES); |
| std::vector<uint8_t> result(OUTPUT_SIZE_BYTES, 0); |
| static_assert(OUTPUT_SIZE_BYTES == 64 * 1024); |
| // Transpose the key so that each row contains one bit from each codeword |
| uint16_t wordmatrix[CODEWORD_BITS]; |
| for (size_t i = 0; i < CODEWORD_BITS; i++) { |
| uint16_t word = 0; |
| for (size_t j = 0; j < KEY_CODEWORDS; j++) { |
| word |= read_bit(input, i + j * CODEWORD_BITS) << j; |
| } |
| wordmatrix[i] = word; |
| } |
| // Fill in the encodings in Gray code order for speed. |
| uint16_t val = wordmatrix[CODEWORD_BITS - 1]; |
| size_t ix = 0; |
| for (size_t i = 0; i < ENCODE_LENGTH; i++) { |
| for (size_t b = 0; b < CODEWORD_BITS; b++) { |
| if (i & (1 << b)) { |
| ix ^= (1 << b); |
| val ^= wordmatrix[b]; |
| break; |
| } |
| } |
| result[ix * KEY_CODEWORD_BYTES] = val & 0xffu; |
| result[ix * KEY_CODEWORD_BYTES + 1] = val >> 8u; |
| } |
| // Apply the inverse shuffle here; we apply the forward shuffle in decoding. |
| uint64_t rng_state = RNG_INV_SEED; |
| for (size_t i = OUTPUT_SIZE_BYTES - 1; i > 0; i--) { |
| auto j = rng_state % (i + 1); |
| auto t = result[i]; |
| result[i] = result[j]; |
| result[j] = t; |
| rng_state *= RNG_INV_MUL; |
| rng_state %= RNG_MODULUS; |
| } |
| return result; |
| } |
| |
| // Constant-time conditional copy, to fix b/146520538 |
| // ctl must be 0 or 1; we do the copy if it's 1. |
| static void CondCopy(uint32_t ctl, void* dest, const void* src, size_t len) { |
| const auto cdest = reinterpret_cast<uint8_t*>(dest); |
| const auto csrc = reinterpret_cast<const uint8_t*>(src); |
| for (size_t i = 0; i < len; i++) { |
| const uint32_t d = cdest[i]; |
| const uint32_t s = csrc[i]; |
| cdest[i] = d ^ (-ctl & (s ^ d)); |
| } |
| } |
| |
| struct CodewordWinner { |
| uint16_t codeword; |
| int32_t score; |
| }; |
| |
| // Replace dest with src if it has a higher score |
| static void CopyWinner(CodewordWinner* dest, const CodewordWinner& src) { |
| // Scores are between - 2^15 and 2^15, so taking the difference won't |
| // overflow; we use the sign bit of the difference here. |
| CondCopy(static_cast<uint32_t>(dest->score - src.score) >> 31, dest, &src, |
| sizeof(CodewordWinner)); |
| } |
| |
| // Decode a single codeword. Because of the way codewords are striped together |
| // this takes the entire input, plus an offset telling it which word to decode. |
| static uint16_t DecodeWord(size_t word, const std::vector<uint8_t>& encoded) { |
| std::vector<int32_t> scores; |
| scores.reserve(ENCODE_LENGTH); |
| // Convert x -> -1^x in the encoded bits. e.g [1, 0, 0, 1] -> [-1, 1, 1, -1] |
| for (uint32_t i = 0; i < ENCODE_LENGTH; i++) { |
| scores.push_back(1 - 2 * read_bit(encoded, i * KEY_CODEWORDS + word)); |
| } |
| |
| // Multiply the hadamard matrix by the transformed input. |
| // |1 1 1 1| |-1| | 0| |
| // |1 -1 1 -1| * | 1| = | 0| |
| // |1 1 -1 -1| | 1| | 0| |
| // |1 -1 -1 1| |-1| |-4| |
| for (uint32_t i = 0; i < CODE_K; i++) { |
| uint16_t step = 1u << i; |
| for (uint32_t j = 0; j < ENCODE_LENGTH; j += 2 * step) { |
| for (uint32_t k = j; k < j + step; k++) { |
| auto a0 = scores[k]; |
| auto a1 = scores[k + step]; |
| scores[k] = a0 + a1; |
| scores[k + step] = a0 - a1; |
| } |
| } |
| } |
| // -ENCODE_LENGTH is least possible score, so start one less than that |
| auto best = CodewordWinner{0, -static_cast<int32_t>(ENCODE_LENGTH + 1)}; |
| // For every possible codeword value, look at its score, and replace best if it's higher, |
| // in constant time. |
| for (size_t i = 0; i < ENCODE_LENGTH; i++) { |
| CopyWinner(&best, CodewordWinner{static_cast<uint16_t>(i), scores[i]}); |
| CopyWinner(&best, CodewordWinner{static_cast<uint16_t>(i | (1 << CODE_K)), -scores[i]}); |
| } |
| return best.codeword; |
| } |
| |
| std::vector<uint8_t> DecodeKey(const std::vector<uint8_t>& shuffled) { |
| CHECK_EQ(OUTPUT_SIZE_BYTES, shuffled.size()); |
| // Apply the forward Fisher-Yates shuffle. |
| std::vector<uint8_t> encoded(OUTPUT_SIZE_BYTES, 0); |
| encoded[0] = shuffled[0]; |
| uint64_t rng_state = RNG_SEED; |
| for (size_t i = 1; i < OUTPUT_SIZE_BYTES; i++) { |
| auto j = rng_state % (i + 1); |
| encoded[i] = encoded[j]; |
| encoded[j] = shuffled[i]; |
| rng_state *= RNG_MUL; |
| rng_state %= RNG_MODULUS; |
| } |
| std::vector<uint8_t> result(KEY_SIZE_IN_BYTES, 0); |
| for (size_t i = 0; i < KEY_CODEWORDS; i++) { |
| uint16_t val = DecodeWord(i, encoded); |
| result[i * CODEWORD_BYTES] = val & 0xffu; |
| result[i * CODEWORD_BYTES + 1] = val >> 8u; |
| } |
| return result; |
| } |
| |
| } // namespace hadamard |
| } // namespace rebootescrow |
| } // namespace hardware |
| } // namespace android |
| } // namespace aidl |