blob: 9b9c565dd5b882155d3c15d14e3ac5d69fdde13d [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wifi_chip.h"
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <cutils/properties.h>
#include <fcntl.h>
#include <hardware_legacy/wifi_hal.h>
#include <net/if.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include "aidl_return_util.h"
#include "aidl_struct_util.h"
#include "wifi_legacy_hal.h"
#include "wifi_status_util.h"
#define P2P_MGMT_DEVICE_PREFIX "p2p-dev-"
namespace {
using android::base::unique_fd;
constexpr size_t kMaxBufferSizeBytes = 1024 * 1024 * 3;
constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60 * 10;
constexpr uint32_t kMaxRingBufferFileNum = 20;
constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
constexpr char kActiveWlanIfaceNameProperty[] = "wifi.active.interface";
constexpr char kNoActiveWlanIfaceNamePropertyValue[] = "";
constexpr unsigned kMaxWlanIfaces = 5;
constexpr char kApBridgeIfacePrefix[] = "ap_br_";
template <typename Iface>
void invalidateAndClear(std::vector<std::shared_ptr<Iface>>& ifaces, std::shared_ptr<Iface> iface) {
iface->invalidate();
ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface), ifaces.end());
}
template <typename Iface>
void invalidateAndClearAll(std::vector<std::shared_ptr<Iface>>& ifaces) {
for (const auto& iface : ifaces) {
iface->invalidate();
}
ifaces.clear();
}
template <typename Iface>
std::vector<std::string> getNames(std::vector<std::shared_ptr<Iface>>& ifaces) {
std::vector<std::string> names;
for (const auto& iface : ifaces) {
names.emplace_back(iface->getName());
}
return names;
}
template <typename Iface>
std::shared_ptr<Iface> findUsingName(std::vector<std::shared_ptr<Iface>>& ifaces,
const std::string& name) {
std::vector<std::string> names;
for (const auto& iface : ifaces) {
if (name == iface->getName()) {
return iface;
}
}
return nullptr;
}
std::string getWlanIfaceName(unsigned idx) {
if (idx >= kMaxWlanIfaces) {
CHECK(false) << "Requested interface beyond wlan" << kMaxWlanIfaces;
return {};
}
std::array<char, PROPERTY_VALUE_MAX> buffer;
if (idx == 0 || idx == 1) {
const char* altPropName = (idx == 0) ? "wifi.interface" : "wifi.concurrent.interface";
auto res = property_get(altPropName, buffer.data(), nullptr);
if (res > 0) return buffer.data();
}
std::string propName = "wifi.interface." + std::to_string(idx);
auto res = property_get(propName.c_str(), buffer.data(), nullptr);
if (res > 0) return buffer.data();
return "wlan" + std::to_string(idx);
}
// Returns the dedicated iface name if defined.
// Returns two ifaces in bridged mode.
std::vector<std::string> getPredefinedApIfaceNames(bool is_bridged) {
std::vector<std::string> ifnames;
std::array<char, PROPERTY_VALUE_MAX> buffer;
buffer.fill(0);
if (property_get("ro.vendor.wifi.sap.interface", buffer.data(), nullptr) == 0) {
return ifnames;
}
ifnames.push_back(buffer.data());
if (is_bridged) {
buffer.fill(0);
if (property_get("ro.vendor.wifi.sap.concurrent.iface", buffer.data(), nullptr) == 0) {
return ifnames;
}
ifnames.push_back(buffer.data());
}
return ifnames;
}
std::string getPredefinedP2pIfaceName() {
std::array<char, PROPERTY_VALUE_MAX> primaryIfaceName;
char p2pParentIfname[100];
std::string p2pDevIfName = "";
std::array<char, PROPERTY_VALUE_MAX> buffer;
property_get("wifi.direct.interface", buffer.data(), "p2p0");
if (strncmp(buffer.data(), P2P_MGMT_DEVICE_PREFIX, strlen(P2P_MGMT_DEVICE_PREFIX)) == 0) {
/* Get the p2p parent interface name from p2p device interface name set
* in property */
strlcpy(p2pParentIfname, buffer.data() + strlen(P2P_MGMT_DEVICE_PREFIX),
strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX));
if (property_get(kActiveWlanIfaceNameProperty, primaryIfaceName.data(), nullptr) == 0) {
return buffer.data();
}
/* Check if the parent interface derived from p2p device interface name
* is active */
if (strncmp(p2pParentIfname, primaryIfaceName.data(),
strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX)) != 0) {
/*
* Update the predefined p2p device interface parent interface name
* with current active wlan interface
*/
p2pDevIfName += P2P_MGMT_DEVICE_PREFIX;
p2pDevIfName += primaryIfaceName.data();
LOG(INFO) << "update the p2p device interface name to " << p2pDevIfName.c_str();
return p2pDevIfName;
}
}
return buffer.data();
}
// Returns the dedicated iface name if one is defined.
std::string getPredefinedNanIfaceName() {
std::array<char, PROPERTY_VALUE_MAX> buffer;
if (property_get("wifi.aware.interface", buffer.data(), nullptr) == 0) {
return {};
}
return buffer.data();
}
void setActiveWlanIfaceNameProperty(const std::string& ifname) {
auto res = property_set(kActiveWlanIfaceNameProperty, ifname.data());
if (res != 0) {
PLOG(ERROR) << "Failed to set active wlan iface name property";
}
}
// Delete files that meet either condition:
// 1. Older than a predefined time in the wifi tombstone dir.
// 2. Files in excess to a predefined amount, starting from the oldest ones
bool removeOldFilesInternal() {
time_t now = time(0);
const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(kTombstoneFolderPath), closedir);
if (!dir_dump) {
PLOG(ERROR) << "Failed to open directory";
return false;
}
struct dirent* dp;
bool success = true;
std::list<std::pair<const time_t, std::string>> valid_files;
while ((dp = readdir(dir_dump.get()))) {
if (dp->d_type != DT_REG) {
continue;
}
std::string cur_file_name(dp->d_name);
struct stat cur_file_stat;
std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
success = false;
continue;
}
const time_t cur_file_time = cur_file_stat.st_mtime;
valid_files.push_back(std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
}
valid_files.sort(); // sort the list of files by last modified time from
// small to big.
uint32_t cur_file_count = valid_files.size();
for (auto cur_file : valid_files) {
if (cur_file_count > kMaxRingBufferFileNum || cur_file.first < delete_files_before) {
if (unlink(cur_file.second.c_str()) != 0) {
PLOG(ERROR) << "Error deleting file";
success = false;
}
cur_file_count--;
} else {
break;
}
}
return success;
}
// Helper function to create a non-const char*.
std::vector<char> makeCharVec(const std::string& str) {
std::vector<char> vec(str.size() + 1);
vec.assign(str.begin(), str.end());
vec.push_back('\0');
return vec;
}
} // namespace
namespace aidl {
namespace android {
namespace hardware {
namespace wifi {
using aidl_return_util::validateAndCall;
using aidl_return_util::validateAndCallWithLock;
WifiChip::WifiChip(int32_t chip_id, bool is_primary,
const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
const std::shared_ptr<iface_util::WifiIfaceUtil> iface_util,
const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags,
const std::function<void(const std::string&)>& handler,
bool using_dynamic_iface_combination)
: chip_id_(chip_id),
legacy_hal_(legacy_hal),
mode_controller_(mode_controller),
iface_util_(iface_util),
is_valid_(true),
current_mode_id_(feature_flags::chip_mode_ids::kInvalid),
modes_(feature_flags.lock()->getChipModes(is_primary)),
debug_ring_buffer_cb_registered_(false),
using_dynamic_iface_combination_(using_dynamic_iface_combination),
subsystemCallbackHandler_(handler) {
setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
}
void WifiChip::retrieveDynamicIfaceCombination() {
if (using_dynamic_iface_combination_) return;
legacy_hal::wifi_iface_concurrency_matrix legacy_matrix;
legacy_hal::wifi_error legacy_status;
std::tie(legacy_status, legacy_matrix) =
legacy_hal_.lock()->getSupportedIfaceConcurrencyMatrix();
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get SupportedIfaceCombinations matrix from legacy HAL: "
<< legacyErrorToString(legacy_status);
return;
}
IWifiChip::ChipMode aidl_chip_mode;
if (!aidl_struct_util::convertLegacyIfaceCombinationsMatrixToChipMode(legacy_matrix,
&aidl_chip_mode)) {
LOG(ERROR) << "Failed convertLegacyIfaceCombinationsMatrixToChipMode() ";
return;
}
LOG(INFO) << "Reloading iface concurrency combination from driver";
aidl_chip_mode.id = feature_flags::chip_mode_ids::kV3;
modes_.clear();
modes_.push_back(aidl_chip_mode);
using_dynamic_iface_combination_ = true;
}
std::shared_ptr<WifiChip> WifiChip::create(
int32_t chip_id, bool is_primary, const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
const std::shared_ptr<iface_util::WifiIfaceUtil> iface_util,
const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags,
const std::function<void(const std::string&)>& handler,
bool using_dynamic_iface_combination) {
std::shared_ptr<WifiChip> ptr = ndk::SharedRefBase::make<WifiChip>(
chip_id, is_primary, legacy_hal, mode_controller, iface_util, feature_flags, handler,
using_dynamic_iface_combination);
std::weak_ptr<WifiChip> weak_ptr_this(ptr);
ptr->setWeakPtr(weak_ptr_this);
return ptr;
}
void WifiChip::invalidate() {
if (!writeRingbufferFilesInternal()) {
LOG(ERROR) << "Error writing files to flash";
}
invalidateAndRemoveAllIfaces();
setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
legacy_hal_.reset();
event_cb_handler_.invalidate();
is_valid_ = false;
}
void WifiChip::setWeakPtr(std::weak_ptr<WifiChip> ptr) {
weak_ptr_this_ = ptr;
}
bool WifiChip::isValid() {
return is_valid_;
}
std::set<std::shared_ptr<IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
return event_cb_handler_.getCallbacks();
}
ndk::ScopedAStatus WifiChip::getId(int32_t* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, &WifiChip::getIdInternal,
_aidl_return);
}
ndk::ScopedAStatus WifiChip::registerEventCallback(
const std::shared_ptr<IWifiChipEventCallback>& event_callback) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::registerEventCallbackInternal, event_callback);
}
ndk::ScopedAStatus WifiChip::getFeatureSet(int32_t* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getFeatureSetInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getAvailableModes(std::vector<IWifiChip::ChipMode>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getAvailableModesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::configureChip(int32_t in_modeId) {
return validateAndCallWithLock(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::configureChipInternal, in_modeId);
}
ndk::ScopedAStatus WifiChip::getMode(int32_t* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getModeInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::requestChipDebugInfo(IWifiChip::ChipDebugInfo* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestChipDebugInfoInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::requestDriverDebugDump(std::vector<uint8_t>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestDriverDebugDumpInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::requestFirmwareDebugDump(std::vector<uint8_t>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::requestFirmwareDebugDumpInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::createApIface(std::shared_ptr<IWifiApIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createApIfaceInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::createBridgedApIface(std::shared_ptr<IWifiApIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createBridgedApIfaceInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::createApOrBridgedApIface(
IfaceConcurrencyType in_ifaceType, const std::vector<common::OuiKeyedData>& in_vendorData,
std::shared_ptr<IWifiApIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createApOrBridgedApIfaceInternal, _aidl_return, in_ifaceType,
in_vendorData);
}
ndk::ScopedAStatus WifiChip::getApIfaceNames(std::vector<std::string>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getApIfaceNamesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getApIface(const std::string& in_ifname,
std::shared_ptr<IWifiApIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getApIfaceInternal, _aidl_return, in_ifname);
}
ndk::ScopedAStatus WifiChip::removeApIface(const std::string& in_ifname) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeApIfaceInternal, in_ifname);
}
ndk::ScopedAStatus WifiChip::removeIfaceInstanceFromBridgedApIface(
const std::string& in_brIfaceName, const std::string& in_ifaceInstanceName) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal, in_brIfaceName,
in_ifaceInstanceName);
}
ndk::ScopedAStatus WifiChip::createNanIface(std::shared_ptr<IWifiNanIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createNanIfaceInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getNanIfaceNames(std::vector<std::string>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getNanIfaceNamesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getNanIface(const std::string& in_ifname,
std::shared_ptr<IWifiNanIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getNanIfaceInternal, _aidl_return, in_ifname);
}
ndk::ScopedAStatus WifiChip::removeNanIface(const std::string& in_ifname) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeNanIfaceInternal, in_ifname);
}
ndk::ScopedAStatus WifiChip::createP2pIface(std::shared_ptr<IWifiP2pIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createP2pIfaceInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getP2pIfaceNames(std::vector<std::string>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getP2pIfaceNamesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getP2pIface(const std::string& in_ifname,
std::shared_ptr<IWifiP2pIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getP2pIfaceInternal, _aidl_return, in_ifname);
}
ndk::ScopedAStatus WifiChip::removeP2pIface(const std::string& in_ifname) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeP2pIfaceInternal, in_ifname);
}
ndk::ScopedAStatus WifiChip::createStaIface(std::shared_ptr<IWifiStaIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createStaIfaceInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getStaIfaceNames(std::vector<std::string>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getStaIfaceNamesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getStaIface(const std::string& in_ifname,
std::shared_ptr<IWifiStaIface>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getStaIfaceInternal, _aidl_return, in_ifname);
}
ndk::ScopedAStatus WifiChip::removeStaIface(const std::string& in_ifname) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::removeStaIfaceInternal, in_ifname);
}
ndk::ScopedAStatus WifiChip::createRttController(
const std::shared_ptr<IWifiStaIface>& in_boundIface,
std::shared_ptr<IWifiRttController>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::createRttControllerInternal, _aidl_return, in_boundIface);
}
ndk::ScopedAStatus WifiChip::getDebugRingBuffersStatus(
std::vector<WifiDebugRingBufferStatus>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getDebugRingBuffersStatusInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::startLoggingToDebugRingBuffer(
const std::string& in_ringName, WifiDebugRingBufferVerboseLevel in_verboseLevel,
int32_t in_maxIntervalInSec, int32_t in_minDataSizeInBytes) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::startLoggingToDebugRingBufferInternal, in_ringName,
in_verboseLevel, in_maxIntervalInSec, in_minDataSizeInBytes);
}
ndk::ScopedAStatus WifiChip::forceDumpToDebugRingBuffer(const std::string& in_ringName) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::forceDumpToDebugRingBufferInternal, in_ringName);
}
ndk::ScopedAStatus WifiChip::flushRingBufferToFile() {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::flushRingBufferToFileInternal);
}
ndk::ScopedAStatus WifiChip::stopLoggingToDebugRingBuffer() {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::stopLoggingToDebugRingBufferInternal);
}
ndk::ScopedAStatus WifiChip::getDebugHostWakeReasonStats(
WifiDebugHostWakeReasonStats* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getDebugHostWakeReasonStatsInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::enableDebugErrorAlerts(bool in_enable) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::enableDebugErrorAlertsInternal, in_enable);
}
ndk::ScopedAStatus WifiChip::selectTxPowerScenario(IWifiChip::TxPowerScenario in_scenario) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::selectTxPowerScenarioInternal, in_scenario);
}
ndk::ScopedAStatus WifiChip::resetTxPowerScenario() {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::resetTxPowerScenarioInternal);
}
ndk::ScopedAStatus WifiChip::setLatencyMode(IWifiChip::LatencyMode in_mode) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setLatencyModeInternal, in_mode);
}
binder_status_t WifiChip::dump(int fd __unused, const char**, uint32_t) {
{
std::unique_lock<std::mutex> lk(lock_t);
for (const auto& item : ringbuffer_map_) {
forceDumpToDebugRingBufferInternal(item.first);
}
// unique_lock unlocked here
}
usleep(100 * 1000); // sleep for 100 milliseconds to wait for
// ringbuffer updates.
if (!writeRingbufferFilesInternal()) {
LOG(ERROR) << "Error writing files to flash";
}
return STATUS_OK;
}
ndk::ScopedAStatus WifiChip::setMultiStaPrimaryConnection(const std::string& in_ifName) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setMultiStaPrimaryConnectionInternal, in_ifName);
}
ndk::ScopedAStatus WifiChip::setMultiStaUseCase(IWifiChip::MultiStaUseCase in_useCase) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setMultiStaUseCaseInternal, in_useCase);
}
ndk::ScopedAStatus WifiChip::setCoexUnsafeChannels(
const std::vector<IWifiChip::CoexUnsafeChannel>& in_unsafeChannels,
int32_t in_restrictions) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setCoexUnsafeChannelsInternal, in_unsafeChannels,
in_restrictions);
}
ndk::ScopedAStatus WifiChip::setCountryCode(const std::array<uint8_t, 2>& in_code) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_IFACE_INVALID,
&WifiChip::setCountryCodeInternal, in_code);
}
ndk::ScopedAStatus WifiChip::getUsableChannels(WifiBand in_band, int32_t in_ifaceModeMask,
int32_t in_filterMask,
std::vector<WifiUsableChannel>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getUsableChannelsInternal, _aidl_return, in_band,
in_ifaceModeMask, in_filterMask);
}
ndk::ScopedAStatus WifiChip::setAfcChannelAllowance(
const AfcChannelAllowance& afcChannelAllowance) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setAfcChannelAllowanceInternal, afcChannelAllowance);
}
ndk::ScopedAStatus WifiChip::triggerSubsystemRestart() {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::triggerSubsystemRestartInternal);
}
ndk::ScopedAStatus WifiChip::getSupportedRadioCombinations(
std::vector<WifiRadioCombination>* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getSupportedRadioCombinationsInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::getWifiChipCapabilities(WifiChipCapabilities* _aidl_return) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::getWifiChipCapabilitiesInternal, _aidl_return);
}
ndk::ScopedAStatus WifiChip::enableStaChannelForPeerNetwork(int32_t in_channelCategoryEnableFlag) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::enableStaChannelForPeerNetworkInternal,
in_channelCategoryEnableFlag);
}
ndk::ScopedAStatus WifiChip::setMloMode(const ChipMloMode in_mode) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setMloModeInternal, in_mode);
}
ndk::ScopedAStatus WifiChip::setVoipMode(const VoipMode in_mode) {
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
&WifiChip::setVoipModeInternal, in_mode);
}
void WifiChip::invalidateAndRemoveAllIfaces() {
invalidateAndClearBridgedApAll();
invalidateAndClearAll(ap_ifaces_);
invalidateAndClearAll(nan_ifaces_);
invalidateAndClearAll(p2p_ifaces_);
invalidateAndClearAll(sta_ifaces_);
// Since all the ifaces are invalid now, all RTT controller objects
// using those ifaces also need to be invalidated.
for (const auto& rtt : rtt_controllers_) {
rtt->invalidate();
}
rtt_controllers_.clear();
}
void WifiChip::invalidateAndRemoveDependencies(const std::string& removed_iface_name) {
for (auto it = nan_ifaces_.begin(); it != nan_ifaces_.end();) {
auto nan_iface = *it;
if (nan_iface->getName() == removed_iface_name) {
nan_iface->invalidate();
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::NAN_IFACE, removed_iface_name).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
it = nan_ifaces_.erase(it);
} else {
++it;
}
}
for (auto it = rtt_controllers_.begin(); it != rtt_controllers_.end();) {
auto rtt = *it;
if (rtt->getIfaceName() == removed_iface_name) {
rtt->invalidate();
it = rtt_controllers_.erase(it);
} else {
++it;
}
}
}
std::pair<int32_t, ndk::ScopedAStatus> WifiChip::getIdInternal() {
return {chip_id_, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::registerEventCallbackInternal(
const std::shared_ptr<IWifiChipEventCallback>& event_callback) {
if (!event_cb_handler_.addCallback(event_callback)) {
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
}
return ndk::ScopedAStatus::ok();
}
std::pair<int32_t, ndk::ScopedAStatus> WifiChip::getFeatureSetInternal() {
legacy_hal::wifi_error legacy_status;
uint64_t legacy_feature_set;
uint32_t legacy_logger_feature_set;
const auto ifname = getFirstActiveWlanIfaceName();
std::tie(legacy_status, legacy_feature_set) =
legacy_hal_.lock()->getSupportedFeatureSet(ifname);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {0, createWifiStatusFromLegacyError(legacy_status)};
}
std::tie(legacy_status, legacy_logger_feature_set) =
legacy_hal_.lock()->getLoggerSupportedFeatureSet(ifname);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
// some devices don't support querying logger feature set
legacy_logger_feature_set = 0;
}
uint32_t aidl_feature_set;
if (!aidl_struct_util::convertLegacyChipFeaturesToAidl(legacy_feature_set, &aidl_feature_set)) {
return {0, createWifiStatus(WifiStatusCode::ERROR_UNKNOWN)};
}
return {aidl_feature_set, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<IWifiChip::ChipMode>, ndk::ScopedAStatus>
WifiChip::getAvailableModesInternal() {
return {modes_, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::configureChipInternal(
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, int32_t mode_id) {
if (!isValidModeId(mode_id)) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
if (mode_id == current_mode_id_) {
LOG(DEBUG) << "Already in the specified mode " << mode_id;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus status = handleChipConfiguration(lock, mode_id);
if (!status.isOk()) {
WifiStatusCode errorCode = static_cast<WifiStatusCode>(status.getServiceSpecificError());
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onChipReconfigureFailure(errorCode).isOk()) {
LOG(ERROR) << "Failed to invoke onChipReconfigureFailure callback";
}
}
return status;
}
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onChipReconfigured(mode_id).isOk()) {
LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
}
}
current_mode_id_ = mode_id;
LOG(INFO) << "Configured chip in mode " << mode_id;
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
legacy_hal_.lock()->registerSubsystemRestartCallbackHandler(subsystemCallbackHandler_);
return status;
}
std::pair<int32_t, ndk::ScopedAStatus> WifiChip::getModeInternal() {
if (!isValidModeId(current_mode_id_)) {
return {current_mode_id_, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
return {current_mode_id_, ndk::ScopedAStatus::ok()};
}
std::pair<IWifiChip::ChipDebugInfo, ndk::ScopedAStatus> WifiChip::requestChipDebugInfoInternal() {
IWifiChip::ChipDebugInfo result;
legacy_hal::wifi_error legacy_status;
std::string driver_desc;
const auto ifname = getFirstActiveWlanIfaceName();
std::tie(legacy_status, driver_desc) = legacy_hal_.lock()->getDriverVersion(ifname);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get driver version: " << legacyErrorToString(legacy_status);
ndk::ScopedAStatus status =
createWifiStatusFromLegacyError(legacy_status, "failed to get driver version");
return {std::move(result), std::move(status)};
}
result.driverDescription = driver_desc.c_str();
std::string firmware_desc;
std::tie(legacy_status, firmware_desc) = legacy_hal_.lock()->getFirmwareVersion(ifname);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get firmware version: " << legacyErrorToString(legacy_status);
ndk::ScopedAStatus status =
createWifiStatusFromLegacyError(legacy_status, "failed to get firmware version");
return {std::move(result), std::move(status)};
}
result.firmwareDescription = firmware_desc.c_str();
return {std::move(result), ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<uint8_t>, ndk::ScopedAStatus> WifiChip::requestDriverDebugDumpInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<uint8_t> driver_dump;
std::tie(legacy_status, driver_dump) =
legacy_hal_.lock()->requestDriverMemoryDump(getFirstActiveWlanIfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get driver debug dump: " << legacyErrorToString(legacy_status);
return {std::vector<uint8_t>(), createWifiStatusFromLegacyError(legacy_status)};
}
return {driver_dump, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<uint8_t>, ndk::ScopedAStatus> WifiChip::requestFirmwareDebugDumpInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<uint8_t> firmware_dump;
std::tie(legacy_status, firmware_dump) =
legacy_hal_.lock()->requestFirmwareMemoryDump(getFirstActiveWlanIfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get firmware debug dump: " << legacyErrorToString(legacy_status);
return {std::vector<uint8_t>(), createWifiStatusFromLegacyError(legacy_status)};
}
return {firmware_dump, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::createVirtualApInterface(const std::string& apVirtIf) {
legacy_hal::wifi_error legacy_status;
legacy_status = legacy_hal_.lock()->createVirtualInterface(
apVirtIf, aidl_struct_util::convertAidlIfaceTypeToLegacy(IfaceType::AP));
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to add interface: " << apVirtIf << " "
<< legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
return ndk::ScopedAStatus::ok();
}
std::shared_ptr<WifiApIface> WifiChip::newWifiApIface(std::string& ifname) {
std::vector<std::string> ap_instances;
for (auto const& it : br_ifaces_ap_instances_) {
if (it.first == ifname) {
ap_instances = it.second;
}
}
std::shared_ptr<WifiApIface> iface =
ndk::SharedRefBase::make<WifiApIface>(ifname, ap_instances, legacy_hal_, iface_util_);
ap_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
return iface;
}
std::pair<std::shared_ptr<IWifiApIface>, ndk::ScopedAStatus> WifiChip::createApIfaceInternal() {
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP)) {
return {std::shared_ptr<WifiApIface>(),
createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::string ifname = allocateApIfaceName();
ndk::ScopedAStatus status = createVirtualApInterface(ifname);
if (!status.isOk()) {
return {std::shared_ptr<WifiApIface>(), std::move(status)};
}
std::shared_ptr<WifiApIface> iface = newWifiApIface(ifname);
return {iface, ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiApIface>, ndk::ScopedAStatus>
WifiChip::createBridgedApIfaceInternal() {
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP_BRIDGED)) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::vector<std::string> ap_instances = allocateBridgedApInstanceNames();
if (ap_instances.size() < 2) {
LOG(ERROR) << "Fail to allocate two instances";
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::string br_ifname = kApBridgeIfacePrefix + ap_instances[0];
for (int i = 0; i < 2; i++) {
ndk::ScopedAStatus status = createVirtualApInterface(ap_instances[i]);
if (!status.isOk()) {
if (i != 0) { // The failure happened when creating second virtual
// iface.
legacy_hal_.lock()->deleteVirtualInterface(
ap_instances.front()); // Remove the first virtual iface.
}
return {nullptr, std::move(status)};
}
}
br_ifaces_ap_instances_[br_ifname] = ap_instances;
if (!iface_util_->createBridge(br_ifname)) {
LOG(ERROR) << "Failed createBridge - br_name=" << br_ifname.c_str();
deleteApIface(br_ifname);
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
for (auto const& instance : ap_instances) {
// Bind ap instance interface to AP bridge
if (!iface_util_->addIfaceToBridge(br_ifname, instance)) {
LOG(ERROR) << "Failed add if to Bridge - if_name=" << instance.c_str();
deleteApIface(br_ifname);
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
}
std::shared_ptr<WifiApIface> iface = newWifiApIface(br_ifname);
return {iface, ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiApIface>, ndk::ScopedAStatus>
WifiChip::createApOrBridgedApIfaceInternal(
IfaceConcurrencyType ifaceType, const std::vector<common::OuiKeyedData>& /* vendorData */) {
if (ifaceType == IfaceConcurrencyType::AP) {
return createApIfaceInternal();
} else if (ifaceType == IfaceConcurrencyType::AP_BRIDGED) {
return createBridgedApIfaceInternal();
} else {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
}
std::pair<std::vector<std::string>, ndk::ScopedAStatus> WifiChip::getApIfaceNamesInternal() {
if (ap_ifaces_.empty()) {
return {std::vector<std::string>(), ndk::ScopedAStatus::ok()};
}
return {getNames(ap_ifaces_), ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiApIface>, ndk::ScopedAStatus> WifiChip::getApIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(ap_ifaces_, ifname);
if (!iface.get()) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
return {iface, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(ap_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
// Invalidate & remove any dependent objects first.
// Note: This is probably not required because we never create
// nan/rtt objects over AP iface. But, there is no harm to do it
// here and not make that assumption all over the place.
invalidateAndRemoveDependencies(ifname);
deleteApIface(ifname);
invalidateAndClear(ap_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal(
const std::string& ifname, const std::string& ifInstanceName) {
const auto iface = findUsingName(ap_ifaces_, ifname);
if (!iface.get() || ifInstanceName.empty()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
// Requires to remove one of the instance in bridge mode
for (auto const& it : br_ifaces_ap_instances_) {
if (it.first == ifname) {
std::vector<std::string> ap_instances = it.second;
for (auto const& iface : ap_instances) {
if (iface == ifInstanceName) {
if (!iface_util_->removeIfaceFromBridge(it.first, iface)) {
LOG(ERROR) << "Failed to remove interface: " << ifInstanceName << " from "
<< ifname;
return createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE);
}
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->deleteVirtualInterface(iface);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to del interface: " << iface << " "
<< legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
ap_instances.erase(
std::remove(ap_instances.begin(), ap_instances.end(), ifInstanceName),
ap_instances.end());
br_ifaces_ap_instances_[ifname] = ap_instances;
break;
}
}
break;
}
}
iface->removeInstance(ifInstanceName);
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
return ndk::ScopedAStatus::ok();
}
std::pair<std::shared_ptr<IWifiNanIface>, ndk::ScopedAStatus> WifiChip::createNanIfaceInternal() {
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::NAN_IFACE)) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
bool is_dedicated_iface = true;
std::string ifname = getPredefinedNanIfaceName();
if (ifname.empty() || !iface_util_->ifNameToIndex(ifname)) {
// Use the first shared STA iface (wlan0) if a dedicated aware iface is
// not defined.
ifname = getFirstActiveWlanIfaceName();
is_dedicated_iface = false;
}
std::shared_ptr<WifiNanIface> iface =
WifiNanIface::create(ifname, is_dedicated_iface, legacy_hal_, iface_util_);
nan_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::NAN_IFACE, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {iface, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<std::string>, ndk::ScopedAStatus> WifiChip::getNanIfaceNamesInternal() {
if (nan_ifaces_.empty()) {
return {std::vector<std::string>(), ndk::ScopedAStatus::ok()};
}
return {getNames(nan_ifaces_), ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiNanIface>, ndk::ScopedAStatus> WifiChip::getNanIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(nan_ifaces_, ifname);
if (!iface.get()) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
return {iface, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(nan_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(nan_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::NAN_IFACE, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return ndk::ScopedAStatus::ok();
}
std::pair<std::shared_ptr<IWifiP2pIface>, ndk::ScopedAStatus> WifiChip::createP2pIfaceInternal() {
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::P2P)) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::string ifname = getPredefinedP2pIfaceName();
std::shared_ptr<WifiP2pIface> iface =
ndk::SharedRefBase::make<WifiP2pIface>(ifname, legacy_hal_);
p2p_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
return {iface, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<std::string>, ndk::ScopedAStatus> WifiChip::getP2pIfaceNamesInternal() {
if (p2p_ifaces_.empty()) {
return {std::vector<std::string>(), ndk::ScopedAStatus::ok()};
}
return {getNames(p2p_ifaces_), ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiP2pIface>, ndk::ScopedAStatus> WifiChip::getP2pIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(p2p_ifaces_, ifname);
if (!iface.get()) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
return {iface, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(p2p_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
invalidateAndClear(p2p_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
return ndk::ScopedAStatus::ok();
}
std::pair<std::shared_ptr<IWifiStaIface>, ndk::ScopedAStatus> WifiChip::createStaIfaceInternal() {
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::string ifname = allocateStaIfaceName();
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->createVirtualInterface(
ifname, aidl_struct_util::convertAidlIfaceTypeToLegacy(IfaceType::STA));
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to add interface: " << ifname << " "
<< legacyErrorToString(legacy_status);
return {nullptr, createWifiStatusFromLegacyError(legacy_status)};
}
std::shared_ptr<WifiStaIface> iface = WifiStaIface::create(ifname, legacy_hal_, iface_util_);
sta_ifaces_.push_back(iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
}
}
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
return {iface, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<std::string>, ndk::ScopedAStatus> WifiChip::getStaIfaceNamesInternal() {
if (sta_ifaces_.empty()) {
return {std::vector<std::string>(), ndk::ScopedAStatus::ok()};
}
return {getNames(sta_ifaces_), ndk::ScopedAStatus::ok()};
}
std::pair<std::shared_ptr<IWifiStaIface>, ndk::ScopedAStatus> WifiChip::getStaIfaceInternal(
const std::string& ifname) {
const auto iface = findUsingName(sta_ifaces_, ifname);
if (!iface.get()) {
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
return {iface, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
const auto iface = findUsingName(sta_ifaces_, ifname);
if (!iface.get()) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
// Invalidate & remove any dependent objects first.
invalidateAndRemoveDependencies(ifname);
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(ifname);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to remove interface: " << ifname << " "
<< legacyErrorToString(legacy_status);
}
invalidateAndClear(sta_ifaces_, iface);
for (const auto& callback : event_cb_handler_.getCallbacks()) {
if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
}
}
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
return ndk::ScopedAStatus::ok();
}
std::pair<std::shared_ptr<IWifiRttController>, ndk::ScopedAStatus>
WifiChip::createRttControllerInternal(const std::shared_ptr<IWifiStaIface>& bound_iface) {
if (sta_ifaces_.size() == 0 &&
!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) {
LOG(ERROR) << "createRttControllerInternal: Chip cannot support STAs "
"(and RTT by extension)";
return {nullptr, createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE)};
}
std::shared_ptr<WifiRttController> rtt =
WifiRttController::create(getFirstActiveWlanIfaceName(), bound_iface, legacy_hal_);
rtt_controllers_.emplace_back(rtt);
return {rtt, ndk::ScopedAStatus::ok()};
}
std::pair<std::vector<WifiDebugRingBufferStatus>, ndk::ScopedAStatus>
WifiChip::getDebugRingBuffersStatusInternal() {
legacy_hal::wifi_error legacy_status;
std::vector<legacy_hal::wifi_ring_buffer_status> legacy_ring_buffer_status_vec;
std::tie(legacy_status, legacy_ring_buffer_status_vec) =
legacy_hal_.lock()->getRingBuffersStatus(getFirstActiveWlanIfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {std::vector<WifiDebugRingBufferStatus>(),
createWifiStatusFromLegacyError(legacy_status)};
}
std::vector<WifiDebugRingBufferStatus> aidl_ring_buffer_status_vec;
if (!aidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToAidl(
legacy_ring_buffer_status_vec, &aidl_ring_buffer_status_vec)) {
return {std::vector<WifiDebugRingBufferStatus>(),
createWifiStatus(WifiStatusCode::ERROR_UNKNOWN)};
}
return {aidl_ring_buffer_status_vec, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::startLoggingToDebugRingBufferInternal(
const std::string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
ndk::ScopedAStatus status = registerDebugRingBufferCallback();
if (!status.isOk()) {
return status;
}
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->startRingBufferLogging(
getFirstActiveWlanIfaceName(), ring_name,
static_cast<std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(verbose_level),
max_interval_in_sec, min_data_size_in_bytes);
ringbuffer_map_.insert(
std::pair<std::string, Ringbuffer>(ring_name, Ringbuffer(kMaxBufferSizeBytes)));
// if verbose logging enabled, turn up HAL daemon logging as well.
if (verbose_level < WifiDebugRingBufferVerboseLevel::VERBOSE) {
::android::base::SetMinimumLogSeverity(::android::base::DEBUG);
} else {
::android::base::SetMinimumLogSeverity(::android::base::VERBOSE);
}
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::forceDumpToDebugRingBufferInternal(const std::string& ring_name) {
ndk::ScopedAStatus status = registerDebugRingBufferCallback();
if (!status.isOk()) {
return status;
}
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->getRingBufferData(getFirstActiveWlanIfaceName(), ring_name);
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::flushRingBufferToFileInternal() {
if (!writeRingbufferFilesInternal()) {
LOG(ERROR) << "Error writing files to flash";
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->deregisterRingBufferCallbackHandler(getFirstActiveWlanIfaceName());
if (legacy_status == legacy_hal::WIFI_SUCCESS) {
debug_ring_buffer_cb_registered_ = false;
}
return createWifiStatusFromLegacyError(legacy_status);
}
std::pair<WifiDebugHostWakeReasonStats, ndk::ScopedAStatus>
WifiChip::getDebugHostWakeReasonStatsInternal() {
legacy_hal::wifi_error legacy_status;
legacy_hal::WakeReasonStats legacy_stats;
std::tie(legacy_status, legacy_stats) =
legacy_hal_.lock()->getWakeReasonStats(getFirstActiveWlanIfaceName());
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {WifiDebugHostWakeReasonStats{}, createWifiStatusFromLegacyError(legacy_status)};
}
WifiDebugHostWakeReasonStats aidl_stats;
if (!aidl_struct_util::convertLegacyWakeReasonStatsToAidl(legacy_stats, &aidl_stats)) {
return {WifiDebugHostWakeReasonStats{}, createWifiStatus(WifiStatusCode::ERROR_UNKNOWN)};
}
return {aidl_stats, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
legacy_hal::wifi_error legacy_status;
if (enable) {
std::weak_ptr<WifiChip> weak_ptr_this = weak_ptr_this_;
const auto& on_alert_callback = [weak_ptr_this](int32_t error_code,
std::vector<uint8_t> debug_data) {
const auto shared_ptr_this = weak_ptr_this.lock();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
if (!callback->onDebugErrorAlert(error_code, debug_data).isOk()) {
LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
}
}
};
legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
getFirstActiveWlanIfaceName(), on_alert_callback);
} else {
legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
getFirstActiveWlanIfaceName());
}
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::selectTxPowerScenarioInternal(IWifiChip::TxPowerScenario scenario) {
auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
getFirstActiveWlanIfaceName(),
aidl_struct_util::convertAidlTxPowerScenarioToLegacy(scenario));
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::resetTxPowerScenarioInternal() {
auto legacy_status = legacy_hal_.lock()->resetTxPowerScenario(getFirstActiveWlanIfaceName());
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::setLatencyModeInternal(IWifiChip::LatencyMode mode) {
auto legacy_status = legacy_hal_.lock()->setLatencyMode(
getFirstActiveWlanIfaceName(), aidl_struct_util::convertAidlLatencyModeToLegacy(mode));
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::setMultiStaPrimaryConnectionInternal(const std::string& ifname) {
auto legacy_status = legacy_hal_.lock()->multiStaSetPrimaryConnection(ifname);
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::setMultiStaUseCaseInternal(IWifiChip::MultiStaUseCase use_case) {
auto legacy_status = legacy_hal_.lock()->multiStaSetUseCase(
aidl_struct_util::convertAidlMultiStaUseCaseToLegacy(use_case));
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::setCoexUnsafeChannelsInternal(
std::vector<IWifiChip::CoexUnsafeChannel> unsafe_channels, int32_t aidl_restrictions) {
std::vector<legacy_hal::wifi_coex_unsafe_channel> legacy_unsafe_channels;
if (!aidl_struct_util::convertAidlVectorOfCoexUnsafeChannelToLegacy(unsafe_channels,
&legacy_unsafe_channels)) {
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
uint32_t legacy_restrictions = 0;
if (aidl_restrictions & static_cast<uint32_t>(CoexRestriction::WIFI_DIRECT)) {
legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_DIRECT;
}
if (aidl_restrictions & static_cast<uint32_t>(CoexRestriction::SOFTAP)) {
legacy_restrictions |= legacy_hal::wifi_coex_restriction::SOFTAP;
}
if (aidl_restrictions & static_cast<uint32_t>(CoexRestriction::WIFI_AWARE)) {
legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_AWARE;
}
auto legacy_status =
legacy_hal_.lock()->setCoexUnsafeChannels(legacy_unsafe_channels, legacy_restrictions);
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::setCountryCodeInternal(const std::array<uint8_t, 2>& code) {
auto legacy_status = legacy_hal_.lock()->setCountryCode(getFirstActiveWlanIfaceName(), code);
return createWifiStatusFromLegacyError(legacy_status);
}
std::pair<std::vector<WifiUsableChannel>, ndk::ScopedAStatus> WifiChip::getUsableChannelsInternal(
WifiBand band, int32_t ifaceModeMask, int32_t filterMask) {
legacy_hal::wifi_error legacy_status;
std::vector<legacy_hal::wifi_usable_channel> legacy_usable_channels;
std::tie(legacy_status, legacy_usable_channels) = legacy_hal_.lock()->getUsableChannels(
aidl_struct_util::convertAidlWifiBandToLegacyMacBand(band),
aidl_struct_util::convertAidlWifiIfaceModeToLegacy(ifaceModeMask),
aidl_struct_util::convertAidlUsableChannelFilterToLegacy(filterMask));
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
return {std::vector<WifiUsableChannel>(), createWifiStatusFromLegacyError(legacy_status)};
}
std::vector<WifiUsableChannel> aidl_usable_channels;
if (!aidl_struct_util::convertLegacyWifiUsableChannelsToAidl(legacy_usable_channels,
&aidl_usable_channels)) {
return {std::vector<WifiUsableChannel>(), createWifiStatus(WifiStatusCode::ERROR_UNKNOWN)};
}
return {aidl_usable_channels, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::setAfcChannelAllowanceInternal(
const AfcChannelAllowance& afcChannelAllowance) {
LOG(INFO) << "setAfcChannelAllowance is not yet supported. availableAfcFrequencyInfos size="
<< afcChannelAllowance.availableAfcFrequencyInfos.size()
<< " availableAfcChannelInfos size="
<< afcChannelAllowance.availableAfcChannelInfos.size()
<< " availabilityExpireTimeMs=" << afcChannelAllowance.availabilityExpireTimeMs;
return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
}
std::pair<std::vector<WifiRadioCombination>, ndk::ScopedAStatus>
WifiChip::getSupportedRadioCombinationsInternal() {
legacy_hal::wifi_error legacy_status;
legacy_hal::wifi_radio_combination_matrix* legacy_matrix;
std::vector<WifiRadioCombination> aidl_combinations;
std::tie(legacy_status, legacy_matrix) =
legacy_hal_.lock()->getSupportedRadioCombinationsMatrix();
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get SupportedRadioCombinations matrix from legacy HAL: "
<< legacyErrorToString(legacy_status);
if (legacy_matrix != nullptr) {
free(legacy_matrix);
}
return {aidl_combinations, createWifiStatusFromLegacyError(legacy_status)};
}
if (!aidl_struct_util::convertLegacyRadioCombinationsMatrixToAidl(legacy_matrix,
&aidl_combinations)) {
LOG(ERROR) << "Failed convertLegacyRadioCombinationsMatrixToAidl() ";
if (legacy_matrix != nullptr) {
free(legacy_matrix);
}
return {aidl_combinations, createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
if (legacy_matrix != nullptr) {
free(legacy_matrix);
}
return {aidl_combinations, ndk::ScopedAStatus::ok()};
}
std::pair<WifiChipCapabilities, ndk::ScopedAStatus> WifiChip::getWifiChipCapabilitiesInternal() {
legacy_hal::wifi_error legacy_status;
legacy_hal::wifi_chip_capabilities legacy_chip_capabilities;
std::tie(legacy_status, legacy_chip_capabilities) =
legacy_hal_.lock()->getWifiChipCapabilities();
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to get chip capabilities from legacy HAL: "
<< legacyErrorToString(legacy_status);
return {WifiChipCapabilities(), createWifiStatusFromLegacyError(legacy_status)};
}
WifiChipCapabilities aidl_chip_capabilities;
if (!aidl_struct_util::convertLegacyWifiChipCapabilitiesToAidl(legacy_chip_capabilities,
aidl_chip_capabilities)) {
LOG(ERROR) << "Failed convertLegacyWifiChipCapabilitiesToAidl() ";
return {WifiChipCapabilities(), createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS)};
}
return {aidl_chip_capabilities, ndk::ScopedAStatus::ok()};
}
ndk::ScopedAStatus WifiChip::enableStaChannelForPeerNetworkInternal(
int32_t channelCategoryEnableFlag) {
auto legacy_status = legacy_hal_.lock()->enableStaChannelForPeerNetwork(
aidl_struct_util::convertAidlChannelCategoryToLegacy(channelCategoryEnableFlag));
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::triggerSubsystemRestartInternal() {
auto legacy_status = legacy_hal_.lock()->triggerSubsystemRestart();
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::handleChipConfiguration(
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, int32_t mode_id) {
// If the chip is already configured in a different mode, stop
// the legacy HAL and then start it after firmware mode change.
if (isValidModeId(current_mode_id_)) {
LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_ << " to mode " << mode_id;
invalidateAndRemoveAllIfaces();
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->stop(lock, []() {});
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to stop legacy HAL: " << legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
}
// Firmware mode change not needed for V2 devices.
bool success = true;
if (mode_id == feature_flags::chip_mode_ids::kV1Sta) {
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
} else if (mode_id == feature_flags::chip_mode_ids::kV1Ap) {
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
}
if (!success) {
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
}
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to start legacy HAL: " << legacyErrorToString(legacy_status);
return createWifiStatusFromLegacyError(legacy_status);
}
// Every time the HAL is restarted, we need to register the
// radio mode change callback.
ndk::ScopedAStatus status = registerRadioModeChangeCallback();
if (!status.isOk()) {
// This is probably not a critical failure?
LOG(ERROR) << "Failed to register radio mode change callback";
}
// Extract and save the version information into property.
std::pair<IWifiChip::ChipDebugInfo, ndk::ScopedAStatus> version_info;
version_info = WifiChip::requestChipDebugInfoInternal();
if (version_info.second.isOk()) {
property_set("vendor.wlan.firmware.version",
version_info.first.firmwareDescription.c_str());
property_set("vendor.wlan.driver.version", version_info.first.driverDescription.c_str());
}
// Get the driver supported interface combination.
retrieveDynamicIfaceCombination();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus WifiChip::registerDebugRingBufferCallback() {
if (debug_ring_buffer_cb_registered_) {
return ndk::ScopedAStatus::ok();
}
std::weak_ptr<WifiChip> weak_ptr_this = weak_ptr_this_;
const auto& on_ring_buffer_data_callback =
[weak_ptr_this](const std::string& name, const std::vector<uint8_t>& data,
const legacy_hal::wifi_ring_buffer_status& status) {
const auto shared_ptr_this = weak_ptr_this.lock();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
WifiDebugRingBufferStatus aidl_status;
Ringbuffer::AppendStatus appendstatus;
if (!aidl_struct_util::convertLegacyDebugRingBufferStatusToAidl(status,
&aidl_status)) {
LOG(ERROR) << "Error converting ring buffer status";
return;
}
{
std::unique_lock<std::mutex> lk(shared_ptr_this->lock_t);
const auto& target = shared_ptr_this->ringbuffer_map_.find(name);
if (target != shared_ptr_this->ringbuffer_map_.end()) {
Ringbuffer& cur_buffer = target->second;
appendstatus = cur_buffer.append(data);
} else {
LOG(ERROR) << "Ringname " << name << " not found";
return;
}
// unique_lock unlocked here
}
if (appendstatus == Ringbuffer::AppendStatus::FAIL_RING_BUFFER_CORRUPTED) {
LOG(ERROR) << "Ringname " << name << " is corrupted. Clear the ring buffer";
shared_ptr_this->writeRingbufferFilesInternal();
return;
}
};
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->registerRingBufferCallbackHandler(
getFirstActiveWlanIfaceName(), on_ring_buffer_data_callback);
if (legacy_status == legacy_hal::WIFI_SUCCESS) {
debug_ring_buffer_cb_registered_ = true;
}
return createWifiStatusFromLegacyError(legacy_status);
}
ndk::ScopedAStatus WifiChip::registerRadioModeChangeCallback() {
std::weak_ptr<WifiChip> weak_ptr_this = weak_ptr_this_;
const auto& on_radio_mode_change_callback =
[weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
const auto shared_ptr_this = weak_ptr_this.lock();
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
LOG(ERROR) << "Callback invoked on an invalid object";
return;
}
std::vector<IWifiChipEventCallback::RadioModeInfo> aidl_radio_mode_infos;
if (!aidl_struct_util::convertLegacyWifiMacInfosToAidl(mac_infos,
&aidl_radio_mode_infos)) {
LOG(ERROR) << "Error converting wifi mac info";
return;
}
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
if (!callback->onRadioModeChange(aidl_radio_mode_infos).isOk()) {
LOG(ERROR) << "Failed to invoke onRadioModeChange callback";
}
}
};
legacy_hal::wifi_error legacy_status =
legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
getFirstActiveWlanIfaceName(), on_radio_mode_change_callback);
return createWifiStatusFromLegacyError(legacy_status);
}
std::vector<IWifiChip::ChipConcurrencyCombination>
WifiChip::getCurrentModeConcurrencyCombinations() {
if (!isValidModeId(current_mode_id_)) {
LOG(ERROR) << "Chip not configured in a mode yet";
return std::vector<IWifiChip::ChipConcurrencyCombination>();
}
for (const auto& mode : modes_) {
if (mode.id == current_mode_id_) {
return mode.availableCombinations;
}
}
CHECK(0) << "Expected to find concurrency combinations for current mode!";
return std::vector<IWifiChip::ChipConcurrencyCombination>();
}
// Returns a map indexed by IfaceConcurrencyType with the number of ifaces currently
// created of the corresponding concurrency type.
std::map<IfaceConcurrencyType, size_t> WifiChip::getCurrentConcurrencyCombination() {
std::map<IfaceConcurrencyType, size_t> iface_counts;
uint32_t num_ap = 0;
uint32_t num_ap_bridged = 0;
for (const auto& ap_iface : ap_ifaces_) {
std::string ap_iface_name = ap_iface->getName();
if (br_ifaces_ap_instances_.count(ap_iface_name) > 0 &&
br_ifaces_ap_instances_[ap_iface_name].size() > 1) {
num_ap_bridged++;
} else {
num_ap++;
}
}
iface_counts[IfaceConcurrencyType::AP] = num_ap;
iface_counts[IfaceConcurrencyType::AP_BRIDGED] = num_ap_bridged;
iface_counts[IfaceConcurrencyType::NAN_IFACE] = nan_ifaces_.size();
iface_counts[IfaceConcurrencyType::P2P] = p2p_ifaces_.size();
iface_counts[IfaceConcurrencyType::STA] = sta_ifaces_.size();
return iface_counts;
}
// This expands the provided concurrency combinations to a more parseable
// form. Returns a vector of available combinations possible with the number
// of each concurrency type in the combination.
// This method is a port of HalDeviceManager.expandConcurrencyCombos() from framework.
std::vector<std::map<IfaceConcurrencyType, size_t>> WifiChip::expandConcurrencyCombinations(
const IWifiChip::ChipConcurrencyCombination& combination) {
int32_t num_expanded_combos = 1;
for (const auto& limit : combination.limits) {
for (int32_t i = 0; i < limit.maxIfaces; i++) {
num_expanded_combos *= limit.types.size();
}
}
// Allocate the vector of expanded combos and reset all concurrency type counts to 0
// in each combo.
std::vector<std::map<IfaceConcurrencyType, size_t>> expanded_combos;
expanded_combos.resize(num_expanded_combos);
for (auto& expanded_combo : expanded_combos) {
for (const auto type : {IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED,
IfaceConcurrencyType::NAN_IFACE, IfaceConcurrencyType::P2P,
IfaceConcurrencyType::STA}) {
expanded_combo[type] = 0;
}
}
int32_t span = num_expanded_combos;
for (const auto& limit : combination.limits) {
for (int32_t i = 0; i < limit.maxIfaces; i++) {
span /= limit.types.size();
for (int32_t k = 0; k < num_expanded_combos; ++k) {
const auto iface_type = limit.types[(k / span) % limit.types.size()];
expanded_combos[k][iface_type]++;
}
}
}
return expanded_combos;
}
bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes(
const std::map<IfaceConcurrencyType, size_t>& expanded_combo,
IfaceConcurrencyType requested_type) {
const auto current_combo = getCurrentConcurrencyCombination();
// Check if we have space for 1 more iface of |type| in this combo
for (const auto type :
{IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED,
IfaceConcurrencyType::NAN_IFACE, IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) {
size_t num_ifaces_needed = current_combo.at(type);
if (type == requested_type) {
num_ifaces_needed++;
}
size_t num_ifaces_allowed = expanded_combo.at(type);
if (num_ifaces_needed > num_ifaces_allowed) {
return false;
}
}
return true;
}
// This method does the following:
// a) Enumerate all possible concurrency combos by expanding the current
// ChipConcurrencyCombination.
// b) Check if the requested concurrency type can be added to the current mode
// with the concurrency combination that is already active.
bool WifiChip::canCurrentModeSupportConcurrencyTypeWithCurrentTypes(
IfaceConcurrencyType requested_type) {
if (!isValidModeId(current_mode_id_)) {
LOG(ERROR) << "Chip not configured in a mode yet";
return false;
}
const auto combinations = getCurrentModeConcurrencyCombinations();
for (const auto& combination : combinations) {
const auto expanded_combos = expandConcurrencyCombinations(combination);
for (const auto& expanded_combo : expanded_combos) {
if (canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes(expanded_combo,
requested_type)) {
return true;
}
}
}
return false;
}
// Note: This does not consider concurrency types already active. It only checks if the
// provided expanded concurrency combination can support the requested combo.
bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyCombo(
const std::map<IfaceConcurrencyType, size_t>& expanded_combo,
const std::map<IfaceConcurrencyType, size_t>& req_combo) {
// Check if we have space for 1 more |type| in this combo
for (const auto type :
{IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED,
IfaceConcurrencyType::NAN_IFACE, IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) {
if (req_combo.count(type) == 0) {
// Concurrency type not in the req_combo.
continue;
}
size_t num_ifaces_needed = req_combo.at(type);
size_t num_ifaces_allowed = expanded_combo.at(type);
if (num_ifaces_needed > num_ifaces_allowed) {
return false;
}
}
return true;
}
// This method does the following:
// a) Enumerate all possible concurrency combos by expanding the current
// ChipConcurrencyCombination.
// b) Check if the requested concurrency combo can be added to the current mode.
// Note: This does not consider concurrency types already active. It only checks if the
// current mode can support the requested combo.
bool WifiChip::canCurrentModeSupportConcurrencyCombo(
const std::map<IfaceConcurrencyType, size_t>& req_combo) {
if (!isValidModeId(current_mode_id_)) {
LOG(ERROR) << "Chip not configured in a mode yet";
return false;
}
const auto combinations = getCurrentModeConcurrencyCombinations();
for (const auto& combination : combinations) {
const auto expanded_combos = expandConcurrencyCombinations(combination);
for (const auto& expanded_combo : expanded_combos) {
if (canExpandedConcurrencyComboSupportConcurrencyCombo(expanded_combo, req_combo)) {
return true;
}
}
}
return false;
}
// This method does the following:
// a) Enumerate all possible concurrency combos by expanding the current
// ChipConcurrencyCombination.
// b) Check if the requested concurrency type can be added to the current mode.
bool WifiChip::canCurrentModeSupportConcurrencyType(IfaceConcurrencyType requested_type) {
// Check if we can support at least 1 of the requested concurrency type.
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
req_iface_combo[requested_type] = 1;
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
}
bool WifiChip::isValidModeId(int32_t mode_id) {
for (const auto& mode : modes_) {
if (mode.id == mode_id) {
return true;
}
}
return false;
}
bool WifiChip::isStaApConcurrencyAllowedInCurrentMode() {
// Check if we can support at least 1 STA & 1 AP concurrently.
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
req_iface_combo[IfaceConcurrencyType::STA] = 1;
req_iface_combo[IfaceConcurrencyType::AP] = 1;
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
}
bool WifiChip::isDualStaConcurrencyAllowedInCurrentMode() {
// Check if we can support at least 2 STA concurrently.
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
req_iface_combo[IfaceConcurrencyType::STA] = 2;
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
}
std::string WifiChip::getFirstActiveWlanIfaceName() {
if (sta_ifaces_.size() > 0) return sta_ifaces_[0]->getName();
if (ap_ifaces_.size() > 0) {
// If the first active wlan iface is bridged iface.
// Return first instance name.
for (auto const& it : br_ifaces_ap_instances_) {
if (it.first == ap_ifaces_[0]->getName()) {
return it.second[0];
}
}
return ap_ifaces_[0]->getName();
}
// This could happen if the chip call is made before any STA/AP
// iface is created. Default to wlan0 for such cases.
LOG(WARNING) << "No active wlan interfaces in use! Using default";
return getWlanIfaceNameWithType(IfaceType::STA, 0);
}
// Return the first wlan (wlan0, wlan1 etc.) starting from |start_idx|
// not already in use.
// Note: This doesn't check the actual presence of these interfaces.
std::string WifiChip::allocateApOrStaIfaceName(IfaceType type, uint32_t start_idx) {
for (unsigned idx = start_idx; idx < kMaxWlanIfaces; idx++) {
const auto ifname = getWlanIfaceNameWithType(type, idx);
if (findUsingNameFromBridgedApInstances(ifname)) continue;
if (findUsingName(ap_ifaces_, ifname)) continue;
if (findUsingName(sta_ifaces_, ifname)) continue;
return ifname;
}
// This should never happen. We screwed up somewhere if it did.
CHECK(false) << "All wlan interfaces in use already!";
return {};
}
uint32_t WifiChip::startIdxOfApIface() {
if (isDualStaConcurrencyAllowedInCurrentMode()) {
// When the HAL support dual STAs, AP should start with idx 2.
return 2;
} else if (isStaApConcurrencyAllowedInCurrentMode()) {
// When the HAL support STA + AP but it doesn't support dual STAs.
// AP should start with idx 1.
return 1;
}
// No concurrency support.
return 0;
}
// AP iface names start with idx 1 for modes supporting
// concurrent STA and not dual AP, else start with idx 0.
std::string WifiChip::allocateApIfaceName() {
// Check if we have a dedicated iface for AP.
std::vector<std::string> ifnames = getPredefinedApIfaceNames(true);
for (auto const& ifname : ifnames) {
if (findUsingName(ap_ifaces_, ifname)) continue;
return ifname;
}
return allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface());
}
std::vector<std::string> WifiChip::allocateBridgedApInstanceNames() {
// Check if we have a dedicated iface for AP.
std::vector<std::string> instances = getPredefinedApIfaceNames(true);
if (instances.size() == 2) {
return instances;
} else {
int num_ifaces_need_to_allocate = 2 - instances.size();
for (int i = 0; i < num_ifaces_need_to_allocate; i++) {
std::string instance_name =
allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface() + i);
if (!instance_name.empty()) {
instances.push_back(instance_name);
}
}
}
return instances;
}
// STA iface names start with idx 0.
// Primary STA iface will always be 0.
std::string WifiChip::allocateStaIfaceName() {
return allocateApOrStaIfaceName(IfaceType::STA, 0);
}
bool WifiChip::writeRingbufferFilesInternal() {
if (!removeOldFilesInternal()) {
LOG(ERROR) << "Error occurred while deleting old tombstone files";
return false;
}
// write ringbuffers to file
{
std::unique_lock<std::mutex> lk(lock_t);
for (auto& item : ringbuffer_map_) {
Ringbuffer& cur_buffer = item.second;
if (cur_buffer.getData().empty()) {
continue;
}
const std::string file_path_raw = kTombstoneFolderPath + item.first + "XXXXXXXXXX";
const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
if (dump_fd == -1) {
PLOG(ERROR) << "create file failed";
return false;
}
unique_fd file_auto_closer(dump_fd);
for (const auto& cur_block : cur_buffer.getData()) {
if (cur_block.size() <= 0 || cur_block.size() > kMaxBufferSizeBytes) {
PLOG(ERROR) << "Ring buffer: " << item.first
<< " is corrupted. Invalid block size: " << cur_block.size();
break;
}
if (write(dump_fd, cur_block.data(), sizeof(cur_block[0]) * cur_block.size()) ==
-1) {
PLOG(ERROR) << "Error writing to file";
}
}
cur_buffer.clear();
}
// unique_lock unlocked here
}
return true;
}
std::string WifiChip::getWlanIfaceNameWithType(IfaceType type, unsigned idx) {
std::string ifname;
// let the legacy hal override the interface name
legacy_hal::wifi_error err = legacy_hal_.lock()->getSupportedIfaceName((uint32_t)type, ifname);
if (err == legacy_hal::WIFI_SUCCESS) return ifname;
return getWlanIfaceName(idx);
}
void WifiChip::invalidateAndClearBridgedApAll() {
for (auto const& it : br_ifaces_ap_instances_) {
for (auto const& iface : it.second) {
iface_util_->removeIfaceFromBridge(it.first, iface);
legacy_hal_.lock()->deleteVirtualInterface(iface);
}
iface_util_->deleteBridge(it.first);
}
br_ifaces_ap_instances_.clear();
}
void WifiChip::deleteApIface(const std::string& if_name) {
if (if_name.empty()) return;
// delete bridged interfaces if any
for (auto const& it : br_ifaces_ap_instances_) {
if (it.first == if_name) {
for (auto const& iface : it.second) {
iface_util_->removeIfaceFromBridge(if_name, iface);
legacy_hal_.lock()->deleteVirtualInterface(iface);
}
iface_util_->deleteBridge(if_name);
br_ifaces_ap_instances_.erase(if_name);
// ifname is bridged AP, return here.
return;
}
}
// No bridged AP case, delete AP iface
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(if_name);
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
LOG(ERROR) << "Failed to remove interface: " << if_name << " "
<< legacyErrorToString(legacy_status);
}
}
bool WifiChip::findUsingNameFromBridgedApInstances(const std::string& name) {
for (auto const& it : br_ifaces_ap_instances_) {
if (it.first == name) {
return true;
}
for (auto const& iface : it.second) {
if (iface == name) {
return true;
}
}
}
return false;
}
ndk::ScopedAStatus WifiChip::setMloModeInternal(const WifiChip::ChipMloMode in_mode) {
legacy_hal::wifi_mlo_mode mode;
switch (in_mode) {
case WifiChip::ChipMloMode::DEFAULT:
mode = legacy_hal::wifi_mlo_mode::WIFI_MLO_MODE_DEFAULT;
break;
case WifiChip::ChipMloMode::LOW_LATENCY:
mode = legacy_hal::wifi_mlo_mode::WIFI_MLO_MODE_LOW_LATENCY;
break;
case WifiChip::ChipMloMode::HIGH_THROUGHPUT:
mode = legacy_hal::wifi_mlo_mode::WIFI_MLO_MODE_HIGH_THROUGHPUT;
break;
case WifiChip::ChipMloMode::LOW_POWER:
mode = legacy_hal::wifi_mlo_mode::WIFI_MLO_MODE_LOW_POWER;
break;
default:
PLOG(ERROR) << "Error: invalid mode: " << toString(in_mode);
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
return createWifiStatusFromLegacyError(legacy_hal_.lock()->setMloMode(mode));
}
ndk::ScopedAStatus WifiChip::setVoipModeInternal(const WifiChip::VoipMode in_mode) {
const auto ifname = getFirstActiveWlanIfaceName();
wifi_voip_mode mode;
switch (in_mode) {
case WifiChip::VoipMode::VOICE:
mode = wifi_voip_mode::WIFI_VOIP_MODE_VOICE;
break;
case WifiChip::VoipMode::OFF:
mode = wifi_voip_mode::WIFI_VOIP_MODE_OFF;
break;
default:
PLOG(ERROR) << "Error: invalid mode: " << toString(in_mode);
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
}
return createWifiStatusFromLegacyError(legacy_hal_.lock()->setVoipMode(ifname, mode));
}
} // namespace wifi
} // namespace hardware
} // namespace android
} // namespace aidl