blob: 8303d93e548344afe9cc0d54c14bedab4640588b [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <Constants.h>
#include <MockLocation.h>
#include <Utils.h>
#include <aidl/android/hardware/gnss/BnGnss.h>
#include <utils/SystemClock.h>
namespace android {
namespace hardware {
namespace gnss {
namespace common {
using aidl::android::hardware::gnss::ElapsedRealtime;
using aidl::android::hardware::gnss::GnssClock;
using aidl::android::hardware::gnss::GnssConstellationType;
using aidl::android::hardware::gnss::GnssData;
using aidl::android::hardware::gnss::GnssLocation;
using aidl::android::hardware::gnss::GnssMeasurement;
using aidl::android::hardware::gnss::IGnss;
using aidl::android::hardware::gnss::IGnssDebug;
using aidl::android::hardware::gnss::IGnssMeasurementCallback;
using aidl::android::hardware::gnss::SatellitePvt;
using GnssSvInfo = aidl::android::hardware::gnss::IGnssCallback::GnssSvInfo;
using GnssSvFlags = aidl::android::hardware::gnss::IGnssCallback::GnssSvFlags;
using GnssSvFlagsV1_0 = V1_0::IGnssCallback::GnssSvFlags;
using GnssAgc = aidl::android::hardware::gnss::GnssData::GnssAgc;
using GnssMeasurementFlagsV1_0 = V1_0::IGnssMeasurementCallback::GnssMeasurementFlags;
using GnssMeasurementFlagsV2_1 = V2_1::IGnssMeasurementCallback::GnssMeasurementFlags;
using GnssMeasurementStateV2_0 = V2_0::IGnssMeasurementCallback::GnssMeasurementState;
using ElapsedRealtimeFlags = V2_0::ElapsedRealtimeFlags;
using GnssConstellationTypeV2_0 = V2_0::GnssConstellationType;
using IGnssMeasurementCallbackV2_0 = V2_0::IGnssMeasurementCallback;
using GnssSignalType = V2_1::GnssSignalType;
using GnssDataV2_0 = V2_0::IGnssMeasurementCallback::GnssData;
using GnssDataV2_1 = V2_1::IGnssMeasurementCallback::GnssData;
using GnssSvInfoV1_0 = V1_0::IGnssCallback::GnssSvInfo;
using GnssSvInfoV2_0 = V2_0::IGnssCallback::GnssSvInfo;
using GnssSvInfoV2_1 = V2_1::IGnssCallback::GnssSvInfo;
using GnssAntennaInfo = ::android::hardware::gnss::V2_1::IGnssAntennaInfoCallback::GnssAntennaInfo;
using Row = V2_1::IGnssAntennaInfoCallback::Row;
using Coord = V2_1::IGnssAntennaInfoCallback::Coord;
GnssDataV2_1 Utils::getMockMeasurementV2_1() {
GnssDataV2_0 gnssDataV2_0 = Utils::getMockMeasurementV2_0();
V2_1::IGnssMeasurementCallback::GnssMeasurement gnssMeasurementV2_1 = {
.v2_0 = gnssDataV2_0.measurements[0],
.flags = (uint32_t)(GnssMeasurementFlagsV2_1::HAS_CARRIER_FREQUENCY |
GnssMeasurementFlagsV2_1::HAS_CARRIER_PHASE |
GnssMeasurementFlagsV2_1::HAS_FULL_ISB |
GnssMeasurementFlagsV2_1::HAS_FULL_ISB_UNCERTAINTY |
GnssMeasurementFlagsV2_1::HAS_SATELLITE_ISB |
GnssMeasurementFlagsV2_1::HAS_SATELLITE_ISB_UNCERTAINTY),
.fullInterSignalBiasNs = 30.0,
.fullInterSignalBiasUncertaintyNs = 250.0,
.satelliteInterSignalBiasNs = 20.0,
.satelliteInterSignalBiasUncertaintyNs = 150.0,
.basebandCN0DbHz = 25.0,
};
GnssSignalType referenceSignalTypeForIsb = {
.constellation = GnssConstellationTypeV2_0::GPS,
.carrierFrequencyHz = 1.59975e+09,
.codeType = "C",
};
V2_1::IGnssMeasurementCallback::GnssClock gnssClockV2_1 = {
.v1_0 = gnssDataV2_0.clock,
.referenceSignalTypeForIsb = referenceSignalTypeForIsb,
};
hidl_vec<V2_1::IGnssMeasurementCallback::GnssMeasurement> measurements(1);
measurements[0] = gnssMeasurementV2_1;
GnssDataV2_1 gnssDataV2_1 = {
.measurements = measurements,
.clock = gnssClockV2_1,
.elapsedRealtime = gnssDataV2_0.elapsedRealtime,
};
return gnssDataV2_1;
}
GnssDataV2_0 Utils::getMockMeasurementV2_0() {
V1_0::IGnssMeasurementCallback::GnssMeasurement measurement_1_0 = {
.flags = (uint32_t)GnssMeasurementFlagsV1_0::HAS_CARRIER_FREQUENCY,
.svid = (int16_t)6,
.constellation = V1_0::GnssConstellationType::UNKNOWN,
.timeOffsetNs = 0.0,
.receivedSvTimeInNs = 8195997131077,
.receivedSvTimeUncertaintyInNs = 15,
.cN0DbHz = 30.0,
.pseudorangeRateMps = -484.13739013671875,
.pseudorangeRateUncertaintyMps = 0.1037999987602233,
.accumulatedDeltaRangeState = (uint32_t)V1_0::IGnssMeasurementCallback::
GnssAccumulatedDeltaRangeState::ADR_STATE_UNKNOWN,
.accumulatedDeltaRangeM = 0.0,
.accumulatedDeltaRangeUncertaintyM = 0.0,
.carrierFrequencyHz = 1.59975e+09,
.multipathIndicator =
V1_0::IGnssMeasurementCallback::GnssMultipathIndicator::INDICATOR_UNKNOWN};
V1_1::IGnssMeasurementCallback::GnssMeasurement measurement_1_1 = {.v1_0 = measurement_1_0};
V2_0::IGnssMeasurementCallback::GnssMeasurement measurement_2_0 = {
.v1_1 = measurement_1_1,
.codeType = "C",
.state = GnssMeasurementStateV2_0::STATE_CODE_LOCK |
GnssMeasurementStateV2_0::STATE_BIT_SYNC |
GnssMeasurementStateV2_0::STATE_SUBFRAME_SYNC |
GnssMeasurementStateV2_0::STATE_TOW_DECODED |
GnssMeasurementStateV2_0::STATE_GLO_STRING_SYNC |
GnssMeasurementStateV2_0::STATE_GLO_TOD_DECODED,
.constellation = GnssConstellationTypeV2_0::GLONASS,
};
hidl_vec<IGnssMeasurementCallbackV2_0::GnssMeasurement> measurements(1);
measurements[0] = measurement_2_0;
V1_0::IGnssMeasurementCallback::GnssClock clock = {.timeNs = 2713545000000,
.fullBiasNs = -1226701900521857520,
.biasNs = 0.59689998626708984,
.biasUncertaintyNs = 47514.989972114563,
.driftNsps = -51.757811607455452,
.driftUncertaintyNsps = 310.64968328491528,
.hwClockDiscontinuityCount = 1};
V2_0::ElapsedRealtime timestamp = {
.flags = ElapsedRealtimeFlags::HAS_TIMESTAMP_NS |
ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS,
.timestampNs = static_cast<uint64_t>(::android::elapsedRealtimeNano()),
// This is an hardcoded value indicating a 1ms of uncertainty between the two clocks.
// In an actual implementation provide an estimate of the synchronization uncertainty
// or don't set the field.
.timeUncertaintyNs = 1000000};
GnssDataV2_0 gnssData = {
.measurements = measurements, .clock = clock, .elapsedRealtime = timestamp};
return gnssData;
}
GnssData Utils::getMockMeasurement(const bool enableCorrVecOutputs, const bool enableFullTracking) {
aidl::android::hardware::gnss::GnssSignalType signalType = {
.constellation = GnssConstellationType::GLONASS,
.carrierFrequencyHz = 1.59975e+09,
.codeType = aidl::android::hardware::gnss::GnssSignalType::CODE_TYPE_C,
};
GnssMeasurement measurement = {
.flags = GnssMeasurement::HAS_AUTOMATIC_GAIN_CONTROL |
GnssMeasurement::HAS_CARRIER_FREQUENCY | GnssMeasurement::HAS_CARRIER_PHASE |
GnssMeasurement::HAS_CARRIER_PHASE_UNCERTAINTY |
GnssMeasurement::HAS_FULL_ISB | GnssMeasurement::HAS_FULL_ISB_UNCERTAINTY |
GnssMeasurement::HAS_SATELLITE_ISB |
GnssMeasurement::HAS_SATELLITE_ISB_UNCERTAINTY |
GnssMeasurement::HAS_SATELLITE_PVT,
.svid = 13,
.signalType = signalType,
.receivedSvTimeInNs = 8195997131077,
.receivedSvTimeUncertaintyInNs = 15,
.antennaCN0DbHz = 30.0,
.basebandCN0DbHz = 26.5,
.agcLevelDb = 2.3,
.pseudorangeRateMps = -484.13739013671875,
.pseudorangeRateUncertaintyMps = 0.1037999987602233,
.accumulatedDeltaRangeState = GnssMeasurement::ADR_STATE_VALID,
.accumulatedDeltaRangeM = 1.52,
.accumulatedDeltaRangeUncertaintyM = 2.43,
.multipathIndicator = aidl::android::hardware::gnss::GnssMultipathIndicator::UNKNOWN,
.state = GnssMeasurement::STATE_CODE_LOCK | GnssMeasurement::STATE_BIT_SYNC |
GnssMeasurement::STATE_SUBFRAME_SYNC | GnssMeasurement::STATE_TOW_DECODED |
GnssMeasurement::STATE_GLO_STRING_SYNC |
GnssMeasurement::STATE_GLO_TOD_DECODED,
.fullInterSignalBiasNs = 21.5,
.fullInterSignalBiasUncertaintyNs = 792.0,
.satelliteInterSignalBiasNs = 233.9,
.satelliteInterSignalBiasUncertaintyNs = 921.2,
.satellitePvt =
{
.flags = SatellitePvt::HAS_POSITION_VELOCITY_CLOCK_INFO |
SatellitePvt::HAS_IONO | SatellitePvt::HAS_TROPO,
.satPosEcef = {.posXMeters = 10442993.1153328,
.posYMeters = -19926932.8051666,
.posZMeters = -12034295.0216203,
.ureMeters = 1000.2345678},
.satVelEcef = {.velXMps = -478.667183715732,
.velYMps = 1580.68371984114,
.velZMps = -3030.52994449997,
.ureRateMps = 10.2345678},
.satClockInfo = {.satHardwareCodeBiasMeters = 1.396983861923e-09,
.satTimeCorrectionMeters = -7113.08964331,
.satClkDriftMps = 0},
.ionoDelayMeters = 3.069949602639317e-08,
.tropoDelayMeters = 3.882265204404031,
.ephemerisSource =
SatellitePvt::SatelliteEphemerisSource::SERVER_LONG_TERM,
.timeOfClockSeconds = 12345,
.issueOfDataClock = 143,
.timeOfEphemerisSeconds = 9876,
.issueOfDataEphemeris = 48,
},
.correlationVectors = {}};
GnssClock clock = {.gnssClockFlags = GnssClock::HAS_FULL_BIAS | GnssClock::HAS_BIAS |
GnssClock::HAS_BIAS_UNCERTAINTY | GnssClock::HAS_DRIFT |
GnssClock::HAS_DRIFT_UNCERTAINTY,
.timeNs = 2713545000000,
.fullBiasNs = -1226701900521857520,
.biasNs = 0.59689998626708984,
.biasUncertaintyNs = 47514.989972114563,
.driftNsps = -51.757811607455452,
.driftUncertaintyNsps = 310.64968328491528,
.hwClockDiscontinuityCount = 1,
.referenceSignalTypeForIsb = signalType};
ElapsedRealtime timestamp = {
.flags = ElapsedRealtime::HAS_TIMESTAMP_NS | ElapsedRealtime::HAS_TIME_UNCERTAINTY_NS,
.timestampNs = ::android::elapsedRealtimeNano(),
// This is an hardcoded value indicating a 1ms of uncertainty between the two clocks.
// In an actual implementation provide an estimate of the synchronization uncertainty
// or don't set the field.
.timeUncertaintyNs = 1020400};
if (enableCorrVecOutputs) {
aidl::android::hardware::gnss::CorrelationVector correlationVector1 = {
.frequencyOffsetMps = 10,
.samplingWidthM = 30,
.samplingStartM = 0,
.magnitude = {0, 5000, 10000, 5000, 0, 0, 3000, 0}};
aidl::android::hardware::gnss::CorrelationVector correlationVector2 = {
.frequencyOffsetMps = 20,
.samplingWidthM = 30,
.samplingStartM = -10,
.magnitude = {0, 3000, 5000, 3000, 0, 0, 1000, 0}};
measurement.correlationVectors = {correlationVector1, correlationVector2};
measurement.flags |= GnssMeasurement::HAS_CORRELATION_VECTOR;
}
GnssAgc gnssAgc1 = {
.agcLevelDb = 3.5,
.constellation = GnssConstellationType::GLONASS,
.carrierFrequencyHz = (int64_t)kGloG1FreqHz,
};
GnssAgc gnssAgc2 = {
.agcLevelDb = -5.1,
.constellation = GnssConstellationType::GPS,
.carrierFrequencyHz = (int64_t)kGpsL1FreqHz,
};
GnssData gnssData = {.measurements = {measurement},
.clock = clock,
.elapsedRealtime = timestamp,
.gnssAgcs = std::vector({gnssAgc1, gnssAgc2}),
.isFullTracking = enableFullTracking};
return gnssData;
}
GnssLocation Utils::getMockLocation() {
ElapsedRealtime elapsedRealtime = {
.flags = ElapsedRealtime::HAS_TIMESTAMP_NS | ElapsedRealtime::HAS_TIME_UNCERTAINTY_NS,
.timestampNs = ::android::elapsedRealtimeNano(),
// This is an hardcoded value indicating a 1ms of uncertainty between the two clocks.
// In an actual implementation provide an estimate of the synchronization uncertainty
// or don't set the field.
.timeUncertaintyNs = 1020400};
GnssLocation location = {.gnssLocationFlags = 0xFF,
.latitudeDegrees = gMockLatitudeDegrees,
.longitudeDegrees = gMockLongitudeDegrees,
.altitudeMeters = gMockAltitudeMeters,
.speedMetersPerSec = gMockSpeedMetersPerSec,
.bearingDegrees = gMockBearingDegrees,
.horizontalAccuracyMeters = kMockHorizontalAccuracyMeters,
.verticalAccuracyMeters = kMockVerticalAccuracyMeters,
.speedAccuracyMetersPerSecond = kMockSpeedAccuracyMetersPerSecond,
.bearingAccuracyDegrees = kMockBearingAccuracyDegrees,
.timestampMillis = static_cast<int64_t>(
kMockTimestamp + ::android::elapsedRealtimeNano() / 1e6),
.elapsedRealtime = elapsedRealtime};
return location;
}
V2_0::GnssLocation Utils::getMockLocationV2_0() {
const V2_0::ElapsedRealtime timestamp = {
.flags = V2_0::ElapsedRealtimeFlags::HAS_TIMESTAMP_NS |
V2_0::ElapsedRealtimeFlags::HAS_TIME_UNCERTAINTY_NS,
.timestampNs = static_cast<uint64_t>(::android::elapsedRealtimeNano()),
// This is an hardcoded value indicating a 1ms of uncertainty between the two clocks.
// In an actual implementation provide an estimate of the synchronization uncertainty
// or don't set the field.
.timeUncertaintyNs = 1000000};
V2_0::GnssLocation location = {.v1_0 = Utils::getMockLocationV1_0(),
.elapsedRealtime = timestamp};
return location;
}
V1_0::GnssLocation Utils::getMockLocationV1_0() {
V1_0::GnssLocation location = {
.gnssLocationFlags = 0xFF,
.latitudeDegrees = gMockLatitudeDegrees,
.longitudeDegrees = gMockLongitudeDegrees,
.altitudeMeters = gMockAltitudeMeters,
.speedMetersPerSec = gMockSpeedMetersPerSec,
.bearingDegrees = gMockBearingDegrees,
.horizontalAccuracyMeters = kMockHorizontalAccuracyMeters,
.verticalAccuracyMeters = kMockVerticalAccuracyMeters,
.speedAccuracyMetersPerSecond = kMockSpeedAccuracyMetersPerSecond,
.bearingAccuracyDegrees = kMockBearingAccuracyDegrees,
.timestamp =
static_cast<int64_t>(kMockTimestamp + ::android::elapsedRealtimeNano() / 1e6)};
return location;
}
namespace {
GnssSvInfo getMockSvInfo(int svid, GnssConstellationType type, float cN0DbHz, float basebandCN0DbHz,
float elevationDegrees, float azimuthDegrees, long carrierFrequencyHz) {
GnssSvInfo svInfo = {
.svid = svid,
.constellation = type,
.cN0Dbhz = cN0DbHz,
.basebandCN0DbHz = basebandCN0DbHz,
.elevationDegrees = elevationDegrees,
.azimuthDegrees = azimuthDegrees,
.carrierFrequencyHz = carrierFrequencyHz,
.svFlag = (int)GnssSvFlags::USED_IN_FIX | (int)GnssSvFlags::HAS_EPHEMERIS_DATA |
(int)GnssSvFlags::HAS_ALMANAC_DATA | (int)GnssSvFlags::HAS_CARRIER_FREQUENCY};
return svInfo;
}
} // anonymous namespace
std::vector<GnssSvInfo> Utils::getMockSvInfoList() {
std::vector<GnssSvInfo> gnssSvInfoList = {
getMockSvInfo(3, GnssConstellationType::GPS, 32.5, 27.5, 59.1, 166.5, kGpsL1FreqHz),
getMockSvInfo(5, GnssConstellationType::GPS, 27.0, 22.0, 29.0, 56.5, kGpsL1FreqHz),
getMockSvInfo(17, GnssConstellationType::GPS, 30.5, 25.5, 71.0, 77.0, kGpsL5FreqHz),
getMockSvInfo(26, GnssConstellationType::GPS, 24.1, 19.1, 28.0, 253.0, kGpsL5FreqHz),
getMockSvInfo(5, GnssConstellationType::GLONASS, 20.5, 15.5, 11.5, 116.0, kGloG1FreqHz),
getMockSvInfo(17, GnssConstellationType::GLONASS, 21.5, 16.5, 28.5, 186.0,
kGloG1FreqHz),
getMockSvInfo(18, GnssConstellationType::GLONASS, 28.3, 25.3, 38.8, 69.0, kGloG1FreqHz),
getMockSvInfo(10, GnssConstellationType::GLONASS, 25.0, 20.0, 66.0, 247.0,
kGloG1FreqHz),
getMockSvInfo(3, GnssConstellationType::IRNSS, 22.0, 19.7, 35.0, 112.0, kIrnssL5FreqHz),
};
return gnssSvInfoList;
}
hidl_vec<GnssSvInfoV2_1> Utils::getMockSvInfoListV2_1() {
GnssSvInfoV1_0 gnssSvInfoV1_0 = Utils::getMockSvInfoV1_0(3, V1_0::GnssConstellationType::GPS,
32.5, 59.1, 166.5, kGpsL1FreqHz);
GnssSvInfoV2_0 gnssSvInfoV2_0 =
Utils::getMockSvInfoV2_0(gnssSvInfoV1_0, V2_0::GnssConstellationType::GPS);
hidl_vec<GnssSvInfoV2_1> gnssSvInfoList = {
Utils::getMockSvInfoV2_1(gnssSvInfoV2_0, 27.5),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(5, V1_0::GnssConstellationType::GPS, 27.0,
29.0, 56.5, kGpsL1FreqHz),
V2_0::GnssConstellationType::GPS),
22.0),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(17, V1_0::GnssConstellationType::GPS, 30.5,
71.0, 77.0, kGpsL5FreqHz),
V2_0::GnssConstellationType::GPS),
25.5),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(26, V1_0::GnssConstellationType::GPS, 24.1,
28.0, 253.0, kGpsL5FreqHz),
V2_0::GnssConstellationType::GPS),
19.1),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(5, V1_0::GnssConstellationType::GLONASS,
20.5, 11.5, 116.0, kGloG1FreqHz),
V2_0::GnssConstellationType::GLONASS),
15.5),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(17, V1_0::GnssConstellationType::GLONASS,
21.5, 28.5, 186.0, kGloG1FreqHz),
V2_0::GnssConstellationType::GLONASS),
16.5),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(18, V1_0::GnssConstellationType::GLONASS,
28.3, 38.8, 69.0, kGloG1FreqHz),
V2_0::GnssConstellationType::GLONASS),
25.3),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(10, V1_0::GnssConstellationType::GLONASS,
25.0, 66.0, 247.0, kGloG1FreqHz),
V2_0::GnssConstellationType::GLONASS),
20.0),
getMockSvInfoV2_1(
getMockSvInfoV2_0(getMockSvInfoV1_0(3, V1_0::GnssConstellationType::UNKNOWN,
22.0, 35.0, 112.0, kIrnssL5FreqHz),
V2_0::GnssConstellationType::IRNSS),
19.7),
};
return gnssSvInfoList;
}
GnssSvInfoV2_1 Utils::getMockSvInfoV2_1(GnssSvInfoV2_0 gnssSvInfoV2_0, float basebandCN0DbHz) {
GnssSvInfoV2_1 gnssSvInfoV2_1 = {
.v2_0 = gnssSvInfoV2_0,
.basebandCN0DbHz = basebandCN0DbHz,
};
return gnssSvInfoV2_1;
}
GnssSvInfoV2_0 Utils::getMockSvInfoV2_0(GnssSvInfoV1_0 gnssSvInfoV1_0,
V2_0::GnssConstellationType type) {
GnssSvInfoV2_0 gnssSvInfoV2_0 = {
.v1_0 = gnssSvInfoV1_0,
.constellation = type,
};
return gnssSvInfoV2_0;
}
GnssSvInfoV1_0 Utils::getMockSvInfoV1_0(int16_t svid, V1_0::GnssConstellationType type,
float cN0DbHz, float elevationDegrees, float azimuthDegrees,
float carrierFrequencyHz) {
GnssSvInfoV1_0 svInfo = {
.svid = svid,
.constellation = type,
.cN0Dbhz = cN0DbHz,
.elevationDegrees = elevationDegrees,
.azimuthDegrees = azimuthDegrees,
.carrierFrequencyHz = carrierFrequencyHz,
.svFlag = GnssSvFlagsV1_0::USED_IN_FIX | GnssSvFlagsV1_0::HAS_EPHEMERIS_DATA |
GnssSvFlagsV1_0::HAS_ALMANAC_DATA | GnssSvFlagsV1_0::HAS_CARRIER_FREQUENCY};
return svInfo;
}
hidl_vec<GnssAntennaInfo> Utils::getMockAntennaInfos() {
GnssAntennaInfo mockAntennaInfo_1 = {
.carrierFrequencyMHz = kGpsL1FreqHz * 1e-6,
.phaseCenterOffsetCoordinateMillimeters = Coord{.x = 1,
.xUncertainty = 0.1,
.y = 2,
.yUncertainty = 0.1,
.z = 3,
.zUncertainty = 0.1},
.phaseCenterVariationCorrectionMillimeters =
{
Row{hidl_vec<double>{1, -1, 5, -2, 3, -1}},
Row{hidl_vec<double>{-2, 3, 2, 0, 1, 2}},
Row{hidl_vec<double>{1, 3, 2, -1, -3, 5}},
},
.phaseCenterVariationCorrectionUncertaintyMillimeters =
{
Row{hidl_vec<double>{0.1, 0.2, 0.4, 0.1, 0.2, 0.3}},
Row{hidl_vec<double>{0.3, 0.2, 0.3, 0.6, 0.1, 0.1}},
Row{hidl_vec<double>{0.1, 0.1, 0.4, 0.2, 0.5, 0.3}},
},
.signalGainCorrectionDbi =
{
Row{hidl_vec<double>{2, -3, 1, -3, 0, -4}},
Row{hidl_vec<double>{1, 0, -4, 1, 3, -2}},
Row{hidl_vec<double>{3, -2, 0, -2, 3, 0}},
},
.signalGainCorrectionUncertaintyDbi =
{
Row{hidl_vec<double>{0.3, 0.1, 0.2, 0.6, 0.1, 0.3}},
Row{hidl_vec<double>{0.1, 0.1, 0.5, 0.2, 0.3, 0.1}},
Row{hidl_vec<double>{0.2, 0.4, 0.2, 0.1, 0.1, 0.2}},
},
};
GnssAntennaInfo mockAntennaInfo_2 = {
.carrierFrequencyMHz = kGpsL5FreqHz * 1e-6,
.phaseCenterOffsetCoordinateMillimeters = Coord{.x = 5,
.xUncertainty = 0.1,
.y = 6,
.yUncertainty = 0.1,
.z = 7,
.zUncertainty = 0.1},
};
hidl_vec<GnssAntennaInfo> mockAntennaInfos = {
mockAntennaInfo_1,
mockAntennaInfo_2,
};
return mockAntennaInfos;
}
} // namespace common
} // namespace gnss
} // namespace hardware
} // namespace android