blob: a6ec4c783e7ec90ca22dfc8400fe24b8f8d68d39 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExtCamDevSsn"
// #define LOG_NDEBUG 0
#include <log/log.h>
#include "ExternalCameraDeviceSession.h"
#include <Exif.h>
#include <ExternalCameraOfflineSession.h>
#include <aidl/android/hardware/camera/device/CameraBlob.h>
#include <aidl/android/hardware/camera/device/CameraBlobId.h>
#include <aidl/android/hardware/camera/device/ErrorMsg.h>
#include <aidl/android/hardware/camera/device/ShutterMsg.h>
#include <aidl/android/hardware/camera/device/StreamBufferRet.h>
#include <aidl/android/hardware/camera/device/StreamBuffersVal.h>
#include <aidl/android/hardware/camera/device/StreamConfigurationMode.h>
#include <aidl/android/hardware/camera/device/StreamRotation.h>
#include <aidl/android/hardware/camera/device/StreamType.h>
#include <aidl/android/hardware/graphics/common/Dataspace.h>
#include <aidlcommonsupport/NativeHandle.h>
#include <convert.h>
#include <linux/videodev2.h>
#include <sync/sync.h>
#include <utils/Trace.h>
#include <deque>
#define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
#include <libyuv.h>
#include <libyuv/convert.h>
namespace android {
namespace hardware {
namespace camera {
namespace device {
namespace implementation {
namespace {
// Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */;
const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
// bad frames. TODO: develop a better bad frame detection
// method
constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some
// webcam showing temporarily ioctl failures.
constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds
// Constants for tryLock during dumpstate
static constexpr int kDumpLockRetries = 50;
static constexpr int kDumpLockSleep = 60000;
bool tryLock(Mutex& mutex) {
bool locked = false;
for (int i = 0; i < kDumpLockRetries; ++i) {
if (mutex.tryLock() == NO_ERROR) {
locked = true;
break;
}
usleep(kDumpLockSleep);
}
return locked;
}
bool tryLock(std::mutex& mutex) {
bool locked = false;
for (int i = 0; i < kDumpLockRetries; ++i) {
if (mutex.try_lock()) {
locked = true;
break;
}
usleep(kDumpLockSleep);
}
return locked;
}
} // anonymous namespace
using ::aidl::android::hardware::camera::device::BufferRequestStatus;
using ::aidl::android::hardware::camera::device::CameraBlob;
using ::aidl::android::hardware::camera::device::CameraBlobId;
using ::aidl::android::hardware::camera::device::ErrorMsg;
using ::aidl::android::hardware::camera::device::ShutterMsg;
using ::aidl::android::hardware::camera::device::StreamBuffer;
using ::aidl::android::hardware::camera::device::StreamBufferRet;
using ::aidl::android::hardware::camera::device::StreamBuffersVal;
using ::aidl::android::hardware::camera::device::StreamConfigurationMode;
using ::aidl::android::hardware::camera::device::StreamRotation;
using ::aidl::android::hardware::camera::device::StreamType;
using ::aidl::android::hardware::graphics::common::Dataspace;
using ::android::hardware::camera::common::V1_0::helper::ExifUtils;
// Static instances
const int ExternalCameraDeviceSession::kMaxProcessedStream;
const int ExternalCameraDeviceSession::kMaxStallStream;
HandleImporter ExternalCameraDeviceSession::sHandleImporter;
ExternalCameraDeviceSession::ExternalCameraDeviceSession(
const std::shared_ptr<ICameraDeviceCallback>& callback, const ExternalCameraConfig& cfg,
const std::vector<SupportedV4L2Format>& sortedFormats, const CroppingType& croppingType,
const common::V1_0::helper::CameraMetadata& chars, const std::string& cameraId,
unique_fd v4l2Fd)
: mCallback(callback),
mCfg(cfg),
mCameraCharacteristics(chars),
mSupportedFormats(sortedFormats),
mCroppingType(croppingType),
mCameraId(cameraId),
mV4l2Fd(std::move(v4l2Fd)),
mMaxThumbResolution(getMaxThumbResolution()),
mMaxJpegResolution(getMaxJpegResolution()) {}
Size ExternalCameraDeviceSession::getMaxThumbResolution() const {
return getMaxThumbnailResolution(mCameraCharacteristics);
}
Size ExternalCameraDeviceSession::getMaxJpegResolution() const {
Size ret{0, 0};
for (auto& fmt : mSupportedFormats) {
if (fmt.width * fmt.height > ret.width * ret.height) {
ret = Size{fmt.width, fmt.height};
}
}
return ret;
}
bool ExternalCameraDeviceSession::initialize() {
if (mV4l2Fd.get() < 0) {
ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
return true;
}
struct v4l2_capability capability;
int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability);
std::string make, model;
if (ret < 0) {
ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__);
mExifMake = "Generic UVC webcam";
mExifModel = "Generic UVC webcam";
} else {
// capability.card is UTF-8 encoded
char card[32];
int j = 0;
for (int i = 0; i < 32; i++) {
if (capability.card[i] < 128) {
card[j++] = capability.card[i];
}
if (capability.card[i] == '\0') {
break;
}
}
if (j == 0 || card[j - 1] != '\0') {
mExifMake = "Generic UVC webcam";
mExifModel = "Generic UVC webcam";
} else {
mExifMake = card;
mExifModel = card;
}
}
initOutputThread();
if (mOutputThread == nullptr) {
ALOGE("%s: init OutputThread failed!", __FUNCTION__);
return true;
}
mOutputThread->setExifMakeModel(mExifMake, mExifModel);
status_t status = initDefaultRequests();
if (status != OK) {
ALOGE("%s: init default requests failed!", __FUNCTION__);
return true;
}
mRequestMetadataQueue =
std::make_unique<RequestMetadataQueue>(kMetadataMsgQueueSize, false /* non blocking */);
if (!mRequestMetadataQueue->isValid()) {
ALOGE("%s: invalid request fmq", __FUNCTION__);
return true;
}
mResultMetadataQueue =
std::make_shared<ResultMetadataQueue>(kMetadataMsgQueueSize, false /* non blocking */);
if (!mResultMetadataQueue->isValid()) {
ALOGE("%s: invalid result fmq", __FUNCTION__);
return true;
}
mOutputThread->run();
return false;
}
bool ExternalCameraDeviceSession::isInitFailed() {
Mutex::Autolock _l(mLock);
if (!mInitialized) {
mInitFail = initialize();
mInitialized = true;
}
return mInitFail;
}
void ExternalCameraDeviceSession::initOutputThread() {
// Grab a shared_ptr to 'this' from ndk::SharedRefBase::ref()
std::shared_ptr<ExternalCameraDeviceSession> thiz = ref<ExternalCameraDeviceSession>();
mBufferRequestThread = std::make_shared<BufferRequestThread>(/*parent=*/thiz, mCallback);
mBufferRequestThread->run();
mOutputThread = std::make_shared<OutputThread>(/*parent=*/thiz, mCroppingType,
mCameraCharacteristics, mBufferRequestThread);
}
void ExternalCameraDeviceSession::closeOutputThread() {
if (mOutputThread != nullptr) {
mOutputThread->flush();
mOutputThread->requestExitAndWait();
mOutputThread.reset();
}
}
void ExternalCameraDeviceSession::closeBufferRequestThread() {
if (mBufferRequestThread != nullptr) {
mBufferRequestThread->requestExitAndWait();
mBufferRequestThread.reset();
}
}
Status ExternalCameraDeviceSession::initStatus() const {
Mutex::Autolock _l(mLock);
Status status = Status::OK;
if (mInitFail || mClosed) {
ALOGI("%s: session initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
status = Status::INTERNAL_ERROR;
}
return status;
}
ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
if (!isClosed()) {
ALOGE("ExternalCameraDeviceSession deleted before close!");
closeImpl();
}
}
ScopedAStatus ExternalCameraDeviceSession::constructDefaultRequestSettings(
RequestTemplate in_type, CameraMetadata* _aidl_return) {
CameraMetadata emptyMetadata;
Status status = initStatus();
if (status != Status::OK) {
return fromStatus(status);
}
switch (in_type) {
case RequestTemplate::PREVIEW:
case RequestTemplate::STILL_CAPTURE:
case RequestTemplate::VIDEO_RECORD:
case RequestTemplate::VIDEO_SNAPSHOT: {
*_aidl_return = mDefaultRequests[in_type];
break;
}
case RequestTemplate::MANUAL:
case RequestTemplate::ZERO_SHUTTER_LAG:
// Don't support MANUAL, ZSL templates
status = Status::ILLEGAL_ARGUMENT;
break;
default:
ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(in_type));
status = Status::ILLEGAL_ARGUMENT;
break;
}
return fromStatus(status);
}
ScopedAStatus ExternalCameraDeviceSession::configureStreams(
const StreamConfiguration& in_requestedConfiguration,
std::vector<HalStream>* _aidl_return) {
uint32_t blobBufferSize = 0;
_aidl_return->clear();
Mutex::Autolock _il(mInterfaceLock);
Status status =
isStreamCombinationSupported(in_requestedConfiguration, mSupportedFormats, mCfg);
if (status != Status::OK) {
return fromStatus(status);
}
status = initStatus();
if (status != Status::OK) {
return fromStatus(status);
}
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
if (!mInflightFrames.empty()) {
ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
__FUNCTION__, mInflightFrames.size());
return fromStatus(Status::INTERNAL_ERROR);
}
}
Mutex::Autolock _l(mLock);
{
Mutex::Autolock _cl(mCbsLock);
// Add new streams
for (const auto& stream : in_requestedConfiguration.streams) {
if (mStreamMap.count(stream.id) == 0) {
mStreamMap[stream.id] = stream;
mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
}
}
// Cleanup removed streams
for (auto it = mStreamMap.begin(); it != mStreamMap.end();) {
int id = it->first;
bool found = false;
for (const auto& stream : in_requestedConfiguration.streams) {
if (id == stream.id) {
found = true;
break;
}
}
if (!found) {
// Unmap all buffers of deleted stream
cleanupBuffersLocked(id);
it = mStreamMap.erase(it);
} else {
++it;
}
}
}
// Now select a V4L2 format to produce all output streams
float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
uint32_t maxDim = 0;
for (const auto& stream : in_requestedConfiguration.streams) {
float aspectRatio = ASPECT_RATIO(stream);
ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
desiredAr = aspectRatio;
}
// The dimension that's not cropped
uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
if (dim > maxDim) {
maxDim = dim;
}
}
// Find the smallest format that matches the desired aspect ratio and is wide/high enough
SupportedV4L2Format v4l2Fmt{.width = 0, .height = 0};
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if (isAspectRatioClose(aspectRatio, desiredAr)) {
v4l2Fmt = fmt;
// since mSupportedFormats is sorted by width then height, the first matching fmt
// will be the smallest one with matching aspect ratio
break;
}
}
}
if (v4l2Fmt.width == 0) {
// Cannot find exact good aspect ratio candidate, try to find a close one
for (const auto& fmt : mSupportedFormats) {
uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
if (dim >= maxDim) {
float aspectRatio = ASPECT_RATIO(fmt);
if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
(mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
v4l2Fmt = fmt;
break;
}
}
}
}
if (v4l2Fmt.width == 0) {
ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)",
__FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height", maxDim, desiredAr);
return fromStatus(Status::ILLEGAL_ARGUMENT);
}
if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d", v4l2Fmt.fourcc & 0xFF,
(v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height);
return fromStatus(Status::INTERNAL_ERROR);
}
Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
Size thumbSize{0, 0};
camera_metadata_ro_entry entry =
mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
for (uint32_t i = 0; i < entry.count; i += 2) {
Size sz{entry.data.i32[i], entry.data.i32[i + 1]};
if (sz.width * sz.height > thumbSize.width * thumbSize.height) {
thumbSize = sz;
}
}
if (thumbSize.width * thumbSize.height == 0) {
ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__);
return fromStatus(Status::INTERNAL_ERROR);
}
mBlobBufferSize = blobBufferSize;
status = mOutputThread->allocateIntermediateBuffers(
v4lSize, mMaxThumbResolution, in_requestedConfiguration.streams, blobBufferSize);
if (status != Status::OK) {
ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
return fromStatus(status);
}
std::vector<HalStream>& out = *_aidl_return;
out.resize(in_requestedConfiguration.streams.size());
for (size_t i = 0; i < in_requestedConfiguration.streams.size(); i++) {
out[i].overrideDataSpace = in_requestedConfiguration.streams[i].dataSpace;
out[i].id = in_requestedConfiguration.streams[i].id;
// TODO: double check should we add those CAMERA flags
mStreamMap[in_requestedConfiguration.streams[i].id].usage = out[i].producerUsage =
static_cast<BufferUsage>(((int64_t)in_requestedConfiguration.streams[i].usage) |
((int64_t)BufferUsage::CPU_WRITE_OFTEN) |
((int64_t)BufferUsage::CAMERA_OUTPUT));
out[i].consumerUsage = static_cast<BufferUsage>(0);
out[i].maxBuffers = static_cast<int32_t>(mV4L2BufferCount);
switch (in_requestedConfiguration.streams[i].format) {
case PixelFormat::BLOB:
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12: // Used by SurfaceTexture
case PixelFormat::Y16:
// No override
out[i].overrideFormat = in_requestedConfiguration.streams[i].format;
break;
case PixelFormat::IMPLEMENTATION_DEFINED:
// Implementation Defined
// This should look at the Stream's dataspace flag to determine the format or leave
// it as is if the rest of the system knows how to handle a private format. To keep
// this HAL generic, this is being overridden to YUV420
out[i].overrideFormat = PixelFormat::YCBCR_420_888;
// Save overridden format in mStreamMap
mStreamMap[in_requestedConfiguration.streams[i].id].format = out[i].overrideFormat;
break;
default:
ALOGE("%s: unsupported format 0x%x", __FUNCTION__,
in_requestedConfiguration.streams[i].format);
return fromStatus(Status::ILLEGAL_ARGUMENT);
}
}
mFirstRequest = true;
mLastStreamConfigCounter = in_requestedConfiguration.streamConfigCounter;
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::flush() {
ATRACE_CALL();
Mutex::Autolock _il(mInterfaceLock);
Status status = initStatus();
if (status != Status::OK) {
return fromStatus(status);
}
mOutputThread->flush();
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
MQDescriptor<int8_t, SynchronizedReadWrite>* _aidl_return) {
Mutex::Autolock _il(mInterfaceLock);
*_aidl_return = mRequestMetadataQueue->dupeDesc();
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
MQDescriptor<int8_t, SynchronizedReadWrite>* _aidl_return) {
Mutex::Autolock _il(mInterfaceLock);
*_aidl_return = mResultMetadataQueue->dupeDesc();
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::isReconfigurationRequired(
const CameraMetadata& in_oldSessionParams, const CameraMetadata& in_newSessionParams,
bool* _aidl_return) {
// reconfiguration required if there is any change in the session params
*_aidl_return = in_oldSessionParams != in_newSessionParams;
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::processCaptureRequest(
const std::vector<CaptureRequest>& in_requests,
const std::vector<BufferCache>& in_cachesToRemove, int32_t* _aidl_return) {
Mutex::Autolock _il(mInterfaceLock);
updateBufferCaches(in_cachesToRemove);
int32_t& numRequestProcessed = *_aidl_return;
numRequestProcessed = 0;
Status s = Status::OK;
for (size_t i = 0; i < in_requests.size(); i++, numRequestProcessed++) {
s = processOneCaptureRequest(in_requests[i]);
if (s != Status::OK) {
break;
}
}
return fromStatus(s);
}
Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
ATRACE_CALL();
Status status = initStatus();
if (status != Status::OK) {
return status;
}
if (request.inputBuffer.streamId != -1) {
ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
Mutex::Autolock _l(mLock);
if (!mV4l2Streaming) {
ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
const camera_metadata_t* rawSettings = nullptr;
bool converted;
CameraMetadata settingsFmq; // settings from FMQ
if (request.fmqSettingsSize > 0) {
// non-blocking read; client must write metadata before calling
// processOneCaptureRequest
settingsFmq.metadata.resize(request.fmqSettingsSize);
bool read = mRequestMetadataQueue->read(
reinterpret_cast<int8_t*>(settingsFmq.metadata.data()), request.fmqSettingsSize);
if (read) {
converted = convertFromAidl(settingsFmq, &rawSettings);
} else {
ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
converted = false;
}
} else {
converted = convertFromAidl(request.settings, &rawSettings);
}
if (converted && rawSettings != nullptr) {
mLatestReqSetting = rawSettings;
}
if (!converted) {
ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (mFirstRequest && rawSettings == nullptr) {
ALOGE("%s: capture request settings must not be null for first request!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
std::vector<buffer_handle_t*> allBufPtrs;
std::vector<int> allFences;
size_t numOutputBufs = request.outputBuffers.size();
if (numOutputBufs == 0) {
ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE);
if (fpsRange.count == 2) {
double requestFpsMax = fpsRange.data.i32[1];
double closestFps = 0.0;
double fpsError = 1000.0;
bool fpsSupported = false;
for (const auto& fr : mV4l2StreamingFmt.frameRates) {
double f = fr.getFramesPerSecond();
if (std::fabs(requestFpsMax - f) < 1.0) {
fpsSupported = true;
break;
}
if (std::fabs(requestFpsMax - f) < fpsError) {
fpsError = std::fabs(requestFpsMax - f);
closestFps = f;
}
}
if (!fpsSupported) {
/* This can happen in a few scenarios:
* 1. The application is sending an FPS range not supported by the configured outputs.
* 2. The application is sending a valid FPS range for all configured outputs, but
* the selected V4L2 size can only run at slower speed. This should be very rare
* though: for this to happen a sensor needs to support at least 3 different aspect
* ratio outputs, and when (at least) two outputs are both not the main aspect ratio
* of the webcam, a third size that's larger might be picked and runs into this
* issue.
*/
ALOGW("%s: cannot reach fps %d! Will do %f instead", __FUNCTION__, fpsRange.data.i32[1],
closestFps);
requestFpsMax = closestFps;
}
if (requestFpsMax != mV4l2StreamingFps) {
{
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
while (mNumDequeuedV4l2Buffers != 0) {
// Wait until pipeline is idle before reconfigure stream
int waitRet = waitForV4L2BufferReturnLocked(lk);
if (waitRet != 0) {
ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
}
configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax);
}
}
status = importRequestLocked(request, allBufPtrs, allFences);
if (status != Status::OK) {
return status;
}
nsecs_t shutterTs = 0;
std::unique_ptr<V4L2Frame> frameIn = dequeueV4l2FrameLocked(&shutterTs);
if (frameIn == nullptr) {
ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
std::shared_ptr<HalRequest> halReq = std::make_shared<HalRequest>();
halReq->frameNumber = request.frameNumber;
halReq->setting = mLatestReqSetting;
halReq->frameIn = std::move(frameIn);
halReq->shutterTs = shutterTs;
halReq->buffers.resize(numOutputBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
HalStreamBuffer& halBuf = halReq->buffers[i];
int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
halBuf.bufferId = request.outputBuffers[i].bufferId;
const Stream& stream = mStreamMap[streamId];
halBuf.width = stream.width;
halBuf.height = stream.height;
halBuf.format = stream.format;
halBuf.usage = stream.usage;
halBuf.bufPtr = allBufPtrs[i];
halBuf.acquireFence = allFences[i];
halBuf.fenceTimeout = false;
}
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.insert(halReq->frameNumber);
}
// Send request to OutputThread for the rest of processing
mOutputThread->submitRequest(halReq);
mFirstRequest = false;
return Status::OK;
}
ScopedAStatus ExternalCameraDeviceSession::signalStreamFlush(
const std::vector<int32_t>& /*in_streamIds*/, int32_t in_streamConfigCounter) {
{
Mutex::Autolock _l(mLock);
if (in_streamConfigCounter < mLastStreamConfigCounter) {
// stale call. new streams have been configured since this call was issued.
// Do nothing.
return fromStatus(Status::OK);
}
}
// TODO: implement if needed.
return fromStatus(Status::OK);
}
ScopedAStatus ExternalCameraDeviceSession::switchToOffline(
const std::vector<int32_t>& in_streamsToKeep,
CameraOfflineSessionInfo* out_offlineSessionInfo,
std::shared_ptr<ICameraOfflineSession>* _aidl_return) {
std::vector<NotifyMsg> msgs;
std::vector<CaptureResult> results;
CameraOfflineSessionInfo info;
std::shared_ptr<ICameraOfflineSession> session;
Status st = switchToOffline(in_streamsToKeep, &msgs, &results, &info, &session);
mCallback->notify(msgs);
invokeProcessCaptureResultCallback(results, /* tryWriteFmq= */ true);
freeReleaseFences(results);
// setup return values
*out_offlineSessionInfo = info;
*_aidl_return = session;
return fromStatus(st);
}
Status ExternalCameraDeviceSession::switchToOffline(
const std::vector<int32_t>& offlineStreams, std::vector<NotifyMsg>* msgs,
std::vector<CaptureResult>* results, CameraOfflineSessionInfo* info,
std::shared_ptr<ICameraOfflineSession>* session) {
ATRACE_CALL();
if (offlineStreams.size() > 1) {
ALOGE("%s: more than one offline stream is not supported", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
if (msgs == nullptr || results == nullptr || info == nullptr || session == nullptr) {
ALOGE("%s, output arguments (%p, %p, %p, %p) must not be null", __FUNCTION__, msgs, results,
info, session);
}
Mutex::Autolock _il(mInterfaceLock);
Status status = initStatus();
if (status != Status::OK) {
return status;
}
Mutex::Autolock _l(mLock);
for (auto streamId : offlineStreams) {
if (!supportOfflineLocked(streamId)) {
return Status::ILLEGAL_ARGUMENT;
}
}
// pause output thread and get all remaining inflight requests
auto remainingReqs = mOutputThread->switchToOffline();
std::vector<std::shared_ptr<HalRequest>> halReqs;
// Send out buffer/request error for remaining requests and filter requests
// to be handled in offline mode
for (auto& halReq : remainingReqs) {
bool dropReq = canDropRequest(offlineStreams, halReq);
if (dropReq) {
// Request is dropped completely. Just send request error and
// there is no need to send the request to offline session
processCaptureRequestError(halReq, msgs, results);
continue;
}
// All requests reach here must have at least one offline stream output
NotifyMsg shutter;
aidl::android::hardware::camera::device::ShutterMsg shutterMsg = {
.frameNumber = static_cast<int32_t>(halReq->frameNumber),
.timestamp = halReq->shutterTs};
shutter.set<NotifyMsg::Tag::shutter>(shutterMsg);
msgs->push_back(shutter);
std::vector<HalStreamBuffer> offlineBuffers;
for (const auto& buffer : halReq->buffers) {
bool dropBuffer = true;
for (auto offlineStreamId : offlineStreams) {
if (buffer.streamId == offlineStreamId) {
dropBuffer = false;
break;
}
}
if (dropBuffer) {
aidl::android::hardware::camera::device::ErrorMsg errorMsg = {
.frameNumber = static_cast<int32_t>(halReq->frameNumber),
.errorStreamId = buffer.streamId,
.errorCode = ErrorCode::ERROR_BUFFER};
NotifyMsg error;
error.set<NotifyMsg::Tag::error>(errorMsg);
msgs->push_back(error);
results->push_back({
.frameNumber = static_cast<int32_t>(halReq->frameNumber),
.outputBuffers = {},
.inputBuffer = {.streamId = -1},
.partialResult = 0, // buffer only result
});
CaptureResult& result = results->back();
result.outputBuffers.resize(1);
StreamBuffer& outputBuffer = result.outputBuffers[0];
outputBuffer.streamId = buffer.streamId;
outputBuffer.bufferId = buffer.bufferId;
outputBuffer.status = BufferStatus::ERROR;
if (buffer.acquireFence >= 0) {
outputBuffer.releaseFence.fds.resize(1);
outputBuffer.releaseFence.fds.at(0).set(buffer.acquireFence);
}
} else {
offlineBuffers.push_back(buffer);
}
}
halReq->buffers = offlineBuffers;
halReqs.push_back(halReq);
}
// convert hal requests to offline request
std::deque<std::shared_ptr<HalRequest>> offlineReqs(halReqs.size());
size_t i = 0;
for (auto& v4lReq : halReqs) {
offlineReqs[i] = std::make_shared<HalRequest>();
offlineReqs[i]->frameNumber = v4lReq->frameNumber;
offlineReqs[i]->setting = v4lReq->setting;
offlineReqs[i]->shutterTs = v4lReq->shutterTs;
offlineReqs[i]->buffers = v4lReq->buffers;
std::shared_ptr<V4L2Frame> v4l2Frame(static_cast<V4L2Frame*>(v4lReq->frameIn.get()));
offlineReqs[i]->frameIn = std::make_shared<AllocatedV4L2Frame>(v4l2Frame);
i++;
// enqueue V4L2 frame
enqueueV4l2Frame(v4l2Frame);
}
// Collect buffer caches/streams
std::vector<Stream> streamInfos(offlineStreams.size());
std::map<int, CirculatingBuffers> circulatingBuffers;
{
Mutex::Autolock _cbsl(mCbsLock);
for (auto streamId : offlineStreams) {
circulatingBuffers[streamId] = mCirculatingBuffers.at(streamId);
mCirculatingBuffers.erase(streamId);
streamInfos.push_back(mStreamMap.at(streamId));
mStreamMap.erase(streamId);
}
}
fillOfflineSessionInfo(offlineStreams, offlineReqs, circulatingBuffers, info);
// create the offline session object
bool afTrigger;
{
std::lock_guard<std::mutex> _lk(mAfTriggerLock);
afTrigger = mAfTrigger;
}
std::shared_ptr<ExternalCameraOfflineSession> sessionImpl =
ndk::SharedRefBase::make<ExternalCameraOfflineSession>(
mCroppingType, mCameraCharacteristics, mCameraId, mExifMake, mExifModel,
mBlobBufferSize, afTrigger, streamInfos, offlineReqs, circulatingBuffers);
bool initFailed = sessionImpl->initialize();
if (initFailed) {
ALOGE("%s: offline session initialize failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
// cleanup stream and buffer caches
{
Mutex::Autolock _cbsl(mCbsLock);
for (auto pair : mStreamMap) {
cleanupBuffersLocked(/*Stream ID*/ pair.first);
}
mCirculatingBuffers.clear();
}
mStreamMap.clear();
// update inflight records
{
std::lock_guard<std::mutex> _lk(mInflightFramesLock);
mInflightFrames.clear();
}
// stop v4l2 streaming
if (v4l2StreamOffLocked() != 0) {
ALOGE("%s: stop V4L2 streaming failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
// No need to return session if there is no offline requests left
if (!offlineReqs.empty()) {
*session = sessionImpl;
} else {
*session = nullptr;
}
return Status::OK;
}
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define UPDATE(md, tag, data, size) \
do { \
if ((md).update((tag), (data), (size))) { \
ALOGE("Update " #tag " failed!"); \
return BAD_VALUE; \
} \
} while (0)
status_t ExternalCameraDeviceSession::initDefaultRequests() {
common::V1_0::helper::CameraMetadata md;
const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
const int32_t exposureCompensation = 0;
UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
const int32_t thumbnailSize[] = {240, 180};
UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
const uint8_t jpegQuality = 90;
UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
const int32_t jpegOrientation = 0;
UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1);
const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
bool support30Fps = false;
int32_t maxFps = std::numeric_limits<int32_t>::min();
for (const auto& supportedFormat : mSupportedFormats) {
for (const auto& fr : supportedFormat.frameRates) {
int32_t framerateInt = static_cast<int32_t>(fr.getFramesPerSecond());
if (maxFps < framerateInt) {
maxFps = framerateInt;
}
if (framerateInt == 30) {
support30Fps = true;
break;
}
}
if (support30Fps) {
break;
}
}
int32_t defaultFramerate = support30Fps ? 30 : maxFps;
int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate};
UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
for (const auto& type : ndk::enum_range<RequestTemplate>()) {
common::V1_0::helper::CameraMetadata mdCopy = md;
uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
switch (type) {
case RequestTemplate::PREVIEW:
intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case RequestTemplate::STILL_CAPTURE:
intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case RequestTemplate::VIDEO_RECORD:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case RequestTemplate::VIDEO_SNAPSHOT:
intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
default:
ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type);
continue;
}
UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
camera_metadata_t* mdPtr = mdCopy.release();
uint8_t* rawMd = reinterpret_cast<uint8_t*>(mdPtr);
CameraMetadata aidlMd;
aidlMd.metadata.assign(rawMd, rawMd + get_camera_metadata_size(mdPtr));
mDefaultRequests[type] = aidlMd;
free_camera_metadata(mdPtr);
}
return OK;
}
status_t ExternalCameraDeviceSession::fillCaptureResult(common::V1_0::helper::CameraMetadata& md,
nsecs_t timestamp) {
bool afTrigger = false;
{
std::lock_guard<std::mutex> lk(mAfTriggerLock);
afTrigger = mAfTrigger;
if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
mAfTrigger = afTrigger = true;
} else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
mAfTrigger = afTrigger = false;
}
}
}
// For USB camera, the USB camera handles everything and we don't have control
// over AF. We only simply fake the AF metadata based on the request
// received here.
uint8_t afState;
if (afTrigger) {
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
}
UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
camera_metadata_ro_entry activeArraySize =
mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
return fillCaptureResultCommon(md, timestamp, activeArraySize);
}
int ExternalCameraDeviceSession::configureV4l2StreamLocked(const SupportedV4L2Format& v4l2Fmt,
double requestFps) {
ATRACE_CALL();
int ret = v4l2StreamOffLocked();
if (ret != OK) {
ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
return ret;
}
// VIDIOC_S_FMT w/h/fmt
v4l2_format fmt;
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = v4l2Fmt.width;
fmt.fmt.pix.height = v4l2Fmt.height;
fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
{
int numAttempt = 0;
do {
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
if (numAttempt == MAX_RETRY) {
break;
}
numAttempt++;
if (ret < 0) {
ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__);
usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again
}
} while (ret < 0);
if (ret < 0) {
ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
}
if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
v4l2Fmt.fourcc & 0xFF, (v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF,
(v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height,
fmt.fmt.pix.pixelformat & 0xFF, (fmt.fmt.pix.pixelformat >> 8) & 0xFF,
(fmt.fmt.pix.pixelformat >> 16) & 0xFF, (fmt.fmt.pix.pixelformat >> 24) & 0xFF,
fmt.fmt.pix.width, fmt.fmt.pix.height);
return -EINVAL;
}
uint32_t bufferSize = fmt.fmt.pix.sizeimage;
ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height;
if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) {
ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__,
bufferSize, expectedMaxBufferSize);
return -EINVAL;
}
mMaxV4L2BufferSize = bufferSize;
const double kDefaultFps = 30.0;
double fps = std::numeric_limits<double>::max();
if (requestFps != 0.0) {
fps = requestFps;
} else {
double maxFps = -1.0;
// Try to pick the slowest fps that is at least 30
for (const auto& fr : v4l2Fmt.frameRates) {
double f = fr.getFramesPerSecond();
if (maxFps < f) {
maxFps = f;
}
if (f >= kDefaultFps && f < fps) {
fps = f;
}
}
// No fps > 30 found, use the highest fps available within supported formats.
if (fps == std::numeric_limits<double>::max()) {
fps = maxFps;
}
}
int fpsRet = setV4l2FpsLocked(fps);
if (fpsRet != 0 && fpsRet != -EINVAL) {
ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet));
return fpsRet;
}
uint32_t v4lBufferCount = (fps >= kDefaultFps) ? mCfg.numVideoBuffers : mCfg.numStillBuffers;
// VIDIOC_REQBUFS: create buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = v4lBufferCount;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// Driver can indeed return more buffer if it needs more to operate
if (req_buffers.count < v4lBufferCount) {
ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead", __FUNCTION__,
v4lBufferCount, req_buffers.count);
return NO_MEMORY;
}
// VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd
// VIDIOC_QBUF: send buffer to driver
mV4L2BufferCount = req_buffers.count;
for (uint32_t i = 0; i < req_buffers.count; i++) {
v4l2_buffer buffer = {
.index = i, .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .memory = V4L2_MEMORY_MMAP};
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) {
ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
return -errno;
}
}
{
// VIDIOC_STREAMON: start streaming
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
int numAttempt = 0;
do {
ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
if (numAttempt == MAX_RETRY) {
break;
}
if (ret < 0) {
ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__);
usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again
}
} while (ret < 0);
if (ret < 0) {
ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
}
// Swallow first few frames after streamOn to account for bad frames from some devices
for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
return -errno;
}
}
ALOGI("%s: start V4L2 streaming %dx%d@%ffps", __FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps);
mV4l2StreamingFmt = v4l2Fmt;
mV4l2Streaming = true;
return OK;
}
std::unique_ptr<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked(nsecs_t* shutterTs) {
ATRACE_CALL();
std::unique_ptr<V4L2Frame> ret = nullptr;
if (shutterTs == nullptr) {
ALOGE("%s: shutterTs must not be null!", __FUNCTION__);
return ret;
}
{
std::unique_lock<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) {
int waitRet = waitForV4L2BufferReturnLocked(lk);
if (waitRet != 0) {
return ret;
}
}
}
ATRACE_BEGIN("VIDIOC_DQBUF");
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
return ret;
}
ATRACE_END();
if (buffer.index >= mV4L2BufferCount) {
ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
return ret;
}
if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
// TODO: try to dequeue again
}
if (buffer.bytesused > mMaxV4L2BufferSize) {
ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused,
mMaxV4L2BufferSize);
return ret;
}
if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) {
// Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but
// even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now
*shutterTs = static_cast<nsecs_t>(buffer.timestamp.tv_sec) * 1000000000LL +
buffer.timestamp.tv_usec * 1000LL;
} else {
*shutterTs = systemTime(SYSTEM_TIME_MONOTONIC);
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers++;
}
return std::make_unique<V4L2Frame>(mV4l2StreamingFmt.width, mV4l2StreamingFmt.height,
mV4l2StreamingFmt.fourcc, buffer.index, mV4l2Fd.get(),
buffer.bytesused, buffer.m.offset);
}
void ExternalCameraDeviceSession::enqueueV4l2Frame(const std::shared_ptr<V4L2Frame>& frame) {
ATRACE_CALL();
frame->unmap();
ATRACE_BEGIN("VIDIOC_QBUF");
v4l2_buffer buffer{};
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = frame->mBufferIndex;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, frame->mBufferIndex, strerror(errno));
return;
}
ATRACE_END();
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
mNumDequeuedV4l2Buffers--;
}
mV4L2BufferReturned.notify_one();
}
bool ExternalCameraDeviceSession::isSupported(
const Stream& stream, const std::vector<SupportedV4L2Format>& supportedFormats,
const ExternalCameraConfig& devCfg) {
Dataspace ds = stream.dataSpace;
PixelFormat fmt = stream.format;
uint32_t width = stream.width;
uint32_t height = stream.height;
// TODO: check usage flags
if (stream.streamType != StreamType::OUTPUT) {
ALOGE("%s: does not support non-output stream type", __FUNCTION__);
return false;
}
if (stream.rotation != StreamRotation::ROTATION_0) {
ALOGE("%s: does not support stream rotation", __FUNCTION__);
return false;
}
switch (fmt) {
case PixelFormat::BLOB:
if (ds != Dataspace::JFIF) {
ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
return false;
}
break;
case PixelFormat::IMPLEMENTATION_DEFINED:
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12:
// TODO: check what dataspace we can support here.
// intentional no-ops.
break;
case PixelFormat::Y16:
if (!devCfg.depthEnabled) {
ALOGI("%s: Depth is not Enabled", __FUNCTION__);
return false;
}
if (!(static_cast<int32_t>(ds) & static_cast<int32_t>(Dataspace::DEPTH))) {
ALOGI("%s: Y16 supports only dataSpace DEPTH", __FUNCTION__);
return false;
}
break;
default:
ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
return false;
}
// Assume we can convert any V4L2 format to any of supported output format for now, i.e.
// ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
// in the futrue.
for (const auto& v4l2Fmt : supportedFormats) {
if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
return true;
}
}
ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
return false;
}
Status ExternalCameraDeviceSession::importRequestLocked(const CaptureRequest& request,
std::vector<buffer_handle_t*>& allBufPtrs,
std::vector<int>& allFences) {
return importRequestLockedImpl(request, allBufPtrs, allFences);
}
Status ExternalCameraDeviceSession::importRequestLockedImpl(
const CaptureRequest& request, std::vector<buffer_handle_t*>& allBufPtrs,
std::vector<int>& allFences) {
size_t numOutputBufs = request.outputBuffers.size();
size_t numBufs = numOutputBufs;
// Validate all I/O buffers
std::vector<buffer_handle_t> allBufs;
std::vector<uint64_t> allBufIds;
allBufs.resize(numBufs);
allBufIds.resize(numBufs);
allBufPtrs.resize(numBufs);
allFences.resize(numBufs);
std::vector<int32_t> streamIds(numBufs);
for (size_t i = 0; i < numOutputBufs; i++) {
allBufs[i] = ::android::makeFromAidl(request.outputBuffers[i].buffer);
allBufIds[i] = request.outputBuffers[i].bufferId;
allBufPtrs[i] = &allBufs[i];
streamIds[i] = request.outputBuffers[i].streamId;
}
{
Mutex::Autolock _l(mCbsLock);
for (size_t i = 0; i < numBufs; i++) {
Status st = importBufferLocked(streamIds[i], allBufIds[i], allBufs[i], &allBufPtrs[i]);
if (st != Status::OK) {
// Detailed error logs printed in importBuffer
return st;
}
}
}
// All buffers are imported. Now validate output buffer acquire fences
for (size_t i = 0; i < numOutputBufs; i++) {
if (!sHandleImporter.importFence(
::android::makeFromAidl(request.outputBuffers[i].acquireFence), allFences[i])) {
ALOGE("%s: output buffer %zu acquire fence is invalid", __FUNCTION__, i);
cleanupInflightFences(allFences, i);
return Status::INTERNAL_ERROR;
}
}
return Status::OK;
}
Status ExternalCameraDeviceSession::importBuffer(int32_t streamId, uint64_t bufId,
buffer_handle_t buf,
/*out*/ buffer_handle_t** outBufPtr) {
Mutex::Autolock _l(mCbsLock);
return importBufferLocked(streamId, bufId, buf, outBufPtr);
}
Status ExternalCameraDeviceSession::importBufferLocked(int32_t streamId, uint64_t bufId,
buffer_handle_t buf,
buffer_handle_t** outBufPtr) {
return importBufferImpl(mCirculatingBuffers, sHandleImporter, streamId, bufId, buf, outBufPtr);
}
ScopedAStatus ExternalCameraDeviceSession::close() {
closeImpl();
return fromStatus(Status::OK);
}
void ExternalCameraDeviceSession::closeImpl() {
Mutex::Autolock _il(mInterfaceLock);
bool closed = isClosed();
if (!closed) {
closeOutputThread();
closeBufferRequestThread();
Mutex::Autolock _l(mLock);
// free all buffers
{
Mutex::Autolock _cbsl(mCbsLock);
for (auto pair : mStreamMap) {
cleanupBuffersLocked(/*Stream ID*/ pair.first);
}
}
v4l2StreamOffLocked();
ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
mV4l2Fd.reset();
mClosed = true;
}
}
bool ExternalCameraDeviceSession::isClosed() {
Mutex::Autolock _l(mLock);
return mClosed;
}
ScopedAStatus ExternalCameraDeviceSession::repeatingRequestEnd(
int32_t /*in_frameNumber*/, const std::vector<int32_t>& /*in_streamIds*/) {
// TODO: Figure this one out.
return fromStatus(Status::OK);
}
int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
if (!mV4l2Streaming) {
return OK;
}
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
if (mNumDequeuedV4l2Buffers != 0) {
ALOGE("%s: there are %zu inflight V4L buffers", __FUNCTION__, mNumDequeuedV4l2Buffers);
return -1;
}
}
mV4L2BufferCount = 0;
// VIDIOC_STREAMOFF
v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
// VIDIOC_REQBUFS: clear buffers
v4l2_requestbuffers req_buffers{};
req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req_buffers.memory = V4L2_MEMORY_MMAP;
req_buffers.count = 0;
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
return -errno;
}
mV4l2Streaming = false;
return OK;
}
int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) {
// VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
v4l2_streamparm streamparm = {.type = V4L2_BUF_TYPE_VIDEO_CAPTURE};
// The following line checks that the driver knows about framerate get/set.
int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm));
if (ret != 0) {
if (errno == -EINVAL) {
ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__);
}
return -errno;
}
// Now check if the device is able to accept a capture framerate set.
if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) {
ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__);
return -EINVAL;
}
// fps is float, approximate by a fraction.
const int kFrameRatePrecision = 10000;
streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
streamparm.parm.capture.timeperframe.denominator = (fps * kFrameRatePrecision);
if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno));
return -1;
}
double retFps = streamparm.parm.capture.timeperframe.denominator /
static_cast<double>(streamparm.parm.capture.timeperframe.numerator);
if (std::fabs(fps - retFps) > 1.0) {
ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
return -1;
}
mV4l2StreamingFps = fps;
return 0;
}
void ExternalCameraDeviceSession::cleanupInflightFences(std::vector<int>& allFences,
size_t numFences) {
for (size_t j = 0; j < numFences; j++) {
sHandleImporter.closeFence(allFences[j]);
}
}
void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
for (auto& pair : mCirculatingBuffers.at(id)) {
sHandleImporter.freeBuffer(pair.second);
}
mCirculatingBuffers[id].clear();
mCirculatingBuffers.erase(id);
}
void ExternalCameraDeviceSession::notifyShutter(int32_t frameNumber, nsecs_t shutterTs) {
NotifyMsg msg;
msg.set<NotifyMsg::Tag::shutter>(ShutterMsg{
.frameNumber = frameNumber,
.timestamp = shutterTs,
});
mCallback->notify({msg});
}
void ExternalCameraDeviceSession::notifyError(int32_t frameNumber, int32_t streamId, ErrorCode ec) {
NotifyMsg msg;
msg.set<NotifyMsg::Tag::error>(ErrorMsg{
.frameNumber = frameNumber,
.errorStreamId = streamId,
.errorCode = ec,
});
mCallback->notify({msg});
}
void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
std::vector<CaptureResult>& results, bool tryWriteFmq) {
if (mProcessCaptureResultLock.tryLock() != OK) {
const nsecs_t NS_TO_SECOND = 1000000000;
ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
if (mProcessCaptureResultLock.timedLock(/* 1s */ NS_TO_SECOND) != OK) {
ALOGE("%s: cannot acquire lock in 1s, cannot proceed", __FUNCTION__);
return;
}
}
if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
for (CaptureResult& result : results) {
CameraMetadata& md = result.result;
if (!md.metadata.empty()) {
if (mResultMetadataQueue->write(reinterpret_cast<int8_t*>(md.metadata.data()),
md.metadata.size())) {
result.fmqResultSize = md.metadata.size();
md.metadata.resize(0);
} else {
ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
result.fmqResultSize = 0;
}
} else {
result.fmqResultSize = 0;
}
}
}
auto status = mCallback->processCaptureResult(results);
if (!status.isOk()) {
ALOGE("%s: processCaptureResult ERROR : %d:%d", __FUNCTION__, status.getExceptionCode(),
status.getServiceSpecificError());
}
mProcessCaptureResultLock.unlock();
}
int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex>& lk) {
ATRACE_CALL();
auto timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
mLock.unlock();
auto st = mV4L2BufferReturned.wait_for(lk, timeout);
// Here we introduce an order where mV4l2BufferLock is acquired before mLock, while
// the normal lock acquisition order is reversed. This is fine because in most of
// cases we are protected by mInterfaceLock. The only thread that can cause deadlock
// is the OutputThread, where we do need to make sure we don't acquire mLock then
// mV4l2BufferLock
mLock.lock();
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
return -1;
}
return 0;
}
bool ExternalCameraDeviceSession::supportOfflineLocked(int32_t streamId) {
const Stream& stream = mStreamMap[streamId];
if (stream.format == PixelFormat::BLOB &&
static_cast<int32_t>(stream.dataSpace) == static_cast<int32_t>(Dataspace::JFIF)) {
return true;
}
// TODO: support YUV output stream?
return false;
}
bool ExternalCameraDeviceSession::canDropRequest(const std::vector<int32_t>& offlineStreams,
std::shared_ptr<HalRequest> halReq) {
for (const auto& buffer : halReq->buffers) {
for (auto offlineStreamId : offlineStreams) {
if (buffer.streamId == offlineStreamId) {
return false;
}
}
}
// Only drop a request completely if it has no offline output
return true;
}
void ExternalCameraDeviceSession::fillOfflineSessionInfo(
const std::vector<int32_t>& offlineStreams,
std::deque<std::shared_ptr<HalRequest>>& offlineReqs,
const std::map<int, CirculatingBuffers>& circulatingBuffers,
CameraOfflineSessionInfo* info) {
if (info == nullptr) {
ALOGE("%s: output info must not be null!", __FUNCTION__);
return;
}
info->offlineStreams.resize(offlineStreams.size());
info->offlineRequests.resize(offlineReqs.size());
// Fill in offline reqs and count outstanding buffers
for (size_t i = 0; i < offlineReqs.size(); i++) {
info->offlineRequests[i].frameNumber = offlineReqs[i]->frameNumber;
info->offlineRequests[i].pendingStreams.resize(offlineReqs[i]->buffers.size());
for (size_t bIdx = 0; bIdx < offlineReqs[i]->buffers.size(); bIdx++) {
int32_t streamId = offlineReqs[i]->buffers[bIdx].streamId;
info->offlineRequests[i].pendingStreams[bIdx] = streamId;
}
}
for (size_t i = 0; i < offlineStreams.size(); i++) {
int32_t streamId = offlineStreams[i];
info->offlineStreams[i].id = streamId;
// outstanding buffers are 0 since we are doing hal buffer management and
// offline session will ask for those buffers later
info->offlineStreams[i].numOutstandingBuffers = 0;
const CirculatingBuffers& bufIdMap = circulatingBuffers.at(streamId);
info->offlineStreams[i].circulatingBufferIds.resize(bufIdMap.size());
size_t bIdx = 0;
for (const auto& pair : bufIdMap) {
// Fill in bufferId
info->offlineStreams[i].circulatingBufferIds[bIdx++] = pair.first;
}
}
}
Status ExternalCameraDeviceSession::isStreamCombinationSupported(
const StreamConfiguration& config, const std::vector<SupportedV4L2Format>& supportedFormats,
const ExternalCameraConfig& devCfg) {
if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
return Status::ILLEGAL_ARGUMENT;
}
if (config.streams.size() == 0) {
ALOGE("%s: cannot configure zero stream", __FUNCTION__);
return Status::ILLEGAL_ARGUMENT;
}
int numProcessedStream = 0;
int numStallStream = 0;
for (const auto& stream : config.streams) {
// Check if the format/width/height combo is supported
if (!isSupported(stream, supportedFormats, devCfg)) {
return Status::ILLEGAL_ARGUMENT;
}
if (stream.format == PixelFormat::BLOB) {
numStallStream++;
} else {
numProcessedStream++;
}
}
if (numProcessedStream > kMaxProcessedStream) {
ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
kMaxProcessedStream, numProcessedStream);
return Status::ILLEGAL_ARGUMENT;
}
if (numStallStream > kMaxStallStream) {
ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__, kMaxStallStream,
numStallStream);
return Status::ILLEGAL_ARGUMENT;
}
return Status::OK;
}
void ExternalCameraDeviceSession::updateBufferCaches(
const std::vector<BufferCache>& cachesToRemove) {
Mutex::Autolock _l(mCbsLock);
for (auto& cache : cachesToRemove) {
auto cbsIt = mCirculatingBuffers.find(cache.streamId);
if (cbsIt == mCirculatingBuffers.end()) {
// The stream could have been removed
continue;
}
CirculatingBuffers& cbs = cbsIt->second;
auto it = cbs.find(cache.bufferId);
if (it != cbs.end()) {
sHandleImporter.freeBuffer(it->second);
cbs.erase(it);
} else {
ALOGE("%s: stream %d buffer %" PRIu64 " is not cached", __FUNCTION__, cache.streamId,
cache.bufferId);
}
}
}
Status ExternalCameraDeviceSession::processCaptureRequestError(
const std::shared_ptr<HalRequest>& req, std::vector<NotifyMsg>* outMsgs,
std::vector<CaptureResult>* outResults) {
ATRACE_CALL();
// Return V4L2 buffer to V4L2 buffer queue
std::shared_ptr<V4L2Frame> v4l2Frame = std::static_pointer_cast<V4L2Frame>(req->frameIn);
enqueueV4l2Frame(v4l2Frame);
if (outMsgs == nullptr) {
notifyShutter(req->frameNumber, req->shutterTs);
notifyError(/*frameNum*/ req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_REQUEST);
} else {
NotifyMsg shutter;
shutter.set<NotifyMsg::Tag::shutter>(
ShutterMsg{.frameNumber = req->frameNumber, .timestamp = req->shutterTs});
NotifyMsg error;
error.set<NotifyMsg::Tag::error>(ErrorMsg{.frameNumber = req->frameNumber,
.errorStreamId = -1,
.errorCode = ErrorCode::ERROR_REQUEST});
outMsgs->push_back(shutter);
outMsgs->push_back(error);
}
// Fill output buffers
CaptureResult result;
result.frameNumber = req->frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req->buffers.size());
for (size_t i = 0; i < req->buffers.size(); i++) {
result.outputBuffers[i].streamId = req->buffers[i].streamId;
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
result.outputBuffers[i].status = BufferStatus::ERROR;
if (req->buffers[i].acquireFence >= 0) {
result.outputBuffers[i].releaseFence.fds.resize(1);
result.outputBuffers[i].releaseFence.fds.at(0).set(req->buffers[i].acquireFence);
}
}
// update inflight records
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.erase(req->frameNumber);
}
if (outResults == nullptr) {
// Callback into framework
std::vector<CaptureResult> results(1);
results[0] = std::move(result);
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true);
freeReleaseFences(results);
} else {
outResults->push_back(std::move(result));
}
return Status::OK;
}
Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr<HalRequest>& req) {
ATRACE_CALL();
// Return V4L2 buffer to V4L2 buffer queue
std::shared_ptr<V4L2Frame> v4l2Frame = std::static_pointer_cast<V4L2Frame>(req->frameIn);
enqueueV4l2Frame(v4l2Frame);
// NotifyShutter
notifyShutter(req->frameNumber, req->shutterTs);
// Fill output buffers;
std::vector<CaptureResult> results(1);
CaptureResult& result = results[0];
result.frameNumber = req->frameNumber;
result.partialResult = 1;
result.inputBuffer.streamId = -1;
result.outputBuffers.resize(req->buffers.size());
for (size_t i = 0; i < req->buffers.size(); i++) {
result.outputBuffers[i].streamId = req->buffers[i].streamId;
result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
if (req->buffers[i].fenceTimeout) {
result.outputBuffers[i].status = BufferStatus::ERROR;
if (req->buffers[i].acquireFence >= 0) {
result.outputBuffers[i].releaseFence.fds.resize(1);
result.outputBuffers[i].releaseFence.fds.at(0).set(req->buffers[i].acquireFence);
}
notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER);
} else {
result.outputBuffers[i].status = BufferStatus::OK;
// TODO: refactor
if (req->buffers[i].acquireFence >= 0) {
result.outputBuffers[i].releaseFence.fds.resize(1);
result.outputBuffers[i].releaseFence.fds.at(0).set(req->buffers[i].acquireFence);
}
}
}
// Fill capture result metadata
fillCaptureResult(req->setting, req->shutterTs);
const camera_metadata_t* rawResult = req->setting.getAndLock();
convertToAidl(rawResult, &result.result);
req->setting.unlock(rawResult);
// update inflight records
{
std::lock_guard<std::mutex> lk(mInflightFramesLock);
mInflightFrames.erase(req->frameNumber);
}
// Callback into framework
invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true);
freeReleaseFences(results);
return Status::OK;
}
ssize_t ExternalCameraDeviceSession::getJpegBufferSize(int32_t width, int32_t height) const {
// Constant from camera3.h
const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob);
// Get max jpeg size (area-wise).
if (mMaxJpegResolution.width == 0) {
ALOGE("%s: No supported JPEG stream", __FUNCTION__);
return BAD_VALUE;
}
// Get max jpeg buffer size
ssize_t maxJpegBufferSize = 0;
camera_metadata_ro_entry jpegBufMaxSize = mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE);
if (jpegBufMaxSize.count == 0) {
ALOGE("%s: Can't find maximum JPEG size in static metadata!", __FUNCTION__);
return BAD_VALUE;
}
maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
if (maxJpegBufferSize <= kMinJpegBufferSize) {
ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)", __FUNCTION__,
maxJpegBufferSize, kMinJpegBufferSize);
return BAD_VALUE;
}
// Calculate final jpeg buffer size for the given resolution.
float scaleFactor =
((float)(width * height)) / (mMaxJpegResolution.width * mMaxJpegResolution.height);
ssize_t jpegBufferSize =
scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) + kMinJpegBufferSize;
if (jpegBufferSize > maxJpegBufferSize) {
jpegBufferSize = maxJpegBufferSize;
}
return jpegBufferSize;
}
binder_status_t ExternalCameraDeviceSession::dump(int fd, const char** /*args*/,
uint32_t /*numArgs*/) {
bool intfLocked = tryLock(mInterfaceLock);
if (!intfLocked) {
dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n");
}
if (isClosed()) {
dprintf(fd, "External camera %s is closed\n", mCameraId.c_str());
return STATUS_OK;
}
bool streaming = false;
size_t v4L2BufferCount = 0;
SupportedV4L2Format streamingFmt;
{
bool sessionLocked = tryLock(mLock);
if (!sessionLocked) {
dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n");
}
streaming = mV4l2Streaming;
streamingFmt = mV4l2StreamingFmt;
v4L2BufferCount = mV4L2BufferCount;
if (sessionLocked) {
mLock.unlock();
}
}
std::unordered_set<uint32_t> inflightFrames;
{
bool iffLocked = tryLock(mInflightFramesLock);
if (!iffLocked) {
dprintf(fd,
"!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n");
}
inflightFrames = mInflightFrames;
if (iffLocked) {
mInflightFramesLock.unlock();
}
}
dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n", mCameraId.c_str(),
mV4l2Fd.get(), (mCroppingType == VERTICAL) ? "vertical" : "horizontal",
streaming ? "streaming" : "not streaming");
if (streaming) {
// TODO: dump fps later
dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n", streamingFmt.fourcc & 0xFF,
(streamingFmt.fourcc >> 8) & 0xFF, (streamingFmt.fourcc >> 16) & 0xFF,
(streamingFmt.fourcc >> 24) & 0xFF, streamingFmt.width, streamingFmt.height,
mV4l2StreamingFps);
size_t numDequeuedV4l2Buffers = 0;
{
std::lock_guard<std::mutex> lk(mV4l2BufferLock);
numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers;
}
dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n", v4L2BufferCount,
numDequeuedV4l2Buffers);
}
dprintf(fd, "In-flight frames (not sorted):");
for (const auto& frameNumber : inflightFrames) {
dprintf(fd, "%d, ", frameNumber);
}
dprintf(fd, "\n");
mOutputThread->dump(fd);
dprintf(fd, "\n");
if (intfLocked) {
mInterfaceLock.unlock();
}
return STATUS_OK;
}
// Start ExternalCameraDeviceSession::BufferRequestThread functions
ExternalCameraDeviceSession::BufferRequestThread::BufferRequestThread(
std::weak_ptr<OutputThreadInterface> parent,
std::shared_ptr<ICameraDeviceCallback> callbacks)
: mParent(parent), mCallbacks(callbacks) {}
int ExternalCameraDeviceSession::BufferRequestThread::requestBufferStart(
const std::vector<HalStreamBuffer>& bufReqs) {
if (bufReqs.empty()) {
ALOGE("%s: bufReqs is empty!", __FUNCTION__);
return -1;
}
{
std::lock_guard<std::mutex> lk(mLock);
if (mRequestingBuffer) {
ALOGE("%s: BufferRequestThread does not support more than one concurrent request!",
__FUNCTION__);
return -1;
}
mBufferReqs = bufReqs;
mRequestingBuffer = true;
}
mRequestCond.notify_one();
return 0;
}
int ExternalCameraDeviceSession::BufferRequestThread::waitForBufferRequestDone(
std::vector<HalStreamBuffer>* outBufReqs) {
std::unique_lock<std::mutex> lk(mLock);
if (!mRequestingBuffer) {
ALOGE("%s: no pending buffer request!", __FUNCTION__);
return -1;
}
if (mPendingReturnBufferReqs.empty()) {
std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqProcTimeoutMs);
auto st = mRequestDoneCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for buffer request finish timeout!", __FUNCTION__);
return -1;
}
}
mRequestingBuffer = false;
*outBufReqs = std::move(mPendingReturnBufferReqs);
mPendingReturnBufferReqs.clear();
return 0;
}
void ExternalCameraDeviceSession::BufferRequestThread::waitForNextRequest() {
ATRACE_CALL();
std::unique_lock<std::mutex> lk(mLock);
int waitTimes = 0;
while (mBufferReqs.empty()) {
if (exitPending()) {
return;
}
auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
auto st = mRequestCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
waitTimes++;
if (waitTimes == kReqWaitTimesWarn) {
// BufferRequestThread just wait forever for new buffer request
// But it will print some periodic warning indicating it's waiting
ALOGV("%s: still waiting for new buffer request", __FUNCTION__);
waitTimes = 0;
}
}
}
// Fill in BufferRequest
mHalBufferReqs.resize(mBufferReqs.size());
for (size_t i = 0; i < mHalBufferReqs.size(); i++) {
mHalBufferReqs[i].streamId = mBufferReqs[i].streamId;
mHalBufferReqs[i].numBuffersRequested = 1;
}
}
bool ExternalCameraDeviceSession::BufferRequestThread::threadLoop() {
waitForNextRequest();
if (exitPending()) {
return false;
}
ATRACE_BEGIN("AIDL requestStreamBuffers");
BufferRequestStatus status;
std::vector<StreamBufferRet> bufRets;
ScopedAStatus ret = mCallbacks->requestStreamBuffers(mHalBufferReqs, &bufRets, &status);
if (!ret.isOk()) {
ALOGE("%s: Transaction error: %d:%d", __FUNCTION__, ret.getExceptionCode(),
ret.getServiceSpecificError());
return false;
}
std::unique_lock<std::mutex> lk(mLock);
if (status == BufferRequestStatus::OK || status == BufferRequestStatus::FAILED_PARTIAL) {
if (bufRets.size() != mHalBufferReqs.size()) {
ALOGE("%s: expect %zu buffer requests returned, only got %zu", __FUNCTION__,
mHalBufferReqs.size(), bufRets.size());
return false;
}
auto parent = mParent.lock();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return false;
}
std::vector<int> importedFences;
importedFences.resize(bufRets.size());
for (size_t i = 0; i < bufRets.size(); i++) {
int streamId = bufRets[i].streamId;
switch (bufRets[i].val.getTag()) {
case StreamBuffersVal::Tag::error:
continue;
case StreamBuffersVal::Tag::buffers: {
const std::vector<StreamBuffer>& hBufs =
bufRets[i].val.get<StreamBuffersVal::Tag::buffers>();
if (hBufs.size() != 1) {
ALOGE("%s: expect 1 buffer returned, got %zu!", __FUNCTION__, hBufs.size());
return false;
}
const StreamBuffer& hBuf = hBufs[0];
mBufferReqs[i].bufferId = hBuf.bufferId;
// TODO: create a batch import API so we don't need to lock/unlock mCbsLock
// repeatedly?
lk.unlock();
Status s =
parent->importBuffer(streamId, hBuf.bufferId, makeFromAidl(hBuf.buffer),
/*out*/ &mBufferReqs[i].bufPtr);
lk.lock();
if (s != Status::OK) {
ALOGE("%s: stream %d import buffer failed!", __FUNCTION__, streamId);
cleanupInflightFences(importedFences, i - 1);
return false;
}
if (!sHandleImporter.importFence(makeFromAidl(hBuf.acquireFence),
mBufferReqs[i].acquireFence)) {
ALOGE("%s: stream %d import fence failed!", __FUNCTION__, streamId);
cleanupInflightFences(importedFences, i - 1);
return false;
}
importedFences[i] = mBufferReqs[i].acquireFence;
} break;
default:
ALOGE("%s: Unknown StreamBuffersVal!", __FUNCTION__);
return false;
}
}
} else {
ALOGE("%s: requestStreamBuffers call failed!", __FUNCTION__);
}
mPendingReturnBufferReqs = std::move(mBufferReqs);
mBufferReqs.clear();
lk.unlock();
mRequestDoneCond.notify_one();
return true;
}
// End ExternalCameraDeviceSession::BufferRequestThread functions
// Start ExternalCameraDeviceSession::OutputThread functions
ExternalCameraDeviceSession::OutputThread::OutputThread(
std::weak_ptr<OutputThreadInterface> parent, CroppingType ct,
const common::V1_0::helper::CameraMetadata& chars,
std::shared_ptr<BufferRequestThread> bufReqThread)
: mParent(parent),
mCroppingType(ct),
mCameraCharacteristics(chars),
mBufferRequestThread(bufReqThread) {}
ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
const Size& v4lSize, const Size& thumbSize, const std::vector<Stream>& streams,
uint32_t blobBufferSize) {
std::lock_guard<std::mutex> lk(mBufferLock);
if (!mScaledYu12Frames.empty()) {
ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)", __FUNCTION__,
mScaledYu12Frames.size());
return Status::INTERNAL_ERROR;
}
// Allocating intermediate YU12 frame
if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
mYu12Frame->mHeight != v4lSize.height) {
mYu12Frame.reset();
mYu12Frame = std::make_shared<AllocatedFrame>(v4lSize.width, v4lSize.height);
int ret = mYu12Frame->allocate(&mYu12FrameLayout);
if (ret != 0) {
ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
// Allocating intermediate YU12 thumbnail frame
if (mYu12ThumbFrame == nullptr || mYu12ThumbFrame->mWidth != thumbSize.width ||
mYu12ThumbFrame->mHeight != thumbSize.height) {
mYu12ThumbFrame.reset();
mYu12ThumbFrame = std::make_shared<AllocatedFrame>(thumbSize.width, thumbSize.height);
int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout);
if (ret != 0) {
ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__);
return Status::INTERNAL_ERROR;
}
}
// Allocating scaled buffers
for (const auto& stream : streams) {
Size sz = {stream.width, stream.height};
if (sz == v4lSize) {
continue; // Don't need an intermediate buffer same size as v4lBuffer
}
if (mIntermediateBuffers.count(sz) == 0) {
// Create new intermediate buffer
std::shared_ptr<AllocatedFrame> buf =
std::make_shared<AllocatedFrame>(stream.width, stream.height);
int ret = buf->allocate();
if (ret != 0) {
ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!", __FUNCTION__,
stream.width, stream.height);
return Status::INTERNAL_ERROR;
}
mIntermediateBuffers[sz] = buf;
}
}
// Remove unconfigured buffers
auto it = mIntermediateBuffers.begin();
while (it != mIntermediateBuffers.end()) {
bool configured = false;
auto sz = it->first;
for (const auto& stream : streams) {
if (stream.width == sz.width && stream.height == sz.height) {
configured = true;
break;
}
}
if (configured) {
it++;
} else {
it = mIntermediateBuffers.erase(it);
}
}
// Allocate mute test pattern frame
mMuteTestPatternFrame.resize(mYu12Frame->mWidth * mYu12Frame->mHeight * 3);
mBlobBufferSize = blobBufferSize;
return Status::OK;
}
Status ExternalCameraDeviceSession::OutputThread::submitRequest(
const std::shared_ptr<HalRequest>& req) {
std::unique_lock<std::mutex> lk(mRequestListLock);
mRequestList.push_back(req);
lk.unlock();
mRequestCond.notify_one();
return Status::OK;
}
void ExternalCameraDeviceSession::OutputThread::flush() {
ATRACE_CALL();
auto parent = mParent.lock();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return;
}
std::unique_lock<std::mutex> lk(mRequestListLock);
std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
mRequestList.clear();
if (mProcessingRequest) {
auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
auto st = mRequestDoneCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
}
}
ALOGV("%s: flushing inflight requests", __FUNCTION__);
lk.unlock();
for (const auto& req : reqs) {
parent->processCaptureRequestError(req);
}
}
void ExternalCameraDeviceSession::OutputThread::dump(int fd) {
std::lock_guard<std::mutex> lk(mRequestListLock);
if (mProcessingRequest) {
dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumber);
} else {
dprintf(fd, "OutputThread not processing any frames\n");
}
dprintf(fd, "OutputThread request list contains frame: ");
for (const auto& req : mRequestList) {
dprintf(fd, "%d, ", req->frameNumber);
}
dprintf(fd, "\n");
}
void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(const std::string& make,
const std::string& model) {
mExifMake = make;
mExifModel = model;
}
std::list<std::shared_ptr<HalRequest>>
ExternalCameraDeviceSession::OutputThread::switchToOffline() {
ATRACE_CALL();
auto parent = mParent.lock();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return {};
}
std::unique_lock<std::mutex> lk(mRequestListLock);
std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
mRequestList.clear();
if (mProcessingRequest) {
auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
auto st = mRequestDoneCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
}
}
lk.unlock();
clearIntermediateBuffers();
ALOGV("%s: returning %zu request for offline processing", __FUNCTION__, reqs.size());
return reqs;
}
int ExternalCameraDeviceSession::OutputThread::requestBufferStart(
const std::vector<HalStreamBuffer>& bufs) {
if (mBufferRequestThread == nullptr) {
return 0;
}
return mBufferRequestThread->requestBufferStart(bufs);
}
int ExternalCameraDeviceSession::OutputThread::waitForBufferRequestDone(
std::vector<HalStreamBuffer>* outBufs) {
if (mBufferRequestThread == nullptr) {
return 0;
}
return mBufferRequestThread->waitForBufferRequestDone(outBufs);
}
void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(
std::shared_ptr<HalRequest>* out) {
ATRACE_CALL();
if (out == nullptr) {
ALOGE("%s: out is null", __FUNCTION__);
return;
}
std::unique_lock<std::mutex> lk(mRequestListLock);
int waitTimes = 0;
while (mRequestList.empty()) {
if (exitPending()) {
return;
}
auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
auto st = mRequestCond.wait_for(lk, timeout);
if (st == std::cv_status::timeout) {
waitTimes++;
if (waitTimes == kReqWaitTimesMax) {
// no new request, return
return;
}
}
}
*out = mRequestList.front();
mRequestList.pop_front();
mProcessingRequest = true;
mProcessingFrameNumber = (*out)->frameNumber;
}
void ExternalCameraDeviceSession::OutputThread::signalRequestDone() {
std::unique_lock<std::mutex> lk(mRequestListLock);
mProcessingRequest = false;
mProcessingFrameNumber = 0;
lk.unlock();
mRequestDoneCond.notify_one();
}
int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
std::shared_ptr<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
Size inSz = {in->mWidth, in->mHeight};
int ret;
if (inSz == outSz) {
ret = in->getLayout(out);
if (ret != 0) {
ALOGE("%s: failed to get input image layout", __FUNCTION__);
return ret;
}
return ret;
}
// Cropping to output aspect ratio
IMapper::Rect inputCrop;
ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
if (ret != 0) {
ALOGE("%s: failed to compute crop rect for output size %dx%d", __FUNCTION__, outSz.width,
outSz.height);
return ret;
}
YCbCrLayout croppedLayout;
ret = in->getCroppedLayout(inputCrop, &croppedLayout);
if (ret != 0) {
ALOGE("%s: failed to crop input image %dx%d to output size %dx%d", __FUNCTION__, inSz.width,
inSz.height, outSz.width, outSz.height);
return ret;
}
if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
(mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
// No scale is needed
*out = croppedLayout;
return 0;
}
auto it = mScaledYu12Frames.find(outSz);
std::shared_ptr<AllocatedFrame> scaledYu12Buf;
if (it != mScaledYu12Frames.end()) {
scaledYu12Buf = it->second;
} else {
it = mIntermediateBuffers.find(outSz);
if (it == mIntermediateBuffers.end()) {
ALOGE("%s: failed to find intermediate buffer size %dx%d", __FUNCTION__, outSz.width,
outSz.height);
return -1;
}
scaledYu12Buf = it->second;
}
// Scale
YCbCrLayout outLayout;
ret = scaledYu12Buf->getLayout(&outLayout);
if (ret != 0) {
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
return ret;
}
ret = libyuv::I420Scale(
static_cast<uint8_t*>(croppedLayout.y), croppedLayout.yStride,
static_cast<uint8_t*>(croppedLayout.cb), croppedLayout.cStride,
static_cast<uint8_t*>(croppedLayout.cr), croppedLayout.cStride, inputCrop.width,
inputCrop.height, static_cast<uint8_t*>(outLayout.y), outLayout.yStride,
static_cast<uint8_t*>(outLayout.cb), outLayout.cStride,
static_cast<uint8_t*>(outLayout.cr), outLayout.cStride, outSz.width, outSz.height,
// TODO: b/72261744 see if we can use better filter without losing too much perf
libyuv::FilterMode::kFilterNone);
if (ret != 0) {
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__,
inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret);
return ret;
}
*out = outLayout;
mScaledYu12Frames.insert({outSz, scaledYu12Buf});
return 0;
}
int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked(
std::shared_ptr<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
Size inSz{in->mWidth, in->mHeight};
if ((outSz.width * outSz.height) > (mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) {
ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)", __FUNCTION__, outSz.width,
outSz.height, mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight);
return -1;
}
int ret;
/* This will crop-and-zoom the input YUV frame to the thumbnail size
* Based on the following logic:
* 1) Square pixels come in, square pixels come out, therefore single
* scale factor is computed to either make input bigger or smaller
* depending on if we are upscaling or downscaling
* 2) That single scale factor would either make height too tall or width
* too wide so we need to crop the input either horizontally or vertically
* but not both
*/
/* Convert the input and output dimensions into floats for ease of math */
float fWin = static_cast<float>(inSz.width);
float fHin = static_cast<float>(inSz.height);
float fWout = static_cast<float>(outSz.width);
float fHout = static_cast<float>(outSz.height);
/* Compute the one scale factor from (1) above, it will be the smaller of
* the two possibilities. */
float scaleFactor = std::min(fHin / fHout, fWin / fWout);
/* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can
* simply multiply the output by our scaleFactor to get the cropped input
* size. Note that at least one of {fWcrop, fHcrop} is going to wind up
* being {fWin, fHin} respectively because fHout or fWout cancels out the
* scaleFactor calculation above.
*
* Specifically:
* if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off
* input, in which case
* scaleFactor = fHin / fHout
* fWcrop = fHin / fHout * fWout
* fHcrop = fHin
*
* Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which
* is just the inequality above with both sides multiplied by fWout
*
* on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top
* and the bottom off of input, and
* scaleFactor = fWin / fWout
* fWcrop = fWin
* fHCrop = fWin / fWout * fHout
*/
float fWcrop = scaleFactor * fWout;
float fHcrop = scaleFactor * fHout;
/* Convert to integer and truncate to an even number */
Size cropSz = {.width = 2 * static_cast<int32_t>(fWcrop / 2.0f),
.height = 2 * static_cast<int32_t>(fHcrop / 2.0f)};
/* Convert to a centered rectange with even top/left */
IMapper::Rect inputCrop{.left = 2 * static_cast<int32_t>((inSz.width - cropSz.width) / 4),
.top = 2 * static_cast<int32_t>((inSz.height - cropSz.height) / 4),
.width = static_cast<int32_t>(cropSz.width),
.height = static_cast<int32_t>(cropSz.height)};
if ((inputCrop.top < 0) || (inputCrop.top >= static_cast<int32_t>(inSz.height)) ||
(inputCrop.left < 0) || (inputCrop.left >= static_cast<int32_t>(inSz.width)) ||
(inputCrop.width <= 0) ||
(inputCrop.width + inputCrop.left > static_cast<int32_t>(inSz.width)) ||
(inputCrop.height <= 0) ||
(inputCrop.height + inputCrop.top > static_cast<int32_t>(inSz.height))) {
ALOGE("%s: came up with really wrong crop rectangle", __FUNCTION__);
ALOGE("%s: input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width,
inSz.height, outSz.width, outSz.height);
ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
return -1;
}
YCbCrLayout inputLayout;
ret = in->getCroppedLayout(inputCrop, &inputLayout);
if (ret != 0) {
ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d", __FUNCTION__,
inSz.width, inSz.height, outSz.width, outSz.height);
ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
return ret;
}
ALOGV("%s: crop input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width,
inSz.height, outSz.width, outSz.height);
ALOGV("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top,
inputCrop.width, inputCrop.height);
// Scale
YCbCrLayout outFullLayout;
ret = mYu12ThumbFrame->getLayout(&outFullLayout);
if (ret != 0) {
ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
return ret;
}
ret = libyuv::I420Scale(static_cast<uint8_t*>(inputLayout.y), inputLayout.yStride,
static_cast<uint8_t*>(inputLayout.cb), inputLayout.cStride,
static_cast<uint8_t*>(inputLayout.cr), inputLayout.cStride,
inputCrop.width, inputCrop.height,
static_cast<uint8_t*>(outFullLayout.y), outFullLayout.yStride,
static_cast<uint8_t*>(outFullLayout.cb), outFullLayout.cStride,
static_cast<uint8_t*>(outFullLayout.cr), outFullLayout.cStride,
outSz.width, outSz.height, libyuv::FilterMode::kFilterNone);
if (ret != 0) {
ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__,
inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret);
return ret;
}
*out = outFullLayout;
return 0;
}
int ExternalCameraDeviceSession::OutputThread::createJpegLocked(
HalStreamBuffer& halBuf, const common::V1_0::helper::CameraMetadata& setting) {
ATRACE_CALL();
int ret;
auto lfail = [&](auto... args) {
ALOGE(args...);
return 1;
};
auto parent = mParent.lock();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return 1;
}
ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u", __FUNCTION__, halBuf.streamId,
static_cast<uint64_t>(halBuf.bufferId), halBuf.width, halBuf.height);
ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p", __FUNCTION__, halBuf.format,
static_cast<uint64_t>(halBuf.usage), halBuf.bufPtr);
ALOGV("%s: YV12 buffer %d x %d", __FUNCTION__, mYu12Frame->mWidth, mYu12Frame->mHeight);
int jpegQuality, thumbQuality;
Size thumbSize;
bool outputThumbnail = true;
if (setting.exists(ANDROID_JPEG_QUALITY)) {
camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_QUALITY);
jpegQuality = entry.data.u8[0];
} else {
return lfail("%s: ANDROID_JPEG_QUALITY not set", __FUNCTION__);
}
if (setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) {
camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY);
thumbQuality = entry.data.u8[0];
} else {
return lfail("%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set", __FUNCTION__);
}
if (setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) {
camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_SIZE);
thumbSize = Size{.width = entry.data.i32[0], .height = entry.data.i32[1]};
if (thumbSize.width == 0 && thumbSize.height == 0) {
outputThumbnail = false;
}
} else {
return lfail("%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__);
}
/* Cropped and scaled YU12 buffer for main and thumbnail */
YCbCrLayout yu12Main;
Size jpegSize{halBuf.width, halBuf.height};
/* Compute temporary buffer sizes accounting for the following:
* thumbnail can't exceed APP1 size of 64K
* main image needs to hold APP1, headers, and at most a poorly
* compressed image */
const ssize_t maxThumbCodeSize = 64 * 1024;
const ssize_t maxJpegCodeSize =
mBlobBufferSize == 0 ? parent->getJpegBufferSize(jpegSize.width, jpegSize.height)
: mBlobBufferSize;
/* Check that getJpegBufferSize did not return an error */
if (maxJpegCodeSize < 0) {
return lfail("%s: getJpegBufferSize returned %zd", __FUNCTION__, maxJpegCodeSize);
}
/* Hold actual thumbnail and main image code sizes */
size_t thumbCodeSize = 0, jpegCodeSize = 0;
/* Temporary thumbnail code buffer */
std::vector<uint8_t> thumbCode(outputThumbnail ? maxThumbCodeSize : 0);
YCbCrLayout yu12Thumb;
if (outputThumbnail) {
ret = cropAndScaleThumbLocked(mYu12Frame, thumbSize, &yu12Thumb);
if (ret != 0) {
return lfail("%s: crop and scale thumbnail failed!", __FUNCTION__);
}
}
/* Scale and crop main jpeg */
ret = cropAndScaleLocked(mYu12Frame, jpegSize, &yu12Main);
if (ret != 0) {
return lfail("%s: crop and scale main failed!", __FUNCTION__);
}
/* Encode the thumbnail image */
if (outputThumbnail) {
ret = encodeJpegYU12(thumbSize, yu12Thumb, thumbQuality, 0, 0, &thumbCode[0],
maxThumbCodeSize, thumbCodeSize);
if (ret != 0) {
return lfail("%s: thumbnail encodeJpegYU12 failed with %d", __FUNCTION__, ret);
}
}
/* Combine camera characteristics with request settings to form EXIF
* metadata */
common::V1_0::helper::CameraMetadata meta(mCameraCharacteristics);
meta.append(setting);
/* Generate EXIF object */
std::unique_ptr<ExifUtils> utils(ExifUtils::create());
/* Make sure it's initialized */
utils->initialize();
utils->setFromMetadata(meta, jpegSize.width, jpegSize.height);
utils->setMake(mExifMake);
utils->setModel(mExifModel);
ret = utils->generateApp1(outputThumbnail ? &thumbCode[0] : nullptr, thumbCodeSize);
if (!ret) {
return lfail("%s: generating APP1 failed", __FUNCTION__);
}
/* Get internal buffer */
size_t exifDataSize = utils->getApp1Length();
const uint8_t* exifData = utils->getApp1Buffer();
/* Lock the HAL jpeg code buffer */
void* bufPtr = sHandleImporter.lock(*(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage),
maxJpegCodeSize);
if (!bufPtr) {
return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize);
}
/* Encode the main jpeg image */
ret = encodeJpegYU12(jpegSize, yu12Main, jpegQuality, exifData, exifDataSize, bufPtr,
maxJpegCodeSize, jpegCodeSize);
/* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out
* and do this when returning buffer to parent */
CameraBlob blob{CameraBlobId::JPEG, static_cast<int32_t>(jpegCodeSize)};
void* blobDst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(bufPtr) + maxJpegCodeSize -
sizeof(CameraBlob));
memcpy(blobDst, &blob, sizeof(CameraBlob));
/* Unlock the HAL jpeg code buffer */
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence >= 0) {
halBuf.acquireFence = relFence;
}
/* Check if our JPEG actually succeeded */
if (ret != 0) {
return lfail("%s: encodeJpegYU12 failed with %d", __FUNCTION__, ret);
}
ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu", __FUNCTION__, ret, jpegQuality,
maxJpegCodeSize);
return 0;
}
void ExternalCameraDeviceSession::OutputThread::clearIntermediateBuffers() {
std::lock_guard<std::mutex> lk(mBufferLock);
mYu12Frame.reset();
mYu12ThumbFrame.reset();
mIntermediateBuffers.clear();
mMuteTestPatternFrame.clear();
mBlobBufferSize = 0;
}
bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
std::shared_ptr<HalRequest> req;
auto parent = mParent.lock();
if (parent == nullptr) {
ALOGE("%s: session has been disconnected!", __FUNCTION__);
return false;
}
// TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
// regularly to prevent v4l buffer queue filled with stale buffers
// when app doesn't program a preview request
waitForNextRequest(&req);
if (req == nullptr) {
// No new request, wait again
return true;
}
auto onDeviceError = [&](auto... args) {
ALOGE(args...);
parent->notifyError(req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_DEVICE);
signalRequestDone();
return false;
};
if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG && req->frameIn->mFourcc != V4L2_PIX_FMT_Z16) {
return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
req->frameIn->mFourcc & 0xFF, (req->frameIn->mFourcc >> 8) & 0xFF,
(req->frameIn->mFourcc >> 16) & 0xFF,
(req->frameIn->mFourcc >> 24) & 0xFF);
}
int res = requestBufferStart(req->buffers);
if (res != 0) {
ALOGE("%s: send BufferRequest failed! res %d", __FUNCTION__, res);
return onDeviceError("%s: failed to send buffer request!", __FUNCTION__);
}
std::unique_lock<std::mutex> lk(mBufferLock);
// Convert input V4L2 frame to YU12 of the same size
// TODO: see if we can save some computation by converting to YV12 here
uint8_t* inData;
size_t inDataSize;
if (req->frameIn->getData(&inData, &inDataSize) != 0) {
lk.unlock();
return onDeviceError("%s: V4L2 buffer map failed", __FUNCTION__);
}
// Process camera mute state
auto testPatternMode = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_MODE);
if (testPatternMode.count == 1) {
if (mCameraMuted != (testPatternMode.data.u8[0] != ANDROID_SENSOR_TEST_PATTERN_MODE_OFF)) {
mCameraMuted = !mCameraMuted;
// Get solid color for test pattern, if any was set
if (testPatternMode.data.u8[0] == ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR) {
auto entry = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_DATA);
if (entry.count == 4) {
// Update the mute frame if the pattern color has changed
if (memcmp(entry.data.i32, mTestPatternData, sizeof(mTestPatternData)) != 0) {
memcpy(mTestPatternData, entry.data.i32, sizeof(mTestPatternData));
// Fill the mute frame with the solid color, use only 8 MSB of RGGB as RGB
for (int i = 0; i < mMuteTestPatternFrame.size(); i += 3) {
mMuteTestPatternFrame[i] = entry.data.i32[0] >> 24;
mMuteTestPatternFrame[i + 1] = entry.data.i32[1] >> 24;
mMuteTestPatternFrame[i + 2] = entry.data.i32[3] >> 24;
}
}
}
}
}
}
// TODO: in some special case maybe we can decode jpg directly to gralloc output?
if (req->frameIn->mFourcc == V4L2_PIX_FMT_MJPEG) {
ATRACE_BEGIN("MJPGtoI420");
res = 0;
if (mCameraMuted) {
res = libyuv::ConvertToI420(
mMuteTestPatternFrame.data(), mMuteTestPatternFrame.size(),
static_cast<uint8_t*>(mYu12FrameLayout.y), mYu12FrameLayout.yStride,
static_cast<uint8_t*>(mYu12FrameLayout.cb), mYu12FrameLayout.cStride,
static_cast<uint8_t*>(mYu12FrameLayout.cr), mYu12FrameLayout.cStride, 0, 0,
mYu12Frame->mWidth, mYu12Frame->mHeight, mYu12Frame->mWidth,
mYu12Frame->mHeight, libyuv::kRotate0, libyuv::FOURCC_RAW);
} else {
res = libyuv::MJPGToI420(
inData, inDataSize, static_cast<uint8_t*>(mYu12FrameLayout.y),
mYu12FrameLayout.yStride, static_cast<uint8_t*>(mYu12FrameLayout.cb),
mYu12FrameLayout.cStride, static_cast<uint8_t*>(mYu12FrameLayout.cr),
mYu12FrameLayout.cStride, mYu12Frame->mWidth, mYu12Frame->mHeight,
mYu12Frame->mWidth, mYu12Frame->mHeight);
}
ATRACE_END();
if (res != 0) {
// For some webcam, the first few V4L2 frames might be malformed...
ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
lk.unlock();
Status st = parent->processCaptureRequestError(req);
if (st != Status::OK) {
return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
}
signalRequestDone();
return true;
}
}
ATRACE_BEGIN("Wait for BufferRequest done");
res = waitForBufferRequestDone(&req->buffers);
ATRACE_END();
if (res != 0) {
ALOGE("%s: wait for BufferRequest done failed! res %d", __FUNCTION__, res);
lk.unlock();
return onDeviceError("%s: failed to process buffer request error!", __FUNCTION__);
}
ALOGV("%s processing new request", __FUNCTION__);
const int kSyncWaitTimeoutMs = 500;
for (auto& halBuf : req->buffers) {
if (*(halBuf.bufPtr) == nullptr) {
ALOGW("%s: buffer for stream %d missing", __FUNCTION__, halBuf.streamId);
halBuf.fenceTimeout = true;
} else if (halBuf.acquireFence >= 0) {
int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
if (ret) {
halBuf.fenceTimeout = true;
} else {
::close(halBuf.acquireFence);
halBuf.acquireFence = -1;
}
}
if (halBuf.fenceTimeout) {
continue;
}
// Gralloc lockYCbCr the buffer
switch (halBuf.format) {
case PixelFormat::BLOB: {
int ret = createJpegLocked(halBuf, req->setting);
if (ret != 0) {
lk.unlock();
return onDeviceError("%s: createJpegLocked failed with %d", __FUNCTION__, ret);
}
} break;
case PixelFormat::Y16: {
void* outLayout = sHandleImporter.lock(
*(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage), inDataSize);
std::memcpy(outLayout, inData, inDataSize);
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence >= 0) {
halBuf.acquireFence = relFence;
}
} break;
case PixelFormat::YCBCR_420_888:
case PixelFormat::YV12: {
android::Rect outRect{0, 0, static_cast<int32_t>(halBuf.width),
static_cast<int32_t>(halBuf.height)};
android_ycbcr result = sHandleImporter.lockYCbCr(
*(halBuf.bufPtr), static_cast<uint64_t>(halBuf.usage), outRect);
ALOGV("%s: outLayout y %p cb %p cr %p y_str %zu c_str %zu c_step %zu", __FUNCTION__,
result.y, result.cb, result.cr, result.ystride, result.cstride,
result.chroma_step);
if (result.ystride > UINT32_MAX || result.cstride > UINT32_MAX ||
result.chroma_step > UINT32_MAX) {
return onDeviceError("%s: lockYCbCr failed. Unexpected values!", __FUNCTION__);
}
YCbCrLayout outLayout = {.y = result.y,
.cb = result.cb,
.cr = result.cr,
.yStride = static_cast<uint32_t>(result.ystride),
.cStride = static_cast<uint32_t>(result.cstride),
.chromaStep = static_cast<uint32_t>(result.chroma_step)};
// Convert to output buffer size/format
uint32_t outputFourcc = getFourCcFromLayout(outLayout);
ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__, outputFourcc & 0xFF,
(outputFourcc >> 8) & 0xFF, (outputFourcc >> 16) & 0xFF,
(outputFourcc >> 24) & 0xFF);
YCbCrLayout cropAndScaled;
ATRACE_BEGIN("cropAndScaleLocked");
int ret = cropAndScaleLocked(mYu12Frame, Size{halBuf.width, halBuf.height},
&cropAndScaled);
ATRACE_END();
if (ret != 0) {
lk.unlock();
return onDeviceError("%s: crop and scale failed!", __FUNCTION__);
}
Size sz{halBuf.width, halBuf.height};
ATRACE_BEGIN("formatConvert");
ret = formatConvert(cropAndScaled, outLayout, sz, outputFourcc);
ATRACE_END();
if (ret != 0) {
lk.unlock();
return onDeviceError("%s: format conversion failed!", __FUNCTION__);
}
int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
if (relFence >= 0) {
halBuf.acquireFence = relFence;
}
} break;
default:
lk.unlock();
return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format);
}
} // for each buffer
mScaledYu12Frames.clear();
// Don't hold the lock while calling back to parent
lk.unlock();
Status st = parent->processCaptureResult(req);
if (st != Status::OK) {
return onDeviceError("%s: failed to process capture result!", __FUNCTION__);
}
signalRequestDone();
return true;
}
// End ExternalCameraDeviceSession::OutputThread functions
} // namespace implementation
} // namespace device
} // namespace camera
} // namespace hardware
} // namespace android