blob: eeb9c60d156e36ede9c40383203ddc48e722c75a [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "SchedulerTimer"
#include <chrono>
#include <cstdint>
#include <sys/epoll.h>
#include <sys/timerfd.h>
#include <sys/unistd.h>
#include <ftl/concat.h>
#include <ftl/enum.h>
#include <log/log.h>
#include <utils/Trace.h>
#include <scheduler/Timer.h>
namespace android::scheduler {
constexpr size_t kReadPipe = 0;
constexpr size_t kWritePipe = 1;
Clock::~Clock() = default;
TimeKeeper::~TimeKeeper() = default;
Timer::Timer() {
reset();
mDispatchThread = std::thread([this]() { threadMain(); });
}
Timer::~Timer() {
endDispatch();
mDispatchThread.join();
cleanup();
}
void Timer::reset() {
std::function<void()> cb;
{
std::lock_guard lock(mMutex);
if (mExpectingCallback && mCallback) {
cb = mCallback;
}
cleanup();
mTimerFd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC | TFD_NONBLOCK);
mEpollFd = epoll_create1(EPOLL_CLOEXEC);
if (pipe2(mPipes.data(), O_CLOEXEC | O_NONBLOCK)) {
ALOGE("could not create TimerDispatch mPipes");
}
}
if (cb) {
setDebugState(DebugState::InCallback);
cb();
setDebugState(DebugState::Running);
}
setDebugState(DebugState::Reset);
}
void Timer::cleanup() {
if (mTimerFd != -1) {
close(mTimerFd);
mTimerFd = -1;
}
if (mEpollFd != -1) {
close(mEpollFd);
mEpollFd = -1;
}
if (mPipes[kReadPipe] != -1) {
close(mPipes[kReadPipe]);
mPipes[kReadPipe] = -1;
}
if (mPipes[kWritePipe] != -1) {
close(mPipes[kWritePipe]);
mPipes[kWritePipe] = -1;
}
setCallback({});
}
void Timer::endDispatch() {
static constexpr unsigned char end = 'e';
write(mPipes[kWritePipe], &end, sizeof(end));
}
nsecs_t Timer::now() const {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
void Timer::alarmAt(std::function<void()> callback, nsecs_t time) {
std::lock_guard lock(mMutex);
using namespace std::literals;
static constexpr int ns_per_s =
std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
setCallback(std::move(callback));
struct itimerspec old_timer;
struct itimerspec new_timer {
.it_interval = {.tv_sec = 0, .tv_nsec = 0},
.it_value = {.tv_sec = static_cast<long>(time / ns_per_s),
.tv_nsec = static_cast<long>(time % ns_per_s)},
};
if (timerfd_settime(mTimerFd, TFD_TIMER_ABSTIME, &new_timer, &old_timer)) {
ALOGW("Failed to set timerfd %s (%i)", strerror(errno), errno);
}
}
void Timer::alarmCancel() {
std::lock_guard lock(mMutex);
struct itimerspec old_timer;
struct itimerspec new_timer {
.it_interval = {.tv_sec = 0, .tv_nsec = 0},
.it_value = {
.tv_sec = 0,
.tv_nsec = 0,
},
};
if (timerfd_settime(mTimerFd, 0, &new_timer, &old_timer)) {
ALOGW("Failed to disarm timerfd");
}
setCallback({});
}
void Timer::threadMain() {
while (dispatch()) {
reset();
}
}
bool Timer::dispatch() {
setDebugState(DebugState::Running);
struct sched_param param = {0};
param.sched_priority = 2;
if (pthread_setschedparam(pthread_self(), SCHED_FIFO, &param) != 0) {
ALOGW("Failed to set SCHED_FIFO on dispatch thread");
}
if (pthread_setname_np(pthread_self(), "TimerDispatch") != 0) {
ALOGW("Failed to set thread name on dispatch thread");
}
enum DispatchType : uint32_t { TIMER, TERMINATE, MAX_DISPATCH_TYPE };
epoll_event timerEvent;
timerEvent.events = EPOLLIN;
timerEvent.data.u32 = DispatchType::TIMER;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mTimerFd, &timerEvent) == -1) {
ALOGE("Error adding timer fd to epoll dispatch loop");
return true;
}
epoll_event terminateEvent;
terminateEvent.events = EPOLLIN;
terminateEvent.data.u32 = DispatchType::TERMINATE;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mPipes[kReadPipe], &terminateEvent) == -1) {
ALOGE("Error adding control fd to dispatch loop");
return true;
}
uint64_t iteration = 0;
while (true) {
setDebugState(DebugState::Waiting);
epoll_event events[DispatchType::MAX_DISPATCH_TYPE];
int nfds = epoll_wait(mEpollFd, events, DispatchType::MAX_DISPATCH_TYPE, -1);
setDebugState(DebugState::Running);
if (ATRACE_ENABLED()) {
ftl::Concat trace("TimerIteration #", iteration++);
ATRACE_NAME(trace.c_str());
}
if (nfds == -1) {
if (errno != EINTR) {
ALOGE("Error waiting on epoll: %s", strerror(errno));
return true;
}
}
for (auto i = 0; i < nfds; i++) {
if (events[i].data.u32 == DispatchType::TIMER) {
static uint64_t mIgnored = 0;
setDebugState(DebugState::Reading);
read(mTimerFd, &mIgnored, sizeof(mIgnored));
setDebugState(DebugState::Running);
std::function<void()> cb;
{
std::lock_guard lock(mMutex);
cb = mCallback;
mExpectingCallback = false;
}
if (cb) {
setDebugState(DebugState::InCallback);
cb();
setDebugState(DebugState::Running);
}
}
if (events[i].data.u32 == DispatchType::TERMINATE) {
ALOGE("Terminated");
setDebugState(DebugState::Running);
return false;
}
}
}
}
void Timer::setDebugState(DebugState state) {
std::lock_guard lock(mMutex);
mDebugState = state;
}
void Timer::setCallback(std::function<void()>&& callback) {
mExpectingCallback = bool(callback);
mCallback = std::move(callback);
}
void Timer::dump(std::string& result) const {
std::lock_guard lock(mMutex);
result.append("\t\tDebugState: ");
result.append(ftl::enum_string(mDebugState));
result.push_back('\n');
}
} // namespace android::scheduler