blob: 0ceecec7ecb8b163c692f74b0600e621263a14d2 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <android/gui/DropInputMode.h>
#include <android/gui/ISurfaceComposerClient.h>
#include <gui/BufferQueue.h>
#include <gui/LayerState.h>
#include <gui/WindowInfo.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/vec4.h>
#include <sys/types.h>
#include <ui/BlurRegion.h>
#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <ui/StretchEffect.h>
#include <ui/Transform.h>
#include <utils/RefBase.h>
#include <utils/Timers.h>
#include <compositionengine/LayerFE.h>
#include <compositionengine/LayerFECompositionState.h>
#include <scheduler/Fps.h>
#include <scheduler/Seamlessness.h>
#include <chrono>
#include <cstdint>
#include <list>
#include <optional>
#include <vector>
#include "Client.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTracker.h"
#include "LayerFE.h"
#include "LayerVector.h"
#include "Scheduler/LayerInfo.h"
#include "SurfaceFlinger.h"
#include "Tracing/LayerTracing.h"
#include "TransactionCallbackInvoker.h"
using namespace android::surfaceflinger;
namespace android {
class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
namespace compositionengine {
class OutputLayer;
struct LayerFECompositionState;
}
namespace gui {
class LayerDebugInfo;
}
namespace frametimeline {
class SurfaceFrame;
} // namespace frametimeline
class Layer : public virtual RefBase {
public:
// The following constants represent priority of the window. SF uses this information when
// deciding which window has a priority when deciding about the refresh rate of the screen.
// Priority 0 is considered the highest priority. -1 means that the priority is unset.
static constexpr int32_t PRIORITY_UNSET = -1;
// Windows that are in focus and voted for the preferred mode ID
static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0;
// // Windows that are in focus, but have not requested a specific mode ID.
static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1;
// Windows that are not in focus, but voted for a specific mode ID.
static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2;
enum { // flags for doTransaction()
eDontUpdateGeometryState = 0x00000001,
eVisibleRegion = 0x00000002,
eInputInfoChanged = 0x00000004
};
struct Geometry {
uint32_t w;
uint32_t h;
ui::Transform transform;
inline bool operator==(const Geometry& rhs) const {
return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
(transform.ty() == rhs.transform.ty());
}
inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
};
using FrameRate = scheduler::LayerInfo::FrameRate;
using FrameRateCompatibility = scheduler::FrameRateCompatibility;
using FrameRateSelectionStrategy = scheduler::LayerInfo::FrameRateSelectionStrategy;
struct State {
int32_t z;
ui::LayerStack layerStack;
uint32_t flags;
int32_t sequence; // changes when visible regions can change
bool modified;
// Crop is expressed in layer space coordinate.
Rect crop;
LayerMetadata metadata;
// If non-null, a Surface this Surface's Z-order is interpreted relative to.
wp<Layer> zOrderRelativeOf;
bool isRelativeOf{false};
// A list of surfaces whose Z-order is interpreted relative to ours.
SortedVector<wp<Layer>> zOrderRelatives;
half4 color;
float cornerRadius;
int backgroundBlurRadius;
gui::WindowInfo inputInfo;
wp<Layer> touchableRegionCrop;
ui::Dataspace dataspace;
uint64_t frameNumber;
uint64_t previousFrameNumber;
// high watermark framenumber to use to check for barriers to protect ourselves
// from out of order transactions
uint64_t barrierFrameNumber;
ui::Transform transform;
uint32_t producerId = 0;
// high watermark producerId to use to check for barriers to protect ourselves
// from out of order transactions
uint32_t barrierProducerId = 0;
uint32_t bufferTransform;
bool transformToDisplayInverse;
Region transparentRegionHint;
std::shared_ptr<renderengine::ExternalTexture> buffer;
sp<Fence> acquireFence;
std::shared_ptr<FenceTime> acquireFenceTime;
HdrMetadata hdrMetadata;
Region surfaceDamageRegion;
int32_t api;
sp<NativeHandle> sidebandStream;
mat4 colorTransform;
bool hasColorTransform;
// pointer to background color layer that, if set, appears below the buffer state layer
// and the buffer state layer's children. Z order will be set to
// INT_MIN
sp<Layer> bgColorLayer;
// The deque of callback handles for this frame. The back of the deque contains the most
// recent callback handle.
std::deque<sp<CallbackHandle>> callbackHandles;
bool colorSpaceAgnostic;
nsecs_t desiredPresentTime = 0;
bool isAutoTimestamp = true;
// Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will
// be rendered around the layer.
float shadowRadius;
// Layer regions that are made of custom materials, like frosted glass
std::vector<BlurRegion> blurRegions;
// Priority of the layer assigned by Window Manager.
int32_t frameRateSelectionPriority;
// Default frame rate compatibility used to set the layer refresh rate votetype.
FrameRateCompatibility defaultFrameRateCompatibility;
FrameRate frameRate;
// The combined frame rate of parents / children of this layer
FrameRate frameRateForLayerTree;
FrameRateSelectionStrategy frameRateSelectionStrategy;
// Set by window manager indicating the layer and all its children are
// in a different orientation than the display. The hint suggests that
// the graphic producers should receive a transform hint as if the
// display was in this orientation. When the display changes to match
// the layer orientation, the graphic producer may not need to allocate
// a buffer of a different size. ui::Transform::ROT_INVALID means the
// a fixed transform hint is not set.
ui::Transform::RotationFlags fixedTransformHint;
// The vsync info that was used to start the transaction
FrameTimelineInfo frameTimelineInfo;
// When the transaction was posted
nsecs_t postTime;
sp<ITransactionCompletedListener> releaseBufferListener;
// SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one
// such SurfaceFrame exists because only one buffer can be presented on the layer per vsync.
// If multiple buffers are queued, the prior ones will be dropped, along with the
// SurfaceFrame that's tracking them.
std::shared_ptr<frametimeline::SurfaceFrame> bufferSurfaceFrameTX;
// A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction
// that contains the token. Only one SurfaceFrame exisits for transactions that share the
// same token, unless they are presented in different vsyncs.
std::unordered_map<int64_t, std::shared_ptr<frametimeline::SurfaceFrame>>
bufferlessSurfaceFramesTX;
// An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to
// trigger a warning if the number of SurfaceFrames crosses the threshold.
static constexpr uint32_t kStateSurfaceFramesThreshold = 25;
// Stretch effect to apply to this layer
StretchEffect stretchEffect;
// Whether or not this layer is a trusted overlay for input
bool isTrustedOverlay;
Rect bufferCrop;
Rect destinationFrame;
sp<IBinder> releaseBufferEndpoint;
gui::DropInputMode dropInputMode;
bool autoRefresh = false;
bool dimmingEnabled = true;
float currentHdrSdrRatio = 1.f;
float desiredHdrSdrRatio = -1.f;
gui::CachingHint cachingHint = gui::CachingHint::Enabled;
int64_t latchedVsyncId = 0;
bool useVsyncIdForRefreshRateSelection = false;
};
explicit Layer(const surfaceflinger::LayerCreationArgs& args);
virtual ~Layer();
static bool isLayerFocusedBasedOnPriority(int32_t priority);
static void miniDumpHeader(std::string& result);
// Provide unique string for each class type in the Layer hierarchy
virtual const char* getType() const { return "Layer"; }
// true if this layer is visible, false otherwise
virtual bool isVisible() const;
virtual sp<Layer> createClone(uint32_t mirrorRoot);
// Set a 2x2 transformation matrix on the layer. This transform
// will be applied after parent transforms, but before any final
// producer specified transform.
bool setMatrix(const layer_state_t::matrix22_t& matrix);
// This second set of geometry attributes are controlled by
// setGeometryAppliesWithResize, and their default mode is to be
// immediate. If setGeometryAppliesWithResize is specified
// while a resize is pending, then update of these attributes will
// be delayed until the resize completes.
// setPosition operates in parent buffer space (pre parent-transform) or display
// space for top-level layers.
bool setPosition(float x, float y);
// Buffer space
bool setCrop(const Rect& crop);
// TODO(b/38182121): Could we eliminate the various latching modes by
// using the layer hierarchy?
// -----------------------------------------------------------------------
virtual bool setLayer(int32_t z);
virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
virtual bool setAlpha(float alpha);
bool setColor(const half3& /*color*/);
// Set rounded corner radius for this layer and its children.
//
// We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
// The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
// from which we inferred the rounded corner radius.
virtual bool setCornerRadius(float cornerRadius);
// When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which
// is specified in pixels.
virtual bool setBackgroundBlurRadius(int backgroundBlurRadius);
virtual bool setBlurRegions(const std::vector<BlurRegion>& effectRegions);
bool setTransparentRegionHint(const Region& transparent);
virtual bool setTrustedOverlay(bool);
virtual bool setFlags(uint32_t flags, uint32_t mask);
virtual bool setLayerStack(ui::LayerStack);
virtual ui::LayerStack getLayerStack(
LayerVector::StateSet state = LayerVector::StateSet::Drawing) const;
virtual bool setMetadata(const LayerMetadata& data);
virtual void setChildrenDrawingParent(const sp<Layer>&);
virtual bool reparent(const sp<IBinder>& newParentHandle) REQUIRES(mFlinger->mStateLock);
virtual bool setColorTransform(const mat4& matrix);
virtual mat4 getColorTransform() const;
virtual bool hasColorTransform() const;
virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
virtual bool isDimmingEnabled() const { return getDrawingState().dimmingEnabled; }
float getDesiredHdrSdrRatio() const { return getDrawingState().desiredHdrSdrRatio; }
float getCurrentHdrSdrRatio() const { return getDrawingState().currentHdrSdrRatio; }
gui::CachingHint getCachingHint() const { return getDrawingState().cachingHint; }
bool setTransform(uint32_t /*transform*/);
bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/);
bool setBuffer(std::shared_ptr<renderengine::ExternalTexture>& /* buffer */,
const BufferData& /* bufferData */, nsecs_t /* postTime */,
nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/,
std::optional<nsecs_t> /* dequeueTime */, const FrameTimelineInfo& /*info*/);
void setDesiredPresentTime(nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/);
bool setDataspace(ui::Dataspace /*dataspace*/);
bool setExtendedRangeBrightness(float currentBufferRatio, float desiredRatio);
bool setDesiredHdrHeadroom(float desiredRatio);
bool setCachingHint(gui::CachingHint cachingHint);
bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/);
bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/);
bool setApi(int32_t /*api*/);
bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/,
const FrameTimelineInfo& /* info*/, nsecs_t /* postTime */);
bool setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>>& /*handles*/,
bool willPresent);
virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace)
REQUIRES(mFlinger->mStateLock);
virtual bool setColorSpaceAgnostic(const bool agnostic);
virtual bool setDimmingEnabled(const bool dimmingEnabled);
virtual bool setDefaultFrameRateCompatibility(FrameRateCompatibility compatibility);
virtual bool setFrameRateSelectionPriority(int32_t priority);
virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint);
void setAutoRefresh(bool /* autoRefresh */);
bool setDropInputMode(gui::DropInputMode);
// If the variable is not set on the layer, it traverses up the tree to inherit the frame
// rate priority from its parent.
virtual int32_t getFrameRateSelectionPriority() const;
//
virtual FrameRateCompatibility getDefaultFrameRateCompatibility() const;
//
ui::Dataspace getDataSpace() const;
virtual bool isFrontBuffered() const;
virtual sp<LayerFE> getCompositionEngineLayerFE() const;
virtual sp<LayerFE> copyCompositionEngineLayerFE() const;
sp<LayerFE> getCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&);
sp<LayerFE> getOrCreateCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&);
const frontend::LayerSnapshot* getLayerSnapshot() const;
frontend::LayerSnapshot* editLayerSnapshot();
std::unique_ptr<frontend::LayerSnapshot> stealLayerSnapshot();
void updateLayerSnapshot(std::unique_ptr<frontend::LayerSnapshot> snapshot);
// If we have received a new buffer this frame, we will pass its surface
// damage down to hardware composer. Otherwise, we must send a region with
// one empty rect.
void useSurfaceDamage();
void useEmptyDamage();
Region getVisibleRegion(const DisplayDevice*) const;
void updateLastLatchTime(nsecs_t latchtime);
/*
* isOpaque - true if this surface is opaque
*
* This takes into account the buffer format (i.e. whether or not the
* pixel format includes an alpha channel) and the "opaque" flag set
* on the layer. It does not examine the current plane alpha value.
*/
bool isOpaque(const Layer::State&) const;
/*
* Returns whether this layer can receive input.
*/
bool canReceiveInput() const;
/*
* Whether or not the layer should be considered visible for input calculations.
*/
virtual bool isVisibleForInput() const {
// For compatibility reasons we let layers which can receive input
// receive input before they have actually submitted a buffer. Because
// of this we use canReceiveInput instead of isVisible to check the
// policy-visibility, ignoring the buffer state. However for layers with
// hasInputInfo()==false we can use the real visibility state.
// We are just using these layers for occlusion detection in
// InputDispatcher, and obviously if they aren't visible they can't occlude
// anything.
return hasInputInfo() ? canReceiveInput() : isVisible();
}
/*
* isProtected - true if the layer may contain protected contents in the
* GRALLOC_USAGE_PROTECTED sense.
*/
bool isProtected() const;
/*
* isFixedSize - true if content has a fixed size
*/
virtual bool isFixedSize() const { return true; }
/*
* usesSourceCrop - true if content should use a source crop
*/
bool usesSourceCrop() const { return hasBufferOrSidebandStream(); }
// Most layers aren't created from the main thread, and therefore need to
// grab the SF state lock to access HWC, but ContainerLayer does, so we need
// to avoid grabbing the lock again to avoid deadlock
virtual bool isCreatedFromMainThread() const { return false; }
ui::Transform getActiveTransform(const Layer::State& s) const { return s.transform; }
Region getActiveTransparentRegion(const Layer::State& s) const {
return s.transparentRegionHint;
}
Rect getCrop(const Layer::State& s) const { return s.crop; }
bool needsFiltering(const DisplayDevice*) const;
// True if this layer requires filtering
// This method is distinct from needsFiltering() in how the filter
// requirement is computed. needsFiltering() compares displayFrame and crop,
// where as this method transforms the displayFrame to layer-stack space
// first. This method should be used if there is no physical display to
// project onto when taking screenshots, as the filtering requirements are
// different.
// If the parent transform needs to be undone when capturing the layer, then
// the inverse parent transform is also required.
bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const;
// from graphics API
static ui::Dataspace translateDataspace(ui::Dataspace dataspace);
void updateCloneBufferInfo();
uint64_t mPreviousFrameNumber = 0;
void onCompositionPresented(const DisplayDevice*,
const std::shared_ptr<FenceTime>& /*glDoneFence*/,
const std::shared_ptr<FenceTime>& /*presentFence*/,
const CompositorTiming&);
// If a buffer was replaced this frame, release the former buffer
void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/);
/*
* latchBuffer - called each time the screen is redrawn and returns whether
* the visible regions need to be recomputed (this is a fairly heavy
* operation, so this should be set only if needed). Typically this is used
* to figure out if the content or size of a surface has changed.
*/
bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/);
bool latchBufferImpl(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/,
bool bgColorOnly);
/*
* Returns true if the currently presented buffer will be released when this layer state
* is latched. This will return false if there is no buffer currently presented.
*/
bool willReleaseBufferOnLatch() const;
/*
* Calls latchBuffer if the buffer has a frame queued and then releases the buffer.
* This is used if the buffer is just latched and releases to free up the buffer
* and will not be shown on screen.
* Should only be called on the main thread.
*/
void latchAndReleaseBuffer();
/*
* returns the rectangle that crops the content of the layer and scales it
* to the layer's size.
*/
Rect getBufferCrop() const;
/*
* Returns the transform applied to the buffer.
*/
uint32_t getBufferTransform() const;
sp<GraphicBuffer> getBuffer() const;
const std::shared_ptr<renderengine::ExternalTexture>& getExternalTexture() const;
/*
* Returns if a frame is ready
*/
bool hasReadyFrame() const;
virtual int32_t getQueuedFrameCount() const { return 0; }
/**
* Returns active buffer size in the correct orientation. Buffer size is determined by undoing
* any buffer transformations. Returns Rect::INVALID_RECT if the layer has no buffer or the
* layer does not have a display frame and its parent is not bounded.
*/
Rect getBufferSize(const Layer::State&) const;
/**
* Returns the source bounds. If the bounds are not defined, it is inferred from the
* buffer size. Failing that, the bounds are determined from the passed in parent bounds.
* For the root layer, this is the display viewport size.
*/
FloatRect computeSourceBounds(const FloatRect& parentBounds) const;
virtual FrameRate getFrameRateForLayerTree() const;
bool getTransformToDisplayInverse() const;
// Returns how rounded corners should be drawn for this layer.
// A layer can override its parent's rounded corner settings if the parent's rounded
// corner crop does not intersect with its own rounded corner crop.
virtual frontend::RoundedCornerState getRoundedCornerState() const;
bool hasRoundedCorners() const { return getRoundedCornerState().hasRoundedCorners(); }
PixelFormat getPixelFormat() const;
/**
* Return whether this layer needs an input info. We generate InputWindowHandles for all
* non-cursor buffered layers regardless of whether they have an InputChannel. This is to enable
* the InputDispatcher to do PID based occlusion detection.
*/
bool needsInputInfo() const {
return (hasInputInfo() || hasBufferOrSidebandStream()) && !mPotentialCursor;
}
// Implements RefBase.
void onFirstRef() override;
struct BufferInfo {
nsecs_t mDesiredPresentTime;
std::shared_ptr<FenceTime> mFenceTime;
sp<Fence> mFence;
uint32_t mTransform{0};
ui::Dataspace mDataspace{ui::Dataspace::UNKNOWN};
Rect mCrop;
uint32_t mScaleMode{NATIVE_WINDOW_SCALING_MODE_FREEZE};
Region mSurfaceDamage;
HdrMetadata mHdrMetadata;
int mApi;
PixelFormat mPixelFormat{PIXEL_FORMAT_NONE};
bool mTransformToDisplayInverse{false};
std::shared_ptr<renderengine::ExternalTexture> mBuffer;
uint64_t mFrameNumber;
sp<IBinder> mReleaseBufferEndpoint;
bool mFrameLatencyNeeded{false};
float mDesiredHdrSdrRatio = -1.f;
};
BufferInfo mBufferInfo;
// implements compositionengine::LayerFE
const compositionengine::LayerFECompositionState* getCompositionState() const;
bool fenceHasSignaled() const;
void onPreComposition(nsecs_t refreshStartTime);
void onLayerDisplayed(ftl::SharedFuture<FenceResult>, ui::LayerStack layerStack,
std::function<FenceResult(FenceResult)>&& continuation = nullptr);
void setWasClientComposed(const sp<Fence>& fence) {
mLastClientCompositionFence = fence;
mClearClientCompositionFenceOnLayerDisplayed = false;
}
const char* getDebugName() const;
bool setShadowRadius(float shadowRadius);
// Before color management is introduced, contents on Android have to be
// desaturated in order to match what they appears like visually.
// With color management, these contents will appear desaturated, thus
// needed to be saturated so that they match what they are designed for
// visually.
bool isLegacyDataSpace() const;
uint32_t getTransactionFlags() const { return mTransactionFlags; }
static bool computeTrustedPresentationState(const FloatRect& bounds,
const FloatRect& sourceBounds,
const Region& coveredRegion,
const FloatRect& screenBounds, float,
const ui::Transform&,
const TrustedPresentationThresholds&);
void updateTrustedPresentationState(const DisplayDevice* display,
const frontend::LayerSnapshot* snapshot, int64_t time_in_ms,
bool leaveState);
inline bool hasTrustedPresentationListener() {
return mTrustedPresentationListener.callbackInterface != nullptr;
}
// Sets the masked bits.
void setTransactionFlags(uint32_t mask);
// Clears and returns the masked bits.
uint32_t clearTransactionFlags(uint32_t mask);
FloatRect getBounds(const Region& activeTransparentRegion) const;
FloatRect getBounds() const;
Rect getInputBoundsInDisplaySpace(const FloatRect& insetBounds,
const ui::Transform& displayTransform);
// Compute bounds for the layer and cache the results.
void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius);
int32_t getSequence() const { return sequence; }
// For tracing.
// TODO: Replace with raw buffer id from buffer metadata when that becomes available.
// GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces
// creates its tracks by buffer id and has no way of associating a buffer back to the process
// that created it, the current implementation is only sufficient for cases where a buffer is
// only used within a single layer.
uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; }
/*
* isSecure - true if this surface is secure, that is if it prevents
* screenshots or VNC servers. A surface can be set to be secure by the
* application, being secure doesn't mean the surface has DRM contents.
*/
bool isSecure() const;
/*
* isHiddenByPolicy - true if this layer has been forced invisible.
* just because this is false, doesn't mean isVisible() is true.
* For example if this layer has no active buffer, it may not be hidden by
* policy, but it still can not be visible.
*/
bool isHiddenByPolicy() const;
// True if the layer should be skipped in screenshots, screen recordings,
// and mirroring to external or virtual displays.
bool isInternalDisplayOverlay() const;
ui::LayerFilter getOutputFilter() const {
return {getLayerStack(), isInternalDisplayOverlay()};
}
bool isRemovedFromCurrentState() const;
perfetto::protos::LayerProto* writeToProto(perfetto::protos::LayersProto& layersProto,
uint32_t traceFlags);
void writeCompositionStateToProto(perfetto::protos::LayerProto* layerProto,
ui::LayerStack layerStack);
// Write states that are modified by the main thread. This includes drawing
// state as well as buffer data. This should be called in the main or tracing
// thread.
void writeToProtoDrawingState(perfetto::protos::LayerProto* layerInfo);
// Write drawing or current state. If writing current state, the caller should hold the
// external mStateLock. If writing drawing state, this function should be called on the
// main or tracing thread.
void writeToProtoCommonState(perfetto::protos::LayerProto* layerInfo, LayerVector::StateSet,
uint32_t traceFlags = LayerTracing::TRACE_ALL);
gui::WindowInfo::Type getWindowType() const { return mWindowType; }
bool updateMirrorInfo(const std::deque<Layer*>& cloneRootsPendingUpdates);
/*
* doTransaction - process the transaction. This is a good place to figure
* out which attributes of the surface have changed.
*/
virtual uint32_t doTransaction(uint32_t transactionFlags);
/*
* Remove relative z for the layer if its relative parent is not part of the
* provided layer tree.
*/
void removeRelativeZ(const std::vector<Layer*>& layersInTree);
/*
* Remove from current state and mark for removal.
*/
void removeFromCurrentState() REQUIRES(mFlinger->mStateLock);
/*
* called with the state lock from a binder thread when the layer is
* removed from the current list to the pending removal list
*/
void onRemovedFromCurrentState() REQUIRES(mFlinger->mStateLock);
/*
* Called when the layer is added back to the current state list.
*/
void addToCurrentState();
/*
* Sets display transform hint on BufferLayerConsumer.
*/
void updateTransformHint(ui::Transform::RotationFlags);
void skipReportingTransformHint();
inline const State& getDrawingState() const { return mDrawingState; }
inline State& getDrawingState() { return mDrawingState; }
gui::LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const;
void miniDumpLegacy(std::string& result, const DisplayDevice&) const;
void miniDump(std::string& result, const frontend::LayerSnapshot&, const DisplayDevice&) const;
void dumpFrameStats(std::string& result) const;
void dumpOffscreenDebugInfo(std::string& result) const;
void clearFrameStats();
void logFrameStats();
void getFrameStats(FrameStats* outStats) const;
void onDisconnect();
ui::Transform getTransform() const;
bool isTransformValid() const;
// Returns the Alpha of the Surface, accounting for the Alpha
// of parent Surfaces in the hierarchy (alpha's will be multiplied
// down the hierarchy).
half getAlpha() const;
half4 getColor() const;
int32_t getBackgroundBlurRadius() const;
bool drawShadows() const { return mEffectiveShadowRadius > 0.f; };
// Returns the transform hint set by Window Manager on the layer or one of its parents.
// This traverses the current state because the data is needed when creating
// the layer(off drawing thread) and the hint should be available before the producer
// is ready to acquire a buffer.
ui::Transform::RotationFlags getFixedTransformHint() const;
/**
* Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder
* which will not emit children who have relativeZOrder to another layer, this method
* just directly emits all children. It also emits them in no particular order.
* So this method is not suitable for graphical operations, as it doesn't represent
* the scene state, but it's also more efficient than traverseInZOrder and so useful for
* book-keeping.
*/
void traverse(LayerVector::StateSet, const LayerVector::Visitor&);
void traverseInReverseZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
void traverseInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
void traverseChildren(const LayerVector::Visitor&);
/**
* Traverse only children in z order, ignoring relative layers that are not children of the
* parent.
*/
void traverseChildrenInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
size_t getDescendantCount() const;
size_t getChildrenCount() const { return mDrawingChildren.size(); }
bool isHandleAlive() const { return mHandleAlive; }
bool onHandleDestroyed() { return mHandleAlive = false; }
// ONLY CALL THIS FROM THE LAYER DTOR!
// See b/141111965. We need to add current children to offscreen layers in
// the layer dtor so as not to dangle layers. Since the layer has not
// committed its transaction when the layer is destroyed, we must add
// current children. This is safe in the dtor as we will no longer update
// the current state, but should not be called anywhere else!
LayerVector& getCurrentChildren() { return mCurrentChildren; }
void addChild(const sp<Layer>&);
// Returns index if removed, or negative value otherwise
// for symmetry with Vector::remove
ssize_t removeChild(const sp<Layer>& layer);
sp<Layer> getParent() const { return mCurrentParent.promote(); }
// Should be called with the surfaceflinger statelock held
bool isAtRoot() const { return mIsAtRoot; }
void setIsAtRoot(bool isAtRoot) { mIsAtRoot = isAtRoot; }
bool hasParent() const { return getParent() != nullptr; }
Rect getScreenBounds(bool reduceTransparentRegion = true) const;
bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
bool setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ);
// Copy the current list of children to the drawing state. Called by
// SurfaceFlinger to complete a transaction.
void commitChildList();
int32_t getZ(LayerVector::StateSet) const;
/**
* Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
* INVALID_RECT if the layer has no buffer and no crop.
* A layer with an invalid buffer size and no crop is considered to be boundless. The layer
* bounds are constrained by its parent bounds.
*/
Rect getCroppedBufferSize(const Layer::State& s) const;
bool setFrameRate(FrameRate::FrameRateVote);
bool setFrameRateCategory(FrameRateCategory, bool smoothSwitchOnly);
bool setFrameRateSelectionStrategy(FrameRateSelectionStrategy);
virtual void setFrameTimelineInfoForBuffer(const FrameTimelineInfo& /*info*/) {}
void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime);
void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
nsecs_t postTime);
void addSurfaceFrameDroppedForBuffer(std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame,
nsecs_t dropTime);
void addSurfaceFramePresentedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
nsecs_t currentLatchTime);
std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForTransaction(
const FrameTimelineInfo& info, nsecs_t postTime);
std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForBuffer(
const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName);
void setFrameTimelineVsyncForSkippedFrames(const FrameTimelineInfo& info, nsecs_t postTime,
std::string debugName);
bool setTrustedPresentationInfo(TrustedPresentationThresholds const& thresholds,
TrustedPresentationListener const& listener);
// Creates a new handle each time, so we only expect
// this to be called once.
sp<IBinder> getHandle();
const std::string& getName() const { return mName; }
bool getPremultipledAlpha() const;
void setInputInfo(const gui::WindowInfo& info);
struct InputDisplayArgs {
const ui::Transform* transform = nullptr;
bool isSecure = false;
};
gui::WindowInfo fillInputInfo(const InputDisplayArgs& displayArgs);
/**
* Returns whether this layer has an explicitly set input-info.
*/
bool hasInputInfo() const;
// Sets the gui::GameMode for the tree rooted at this layer. A layer in the tree inherits this
// gui::GameMode unless it (or an ancestor) has GAME_MODE_METADATA.
void setGameModeForTree(gui::GameMode);
void setGameMode(gui::GameMode gameMode) { mGameMode = gameMode; }
gui::GameMode getGameMode() const { return mGameMode; }
virtual uid_t getOwnerUid() const { return mOwnerUid; }
pid_t getOwnerPid() { return mOwnerPid; }
int32_t getOwnerAppId() { return mOwnerAppId; }
// This layer is not a clone, but it's the parent to the cloned hierarchy. The
// variable mClonedChild represents the top layer that will be cloned so this
// layer will be the parent of mClonedChild.
// The layers in the cloned hierarchy will match the lifetime of the real layers. That is
// if the real layer is destroyed, then the clone layer will also be destroyed.
sp<Layer> mClonedChild;
bool mHadClonedChild = false;
void setClonedChild(const sp<Layer>& mClonedChild);
mutable bool contentDirty{false};
Region surfaceDamageRegion;
// True when the surfaceDamageRegion is recognized as a small area update.
bool mSmallDirty{false};
// Used to check if mUsedVsyncIdForRefreshRateSelection should be expired when it stop updating.
nsecs_t mMaxTimeForUseVsyncId = 0;
// True when DrawState.useVsyncIdForRefreshRateSelection previously set to true during updating
// buffer.
bool mUsedVsyncIdForRefreshRateSelection{false};
// Layer serial number. This gives layers an explicit ordering, so we
// have a stable sort order when their layer stack and Z-order are
// the same.
const int32_t sequence;
bool mPendingHWCDestroy{false};
bool backpressureEnabled() const {
return mDrawingState.flags & layer_state_t::eEnableBackpressure;
}
bool setStretchEffect(const StretchEffect& effect);
StretchEffect getStretchEffect() const;
bool enableBorder(bool shouldEnable, float width, const half4& color);
bool isBorderEnabled();
float getBorderWidth();
const half4& getBorderColor();
bool setBufferCrop(const Rect& /* bufferCrop */);
bool setDestinationFrame(const Rect& /* destinationFrame */);
// See mPendingBufferTransactions
void decrementPendingBufferCount();
std::atomic<int32_t>* getPendingBufferCounter() { return &mPendingBufferTransactions; }
std::string getPendingBufferCounterName() { return mBlastTransactionName; }
bool updateGeometry();
bool isSimpleBufferUpdate(const layer_state_t& s) const;
static bool isOpaqueFormat(PixelFormat format);
// Updates the LayerSnapshot. This must be called prior to sending layer data to
// CompositionEngine or RenderEngine (i.e. before calling CompositionEngine::present or
// LayerFE::prepareClientComposition).
//
// TODO(b/238781169) Remove direct calls to RenderEngine::drawLayers that don't go through
// CompositionEngine to create a single path for composing layers.
void updateSnapshot(bool updateGeometry);
void updateChildrenSnapshots(bool updateGeometry);
void updateMetadataSnapshot(const LayerMetadata& parentMetadata);
void updateRelativeMetadataSnapshot(const LayerMetadata& relativeLayerMetadata,
std::unordered_set<Layer*>& visited);
sp<Layer> getClonedFrom() const {
return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr;
}
bool isClone() { return mClonedFrom != nullptr; }
bool willPresentCurrentTransaction() const;
void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer, uint64_t framenumber,
const sp<Fence>& releaseFence);
bool setFrameRateForLayerTreeLegacy(FrameRate, nsecs_t now);
bool setFrameRateForLayerTree(FrameRate, const scheduler::LayerProps&, nsecs_t now);
void recordLayerHistoryBufferUpdate(const scheduler::LayerProps&, nsecs_t now);
void recordLayerHistoryAnimationTx(const scheduler::LayerProps&, nsecs_t now);
auto getLayerProps() const {
return scheduler::LayerProps{.visible = isVisible(),
.bounds = getBounds(),
.transform = getTransform(),
.setFrameRateVote = getFrameRateForLayerTree(),
.frameRateSelectionPriority = getFrameRateSelectionPriority(),
.isSmallDirty = mSmallDirty,
.isFrontBuffered = isFrontBuffered()};
};
bool hasBuffer() const { return mBufferInfo.mBuffer != nullptr; }
void setTransformHint(std::optional<ui::Transform::RotationFlags> transformHint) {
mTransformHint = transformHint;
}
void commitTransaction();
// Keeps track of the previously presented layer stacks. This is used to get
// the release fences from the correct displays when we release the last buffer
// from the layer.
std::vector<ui::LayerStack> mPreviouslyPresentedLayerStacks;
struct FenceAndContinuation {
ftl::SharedFuture<FenceResult> future;
std::function<FenceResult(FenceResult)> continuation;
ftl::SharedFuture<FenceResult> chain() const {
if (continuation) {
return ftl::Future(future).then(continuation).share();
} else {
return future;
}
}
};
std::vector<FenceAndContinuation> mAdditionalPreviousReleaseFences;
// Exposed so SurfaceFlinger can assert that it's held
const sp<SurfaceFlinger> mFlinger;
// Check if the damage region is a small dirty.
void setIsSmallDirty(const Region& damageRegion, const ui::Transform& layerToDisplayTransform);
void setIsSmallDirty(frontend::LayerSnapshot* snapshot);
protected:
// For unit tests
friend class TestableSurfaceFlinger;
friend class FpsReporterTest;
friend class RefreshRateSelectionTest;
friend class SetFrameRateTest;
friend class TransactionFrameTracerTest;
friend class TransactionSurfaceFrameTest;
virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom, uint32_t mirrorRootId);
void preparePerFrameCompositionState();
void preparePerFrameBufferCompositionState();
void preparePerFrameEffectsCompositionState();
void gatherBufferInfo();
void onSurfaceFrameCreated(const std::shared_ptr<frametimeline::SurfaceFrame>&);
bool isClonedFromAlive() { return getClonedFrom() != nullptr; }
void cloneDrawingState(const Layer* from);
void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void updateClonedChildren(const sp<Layer>& mirrorRoot,
std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void addChildToDrawing(const sp<Layer>&);
void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void prepareBasicGeometryCompositionState();
void prepareGeometryCompositionState();
void prepareCursorCompositionState();
uint32_t getEffectiveUsage(uint32_t usage) const;
/**
* Setup rounded corners coordinates of this layer, taking into account the layer bounds and
* crop coordinates, transforming them into layer space.
*/
void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
void setParent(const sp<Layer>&);
LayerVector makeTraversalList(LayerVector::StateSet, bool* outSkipRelativeZUsers);
void addZOrderRelative(const wp<Layer>& relative);
void removeZOrderRelative(const wp<Layer>& relative);
compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const;
compositionengine::OutputLayer* findOutputLayerForDisplay(
const DisplayDevice*, const frontend::LayerHierarchy::TraversalPath& path) const;
bool usingRelativeZ(LayerVector::StateSet) const;
virtual ui::Transform getInputTransform() const;
/**
* Get the bounds in layer space within which this layer can receive input.
*
* These bounds are used to:
* - Determine the input frame for the layer to be used for occlusion detection; and
* - Determine the coordinate space within which the layer will receive input. The top-left of
* this rect will be the origin of the coordinate space that the input events sent to the
* layer will be in (prior to accounting for surface insets).
*
* The layer can still receive touch input if these bounds are invalid if
* "replaceTouchableRegionWithCrop" is specified. In this case, the layer will receive input
* in this layer's space, regardless of the specified crop layer.
*/
std::pair<FloatRect, bool> getInputBounds(bool fillParentBounds) const;
bool mPremultipliedAlpha{true};
const std::string mName;
const std::string mTransactionName{"TX - " + mName};
// These are only accessed by the main thread or the tracing thread.
State mDrawingState;
TrustedPresentationThresholds mTrustedPresentationThresholds;
TrustedPresentationListener mTrustedPresentationListener;
bool mLastComputedTrustedPresentationState = false;
bool mLastReportedTrustedPresentationState = false;
int64_t mEnteredTrustedPresentationStateTime = -1;
uint32_t mTransactionFlags{0};
// Updated in doTransaction, used to track the last sequence number we
// committed. Currently this is really only used for updating visible
// regions.
int32_t mLastCommittedTxSequence = -1;
// Timestamp history for UIAutomation. Thread safe.
FrameTracker mFrameTracker;
// main thread
sp<NativeHandle> mSidebandStream;
// False if the buffer and its contents have been previously used for GPU
// composition, true otherwise.
bool mIsActiveBufferUpdatedForGpu = true;
// We encode unset as -1.
std::atomic<uint64_t> mCurrentFrameNumber{0};
// Whether filtering is needed b/c of the drawingstate
bool mNeedsFiltering{false};
std::atomic<bool> mRemovedFromDrawingState{false};
// page-flip thread (currently main thread)
bool mProtectedByApp{false}; // application requires protected path to external sink
// protected by mLock
mutable Mutex mLock;
const wp<Client> mClientRef;
// This layer can be a cursor on some displays.
bool mPotentialCursor{false};
LayerVector mCurrentChildren{LayerVector::StateSet::Current};
LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};
wp<Layer> mCurrentParent;
wp<Layer> mDrawingParent;
// Window types from WindowManager.LayoutParams
const gui::WindowInfo::Type mWindowType;
// The owner of the layer. If created from a non system process, it will be the calling uid.
// If created from a system process, the value can be passed in.
uid_t mOwnerUid;
// The owner pid of the layer. If created from a non system process, it will be the calling pid.
// If created from a system process, the value can be passed in.
pid_t mOwnerPid;
int32_t mOwnerAppId;
// Keeps track of the time SF latched the last buffer from this layer.
// Used in buffer stuffing analysis in FrameTimeline.
nsecs_t mLastLatchTime = 0;
mutable bool mDrawingStateModified = false;
sp<Fence> mLastClientCompositionFence;
bool mClearClientCompositionFenceOnLayerDisplayed = false;
private:
// Range of uids allocated for a user.
// This value is taken from android.os.UserHandle#PER_USER_RANGE.
static constexpr int32_t PER_USER_RANGE = 100000;
friend class SlotGenerationTest;
friend class TransactionFrameTracerTest;
friend class TransactionSurfaceFrameTest;
bool getAutoRefresh() const { return mDrawingState.autoRefresh; }
bool getSidebandStreamChanged() const { return mSidebandStreamChanged; }
std::atomic<bool> mSidebandStreamChanged{false};
// Returns true if the layer can draw shadows on its border.
virtual bool canDrawShadows() const { return true; }
aidl::android::hardware::graphics::composer3::Composition getCompositionType(
const DisplayDevice&) const;
aidl::android::hardware::graphics::composer3::Composition getCompositionType(
const compositionengine::OutputLayer*) const;
/**
* Returns an unsorted vector of all layers that are part of this tree.
* That includes the current layer and all its descendants.
*/
std::vector<Layer*> getLayersInTree(LayerVector::StateSet);
/**
* Traverses layers that are part of this tree in the correct z order.
* layersInTree must be sorted before calling this method.
*/
void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet, const LayerVector::Visitor&);
LayerVector makeChildrenTraversalList(LayerVector::StateSet,
const std::vector<Layer*>& layersInTree);
void updateTreeHasFrameRateVote();
bool propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool overrideChildren,
bool* transactionNeeded);
void setZOrderRelativeOf(const wp<Layer>& relativeOf);
bool isTrustedOverlay() const;
gui::DropInputMode getDropInputMode() const;
void handleDropInputMode(gui::WindowInfo& info) const;
// Find the root of the cloned hierarchy, this means the first non cloned parent.
// This will return null if first non cloned parent is not found.
sp<Layer> getClonedRoot();
// Finds the top most layer in the hierarchy. This will find the root Layer where the parent is
// null.
sp<Layer> getRootLayer();
// Fills in the touch occlusion mode of the first parent (including this layer) that
// hasInputInfo() or no-op if no such parent is found.
void fillTouchOcclusionMode(gui::WindowInfo& info);
// Fills in the frame and transform info for the gui::WindowInfo.
void fillInputFrameInfo(gui::WindowInfo&, const ui::Transform& screenToDisplay);
inline void tracePendingBufferCount(int32_t pendingBuffers);
// Latch sideband stream and returns true if the dirty region should be updated.
bool latchSidebandStream(bool& recomputeVisibleRegions);
bool hasFrameUpdate() const;
void updateTexImage(nsecs_t latchTime, bool bgColorOnly = false);
// Crop that applies to the buffer
Rect computeBufferCrop(const State& s);
void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer, uint64_t framenumber,
const sp<Fence>& releaseFence,
uint32_t currentMaxAcquiredBufferCount);
// Returns true if the transformed buffer size does not match the layer size and we need
// to apply filtering.
bool bufferNeedsFiltering() const;
// Returns true if there is a valid color to fill.
bool fillsColor() const;
// Returns true if this layer has a blur value.
bool hasBlur() const;
bool hasEffect() const { return fillsColor() || drawShadows() || hasBlur(); }
bool hasBufferOrSidebandStream() const {
return ((mSidebandStream != nullptr) || (mBufferInfo.mBuffer != nullptr));
}
bool hasBufferOrSidebandStreamInDrawing() const {
return ((mDrawingState.sidebandStream != nullptr) || (mDrawingState.buffer != nullptr));
}
bool hasSomethingToDraw() const { return hasEffect() || hasBufferOrSidebandStream(); }
// Fills the provided vector with the currently available JankData and removes the processed
// JankData from the pending list.
void transferAvailableJankData(const std::deque<sp<CallbackHandle>>& handles,
std::vector<JankData>& jankData);
bool shouldOverrideChildrenFrameRate() const {
return getDrawingState().frameRateSelectionStrategy ==
FrameRateSelectionStrategy::OverrideChildren;
}
bool shouldPropagateFrameRate() const {
return getDrawingState().frameRateSelectionStrategy != FrameRateSelectionStrategy::Self;
}
// Cached properties computed from drawing state
// Effective transform taking into account parent transforms and any parent scaling, which is
// a transform from the current layer coordinate space to display(screen) coordinate space.
ui::Transform mEffectiveTransform;
// Bounds of the layer before any transformation is applied and before it has been cropped
// by its parents.
FloatRect mSourceBounds;
// Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
// its parent bounds.
FloatRect mBounds;
// Layer bounds in screen space.
FloatRect mScreenBounds;
bool mGetHandleCalled = false;
// The current layer is a clone of mClonedFrom. This means that this layer will update it's
// properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers,
// this layer will update it's buffer. When mClonedFrom updates it's drawing state, children,
// and relatives, this layer will update as well.
wp<Layer> mClonedFrom;
// The inherited shadow radius after taking into account the layer hierarchy. This is the
// final shadow radius for this layer. If a shadow is specified for a layer, then effective
// shadow radius is the set shadow radius, otherwise its the parent's shadow radius.
float mEffectiveShadowRadius = 0.f;
// Game mode for the layer. Set by WindowManagerShell and recorded by SurfaceFlingerStats.
gui::GameMode mGameMode = gui::GameMode::Unsupported;
// A list of regions on this layer that should have blurs.
const std::vector<BlurRegion> getBlurRegions() const;
bool mIsAtRoot = false;
uint32_t mLayerCreationFlags;
bool findInHierarchy(const sp<Layer>&);
bool mBorderEnabled = false;
float mBorderWidth;
half4 mBorderColor;
void setTransformHintLegacy(ui::Transform::RotationFlags);
void releasePreviousBuffer();
void resetDrawingStateBufferInfo();
// Transform hint provided to the producer. This must be accessed holding
// the mStateLock.
ui::Transform::RotationFlags mTransformHintLegacy = ui::Transform::ROT_0;
bool mSkipReportingTransformHint = true;
std::optional<ui::Transform::RotationFlags> mTransformHint = std::nullopt;
ReleaseCallbackId mPreviousReleaseCallbackId = ReleaseCallbackId::INVALID_ID;
sp<IBinder> mPreviousReleaseBufferEndpoint;
bool mReleasePreviousBuffer = false;
// Stores the last set acquire fence signal time used to populate the callback handle's acquire
// time.
std::variant<nsecs_t, sp<Fence>> mCallbackHandleAcquireTimeOrFence = -1;
std::deque<std::shared_ptr<android::frametimeline::SurfaceFrame>> mPendingJankClassifications;
// An upper bound on the number of SurfaceFrames in the pending classifications deque.
static constexpr int kPendingClassificationMaxSurfaceFrames = 50;
const std::string mBlastTransactionName{"BufferTX - " + mName};
// This integer is incremented everytime a buffer arrives at the server for this layer,
// and decremented when a buffer is dropped or latched. When changed the integer is exported
// to systrace with ATRACE_INT and mBlastTransactionName. This way when debugging perf it is
// possible to see when a buffer arrived at the server, and in which frame it latched.
//
// You can understand the trace this way:
// - If the integer increases, a buffer arrived at the server.
// - If the integer decreases in latchBuffer, that buffer was latched
// - If the integer decreases in setBuffer or doTransaction, a buffer was dropped
std::atomic<int32_t> mPendingBufferTransactions{0};
// Contains requested position and matrix updates. This will be applied if the client does
// not specify a destination frame.
ui::Transform mRequestedTransform;
sp<LayerFE> mLegacyLayerFE;
std::vector<std::pair<frontend::LayerHierarchy::TraversalPath, sp<LayerFE>>> mLayerFEs;
std::unique_ptr<frontend::LayerSnapshot> mSnapshot =
std::make_unique<frontend::LayerSnapshot>();
bool mHandleAlive = false;
};
std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate);
} // namespace android