blob: 1c54469cc074d69122425ca0afa704add0d74e90 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <compositionengine/impl/HwcBufferCache.h>
#include <compositionengine/impl/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <compositionengine/mock/CompositionEngine.h>
#include <compositionengine/mock/DisplayColorProfile.h>
#include <compositionengine/mock/LayerFE.h>
#include <compositionengine/mock/Output.h>
#include <gtest/gtest.h>
#include <log/log.h>
#include <renderengine/impl/ExternalTexture.h>
#include <renderengine/mock/RenderEngine.h>
#include <ui/PixelFormat.h>
#include "MockHWC2.h"
#include "MockHWComposer.h"
#include "RegionMatcher.h"
#include <aidl/android/hardware/graphics/composer3/Composition.h>
using aidl::android::hardware::graphics::composer3::Composition;
namespace android::compositionengine {
namespace {
namespace hal = android::hardware::graphics::composer::hal;
using testing::_;
using testing::InSequence;
using testing::Mock;
using testing::NiceMock;
using testing::Return;
using testing::ReturnRef;
using testing::StrictMock;
constexpr auto TR_IDENT = 0u;
constexpr auto TR_FLP_H = HAL_TRANSFORM_FLIP_H;
constexpr auto TR_FLP_V = HAL_TRANSFORM_FLIP_V;
constexpr auto TR_ROT_90 = HAL_TRANSFORM_ROT_90;
constexpr auto TR_ROT_180 = TR_FLP_H | TR_FLP_V;
constexpr auto TR_ROT_270 = TR_ROT_90 | TR_ROT_180;
const std::string kOutputName{"Test Output"};
MATCHER_P(ColorEq, expected, "") {
*result_listener << "Colors are not equal\n";
*result_listener << "expected " << expected.r << " " << expected.g << " " << expected.b << " "
<< expected.a << "\n";
*result_listener << "actual " << arg.r << " " << arg.g << " " << arg.b << " " << arg.a << "\n";
return expected.r == arg.r && expected.g == arg.g && expected.b == arg.b && expected.a == arg.a;
}
ui::Rotation toRotation(uint32_t rotationFlag) {
switch (rotationFlag) {
case ui::Transform::RotationFlags::ROT_0:
return ui::ROTATION_0;
case ui::Transform::RotationFlags::ROT_90:
return ui::ROTATION_90;
case ui::Transform::RotationFlags::ROT_180:
return ui::ROTATION_180;
case ui::Transform::RotationFlags::ROT_270:
return ui::ROTATION_270;
default:
LOG_FATAL("Unexpected rotation flag %d", rotationFlag);
return ui::Rotation(-1);
}
}
struct OutputLayerTest : public testing::Test {
struct OutputLayer final : public impl::OutputLayer {
OutputLayer(const compositionengine::Output& output, compositionengine::LayerFE& layerFE)
: mOutput(output), mLayerFE(layerFE) {}
~OutputLayer() override = default;
// compositionengine::OutputLayer overrides
const compositionengine::Output& getOutput() const override { return mOutput; }
compositionengine::LayerFE& getLayerFE() const override { return mLayerFE; }
const impl::OutputLayerCompositionState& getState() const override { return mState; }
impl::OutputLayerCompositionState& editState() override { return mState; }
// compositionengine::impl::OutputLayer overrides
void dumpState(std::string& out) const override { mState.dump(out); }
const compositionengine::Output& mOutput;
compositionengine::LayerFE& mLayerFE;
impl::OutputLayerCompositionState mState;
};
OutputLayerTest() {
ON_CALL(mLayerFE, getDebugName()).WillByDefault(Return("Test LayerFE"));
ON_CALL(mOutput, getName()).WillByDefault(ReturnRef(kOutputName));
ON_CALL(mLayerFE, getCompositionState()).WillByDefault(Return(&mLayerFEState));
ON_CALL(mOutput, getState()).WillByDefault(ReturnRef(mOutputState));
}
NiceMock<compositionengine::mock::Output> mOutput;
sp<NiceMock<compositionengine::mock::LayerFE>> mLayerFE_ =
sp<NiceMock<compositionengine::mock::LayerFE>>::make();
NiceMock<compositionengine::mock::LayerFE>& mLayerFE = *mLayerFE_;
OutputLayer mOutputLayer{mOutput, mLayerFE};
LayerFECompositionState mLayerFEState;
impl::OutputCompositionState mOutputState;
};
/*
* Basic construction
*/
TEST_F(OutputLayerTest, canInstantiateOutputLayer) {}
/*
* OutputLayer::setHwcLayer()
*/
TEST_F(OutputLayerTest, settingNullHwcLayerSetsEmptyHwcState) {
StrictMock<compositionengine::mock::CompositionEngine> compositionEngine;
mOutputLayer.setHwcLayer(nullptr);
EXPECT_FALSE(mOutputLayer.getState().hwc);
}
TEST_F(OutputLayerTest, settingHwcLayerSetsHwcState) {
auto hwcLayer = std::make_shared<StrictMock<HWC2::mock::Layer>>();
mOutputLayer.setHwcLayer(hwcLayer);
const auto& outputLayerState = mOutputLayer.getState();
ASSERT_TRUE(outputLayerState.hwc);
const auto& hwcState = *outputLayerState.hwc;
EXPECT_EQ(hwcLayer, hwcState.hwcLayer);
}
/*
* OutputLayer::calculateOutputSourceCrop()
*/
struct OutputLayerSourceCropTest : public OutputLayerTest {
OutputLayerSourceCropTest() {
// Set reasonable default values for a simple case. Each test will
// set one specific value to something different.
mLayerFEState.geomUsesSourceCrop = true;
mLayerFEState.geomContentCrop = Rect{0, 0, 1920, 1080};
mLayerFEState.transparentRegionHint = Region{};
mLayerFEState.geomLayerBounds = FloatRect{0.f, 0.f, 1920.f, 1080.f};
mLayerFEState.geomLayerTransform = ui::Transform{TR_IDENT};
mLayerFEState.geomBufferSize = Rect{0, 0, 1920, 1080};
mLayerFEState.geomBufferTransform = TR_IDENT;
mOutputState.layerStackSpace.setContent(Rect{0, 0, 1920, 1080});
}
FloatRect calculateOutputSourceCrop() {
mLayerFEState.geomInverseLayerTransform = mLayerFEState.geomLayerTransform.inverse();
return mOutputLayer.calculateOutputSourceCrop(ui::Transform::RotationFlags::ROT_0);
}
};
TEST_F(OutputLayerSourceCropTest, computesEmptyIfSourceCropNotUsed) {
mLayerFEState.geomUsesSourceCrop = false;
const FloatRect expected{};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
TEST_F(OutputLayerSourceCropTest, correctForSimpleDefaultCase) {
const FloatRect expected{0.f, 0.f, 1920.f, 1080.f};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
TEST_F(OutputLayerSourceCropTest, handlesBoundsOutsideViewport) {
mLayerFEState.geomLayerBounds = FloatRect{-2000.f, -2000.f, 2000.f, 2000.f};
const FloatRect expected{0.f, 0.f, 1920.f, 1080.f};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
TEST_F(OutputLayerSourceCropTest, handlesBoundsOutsideViewportRotated) {
mLayerFEState.geomLayerBounds = FloatRect{-2000.f, -2000.f, 2000.f, 2000.f};
mLayerFEState.geomLayerTransform.set(HAL_TRANSFORM_ROT_90, 1920, 1080);
const FloatRect expected{0.f, 0.f, 1080.f, 1080.f};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
TEST_F(OutputLayerSourceCropTest, calculateOutputSourceCropWorksWithATransformedBuffer) {
struct Entry {
uint32_t bufferInvDisplay;
uint32_t buffer;
uint32_t display;
FloatRect expected;
};
// Not an exhaustive list of cases, but hopefully enough.
const std::array<Entry, 12> testData = {
// clang-format off
// inv buffer display expected
/* 0 */ Entry{false, TR_IDENT, TR_IDENT, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 1 */ Entry{false, TR_IDENT, TR_ROT_90, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 2 */ Entry{false, TR_IDENT, TR_ROT_180, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 3 */ Entry{false, TR_IDENT, TR_ROT_270, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 4 */ Entry{true, TR_IDENT, TR_IDENT, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 5 */ Entry{true, TR_IDENT, TR_ROT_90, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 6 */ Entry{true, TR_IDENT, TR_ROT_180, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 7 */ Entry{true, TR_IDENT, TR_ROT_270, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 8 */ Entry{false, TR_IDENT, TR_IDENT, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 9 */ Entry{false, TR_ROT_90, TR_ROT_90, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 10 */ Entry{false, TR_ROT_180, TR_ROT_180, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
/* 11 */ Entry{false, TR_ROT_270, TR_ROT_270, FloatRect{0.f, 0.f, 1920.f, 1080.f}},
// clang-format on
};
for (size_t i = 0; i < testData.size(); i++) {
const auto& entry = testData[i];
mLayerFEState.geomBufferUsesDisplayInverseTransform = entry.bufferInvDisplay;
mLayerFEState.geomBufferTransform = entry.buffer;
mOutputState.displaySpace.setOrientation(toRotation(entry.display));
EXPECT_THAT(calculateOutputSourceCrop(), entry.expected) << "entry " << i;
}
}
TEST_F(OutputLayerSourceCropTest, geomContentCropAffectsCrop) {
mLayerFEState.geomContentCrop = Rect{0, 0, 960, 540};
const FloatRect expected{0.f, 0.f, 960.f, 540.f};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
TEST_F(OutputLayerSourceCropTest, viewportAffectsCrop) {
mOutputState.layerStackSpace.setContent(Rect{0, 0, 960, 540});
const FloatRect expected{0.f, 0.f, 960.f, 540.f};
EXPECT_THAT(calculateOutputSourceCrop(), expected);
}
/*
* OutputLayer::calculateOutputDisplayFrame()
*/
struct OutputLayerDisplayFrameTest : public OutputLayerTest {
OutputLayerDisplayFrameTest() {
// Set reasonable default values for a simple case. Each test will
// set one specific value to something different.
mLayerFEState.transparentRegionHint = Region{};
mLayerFEState.geomLayerTransform = ui::Transform{TR_IDENT};
mLayerFEState.geomBufferSize = Rect{0, 0, 1920, 1080};
mLayerFEState.geomBufferUsesDisplayInverseTransform = false;
mLayerFEState.geomCrop = Rect{0, 0, 1920, 1080};
mLayerFEState.geomLayerBounds = FloatRect{0.f, 0.f, 1920.f, 1080.f};
mOutputState.layerStackSpace.setContent(Rect{0, 0, 1920, 1080});
mOutputState.transform = ui::Transform{TR_IDENT};
}
Rect calculateOutputDisplayFrame() {
mLayerFEState.geomInverseLayerTransform = mLayerFEState.geomLayerTransform.inverse();
return mOutputLayer.calculateOutputDisplayFrame();
}
};
TEST_F(OutputLayerDisplayFrameTest, correctForSimpleDefaultCase) {
const Rect expected{0, 0, 1920, 1080};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, fullActiveTransparentRegionReturnsEmptyFrame) {
mLayerFEState.transparentRegionHint = Region{Rect{0, 0, 1920, 1080}};
const Rect expected{0, 0, 0, 0};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, cropAffectsDisplayFrame) {
mLayerFEState.geomCrop = Rect{100, 200, 300, 500};
const Rect expected{100, 200, 300, 500};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, cropAffectsDisplayFrameRotated) {
mLayerFEState.geomCrop = Rect{100, 200, 300, 500};
mLayerFEState.geomLayerTransform.set(HAL_TRANSFORM_ROT_90, 1920, 1080);
const Rect expected{1420, 100, 1720, 300};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, emptyGeomCropIsNotUsedToComputeFrame) {
mLayerFEState.geomCrop = Rect{};
const Rect expected{0, 0, 1920, 1080};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, geomLayerBoundsAffectsFrame) {
mLayerFEState.geomLayerBounds = FloatRect{0.f, 0.f, 960.f, 540.f};
const Rect expected{0, 0, 960, 540};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, viewportAffectsFrame) {
mOutputState.layerStackSpace.setContent(Rect{0, 0, 960, 540});
const Rect expected{0, 0, 960, 540};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, outputTransformAffectsDisplayFrame) {
mOutputState.transform = ui::Transform{HAL_TRANSFORM_ROT_90};
const Rect expected{-1080, 0, 0, 1920};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, shadowExpandsDisplayFrame) {
const int kShadowRadius = 5;
mLayerFEState.shadowSettings.length = kShadowRadius;
mLayerFEState.forceClientComposition = true;
mLayerFEState.geomLayerBounds = FloatRect{100.f, 100.f, 200.f, 200.f};
Rect expected{mLayerFEState.geomLayerBounds};
expected.inset(-kShadowRadius, -kShadowRadius, -kShadowRadius, -kShadowRadius);
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
TEST_F(OutputLayerDisplayFrameTest, shadowExpandsDisplayFrame_onlyIfForcingClientComposition) {
const int kShadowRadius = 5;
mLayerFEState.shadowSettings.length = kShadowRadius;
mLayerFEState.forceClientComposition = false;
mLayerFEState.geomLayerBounds = FloatRect{100.f, 100.f, 200.f, 200.f};
Rect expected{mLayerFEState.geomLayerBounds};
EXPECT_THAT(calculateOutputDisplayFrame(), expected);
}
/*
* OutputLayer::calculateOutputRelativeBufferTransform()
*/
TEST_F(OutputLayerTest, calculateOutputRelativeBufferTransformTestsNeeded) {
mLayerFEState.geomBufferUsesDisplayInverseTransform = false;
struct Entry {
uint32_t layer;
uint32_t buffer;
uint32_t display;
uint32_t expected;
};
// Not an exhaustive list of cases, but hopefully enough.
const std::array<Entry, 24> testData = {
// clang-format off
// layer buffer display expected
/* 0 */ Entry{TR_IDENT, TR_IDENT, TR_IDENT, TR_IDENT},
/* 1 */ Entry{TR_IDENT, TR_IDENT, TR_ROT_90, TR_ROT_90},
/* 2 */ Entry{TR_IDENT, TR_IDENT, TR_ROT_180, TR_ROT_180},
/* 3 */ Entry{TR_IDENT, TR_IDENT, TR_ROT_270, TR_ROT_270},
/* 4 */ Entry{TR_IDENT, TR_FLP_H, TR_IDENT, TR_FLP_H ^ TR_IDENT},
/* 5 */ Entry{TR_IDENT, TR_FLP_H, TR_ROT_90, TR_FLP_H ^ TR_ROT_90},
/* 6 */ Entry{TR_IDENT, TR_FLP_H, TR_ROT_180, TR_FLP_H ^ TR_ROT_180},
/* 7 */ Entry{TR_IDENT, TR_FLP_H, TR_ROT_270, TR_FLP_H ^ TR_ROT_270},
/* 8 */ Entry{TR_IDENT, TR_FLP_V, TR_IDENT, TR_FLP_V},
/* 9 */ Entry{TR_IDENT, TR_ROT_90, TR_ROT_90, TR_ROT_180},
/* 10 */ Entry{TR_IDENT, TR_ROT_180, TR_ROT_180, TR_IDENT},
/* 11 */ Entry{TR_IDENT, TR_ROT_270, TR_ROT_270, TR_ROT_180},
/* 12 */ Entry{TR_ROT_90, TR_IDENT, TR_IDENT, TR_IDENT ^ TR_ROT_90},
/* 13 */ Entry{TR_ROT_90, TR_FLP_H, TR_ROT_90, TR_FLP_H ^ TR_ROT_180},
/* 14 */ Entry{TR_ROT_90, TR_IDENT, TR_ROT_180, TR_IDENT ^ TR_ROT_270},
/* 15 */ Entry{TR_ROT_90, TR_FLP_H, TR_ROT_270, TR_FLP_H ^ TR_IDENT},
/* 16 */ Entry{TR_ROT_180, TR_FLP_H, TR_IDENT, TR_FLP_H ^ TR_ROT_180},
/* 17 */ Entry{TR_ROT_180, TR_IDENT, TR_ROT_90, TR_IDENT ^ TR_ROT_270},
/* 18 */ Entry{TR_ROT_180, TR_FLP_H, TR_ROT_180, TR_FLP_H ^ TR_IDENT},
/* 19 */ Entry{TR_ROT_180, TR_IDENT, TR_ROT_270, TR_IDENT ^ TR_ROT_90},
/* 20 */ Entry{TR_ROT_270, TR_IDENT, TR_IDENT, TR_IDENT ^ TR_ROT_270},
/* 21 */ Entry{TR_ROT_270, TR_FLP_H, TR_ROT_90, TR_FLP_H ^ TR_IDENT},
/* 22 */ Entry{TR_ROT_270, TR_FLP_H, TR_ROT_180, TR_FLP_H ^ TR_ROT_90},
/* 23 */ Entry{TR_ROT_270, TR_IDENT, TR_ROT_270, TR_IDENT ^ TR_ROT_180},
// clang-format on
};
for (size_t i = 0; i < testData.size(); i++) {
const auto& entry = testData[i];
mLayerFEState.geomLayerTransform.set(entry.layer, 1920, 1080);
mLayerFEState.geomBufferTransform = entry.buffer;
mOutputState.displaySpace.setOrientation(toRotation(entry.display));
mOutputState.transform = ui::Transform{entry.display};
const auto actual = mOutputLayer.calculateOutputRelativeBufferTransform(entry.display);
EXPECT_EQ(entry.expected, actual) << "entry " << i;
}
}
TEST_F(OutputLayerTest,
calculateOutputRelativeBufferTransformTestWithOfBufferUsesDisplayInverseTransform) {
mLayerFEState.geomBufferUsesDisplayInverseTransform = true;
struct Entry {
uint32_t layer; /* shouldn't affect the result, so we just use arbitrary values */
uint32_t buffer;
uint32_t display;
uint32_t internal;
uint32_t expected;
};
const std::array<Entry, 64> testData = {
// clang-format off
// layer buffer display internal expected
Entry{TR_IDENT, TR_IDENT, TR_IDENT, TR_IDENT, TR_IDENT},
Entry{TR_IDENT, TR_IDENT, TR_IDENT, TR_ROT_90, TR_ROT_270},
Entry{TR_IDENT, TR_IDENT, TR_IDENT, TR_ROT_180, TR_ROT_180},
Entry{TR_IDENT, TR_IDENT, TR_IDENT, TR_ROT_270, TR_ROT_90},
Entry{TR_IDENT, TR_IDENT, TR_ROT_90, TR_IDENT, TR_ROT_90},
Entry{TR_ROT_90, TR_IDENT, TR_ROT_90, TR_ROT_90, TR_IDENT},
Entry{TR_ROT_180, TR_IDENT, TR_ROT_90, TR_ROT_180, TR_ROT_270},
Entry{TR_ROT_90, TR_IDENT, TR_ROT_90, TR_ROT_270, TR_ROT_180},
Entry{TR_ROT_180, TR_IDENT, TR_ROT_180, TR_IDENT, TR_ROT_180},
Entry{TR_ROT_90, TR_IDENT, TR_ROT_180, TR_ROT_90, TR_ROT_90},
Entry{TR_ROT_180, TR_IDENT, TR_ROT_180, TR_ROT_180, TR_IDENT},
Entry{TR_ROT_270, TR_IDENT, TR_ROT_180, TR_ROT_270, TR_ROT_270},
Entry{TR_ROT_270, TR_IDENT, TR_ROT_270, TR_IDENT, TR_ROT_270},
Entry{TR_ROT_270, TR_IDENT, TR_ROT_270, TR_ROT_90, TR_ROT_180},
Entry{TR_ROT_180, TR_IDENT, TR_ROT_270, TR_ROT_180, TR_ROT_90},
Entry{TR_IDENT, TR_IDENT, TR_ROT_270, TR_ROT_270, TR_IDENT},
// layer buffer display internal expected
Entry{TR_IDENT, TR_ROT_90, TR_IDENT, TR_IDENT, TR_ROT_90},
Entry{TR_ROT_90, TR_ROT_90, TR_IDENT, TR_ROT_90, TR_IDENT},
Entry{TR_ROT_180, TR_ROT_90, TR_IDENT, TR_ROT_180, TR_ROT_270},
Entry{TR_ROT_270, TR_ROT_90, TR_IDENT, TR_ROT_270, TR_ROT_180},
Entry{TR_ROT_90, TR_ROT_90, TR_ROT_90, TR_IDENT, TR_ROT_180},
Entry{TR_ROT_90, TR_ROT_90, TR_ROT_90, TR_ROT_90, TR_ROT_90},
Entry{TR_ROT_90, TR_ROT_90, TR_ROT_90, TR_ROT_180, TR_IDENT},
Entry{TR_ROT_270, TR_ROT_90, TR_ROT_90, TR_ROT_270, TR_ROT_270},
Entry{TR_IDENT, TR_ROT_90, TR_ROT_180, TR_IDENT, TR_ROT_270},
Entry{TR_ROT_90, TR_ROT_90, TR_ROT_180, TR_ROT_90, TR_ROT_180},
Entry{TR_ROT_180, TR_ROT_90, TR_ROT_180, TR_ROT_180, TR_ROT_90},
Entry{TR_ROT_90, TR_ROT_90, TR_ROT_180, TR_ROT_270, TR_IDENT},
Entry{TR_IDENT, TR_ROT_90, TR_ROT_270, TR_IDENT, TR_IDENT},
Entry{TR_ROT_270, TR_ROT_90, TR_ROT_270, TR_ROT_90, TR_ROT_270},
Entry{TR_ROT_180, TR_ROT_90, TR_ROT_270, TR_ROT_180, TR_ROT_180},
Entry{TR_ROT_270, TR_ROT_90, TR_ROT_270, TR_ROT_270, TR_ROT_90},
// layer buffer display internal expected
Entry{TR_IDENT, TR_ROT_180, TR_IDENT, TR_IDENT, TR_ROT_180},
Entry{TR_IDENT, TR_ROT_180, TR_IDENT, TR_ROT_90, TR_ROT_90},
Entry{TR_ROT_180, TR_ROT_180, TR_IDENT, TR_ROT_180, TR_IDENT},
Entry{TR_ROT_270, TR_ROT_180, TR_IDENT, TR_ROT_270, TR_ROT_270},
Entry{TR_IDENT, TR_ROT_180, TR_ROT_90, TR_IDENT, TR_ROT_270},
Entry{TR_ROT_90, TR_ROT_180, TR_ROT_90, TR_ROT_90, TR_ROT_180},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_90, TR_ROT_180, TR_ROT_90},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_90, TR_ROT_270, TR_IDENT},
Entry{TR_IDENT, TR_ROT_180, TR_ROT_180, TR_IDENT, TR_IDENT},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_180, TR_ROT_90, TR_ROT_270},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_180, TR_ROT_180, TR_ROT_180},
Entry{TR_ROT_270, TR_ROT_180, TR_ROT_180, TR_ROT_270, TR_ROT_90},
Entry{TR_ROT_270, TR_ROT_180, TR_ROT_270, TR_IDENT, TR_ROT_90},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_270, TR_ROT_90, TR_IDENT},
Entry{TR_ROT_180, TR_ROT_180, TR_ROT_270, TR_ROT_180, TR_ROT_270},
Entry{TR_ROT_270, TR_ROT_180, TR_ROT_270, TR_ROT_270, TR_ROT_180},
// layer buffer display internal expected
Entry{TR_IDENT, TR_ROT_270, TR_IDENT, TR_IDENT, TR_ROT_270},
Entry{TR_ROT_90, TR_ROT_270, TR_IDENT, TR_ROT_90, TR_ROT_180},
Entry{TR_ROT_270, TR_ROT_270, TR_IDENT, TR_ROT_180, TR_ROT_90},
Entry{TR_IDENT, TR_ROT_270, TR_IDENT, TR_ROT_270, TR_IDENT},
Entry{TR_ROT_270, TR_ROT_270, TR_ROT_90, TR_IDENT, TR_IDENT},
Entry{TR_ROT_90, TR_ROT_270, TR_ROT_90, TR_ROT_90, TR_ROT_270},
Entry{TR_ROT_180, TR_ROT_270, TR_ROT_90, TR_ROT_180, TR_ROT_180},
Entry{TR_ROT_90, TR_ROT_270, TR_ROT_90, TR_ROT_270, TR_ROT_90},
Entry{TR_IDENT, TR_ROT_270, TR_ROT_180, TR_IDENT, TR_ROT_90},
Entry{TR_ROT_270, TR_ROT_270, TR_ROT_180, TR_ROT_90, TR_IDENT},
Entry{TR_ROT_180, TR_ROT_270, TR_ROT_180, TR_ROT_180, TR_ROT_270},
Entry{TR_ROT_270, TR_ROT_270, TR_ROT_180, TR_ROT_270, TR_ROT_180},
Entry{TR_IDENT, TR_ROT_270, TR_ROT_270, TR_IDENT, TR_ROT_180},
Entry{TR_ROT_90, TR_ROT_270, TR_ROT_270, TR_ROT_90, TR_ROT_90},
Entry{TR_ROT_270, TR_ROT_270, TR_ROT_270, TR_ROT_180, TR_IDENT},
Entry{TR_ROT_270, TR_ROT_270, TR_ROT_270, TR_ROT_270, TR_ROT_270},
// clang-format on
};
for (size_t i = 0; i < testData.size(); i++) {
const auto& entry = testData[i];
mLayerFEState.geomLayerTransform.set(entry.layer, 1920, 1080);
mLayerFEState.geomBufferTransform = entry.buffer;
mOutputState.displaySpace.setOrientation(toRotation(entry.display));
mOutputState.transform = ui::Transform{entry.display};
const auto actual = mOutputLayer.calculateOutputRelativeBufferTransform(entry.internal);
EXPECT_EQ(entry.expected, actual) << "entry " << i;
}
}
/*
* OutputLayer::updateCompositionState()
*/
struct OutputLayerPartialMockForUpdateCompositionState : public impl::OutputLayer {
OutputLayerPartialMockForUpdateCompositionState(const compositionengine::Output& output,
compositionengine::LayerFE& layerFE)
: mOutput(output), mLayerFE(layerFE) {}
// Mock everything called by updateCompositionState to simplify testing it.
MOCK_CONST_METHOD1(calculateOutputSourceCrop, FloatRect(uint32_t));
MOCK_CONST_METHOD0(calculateOutputDisplayFrame, Rect());
MOCK_CONST_METHOD1(calculateOutputRelativeBufferTransform, uint32_t(uint32_t));
// compositionengine::OutputLayer overrides
const compositionengine::Output& getOutput() const override { return mOutput; }
compositionengine::LayerFE& getLayerFE() const override { return mLayerFE; }
const impl::OutputLayerCompositionState& getState() const override { return mState; }
impl::OutputLayerCompositionState& editState() override { return mState; }
// These need implementations though are not expected to be called.
MOCK_CONST_METHOD1(dumpState, void(std::string&));
const compositionengine::Output& mOutput;
compositionengine::LayerFE& mLayerFE;
impl::OutputLayerCompositionState mState;
};
struct OutputLayerUpdateCompositionStateTest : public OutputLayerTest {
public:
OutputLayerUpdateCompositionStateTest() {
EXPECT_CALL(mOutput, getState()).WillRepeatedly(ReturnRef(mOutputState));
EXPECT_CALL(mOutput, getDisplayColorProfile())
.WillRepeatedly(Return(&mDisplayColorProfile));
EXPECT_CALL(mDisplayColorProfile, isDataspaceSupported(_)).WillRepeatedly(Return(true));
}
~OutputLayerUpdateCompositionStateTest() = default;
void setupGeometryChildCallValues(ui::Transform::RotationFlags internalDisplayRotationFlags) {
EXPECT_CALL(mOutputLayer, calculateOutputSourceCrop(internalDisplayRotationFlags))
.WillOnce(Return(kSourceCrop));
EXPECT_CALL(mOutputLayer, calculateOutputDisplayFrame()).WillOnce(Return(kDisplayFrame));
EXPECT_CALL(mOutputLayer,
calculateOutputRelativeBufferTransform(internalDisplayRotationFlags))
.WillOnce(Return(mBufferTransform));
}
void validateComputedGeometryState() {
const auto& state = mOutputLayer.getState();
EXPECT_EQ(kSourceCrop, state.sourceCrop);
EXPECT_EQ(kDisplayFrame, state.displayFrame);
EXPECT_EQ(static_cast<Hwc2::Transform>(mBufferTransform), state.bufferTransform);
}
const FloatRect kSourceCrop{1.f, 2.f, 3.f, 4.f};
const Rect kDisplayFrame{11, 12, 13, 14};
uint32_t mBufferTransform{21};
using OutputLayer = OutputLayerPartialMockForUpdateCompositionState;
StrictMock<OutputLayer> mOutputLayer{mOutput, mLayerFE};
StrictMock<mock::DisplayColorProfile> mDisplayColorProfile;
};
TEST_F(OutputLayerUpdateCompositionStateTest, doesNothingIfNoFECompositionState) {
EXPECT_CALL(mLayerFE, getCompositionState()).WillOnce(Return(nullptr));
mOutputLayer.updateCompositionState(true, false, ui::Transform::RotationFlags::ROT_90);
}
TEST_F(OutputLayerUpdateCompositionStateTest, setsStateNormally) {
mLayerFEState.isSecure = true;
mOutputState.isSecure = true;
mOutputLayer.editState().forceClientComposition = true;
setupGeometryChildCallValues(ui::Transform::RotationFlags::ROT_90);
mOutputLayer.updateCompositionState(true, false, ui::Transform::RotationFlags::ROT_90);
validateComputedGeometryState();
EXPECT_EQ(false, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest,
alsoSetsForceCompositionIfSecureLayerOnNonsecureOutput) {
mLayerFEState.isSecure = true;
mOutputState.isSecure = false;
setupGeometryChildCallValues(ui::Transform::RotationFlags::ROT_0);
mOutputLayer.updateCompositionState(true, false, ui::Transform::RotationFlags::ROT_0);
validateComputedGeometryState();
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest,
alsoSetsForceCompositionIfUnsupportedBufferTransform) {
mLayerFEState.isSecure = true;
mOutputState.isSecure = true;
mBufferTransform = ui::Transform::ROT_INVALID;
setupGeometryChildCallValues(ui::Transform::RotationFlags::ROT_0);
mOutputLayer.updateCompositionState(true, false, ui::Transform::RotationFlags::ROT_0);
validateComputedGeometryState();
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest, setsOutputLayerColorspaceCorrectly) {
mLayerFEState.dataspace = ui::Dataspace::DISPLAY_P3;
mOutputState.dataspace = ui::Dataspace::V0_SCRGB;
// If the layer is not colorspace agnostic, the output layer dataspace
// should use the layers requested colorspace.
mLayerFEState.isColorspaceAgnostic = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(ui::Dataspace::DISPLAY_P3, mOutputLayer.getState().dataspace);
// If the layer is colorspace agnostic, the output layer dataspace
// should use the colorspace chosen for the whole output.
mLayerFEState.isColorspaceAgnostic = true;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(ui::Dataspace::V0_SCRGB, mOutputLayer.getState().dataspace);
// If the output is HDR, then don't blind the user with a colorspace agnostic dataspace
// drawing all white
mOutputState.dataspace = ui::Dataspace::BT2020_PQ;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(ui::Dataspace::DISPLAY_P3, mOutputLayer.getState().dataspace);
}
TEST_F(OutputLayerUpdateCompositionStateTest, setsOutputLayerColorspaceWith170mReplacement) {
mLayerFEState.dataspace = ui::Dataspace::TRANSFER_SMPTE_170M;
mOutputState.treat170mAsSrgb = false;
mLayerFEState.isColorspaceAgnostic = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(ui::Dataspace::TRANSFER_SMPTE_170M, mOutputLayer.getState().dataspace);
// Rewrite SMPTE 170M as sRGB
mOutputState.treat170mAsSrgb = true;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(ui::Dataspace::TRANSFER_SRGB, mOutputLayer.getState().dataspace);
}
TEST_F(OutputLayerUpdateCompositionStateTest, setsWhitePointNitsAndDimmingRatioCorrectly) {
mOutputState.sdrWhitePointNits = 200.f;
mOutputState.displayBrightnessNits = 800.f;
mLayerFEState.dataspace = ui::Dataspace::DISPLAY_P3;
mLayerFEState.isColorspaceAgnostic = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(mOutputState.sdrWhitePointNits, mOutputLayer.getState().whitePointNits);
EXPECT_EQ(mOutputState.sdrWhitePointNits / mOutputState.displayBrightnessNits,
mOutputLayer.getState().dimmingRatio);
mLayerFEState.dimmingEnabled = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(mOutputState.displayBrightnessNits, mOutputLayer.getState().whitePointNits);
EXPECT_EQ(1.f, mOutputLayer.getState().dimmingRatio);
// change dimmingEnabled back to true.
mLayerFEState.dimmingEnabled = true;
mLayerFEState.dataspace = ui::Dataspace::BT2020_ITU_PQ;
mLayerFEState.isColorspaceAgnostic = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(mOutputState.displayBrightnessNits, mOutputLayer.getState().whitePointNits);
EXPECT_EQ(1.f, mOutputLayer.getState().dimmingRatio);
}
TEST_F(OutputLayerUpdateCompositionStateTest, doesNotRecomputeGeometryIfNotRequested) {
mOutputLayer.editState().forceClientComposition = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(false, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest,
doesNotClearForceClientCompositionIfNotDoingGeometry) {
mOutputLayer.editState().forceClientComposition = true;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest, clientCompositionForcedFromFrontEndFlagAtAnyTime) {
mLayerFEState.forceClientComposition = true;
mOutputLayer.editState().forceClientComposition = false;
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest,
clientCompositionForcedFromUnsupportedDataspaceAtAnyTime) {
mOutputLayer.editState().forceClientComposition = false;
EXPECT_CALL(mDisplayColorProfile, isDataspaceSupported(_)).WillRepeatedly(Return(false));
mOutputLayer.updateCompositionState(false, false, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
TEST_F(OutputLayerUpdateCompositionStateTest, clientCompositionForcedFromArgumentFlag) {
mLayerFEState.forceClientComposition = false;
mOutputLayer.editState().forceClientComposition = false;
mOutputLayer.updateCompositionState(false, true, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
mOutputLayer.editState().forceClientComposition = false;
setupGeometryChildCallValues(ui::Transform::RotationFlags::ROT_0);
mOutputLayer.updateCompositionState(true, true, ui::Transform::RotationFlags::ROT_0);
EXPECT_EQ(true, mOutputLayer.getState().forceClientComposition);
}
/*
* OutputLayer::writeStateToHWC()
*/
struct OutputLayerWriteStateToHWCTest : public OutputLayerTest {
static constexpr hal::Error kError = hal::Error::UNSUPPORTED;
static constexpr FloatRect kSourceCrop{11.f, 12.f, 13.f, 14.f};
static constexpr Hwc2::Transform kBufferTransform = static_cast<Hwc2::Transform>(31);
static constexpr Hwc2::Transform kOverrideBufferTransform = static_cast<Hwc2::Transform>(0);
static constexpr Hwc2::IComposerClient::BlendMode kBlendMode =
static_cast<Hwc2::IComposerClient::BlendMode>(41);
static constexpr Hwc2::IComposerClient::BlendMode kOverrideBlendMode =
Hwc2::IComposerClient::BlendMode::PREMULTIPLIED;
static constexpr float kAlpha = 51.f;
static constexpr float kOverrideAlpha = 1.f;
static constexpr float kSkipAlpha = 0.f;
static constexpr ui::Dataspace kDataspace = static_cast<ui::Dataspace>(71);
static constexpr ui::Dataspace kOverrideDataspace = static_cast<ui::Dataspace>(72);
static constexpr int kSupportedPerFrameMetadata = 101;
static constexpr int kExpectedHwcSlot = 0;
static constexpr int kOverrideHwcSlot = impl::HwcBufferCache::kOverrideBufferSlot;
static constexpr bool kLayerGenericMetadata1Mandatory = true;
static constexpr bool kLayerGenericMetadata2Mandatory = true;
static constexpr float kWhitePointNits = 200.f;
static constexpr float kSdrWhitePointNits = 100.f;
static constexpr float kDisplayBrightnessNits = 400.f;
static constexpr float kLayerBrightness = kWhitePointNits / kDisplayBrightnessNits;
static constexpr float kOverrideLayerBrightness = kSdrWhitePointNits / kDisplayBrightnessNits;
static const half4 kColor;
static const Rect kDisplayFrame;
static const Rect kOverrideDisplayFrame;
static const FloatRect kOverrideSourceCrop;
static const Region kOutputSpaceVisibleRegion;
static const Region kOverrideVisibleRegion;
static const mat4 kColorTransform;
static const Region kSurfaceDamage;
static const Region kOverrideSurfaceDamage;
static const HdrMetadata kHdrMetadata;
static native_handle_t* kSidebandStreamHandle;
static const sp<GraphicBuffer> kBuffer;
static const sp<GraphicBuffer> kOverrideBuffer;
static const sp<Fence> kFence;
static const sp<Fence> kOverrideFence;
static const std::string kLayerGenericMetadata1Key;
static const std::vector<uint8_t> kLayerGenericMetadata1Value;
static const std::string kLayerGenericMetadata2Key;
static const std::vector<uint8_t> kLayerGenericMetadata2Value;
OutputLayerWriteStateToHWCTest() {
auto& outputLayerState = mOutputLayer.editState();
outputLayerState.hwc = impl::OutputLayerCompositionState::Hwc(mHwcLayer);
outputLayerState.displayFrame = kDisplayFrame;
outputLayerState.sourceCrop = kSourceCrop;
outputLayerState.bufferTransform = static_cast<Hwc2::Transform>(kBufferTransform);
outputLayerState.outputSpaceVisibleRegion = kOutputSpaceVisibleRegion;
outputLayerState.dataspace = kDataspace;
outputLayerState.whitePointNits = kWhitePointNits;
outputLayerState.dimmingRatio = kLayerBrightness;
mLayerFEState.blendMode = kBlendMode;
mLayerFEState.alpha = kAlpha;
mLayerFEState.colorTransform = kColorTransform;
mLayerFEState.color = kColor;
mLayerFEState.surfaceDamage = kSurfaceDamage;
mLayerFEState.hdrMetadata = kHdrMetadata;
mLayerFEState.sidebandStream = NativeHandle::create(kSidebandStreamHandle, false);
mLayerFEState.buffer = kBuffer;
mLayerFEState.acquireFence = kFence;
mOutputState.displayBrightnessNits = kDisplayBrightnessNits;
mOutputState.sdrWhitePointNits = kSdrWhitePointNits;
EXPECT_CALL(mOutput, getDisplayColorProfile())
.WillRepeatedly(Return(&mDisplayColorProfile));
EXPECT_CALL(mDisplayColorProfile, getSupportedPerFrameMetadata())
.WillRepeatedly(Return(kSupportedPerFrameMetadata));
}
// Some tests may need to simulate unsupported HWC calls
enum class SimulateUnsupported { None, ColorTransform };
void includeGenericLayerMetadataInState() {
mLayerFEState.metadata[kLayerGenericMetadata1Key] = {kLayerGenericMetadata1Mandatory,
kLayerGenericMetadata1Value};
mLayerFEState.metadata[kLayerGenericMetadata2Key] = {kLayerGenericMetadata2Mandatory,
kLayerGenericMetadata2Value};
}
void includeOverrideInfo() {
auto& overrideInfo = mOutputLayer.editState().overrideInfo;
overrideInfo.buffer = std::make_shared<
renderengine::impl::ExternalTexture>(kOverrideBuffer, mRenderEngine,
renderengine::impl::ExternalTexture::Usage::
READABLE |
renderengine::impl::ExternalTexture::
Usage::WRITEABLE);
overrideInfo.acquireFence = kOverrideFence;
overrideInfo.displayFrame = kOverrideDisplayFrame;
overrideInfo.dataspace = kOverrideDataspace;
overrideInfo.damageRegion = kOverrideSurfaceDamage;
overrideInfo.visibleRegion = kOverrideVisibleRegion;
}
void expectGeometryCommonCalls(Rect displayFrame = kDisplayFrame,
FloatRect sourceCrop = kSourceCrop,
Hwc2::Transform bufferTransform = kBufferTransform,
Hwc2::IComposerClient::BlendMode blendMode = kBlendMode,
float alpha = kAlpha) {
EXPECT_CALL(*mHwcLayer, setDisplayFrame(displayFrame)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setSourceCrop(sourceCrop)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setZOrder(_)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setTransform(bufferTransform)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setBlendMode(blendMode)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setPlaneAlpha(alpha)).WillOnce(Return(kError));
}
void expectPerFrameCommonCalls(SimulateUnsupported unsupported = SimulateUnsupported::None,
ui::Dataspace dataspace = kDataspace,
const Region& visibleRegion = kOutputSpaceVisibleRegion,
const Region& surfaceDamage = kSurfaceDamage,
float brightness = kLayerBrightness,
const Region& blockingRegion = Region()) {
EXPECT_CALL(*mHwcLayer, setVisibleRegion(RegionEq(visibleRegion))).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setDataspace(dataspace)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setBrightness(brightness)).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setColorTransform(kColorTransform))
.WillOnce(Return(unsupported == SimulateUnsupported::ColorTransform
? hal::Error::UNSUPPORTED
: hal::Error::NONE));
EXPECT_CALL(*mHwcLayer, setSurfaceDamage(RegionEq(surfaceDamage))).WillOnce(Return(kError));
EXPECT_CALL(*mHwcLayer, setBlockingRegion(RegionEq(blockingRegion)))
.WillOnce(Return(kError));
}
void expectSetCompositionTypeCall(Composition compositionType) {
EXPECT_CALL(*mHwcLayer, setCompositionType(compositionType)).WillOnce(Return(kError));
}
void expectNoSetCompositionTypeCall() {
EXPECT_CALL(*mHwcLayer, setCompositionType(_)).Times(0);
}
void expectSetColorCall() {
const aidl::android::hardware::graphics::composer3::Color color = {kColor.r, kColor.g,
kColor.b, 1.0f};
EXPECT_CALL(*mHwcLayer, setColor(ColorEq(color))).WillOnce(Return(kError));
}
void expectSetSidebandHandleCall() {
EXPECT_CALL(*mHwcLayer, setSidebandStream(kSidebandStreamHandle));
}
void expectSetHdrMetadataAndBufferCalls(uint32_t hwcSlot = kExpectedHwcSlot,
sp<GraphicBuffer> buffer = kBuffer,
sp<Fence> fence = kFence) {
EXPECT_CALL(*mHwcLayer, setPerFrameMetadata(kSupportedPerFrameMetadata, kHdrMetadata));
EXPECT_CALL(*mHwcLayer, setBuffer(hwcSlot, buffer, fence));
}
void expectGenericLayerMetadataCalls() {
// Note: Can be in any order.
EXPECT_CALL(*mHwcLayer,
setLayerGenericMetadata(kLayerGenericMetadata1Key,
kLayerGenericMetadata1Mandatory,
kLayerGenericMetadata1Value));
EXPECT_CALL(*mHwcLayer,
setLayerGenericMetadata(kLayerGenericMetadata2Key,
kLayerGenericMetadata2Mandatory,
kLayerGenericMetadata2Value));
}
std::shared_ptr<HWC2::mock::Layer> mHwcLayer{std::make_shared<StrictMock<HWC2::mock::Layer>>()};
StrictMock<mock::DisplayColorProfile> mDisplayColorProfile;
renderengine::mock::RenderEngine mRenderEngine;
};
const half4 OutputLayerWriteStateToHWCTest::kColor{81.f / 255.f, 82.f / 255.f, 83.f / 255.f,
84.f / 255.f};
const Rect OutputLayerWriteStateToHWCTest::kDisplayFrame{1001, 1002, 1003, 10044};
const Rect OutputLayerWriteStateToHWCTest::kOverrideDisplayFrame{1002, 1003, 1004, 20044};
const FloatRect OutputLayerWriteStateToHWCTest::kOverrideSourceCrop{0.f, 0.f, 4.f, 5.f};
const Region OutputLayerWriteStateToHWCTest::kOutputSpaceVisibleRegion{
Rect{1005, 1006, 1007, 1008}};
const Region OutputLayerWriteStateToHWCTest::kOverrideVisibleRegion{Rect{1006, 1007, 1008, 1009}};
const mat4 OutputLayerWriteStateToHWCTest::kColorTransform{
1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016,
1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024,
};
const Region OutputLayerWriteStateToHWCTest::kSurfaceDamage{Rect{1025, 1026, 1027, 1028}};
const Region OutputLayerWriteStateToHWCTest::kOverrideSurfaceDamage{Rect{1026, 1027, 1028, 1029}};
const HdrMetadata OutputLayerWriteStateToHWCTest::kHdrMetadata{{/* LightFlattenable */}, 1029};
native_handle_t* OutputLayerWriteStateToHWCTest::kSidebandStreamHandle =
reinterpret_cast<native_handle_t*>(1031);
const sp<GraphicBuffer> OutputLayerWriteStateToHWCTest::kBuffer =
sp<GraphicBuffer>::make(1, 2, PIXEL_FORMAT_RGBA_8888,
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
const sp<GraphicBuffer> OutputLayerWriteStateToHWCTest::kOverrideBuffer =
sp<GraphicBuffer>::make(4, 5, PIXEL_FORMAT_RGBA_8888,
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
const sp<Fence> OutputLayerWriteStateToHWCTest::kFence;
const sp<Fence> OutputLayerWriteStateToHWCTest::kOverrideFence = sp<Fence>::make();
const std::string OutputLayerWriteStateToHWCTest::kLayerGenericMetadata1Key =
"com.example.metadata.1";
const std::vector<uint8_t> OutputLayerWriteStateToHWCTest::kLayerGenericMetadata1Value{{1, 2, 3}};
const std::string OutputLayerWriteStateToHWCTest::kLayerGenericMetadata2Key =
"com.example.metadata.2";
const std::vector<uint8_t> OutputLayerWriteStateToHWCTest::kLayerGenericMetadata2Value{
{4, 5, 6, 7}};
TEST_F(OutputLayerWriteStateToHWCTest, doesNothingIfNoFECompositionState) {
EXPECT_CALL(mLayerFE, getCompositionState()).WillOnce(Return(nullptr));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, doesNothingIfNoHWCState) {
mOutputLayer.editState().hwc.reset();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, doesNothingIfNoHWCLayer) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc(nullptr);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, canSetAllState) {
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
expectNoSetCompositionTypeCall();
EXPECT_CALL(mLayerFE, hasRoundedCorners()).WillOnce(Return(false));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerTest, displayInstallOrientationBufferTransformSetTo90) {
mLayerFEState.geomBufferUsesDisplayInverseTransform = false;
mLayerFEState.geomLayerTransform = ui::Transform{TR_IDENT};
// This test simulates a scenario where displayInstallOrientation is set to
// ROT_90. This only has an effect on the transform; orientation stays 0 (see
// DisplayDevice::setProjection).
mOutputState.displaySpace.setOrientation(ui::ROTATION_0);
mOutputState.transform = ui::Transform{TR_ROT_90};
// Buffers are pre-rotated based on the transform hint (ROT_90); their
// geomBufferTransform is set to the inverse transform.
mLayerFEState.geomBufferTransform = TR_ROT_270;
EXPECT_EQ(TR_IDENT, mOutputLayer.calculateOutputRelativeBufferTransform(ui::Transform::ROT_90));
}
TEST_F(OutputLayerWriteStateToHWCTest, canSetPerFrameStateForSolidColor) {
mLayerFEState.compositionType = Composition::SOLID_COLOR;
expectPerFrameCommonCalls();
// Setting the composition type should happen before setting the color. We
// check this in this test only by setting up an testing::InSeqeuence
// instance before setting up the two expectations.
InSequence s;
expectSetCompositionTypeCall(Composition::SOLID_COLOR);
expectSetColorCall();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, canSetPerFrameStateForSideband) {
mLayerFEState.compositionType = Composition::SIDEBAND;
expectPerFrameCommonCalls();
expectSetSidebandHandleCall();
expectSetCompositionTypeCall(Composition::SIDEBAND);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, canSetPerFrameStateForCursor) {
mLayerFEState.compositionType = Composition::CURSOR;
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::CURSOR);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, canSetPerFrameStateForDevice) {
mLayerFEState.compositionType = Composition::DEVICE;
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, compositionTypeIsNotSetIfUnchanged) {
(*mOutputLayer.editState().hwc).hwcCompositionType = Composition::SOLID_COLOR;
mLayerFEState.compositionType = Composition::SOLID_COLOR;
expectPerFrameCommonCalls();
expectSetColorCall();
expectNoSetCompositionTypeCall();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, compositionTypeIsSetToClientIfColorTransformNotSupported) {
mLayerFEState.compositionType = Composition::SOLID_COLOR;
expectPerFrameCommonCalls(SimulateUnsupported::ColorTransform);
expectSetColorCall();
expectSetCompositionTypeCall(Composition::CLIENT);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, compositionTypeIsSetToClientIfClientCompositionForced) {
mOutputLayer.editState().forceClientComposition = true;
mLayerFEState.compositionType = Composition::SOLID_COLOR;
expectPerFrameCommonCalls();
expectSetColorCall();
expectSetCompositionTypeCall(Composition::CLIENT);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, allStateIncludesMetadataIfPresent) {
mLayerFEState.compositionType = Composition::DEVICE;
includeGenericLayerMetadataInState();
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
expectGenericLayerMetadataCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, perFrameStateDoesNotIncludeMetadataIfPresent) {
mLayerFEState.compositionType = Composition::DEVICE;
includeGenericLayerMetadataInState();
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, overriddenSkipLayerDoesNotSendBuffer) {
mLayerFEState.compositionType = Composition::DEVICE;
includeOverrideInfo();
expectGeometryCommonCalls(kOverrideDisplayFrame, kOverrideSourceCrop, kOverrideBufferTransform,
kOverrideBlendMode, kSkipAlpha);
expectPerFrameCommonCalls(SimulateUnsupported::None, kOverrideDataspace, kOverrideVisibleRegion,
kOverrideSurfaceDamage, kOverrideLayerBrightness);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ true, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, overriddenSkipLayerForSolidColorDoesNotSendBuffer) {
mLayerFEState.compositionType = Composition::SOLID_COLOR;
includeOverrideInfo();
expectGeometryCommonCalls(kOverrideDisplayFrame, kOverrideSourceCrop, kOverrideBufferTransform,
kOverrideBlendMode, kSkipAlpha);
expectPerFrameCommonCalls(SimulateUnsupported::None, kOverrideDataspace, kOverrideVisibleRegion,
kOverrideSurfaceDamage, kOverrideLayerBrightness);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ true, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, includesOverrideInfoIfPresent) {
mLayerFEState.compositionType = Composition::DEVICE;
includeOverrideInfo();
expectGeometryCommonCalls(kOverrideDisplayFrame, kOverrideSourceCrop, kOverrideBufferTransform,
kOverrideBlendMode, kOverrideAlpha);
expectPerFrameCommonCalls(SimulateUnsupported::None, kOverrideDataspace, kOverrideVisibleRegion,
kOverrideSurfaceDamage, kOverrideLayerBrightness);
expectSetHdrMetadataAndBufferCalls(kOverrideHwcSlot, kOverrideBuffer, kOverrideFence);
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, includesOverrideInfoForSolidColorIfPresent) {
mLayerFEState.compositionType = Composition::SOLID_COLOR;
includeOverrideInfo();
expectGeometryCommonCalls(kOverrideDisplayFrame, kOverrideSourceCrop, kOverrideBufferTransform,
kOverrideBlendMode, kOverrideAlpha);
expectPerFrameCommonCalls(SimulateUnsupported::None, kOverrideDataspace, kOverrideVisibleRegion,
kOverrideSurfaceDamage, kOverrideLayerBrightness);
expectSetHdrMetadataAndBufferCalls(kOverrideHwcSlot, kOverrideBuffer, kOverrideFence);
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, previousOverriddenLayerSendsSurfaceDamage) {
mLayerFEState.compositionType = Composition::DEVICE;
mOutputLayer.editState().hwc->stateOverridden = true;
expectGeometryCommonCalls();
expectPerFrameCommonCalls(SimulateUnsupported::None, kDataspace, kOutputSpaceVisibleRegion,
Region::INVALID_REGION);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, previousSkipLayerSendsUpdatedDeviceCompositionInfo) {
mLayerFEState.compositionType = Composition::DEVICE;
mOutputLayer.editState().hwc->stateOverridden = true;
mOutputLayer.editState().hwc->layerSkipped = true;
mOutputLayer.editState().hwc->hwcCompositionType = Composition::DEVICE;
expectGeometryCommonCalls();
expectPerFrameCommonCalls(SimulateUnsupported::None, kDataspace, kOutputSpaceVisibleRegion,
Region::INVALID_REGION);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DEVICE);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, previousSkipLayerSendsUpdatedClientCompositionInfo) {
mLayerFEState.compositionType = Composition::DEVICE;
mOutputLayer.editState().forceClientComposition = true;
mOutputLayer.editState().hwc->stateOverridden = true;
mOutputLayer.editState().hwc->layerSkipped = true;
mOutputLayer.editState().hwc->hwcCompositionType = Composition::CLIENT;
expectGeometryCommonCalls();
expectPerFrameCommonCalls(SimulateUnsupported::None, kDataspace, kOutputSpaceVisibleRegion,
Region::INVALID_REGION);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::CLIENT);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, peekThroughChangesBlendMode) {
auto peekThroughLayerFE = sp<NiceMock<compositionengine::mock::LayerFE>>::make();
OutputLayer peekThroughLayer{mOutput, *peekThroughLayerFE};
mOutputLayer.mState.overrideInfo.peekThroughLayer = &peekThroughLayer;
expectGeometryCommonCalls(kDisplayFrame, kSourceCrop, kBufferTransform,
Hwc2::IComposerClient::BlendMode::PREMULTIPLIED);
expectPerFrameCommonCalls();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
TEST_F(OutputLayerWriteStateToHWCTest, isPeekingThroughSetsOverride) {
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ true);
EXPECT_TRUE(mOutputLayer.getState().hwc->stateOverridden);
}
TEST_F(OutputLayerWriteStateToHWCTest, zIsOverriddenSetsOverride) {
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ true, /*isPeekingThrough*/
false);
EXPECT_TRUE(mOutputLayer.getState().hwc->stateOverridden);
}
TEST_F(OutputLayerWriteStateToHWCTest, roundedCornersForceClientComposition) {
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
EXPECT_CALL(mLayerFE, hasRoundedCorners()).WillOnce(Return(true));
expectSetCompositionTypeCall(Composition::CLIENT);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/
false);
}
TEST_F(OutputLayerWriteStateToHWCTest, roundedCornersPeekingThroughAllowsDeviceComposition) {
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
EXPECT_CALL(mLayerFE, hasRoundedCorners()).WillRepeatedly(Return(true));
expectSetCompositionTypeCall(Composition::DEVICE);
mLayerFEState.compositionType = Composition::DEVICE;
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/
true);
EXPECT_EQ(Composition::DEVICE, mOutputLayer.getState().hwc->hwcCompositionType);
}
TEST_F(OutputLayerWriteStateToHWCTest, setBlockingRegion) {
mLayerFEState.compositionType = Composition::DISPLAY_DECORATION;
const auto blockingRegion = Region(Rect(0, 0, 1000, 1000));
mOutputLayer.editState().outputSpaceBlockingRegionHint = blockingRegion;
expectGeometryCommonCalls();
expectPerFrameCommonCalls(SimulateUnsupported::None, kDataspace, kOutputSpaceVisibleRegion,
kSurfaceDamage, kLayerBrightness, blockingRegion);
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::DISPLAY_DECORATION);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/
false);
}
TEST_F(OutputLayerWriteStateToHWCTest, setCompositionTypeRefreshRateIndicator) {
mLayerFEState.compositionType = Composition::REFRESH_RATE_INDICATOR;
expectGeometryCommonCalls();
expectPerFrameCommonCalls();
expectSetHdrMetadataAndBufferCalls();
expectSetCompositionTypeCall(Composition::REFRESH_RATE_INDICATOR);
mOutputLayer.writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
}
/*
* OutputLayer::uncacheBuffers
*/
struct OutputLayerUncacheBufferTest : public OutputLayerTest {
static const sp<GraphicBuffer> kBuffer1;
static const sp<GraphicBuffer> kBuffer2;
static const sp<GraphicBuffer> kBuffer3;
static const sp<Fence> kFence;
OutputLayerUncacheBufferTest() {
auto& outputLayerState = mOutputLayer.editState();
outputLayerState.hwc = impl::OutputLayerCompositionState::Hwc(mHwcLayer_);
mLayerFEState.compositionType = Composition::DEVICE;
mLayerFEState.acquireFence = kFence;
ON_CALL(mOutput, getDisplayColorProfile()).WillByDefault(Return(&mDisplayColorProfile));
}
std::shared_ptr<HWC2::mock::Layer> mHwcLayer_{std::make_shared<NiceMock<HWC2::mock::Layer>>()};
HWC2::mock::Layer& mHwcLayer = *mHwcLayer_;
NiceMock<mock::DisplayColorProfile> mDisplayColorProfile;
};
const sp<GraphicBuffer> OutputLayerUncacheBufferTest::kBuffer1 =
sp<GraphicBuffer>::make(1, 2, PIXEL_FORMAT_RGBA_8888,
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
const sp<GraphicBuffer> OutputLayerUncacheBufferTest::kBuffer2 =
sp<GraphicBuffer>::make(2, 3, PIXEL_FORMAT_RGBA_8888,
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
const sp<GraphicBuffer> OutputLayerUncacheBufferTest::kBuffer3 =
sp<GraphicBuffer>::make(4, 5, PIXEL_FORMAT_RGBA_8888,
AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN);
const sp<Fence> OutputLayerUncacheBufferTest::kFence = sp<Fence>::make();
TEST_F(OutputLayerUncacheBufferTest, canUncacheAndReuseSlot) {
// Buffer1 is stored in slot 0
mLayerFEState.buffer = kBuffer1;
EXPECT_CALL(mHwcLayer, setBuffer(/*slot*/ 0, kBuffer1, kFence));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
Mock::VerifyAndClearExpectations(&mHwcLayer);
// Buffer2 is stored in slot 1
mLayerFEState.buffer = kBuffer2;
EXPECT_CALL(mHwcLayer, setBuffer(/*slot*/ 1, kBuffer2, kFence));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
Mock::VerifyAndClearExpectations(&mHwcLayer);
// Buffer3 is stored in slot 2
mLayerFEState.buffer = kBuffer3;
EXPECT_CALL(mHwcLayer, setBuffer(/*slot*/ 2, kBuffer3, kFence));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
Mock::VerifyAndClearExpectations(&mHwcLayer);
// Buffer2 becomes the active buffer again (with a nullptr) and reuses slot 1
mLayerFEState.buffer = kBuffer2;
sp<GraphicBuffer> nullBuffer = nullptr;
EXPECT_CALL(mHwcLayer, setBuffer(/*slot*/ 1, nullBuffer, kFence));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
Mock::VerifyAndClearExpectations(&mHwcLayer);
// Buffer slots are cleared
std::vector<uint32_t> slotsToClear = {0, 2, 1}; // order doesn't matter
EXPECT_CALL(mHwcLayer, setBufferSlotsToClear(slotsToClear, /*activeBufferSlot*/ 1));
// Uncache the active buffer in between other buffers to exercise correct algorithmic behavior.
mOutputLayer.uncacheBuffers({kBuffer1->getId(), kBuffer2->getId(), kBuffer3->getId()});
Mock::VerifyAndClearExpectations(&mHwcLayer);
// Buffer1 becomes active again, and rather than allocating a new slot, or re-using slot 0,
// the active buffer slot (slot 1 for Buffer2) is reused first, which allows HWC to free the
// memory for the active buffer. Note: slot 1 is different from the first and last buffer slot
// requested to be cleared in slotsToClear (slot 1), above, indicating that the algorithm
// correctly identifies the active buffer as the buffer in slot 1, despite ping-ponging.
mLayerFEState.buffer = kBuffer1;
EXPECT_CALL(mHwcLayer, setBuffer(/*slot*/ 1, kBuffer1, kFence));
mOutputLayer.writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, 0,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false);
Mock::VerifyAndClearExpectations(&mHwcLayer);
}
/*
* OutputLayer::writeCursorPositionToHWC()
*/
struct OutputLayerWriteCursorPositionToHWCTest : public OutputLayerTest {
static constexpr int kDefaultTransform = TR_IDENT;
static constexpr hal::Error kDefaultError = hal::Error::UNSUPPORTED;
static const Rect kDefaultDisplayViewport;
static const Rect kDefaultCursorFrame;
OutputLayerWriteCursorPositionToHWCTest() {
auto& outputLayerState = mOutputLayer.editState();
outputLayerState.hwc = impl::OutputLayerCompositionState::Hwc(mHwcLayer);
mLayerFEState.cursorFrame = kDefaultCursorFrame;
mOutputState.layerStackSpace.setContent(kDefaultDisplayViewport);
mOutputState.transform = ui::Transform{kDefaultTransform};
}
std::shared_ptr<HWC2::mock::Layer> mHwcLayer{std::make_shared<StrictMock<HWC2::mock::Layer>>()};
};
const Rect OutputLayerWriteCursorPositionToHWCTest::kDefaultDisplayViewport{0, 0, 1920, 1080};
const Rect OutputLayerWriteCursorPositionToHWCTest::kDefaultCursorFrame{1, 2, 3, 4};
TEST_F(OutputLayerWriteCursorPositionToHWCTest, doesNothingIfNoFECompositionState) {
EXPECT_CALL(mLayerFE, getCompositionState()).WillOnce(Return(nullptr));
mOutputLayer.writeCursorPositionToHWC();
}
TEST_F(OutputLayerWriteCursorPositionToHWCTest, writeCursorPositionToHWCHandlesNoHwcState) {
mOutputLayer.editState().hwc.reset();
mOutputLayer.writeCursorPositionToHWC();
}
TEST_F(OutputLayerWriteCursorPositionToHWCTest, writeCursorPositionToHWCWritesStateToHWC) {
EXPECT_CALL(*mHwcLayer, setCursorPosition(1, 2)).WillOnce(Return(kDefaultError));
mOutputLayer.writeCursorPositionToHWC();
}
TEST_F(OutputLayerWriteCursorPositionToHWCTest, writeCursorPositionToHWCIntersectedWithViewport) {
mLayerFEState.cursorFrame = Rect{3000, 3000, 3016, 3016};
EXPECT_CALL(*mHwcLayer, setCursorPosition(1920, 1080)).WillOnce(Return(kDefaultError));
mOutputLayer.writeCursorPositionToHWC();
}
TEST_F(OutputLayerWriteCursorPositionToHWCTest, writeCursorPositionToHWCRotatedByTransform) {
mOutputState.transform = ui::Transform{TR_ROT_90};
EXPECT_CALL(*mHwcLayer, setCursorPosition(-4, 1)).WillOnce(Return(kDefaultError));
mOutputLayer.writeCursorPositionToHWC();
}
/*
* OutputLayer::getHwcLayer()
*/
TEST_F(OutputLayerTest, getHwcLayerHandlesNoHwcState) {
mOutputLayer.editState().hwc.reset();
EXPECT_TRUE(mOutputLayer.getHwcLayer() == nullptr);
}
TEST_F(OutputLayerTest, getHwcLayerHandlesNoHwcLayer) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
EXPECT_TRUE(mOutputLayer.getHwcLayer() == nullptr);
}
TEST_F(OutputLayerTest, getHwcLayerReturnsHwcLayer) {
auto hwcLayer = std::make_shared<StrictMock<HWC2::mock::Layer>>();
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{hwcLayer};
EXPECT_EQ(hwcLayer.get(), mOutputLayer.getHwcLayer());
}
/*
* OutputLayer::requiresClientComposition()
*/
TEST_F(OutputLayerTest, requiresClientCompositionReturnsTrueIfNoHWC2State) {
mOutputLayer.editState().hwc.reset();
EXPECT_TRUE(mOutputLayer.requiresClientComposition());
}
TEST_F(OutputLayerTest, requiresClientCompositionReturnsTrueIfSetToClientComposition) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
mOutputLayer.editState().hwc->hwcCompositionType = Composition::CLIENT;
EXPECT_TRUE(mOutputLayer.requiresClientComposition());
}
TEST_F(OutputLayerTest, requiresClientCompositionReturnsFalseIfSetToDeviceComposition) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
mOutputLayer.editState().hwc->hwcCompositionType = Composition::DEVICE;
EXPECT_FALSE(mOutputLayer.requiresClientComposition());
}
/*
* OutputLayer::isHardwareCursor()
*/
TEST_F(OutputLayerTest, isHardwareCursorReturnsFalseIfNoHWC2State) {
mOutputLayer.editState().hwc.reset();
EXPECT_FALSE(mOutputLayer.isHardwareCursor());
}
TEST_F(OutputLayerTest, isHardwareCursorReturnsTrueIfSetToCursorComposition) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
mOutputLayer.editState().hwc->hwcCompositionType = Composition::CURSOR;
EXPECT_TRUE(mOutputLayer.isHardwareCursor());
}
TEST_F(OutputLayerTest, isHardwareCursorReturnsFalseIfSetToDeviceComposition) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
mOutputLayer.editState().hwc->hwcCompositionType = Composition::DEVICE;
EXPECT_FALSE(mOutputLayer.isHardwareCursor());
}
/*
* OutputLayer::applyDeviceCompositionTypeChange()
*/
TEST_F(OutputLayerTest, applyDeviceCompositionTypeChangeSetsNewType) {
mOutputLayer.editState().hwc = impl::OutputLayerCompositionState::Hwc{nullptr};
mOutputLayer.editState().hwc->hwcCompositionType = Composition::DEVICE;
mOutputLayer.applyDeviceCompositionTypeChange(Composition::CLIENT);
ASSERT_TRUE(mOutputLayer.getState().hwc);
EXPECT_EQ(Composition::CLIENT, mOutputLayer.getState().hwc->hwcCompositionType);
}
/*
* OutputLayer::prepareForDeviceLayerRequests()
*/
TEST_F(OutputLayerTest, prepareForDeviceLayerRequestsResetsRequestState) {
mOutputLayer.editState().clearClientTarget = true;
mOutputLayer.prepareForDeviceLayerRequests();
EXPECT_FALSE(mOutputLayer.getState().clearClientTarget);
}
/*
* OutputLayer::applyDeviceLayerRequest()
*/
TEST_F(OutputLayerTest, applyDeviceLayerRequestHandlesClearClientTarget) {
mOutputLayer.editState().clearClientTarget = false;
mOutputLayer.applyDeviceLayerRequest(Hwc2::IComposerClient::LayerRequest::CLEAR_CLIENT_TARGET);
EXPECT_TRUE(mOutputLayer.getState().clearClientTarget);
}
TEST_F(OutputLayerTest, applyDeviceLayerRequestHandlesUnknownRequest) {
mOutputLayer.editState().clearClientTarget = false;
mOutputLayer.applyDeviceLayerRequest(static_cast<Hwc2::IComposerClient::LayerRequest>(0));
EXPECT_FALSE(mOutputLayer.getState().clearClientTarget);
}
/*
* OutputLayer::needsFiltering()
*/
TEST_F(OutputLayerTest, needsFilteringReturnsFalseIfDisplaySizeSameAsSourceSize) {
mOutputLayer.editState().displayFrame = Rect(100, 100, 200, 200);
mOutputLayer.editState().sourceCrop = FloatRect{0.f, 0.f, 100.f, 100.f};
EXPECT_FALSE(mOutputLayer.needsFiltering());
}
TEST_F(OutputLayerTest, needsFilteringReturnsTrueIfDisplaySizeDifferentFromSourceSize) {
mOutputLayer.editState().displayFrame = Rect(100, 100, 200, 200);
mOutputLayer.editState().sourceCrop = FloatRect{0.f, 0.f, 100.1f, 100.1f};
EXPECT_TRUE(mOutputLayer.needsFiltering());
}
TEST_F(OutputLayerTest, needsFilteringReturnsFalseIfRotatedDisplaySizeSameAsSourceSize) {
mOutputLayer.editState().displayFrame = Rect(100, 100, 300, 200);
mOutputLayer.editState().sourceCrop = FloatRect{0.f, 0.f, 100.f, 200.f};
mOutputLayer.editState().bufferTransform = Hwc2::Transform::ROT_90;
EXPECT_FALSE(mOutputLayer.needsFiltering());
}
TEST_F(OutputLayerTest, needsFilteringReturnsTrueIfRotatedDisplaySizeDiffersFromSourceSize) {
mOutputLayer.editState().displayFrame = Rect(100, 100, 300, 200);
mOutputLayer.editState().sourceCrop = FloatRect{0.f, 0.f, 100.f, 200.f};
EXPECT_TRUE(mOutputLayer.needsFiltering());
}
} // namespace
} // namespace android::compositionengine